Chapter 8

Time Series Modeling

This chapter presents several popular probability models for describing a time series, along with
the associated statistical methods. Analogous to using the univariate normal distribution to model a
quantitative variable which has a bell-shaped probability distribution, no time series model will pro-
vide a perfect fit to the data. The goal is to identify a probability model which provides a reasonable
approximation to the time series, fit the model to an observed time series, and then use the fitted
model for statistical inference, which is often forecasting.

8.1 Probability Models

A suite of probability models for time series known as linear models are introduced in this section.
The unifying characteristic of these models is that they express the current value of the time series as
a linear function of (a) the current noise term, (b) previous noise terms, and (¢) previous values of
the time series. We begin by taking a birds-eye view of these linear time series models by introducing
general linear models (often abbreviated glm) and some of their properties. This is followed by a
section that introduces a suite of time series models that are special cases of general linear models
that are known as ARMA (autoregressive moving average) models. ARMA models are parsimonious
in the sense that they are able to specify a wide variety of underlying probability models that govern
a stationary time series with only a few parameters. With both general linear models and ARMA
models, you will see a great deal of symmetry and some mathematics that works out beautifully on
the road to developing time series models that can be implemented in real-world applications.

8.1.1 General Linear Models

General linear models provide an important way of thinking about how to define a time series model
in a simple and general manner. Working with general linear models also provides some practice
with using the backshift operator B, which was defined in Section 7.3.1. We also consider the causal
and invertible form of general linear models. The causal form is important for establishing station-
arity. The invertible form is important for ensuring a one-to-one relationship between parameter
values and the associated population autocorrelation function.

The concepts of white noise from Definition 7.1 and linear filters from Section 7.3.1 are tied
together in this section to define general linear models. White noise is a time series of mutually
independent random variables denoted by {Z;}. Each element in the white noise time series has
common population mean 0 and common population variance 62. Time series analysts often refer
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to the Z; values as random shocks whose purpose is to inject randomness into a time series model.
Without these shocks, the time series model would be purely deterministic. Linear filters are a
general way of expressing one time series as a linear combination of the values in another time
series. White noise and linear filters are the key concepts in the definition of general linear models.
As you will see in the next paragraph, there are two distinctly different ways of defining general
linear models.

More specifically, one way to describe a general linear model is to define the current value in
the time series X; as the current white noise term Z; plus a linear combination of the previous white
noise terms:

X =Zi+WZi-1+VoZio+--

where the coefficients yq, W, ... in the infinite series are real-valued constants. This time series
model is stationary when appropriate restrictions are placed on the Yy, s, ... values. Since this
description of a general linear model is valid at time ¢, it is also valid at other time values, for
example,

X1 =21 +WZi2+ W23+,

or
X o=Z 2+WZ 3+W2Z 4+ .

Solving these equations for the current white noise value and sequentially substituting into the first
formulation of the general linear model, you can see that there is a second way to formulate a general
linear model:

Xi=Z+mX1+mX 2+,

where the coefficients 1, o, ... are real-valued constants and appropriate restrictions are placed on
the 1, 7y, ... values in order to achieve stationarity. In this second formulation of a general linear
model, the current value of the time series is a linear combination of the previous values of the time
series plus the current white noise term. This formulation is analogous to that of a multiple linear
regression model with an infinite number of predictor variables.

A reasonable question to ask at this point is why there is no coefficient associated with Z; in both
formulations of the general linear model. Although some authors associate a coefficient Yy with Z;,
we avoid this practice and simply assume that Yo = 1. Including a y( parameter is redundant because
a nonzero constant multiplied by a white noise term is still a white noise term. The population
variance of the white noise G% is essentially absorbed into the y( parameter. Also, some authors use
a — rather than a + between terms on the right-hand side of the second formulation of the general
linear model.

The two formulations for the general linear model involve a random variable on the left-hand
side of the model and random variables on the right-hand side of the model. In some settings, this
might be viewed as a transformation of random variables, but this is not the correct interpretation of
the model in the time series setting. The general linear model formulations define a hypothesized
relationship between the random variable on the left-hand side of the model and the random variables
on the right-hand side of the model. In the first formulation of the general linear model, the current
value of the time series X; is hypothesized to be a linear combination of the current and previous
noise values. In the second formulation of the general linear model, the current value of the time
series X; is hypothesized to be a linear combination of the previous values in the time series plus
a noise term. This probability model is hypothesized to govern the process over time. The goal in
constructing a time series model is to write a formula for a model which adequately captures the
probabilistic relationship that governs the time series. Estimation of the model parameters will be
followed by assessments to see if the model holds in an empirical sense.
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The coefficients in the two formulations of a general linear model are related. To make these
two formulations of the general linear model more concrete, we will now look at a specific instance.

Example 8.1 Consider the special case of the first formulation of the general linear
model

Xi=Z+1Z .

This model only has one coefficient y;. The subsequent coefficients are y; = 0 for
j=2,3,... . Find the equivalent form of the general linear model using the second
formulation.

Recall from Section 7.3.1 that the backshift operator B shifts a time series value back
one unit in time, for example,
BXt - X17[ .

When the backshift operator includes a superscript, the superscript accounts for multiple
backshifts, for example,
B'Z, =7,_4.

The special case of the general linear model considered here can be converted from its
original form,
Xi =Zi+V1Z-1,

to a form using the backshift operator,
Xt = Zl‘ + WlBZt

or
Xt - (1 +W1B)Zt
Although it might seem like an unusual operation involving B, both sides of this equa-
tion can be divided by 1+ B, which gives
1+ \IllB

For y; values on the interval —1 < y; < 1, this can be expanded as a geometric series
with common ratio —y B:

(1-yiB+yiB*—-- )X, =Z,

or
X —viX—1 +W%Xt—2 - =27

or
X =27 +y1 X1 —W%Xt72 +

This is the second formulation of the general linear model with coefficients 7t; = (—1)/~! \y{
forj=1,2,...and -1 <y < 1.

A sleight of hand has occurred in the previous example with respect to the use of the backshift
operator B, first as an operator and then as a variable. This paragraph concerns that dual use. When
B is used as an operator, it has a domain or input, for instance, X;, and a range or output, for instance,
BX; = X;_1. In this case, the effect of the operator B on a time series value is to go back in the time
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series one unit of time. The input to B is the value of the time series at time ¢, and the output from B
is the value of the time series at time # — 1. The full domain of the operator B is the entire sequence
of time series values. Why is it acceptable to take an operator like the backshift operator B and use it
as a variable? It can be demonstrated that the backshift operator B functions like a linear map in the
sense of allowing the standard multiplication and addition operations in its domain. In addition to
the standard operations such addition, multiplication, and inversion, we may thus treat polynomials
in B as polynomials in real variables.

For the particular case of the general linear model considered in the previous example, there was
a relationship between the coefficients in the two formulations of the general linear model. We now
consider whether there is a relationship between the coefficients Yy, s, ... and Ty, Ty, ... in the
general setting. We continue with our use of the backshift operator B. The first formulation of the
general linear model is

Xi=Z+WZi 1+l o+,

which can be rewritten using the backshift operator as
X =Z+\WBZ + B Z + -

or
X, = (1+¥iB+y:B’ +---)Z,.

The polynomial in B in this formulation of the model is denoted by W(B), so the first formulation of
the general linear model can be written compactly as

Xl = W(B)Zh

where W(B) = 1 +y B+ yB> +---.
Now consider the second formulation of the general linear model:

X, =Z+mX 1 +TX o+ .

Separating the time series terms on the left-hand side of the equation and the white noise term on
the right-hand side of the equation results in

X=X —TX 02— =14,
which can be rewritten using the backshift operator as
X, —mBX, —muB’X, — - =12,

or
(1-mB—mB*—)X, =Z,.

The polynomial in B in this formulation of the model is denoted by 7(B), so the second formulation
of the general linear model can be written compactly as

n(B)X; = Z,,

where T(B) = 1 —mB—mB* —---.
Definition 8.1 gives the two formulations of the general linear model expressed in purely alge-
braic form and in terms of polynomials in the backshift operator.
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Definition 8.1 A time series {X;} can be expressed as a general linear model as
X =Z+ViZi—1 +V2Zi 2+,
where Yy, 2, ... are real-valued constants and Z, ~ WN (0, 62), or, equivalently, as
X = (1+yiB+:B> +--) Z = y(B)Z,.
Alternatively, the general linear model for a time series can be written as
Xi=Z+mX 1 +TX 2+
for certain values of the real-valued constants Ty, T, ... , or, equivalently, as

(lfTCleTl:szf'w)Xt =n(B)X; =Z.

In the previous example, we were able to perform algebraic steps to determine the relationship
between the coefficients in the first formulation of the general linear model (that is, yi, Y2, ...)
and the coefficients in the second formulation (that is, 7|, 75, ...). This can also be done in the
more general setting. The equations that define the two formulations of the general linear model in
Definition 8.1 written in terms of the backshift operator are

Xt = W(B)Zt and TC(B)X; = Zt-

Applying the y(B) polynomial to both sides of the second equation gives

Y(B)n(B)X; = X;

or
y(B)R(B) = 1

for nonzero X;. Since the product of the polynomials y(B) and 7(B) is one, they are inverses. For
suitable values of the coefficients, this allows us to calculate the coefficients Wi, s, ... from the
coefficients 7, Ty, ... and vice versa. The inverse relationship between y(B) and ©n(B) will now be
confirmed for the polynomials identified in the previous example.

Example 8.2 Verify that y(B)n(B) = 1 for the time series model for {X;} from the
previous example:
Xi =Z+ V12,

where —1 <y < 1 and {Z} is a time series of white noise.

From Example 8.1, the polynomials in the backshift operator are

Y(B) =1+yB

and
n(B) = 1—yiB+yiB> — -
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The product of y(B) and ©t(B) is

1+yB) (1 -y B+yiB - )

y(B)n(B) = (
(1—yiB+yiB: — )+ (yiB— B +yiB — )
1

as expected.

The previous discussion constitutes a proof of the following theorem concerning writing the
two forms of the general linear model in terms of polynomials in the backshift operator and the
relationship between the two polynomials y(B) and 7t(B).

Theorem 8.1 The two formulations of the general linear model from Definition 8.1 associated
with the two polynomials y(B) and ©t(B) are equivalent time series models and are related by

v(B)(B) = |

for certain values of the coefficients.

We will toggle between the purely algebraic formulations of the general linear model and the
associated formulations using the backshift operator B based on which is more convenient and ef-
fective for the mathematics in a particular setting. Definition 8.1 gives two different ways of writing
a general linear model, but is vague concerning any constraints placed on the coefficients. Some
constraints on the coefficients that give the general linear model certain important characteristics
are outlined next. Stationarity will play a central role in these constraints. The stationarity property
implies that the time series is stable over time; this stability allows us to predict how the time series
will behave in the future.

Causality and Invertibility

The general linear model is formulated in two different fashions in Definition 8.1. But we have
not yet defined any general constraints on the coefficients in the two different formulations of the
general linear model. We begin the consideration of appropriate constraints on the coefficients with
some calculations on the first formulation of the general linear model.

The first formulation of the general linear model from Definition 8.1 using the purely algebraic
form is

Xi=Zi+WZi 1 +VoZi o+ .

We would like to determine constraints on the coefficients Yy, V7, ... that will result in a stationary
model and also find expressions for quantities associated with the stationary version of this model,
such as E [X], V [X], y(k), and p(k). Taking the expected value of both sides of the defining formula
results in

EX]=E[Zi+WZi1+V2Z 2 +--]
=E[Z)+ENIZ ]| +E[W2Z 2]+
E
0

[Z:) +WIE [Zi1]| +E [Zi o]+

because each of the white noise terms has expected value 0. This is a promising first step toward
achieving stationarity. So far, no constraints are needed on the coefficients Yy, Y, ... . That will
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change when we compute the population variance of X;. Taking the population variance of both
sides of the defining formula results in

VX =VIZi+wiZi1+WZ 2+ -]
VIZ]+VWiZia]+V [WaZia] + -
VIZ]+ WiV [Za] 43V [Zio] + -

=(1+yi+y;+-)o;

because the white noise terms are mutually independent random variables with common finite popu-
lation variance 62 (see Definition 7.1). Not all values of W, W2, ... will result in a finite population
variance of X;. Setting Y| =y, =--- =1, for example, results in an infinite population variance
of X;. In order to get a finite population variance, the y values must decrease in magnitude rapidly
enough so that

Wi+ 4 <o,

One way to achieve this condition is to have finite values for the first g coefficients Y1, 2, ..., ¥,
then zeros thereafter. Any general linear model of the first formulation with coefficients that “cut
off” in this fashion will satisfy the constraint. Another way of considering this constraint is to write
this model using the backshift operator. Using Definition 8.1, the first formulation of the general
linear model is

X, =y(B)Z = (1+yiB+ B’ +---) 7.

The polynomial in the backshift operator
W(B) = 1+ 1B+ B>+

will be considered for B values that can assume complex values. So B can have the form B = a + bi.
The constraint on the coefficients Wy, Y, ... is equivalent to y(B) converging for all B values falling
on or inside the unit circle. In other words, |B| < 1.

The population autocovariance function for the general linear model stated in the form

Xi=Z+\1Z 1 +V2Z 2+

with coefficients Yy, 2, ... satisfying the constraint can be calculated by using the definition of the
population covariance:

Y(k) = Cov (Xz, X;14)
=Cov(Z+WiZi1 +V2Zia+, Zipk V1 Zsk—1 Y V2 22+ )
= CoV (Z, YiZiti—i) + Cov (W1 Zi— 1, Wik 1 Zyk— (k1))
= WO + W1 Wit 107 + Yoy 207 + -
= (Wk+ Wi Wit 1 + Yoo+ ) OF

fork=1,2, ... because of the mutual independence of the terms in the white noise time series. As
expected from the previous derivation, the autocovariance at lag O is the population variance of X;:

Y0) =V [X]=(1+yi+y3+---)oz,
where Yo, the coefficient of Z;, equals 1. The associated autocorrelation function is

p(k) = vk) 67 (Wi + WiVis1 + VaWiya +--) _ Yk ViV HYoWkio + -
(0) o7 (1+yi+y3+-) 1+yf+y3+-
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fork=1,2,... . Notice that p(0) = 1 as expected.

The derivation so far has been general, so when specific values of the coefficients i, Yy, ...
are specified, we now have formulas to determine the population autocovariance function and the
population autocorrelation function. Computing these two functions will be illustrated in the next
example.

Example 8.3 Consider a time series model {X;} described by

3 3
X =7 — EZI—I + ZZI‘—Z;

where {Z;} ~WN (07 6%). Determine whether this time series is stationary and calcu-
late the population autocovariance function and autocorrelation function.

This time series model is a special case of the first formulation of the general linear
model from Definition 8.1 which expresses X; as a linear combination of the white
noise terms with coefficients y; = —3/2, y» =3/4 and y; =0 for j=3,4,... . The
time series is stationary because

2+ 2+— _§ 2_|_ § 2—£<oo
Vit =173 1) 16

The population autocovariance function is

¥(6) = (W + WiVie1 +VoWisa + ) 03

(1+(=3/2)*+(3/4)*) o} k=0
) (=3/2+(=3/2)(3/4))c2 k=1
] (3/4)c2 k=2
0 k=3,4,..
6162/16 k=0
_} —210%/8 k=1
] 302/4 k=2
0 k=3,4,...,

where Yo = 1 is the coefficient of Z;. The associated population autocorrelation function
p(k) =v(k)/¥(0) is

1 k=0
) —a2/61 k=1
P =1 1261 k=2
0 k=34

g Ty ey

which is graphed in Figure 8.1. The population autocorrelation function “cuts off” after
spikes at lags 1 and 2.

The constraint that has been placed on the values of Yy, Y», ... can be formalized in this defini-
tion of the causal representation of the general linear model.
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Figure 8.1: Population autocorrelation function for X; = Z, — EZI,I + ZZZ,Z.

Definition 8.2 A time series {X;} is causal if it can be written as
Xi=Z+ViZi—1+ 222+,
where Y1, Yo, ... are real-valued coefficients that satisfy

VR <o

A time series model that can be written in the causal form is stationary.

The next example illustrates how to convert a general linear model into the causal form in order
to establish stationarity.

Example 8.4 Consider the special case of the general linear model

2

Convert this time series model to the causal representation.

The causal form from Definition 8.2 is
Xi=Z+\Zi 1 +Z o+
So for the specific case given here,

2
(1 - 5B> (Zi+viZiv+V2Zia+) =27

Expanding the left-hand side of this equation gives

2 2 2
Z:+ (Wl - 5) Zi 1+ (\Ilz - S\Ifl) Zi 2+ <W3 - 5‘I’2> Zi 3+ =1,
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Equating the coefficients on the left-hand side and right-hand side of this equation as

illustrated in Table 8.1 allows us to solve for Yy, Yo, ..

series model is

. . So the causal form of the time

X =7+ ()7 +(2 2Z +(2 32 +
t — 4t 5 t—1 5 t—2 5 t—3 ;

which has coefficients y; = (2/5)/, for j =1, 2, ... . Notice that

2
w%+w%+w%+~~<5

)+ () ()

4/25 4

= )

T 1-4/25 21

so the time series is causal because Definition 8.2 is satisfied. Since the time series is
causal, this implies that it is also stationary.

term equation solution

Z 2_, _2
-1 Vi 5= Y = 5

Z 21 = 0 _(2 ’
-2 | Y2 51I11 = Y2 = 5

Zs | vs-Zua=0 | ya= (2)
-3 | V3 5W2 = V3 = 3

Table 8.1: Matching coefficients.

When the second formulation of the general linear model that uses the coefficients 7y, 7y, ... is
used, there is an analogous property known as invertibility which is defined next. In this case the
coefficients Ty, Ty, ... need to decrease in magnitude rapidly enough so that

T 413+ < oo

Loosely speaking, a time series model is invertible if there is a one-to-one correspondence between

the coefficients 7y, 7, ... and the associated population autocorrelation function.

Definition 8.3 A time series {X; } is invertible if it can be written as
X =Z+mX 1 +TX 2+,
where 1, 7Ty, ... are real-valued coefficients that satisfy

T+ T+ < oo,

An invertible time series model has a one-to-one correspondence between the coefficients and the

autocorrelation function.

So causality and invertibility are dual properties. Causality indicates that a time series model can
be written in the first formulation of the general linear model from Definition 8.1 with coefficients
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that result in a stationarity model. Invertibility indicates that a time series model can be written in
the second formulation of the general linear model from Definition 8.1 with coefficients that ensure
a one-to-one correspondence between the coefficients and the population autocorrelation function.

There are three unsettling aspects to the general linear model. First, it only considers linear
relationships between the X’s and the Z’s. Situations might arise in which a quadratic term, for ex-
ample, might be appropriate. Second, the general linear model has an infinite number of parameters:
the coefficients i, Y, ... for the first formulation and the coefficients 7y, 7y, ... for the second
formulation. ARMA (autoregressive moving average) models, which are special cases of general
linear models that are introduced in the next section, limit the number of parameters in the model.
The third shortcoming concerns the population mean. Taking the expected value of both sides of the
first formulation of the general linear model

Xi=Z+\Zi 1 +Z o+,

for example, gives E [X;] = 0. But the vast majority of real-world time series are not centered around
zero. These problems associated with an infinite number of parameters and nonzero mean value will
be overcome by the ARMA models introduced in the next section.

8.1.2 An Introduction to ARMA Models

The autoregressive moving average time series model, universally known as the ARMA model,
provides two twists on the general linear model. First, the ARMA model limits the number of terms,
and therefore limits the number of parameters. Second, the ARMA model includes both types of
terms in the two formulations of the general linear model given in Definition 8.1.

There are several reasons for the popularity of the ARMA time series model. First, the popula-
tion autocorrelation function p(k) for an ARMA model can take on a wide variety of shapes, which
makes it an appropriate time series model in a wide variety of applications. Second, the ARMA
model is parsimonious in the sense that it typically requires only a small number of parameters to
achieve an adequate representation of the probability model governing a time series. The notion
of parsimony appears in all branches of statistics in which there is interest in finding an approxi-
mate probability model using the smallest number of parameters. Third, the ARMA model has been
around for several decades, which means that dozens of software packages have been developed
over the years for model identification, parameter estimation, forecasting, etc. Although the empha-
sis here will be on the R language, there are many other software packages that support time series
modeling.

The general linear model from Definition 8.1 used the parameters Yy, 5, ... for the first for-
mulation and 7, Ty, ... for the second formulation. Of course both of these formulations have the
additional parameter (5%, which is the population variance of the white noise. Tradition dictates that
in the conversion from the first formulation of the general linear model to the ARMA model, the
Greek letter W used for coefficients in the general linear model is replaced by 0, and there are g of
these coefficients: 01,05, ...,0,. Likewise, in the conversion from the second formulation of the
general linear model to the ARMA model, the Greek letter 7 used for the coefficients in the general
model is replaced by ¢, and there are p of these coefficients: ¢1, ¢z, ..., 0.

So two key parameters in specifying an ARMA model are p and ¢, which are both nonnegative
integers. The parameter p is the number of coefficient parameters in the autoregressive portion of
the model; the parameter ¢ is the number of coefficient parameters in the moving average portion of
the model. The format for specifying the orders p and g of an ARMA model with p autoregressive
terms and ¢ moving average terms is ARMA(p, q).
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Definition 8.4 The ARMA(p, g) time series model is

autoregressive portion

Xi=01 X1+ 02X 2+ +0pXp+2Z+01Z 1 +02Z; 2 +---+0,Z_,

moving average portion

where {X; } is the time series of interest, {Z; } is a time series of white noise, 01, 92, ..., ¢, are real-
valued parameters associated with the AR portion of the model, and 61, 5, ..., 6, are real-valued
parameters associated with the MA portion of the model.

The autoregressive portion of this time series model is aptly named because the current value
of the time series X; is regressed on the p previous values of itself. White noise is injected into the
model through {Z} because it is the widest class of the three noise processes from Definition 7.1
which gives the probabilistic properties that are derived in this chapter.

If an ARMA model only involves, for example, the autoregressive portion of the model with two
terms (that is, no moving average terms because 0; = 0, = --- = 0, = 0), then this ARMA(2, 0)
model is specified as an AR(2) model. Likewise, if an ARMA model only involves, for example, the
moving average portion of the model with four terms (that is, no autoregressive terms because ¢; =
02 =--- = ¢, = 0), then this ARMA(0, 4) model is specified as an MA(4) model. An ARMA(0, 0)
model is just a time series of white noise, which was analyzed in Examples 7.9 and 7.15.

The ARMA(p, g) time series model from Definition 8.4 can also be written in terms of the
backshift operator B. Taking the original form of the ARMA(p, ¢) model

X =01 X1 +0X o+ +0,X p+Z,+01Z 1 +02Z 2+ +0,Z 4,

and separating the autoregressive terms on the left-hand side of the equation and the moving average
terms on the right-hand side of the equation results in

Xi—01 X 1 —0Xe 20— —0pXe p=2+01Z; 1 +027Z 2+ +647 4.
This can be written in terms of the backshift operator as
X; — 01BX, — 02B7X, — -+ — 0,B’X; = Z, + 0\BZ, + 0:B°Z, + - - +0,B1Z,

or
(1-¢1B—¢2B>—---—¢,B") X, = (1+0,B+6,8*+---+0,B) Z,

or more compactly as
0(B)X; = 0(B)Z,

where the polynomials in B are
O(B) = 1—01B— 28> —---—¢,B”

and
O(B)=1+6,B+0,B°+---+6,B,

and these are often referred to as the characteristic polynomials. This algebra constitutes a proof of
the alternative representation of the ARMA(p, g) time series model using polynomials.
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Theorem 8.2 The ARMA(p, g) time series model can be written using the backshift operator B
as
q)(B)X[ = G(B)Zl,

where the characteristic polynomials in B are
O(B) =1—01B—02B8” — - — B

and
0(B) =1-+0,B+0:8>+---46,B7.

Being able to convert between the purely algebraic formulation of an ARMA(p, ¢) model and the
backshift operator formulation is an important skill in time series analysis. The next three examples
illustrate how to perform these conversions.

Example 8.5 For the ARMA time series model
X, =5X 12Xy 2+2, —4Z 1 +27; »—Z; 3,

(a) identify the time series model, and

(b) write the time series model in terms of the backshift operator B.
(a) Since there are two terms in the autoregressive portion of the time series model
with coefficients
(])1 =5 and (])2 =-2

and three terms in the moving average portion of the time series model with coef-
ficients

91 = —4, 92 = 2, and 93 = —1,

this is an ARMA(2, 3) model.

(b) The time series model
X, =5Xi1—2X, 242 —4Z, 1\ +2Z; 2 —Z,_3
can be separated into autoregressive and moving average portions as
X, —5X 1 +2Xs 0 =7 —4Zy 1\ +2Z1—2 — Zs_3.
This can be written in terms of B as
X, — 5BX, +2B°X, = Z, — 4BZ, + 2B*Z, — B’Z,

or
(1-5B+2B*)X, = (1-4B+2B*—B%) Z,.

So the polynomials in B that define the coefficients for the ARMA(2, 3) time series
model written in the form 0(B)X, = 6(B)Z, are

®(B) = 1—5B+2B> and 0(B)=1—4B+2B> B’
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The previous example converted an ARMA time series model from a purely algebraic formula-
tion to a formulation that uses the backshift operator. The next example goes in the other direction.

Example 8.6 For the ARMA time series model
q)(B)X[ - e(B)Z[7
where ¢(B) =1—0.3Band 6(B) =1,

(a) identify the time series model, and
(b) write the time series model in purely algebraic form.

(a) Since ¢(B) is a first degree polynomial, p = 1. Since 8(B) is a zero degree polyno-
mial, ¢ = 0. So this is an ARMA(1, 0) model, which is more commonly referred
to as an AR(1) model.

(b) The time series model is

or
Xl - O3BX[ == Zl

or
Xl - 0.3X17] - Zl'

Isolating X; on the left-hand side of the equation, the purely algebraic formulation
of this AR(1) model with ¢; = 0.3 is

Xt = 0'3Xl‘71 +Zt

The third and final example of converting between the purely algebraic formulation and backshift
formulation of the ARMA(p, g) model would certainly be classified as a trick question. The example
emphasizes the importance of looking for common factors between the ¢(B) and 6(B) polynomials.

Example 8.7 For the ARMA time series model
Xi = —-3X-1+Xi—2+3X—3+ 2 — 37,1 — 42,

(a) identify the time series model, and

(b) write the time series model using the backshift operator.

(a) Since there are three terms in the autoregressive portion of the model and two
terms in the moving average portion of the model, one might be temped to con-
clude that this is an ARMA(3, 2) model with autoregressive coefficients

¢1 2—3, (1)2217 and ¢3:3,
and moving average coefficients
0, =-3 and 0, = —4.

But that conclusion is wrong. It is actually an ARMA(2, 1) model because ¢(B)
and 6(B) have a common factor, as will be seen in part (b). Writing the time series
model using the backshift operator B makes it easier to recognize this common
factor.
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(b) The time series model

X[ = 73Xr71 +X[72 + 3X[73 +Z[ — 32[7] — 4Z[72
can be separated into autoregressive and moving average portions as

Xi+3X 1 —Xi 2—3X, 3=2,-37 1 —4Z; >

or
X, +3BX, — B’X, — 3B*X, = Z, — 3BZ, — 4B’Z,
or
(14+3B—B>-3B%)X, = (1-3B—4B*)Z
or
q)(B)X[ == B(B)Z,,
where

0(B) = 1+3B—B*>-3B° and 0(B)=1-3B—4B2.

The model still looks like an ARMA(3, 2) model. But factoring ¢(B) and 8(B)
reveals that both polynomials contain a common factor:

0(B)=1+3B—B*-3B>=(1+B) (1+2B—3B%)

and
0(B) =1—3B—4B> = (1+B)(1—4B).

The common factor (1 + B) in the two polynomials cancels, which means that the
ARMA model can be reduced to

q)(B)Xt = O(B)Zt,
where
O(B) =1+2B—3B° and 0(B) =1—4B,

which is an ARMA(2, 1) model. Written in purely algebraic form, this ARMA(2, 1)
model is
X +2Xi 1 -3X, 2 =2,—4Z, 1,

or
Xy =-2X,1+3X—2+2, — 47,

so the autoregressive coefficients are ¢; = —2 and ¢, = 3, and the moving average

coefficient is 0; = —4.

Based on this example involving a common factor in the ¢(B) and 6(B) polynomials, we will

henceforth assume that the modeler has removed any redundant factors in an ARMA(p, ¢) time
series model. So any ARMA(p, g) model you see going forward will in this sense be presented in
lowest terms with no common factors between ¢(B) and 6(B).
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Since an AR(p) model has a finite number of coefficients ¢y, 92, ..., ¢, in the autoregressive
portion of the model, they always satisfy

0T +05+ - +05 < oo,

so AR(p) models are always invertible per Definition 8.3. Likewise, since an MA(q) model has a
finite number of coefficients 01, 05, ..., 6, in the moving average portion of the model, they always
satisfy
07 +65+ - +6] <oo,

so MA(g) models are always stationary per Definition 8.2. In an advanced class in time series, you
will prove that an AR(p) model is stationary when all of the p complex roots of the polynomial
¢(B) = 0 lie outside of the unit circle in the complex plane. Likewise, an MA(g) model is invertible
when all of the ¢ complex roots of the polynomial 6(B) = 0 lie outside of the unit circle in the
complex plane. An ARMA(p, ¢) model is stationary when all of the p complex roots of ¢(B) =0
lie outside of the unit circle in the complex plane. An ARMA(p, ¢) model is invertible when all of
the ¢ complex roots of 6(B) = 0 lie outside of the unit circle in the complex plane. These results are
summarized below.

Theorem 8.3 The AR(p) model ¢(B)X; = Z; is

e always invertible, and

e stationary when the p roots of ¢(B) = 0 lie outside the unit circle in the complex plane.
The MA(g) model X; = 6(B)Z; is

e always stationary, and

e invertible when the g roots of 6(B) = 0 lie outside the unit circle in the complex plane.
The ARMA(p, ¢) model 0(B)X; = 6(B)Z; is

e stationary when the p roots of ¢(B) = 0 lie outside the unit circle in the complex plane, and

e invertible when the g roots of 6(B) = 0 lie outside the unit circle in the complex plane.

We now revisit the first numeric example of a time series model that we encountered earlier in
this chapter to check and see if it is both stationary and invertible.

Example 8.8 Consider the time series model for {X; } that first appeared in Example 8.3
described by

3 3
X =2, — EZt—l + ZZI—Z,

where {Z,} ~ WN (0, (5%). Identify this time series model and determine whether it is
stationary and invertible.

Since the current and two previous white noise values included in this time series model,
this is an MA(2) model. By Theorem 8.3, all MA(2) models are stationary. To see
whether this model is invertible, we want to calculate the roots of 8(B) = 0 and see if
they lie outside of the unit circle in the complex plane. The purely algebraic form of the
time series model

3 3
Xi=2— EZt—l + 12172,
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can be written in terms of the backshift operator as

3 3
X, =7~ 5BZ+ 1822,

3.3
X, = (1 - 219+132> 7,

or

4
s0 8(B) = 1 — 3B+ 2B%. To find the values of B that solve 6(B) = 0 requires solving

3, 3
SB—IB+1=0
S

which is equivalent to the quadratic equation
3B*—6B+4=0.
Using the quadratic formula, the roots of this quadratic equation are

 6+1/36—48
==

le:l:?i.

B

or

Since O(B) is a second-order polynomial, the complex roots are necessarily complex
conjugates. We now need to determine whether these two roots lie outside of the unit
circle in the complex plane. There are two ways to proceed. The first is to simply
plot these two roots in the complex plane and see if they fall outside of the unit circle.
Figure 8.2 shows that the two roots do indeed fall outside of the unit circle. The second
way to determine whether the roots fall outside the unit circle is to take the sum of
squares of the real and imaginary parts of the roots and see if they exceed 1. In this
case,

imaginary

unit circle

real

Figure 8.2: Unit circle in the complex plane and the roots of 6(B) = 0.
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Both techniques draw the same conclusion: the two roots of 6(B) = 0 fall outside of the
unit circle in the complex plane, which means that the time series model is invertible.
In conclusion, this MA(2) time series model is both stationary and invertible.

We will get some further practice with these calculations involving the polynomials ¢(B) and
0(B) when we investigate special cases of the ARMA(p, g) model in more detail in the sections that
follow.

Shifted ARMA models

We now address a major shortcoming of the ARMA(p, g) model that—fortunately—is easily over-
come. For a stationary ARMA(p, g) model as it has been defined in Definition 8.4, the expected
value of X; is E [X;] = 0. But most real-world stationary time series are not centered about 0; they
are typically centered about some nonzero constant value. The reason that we have waited this long
to bring up the topic of a time series centered around a value other than zero is that when we shift the
time series, there will be no change in the population autocovariance and autocorrelation functions
because population covariance and correlation are unaffected by shifting the time series. The math-
ematics involved with determining these important functions is much cleaner if you assume that the
time series model is centered about zero. There are two ways to tweak the ARMA(p, g) model to
allow for it to be centered about some constant value. These two alterations are presented next.

The first way to introduce a nonzero central value for an ARMA(p, g) time series model is to
subtract u from all of the values in the time series. In other words, transform the usual ARMA(p, q)
time series model

X =01 X 14+0Xi 2+ +0pXp+Z+601Z1+602Z 2+ + 6,7,
to the shifted ARMA(p, g) time series model
Xi—pu=0(X-1—)+0Xo—u++0pXi—p—t) +Z,+01Z_1 +62Z,_2+---+0,7Z_,.
This can be written compactly in terms of the backshift operator B as

o(B) (X; —u) = 0(B)Z,,

where ¢(B) is the usual polynomial of degree p in B associated with the autoregressive portion of
the model:

O(B)=1-0\B—¢2B> —---—¢,B",

and 6(B) is the usual polynomial of degree g in B associated with the moving average portion of the
model:
0(B) =1-+0,B+0,8>+---+6,B7.

In this particular formulation of a shifted ARMA(p, ¢) model, the population mean of the process
is E [X;] = u when the model is stationary. This can be established by taking the expected value of
both sides of the shifted ARMA(p, g) time series model.

A second way to formulate a shifted ARMA(p, ¢g) time series model with a nonzero population
mean is to simply add a constant, denoted by fi, to the right-hand side of the model:

Xk =0+01 X 1+0X 2+ +0pX p+Z+01Z 1 +02Z 2+ +0,Z 4
This can be written in terms of the backshift operator as

0(B)X, = i+ 0(B)Z.
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The reason that a tilde has been placed above u in this formulation is that fi is not the population
mean of the time series model. The two ways of formulating a shifted ARMA(p, ¢g) time series
model in these two fashions are summarized as follows.

Definition 8.5 A shifted ARMA(p, g) time series model with a nonzero population mean u can
be written in purely algebraic form as

X —u=0; (Xt—l —/J) ) (Xz—z —,U) +---+ 0, (Xt—p —.U) +7Z;+601Z1+62Z 5+ +0,7,
or equivalently using the backshift operator B as
0(B) (X; —u) = 6(B)Z.

A second way to formulate a shifted ARMA(p, q) time series model with a nonzero population
mean can be written in purely algebraic form as

Xi=p0+01 X1 +0X 2+ +0pXp+2Z +01Z 1 +02Z; 2 +---+0,Z_,
or equivalently using the backshift operator B as
0(B)X; = i+ 0(B)Z;,

where ¢(B) and 6(B) are the usual polynomials in the backshift operator B given in Theorem 8.2.

The example that follows illustrates how to convert a shifted time series model from one of these
forms to the other.

Example 8.9 The shifted ARMA(1, 1) model defined by
Xt = 8 + 0.6X1‘_1 +Zt - 0 1Zt—1
is written in the second form from Definition 8.5 with i = 8. Convert it to the first form.

Moving all autoregressive terms and the constant term to the left-hand side of the equa-
tion results in
X[ _0.6X17] - 8 = Zt —0.1Z17] .

Using the backshift operator, this can be written as
(1-0.6B)X; —8=(1—-0.1B)Z.

We would like to fold the constant 8 into position on the left-hand side of the equation to
match the first formulation from Definition 8.5. We multiply and divide 8 by (1 —0.6B),
keeping in mind that the backshift operator applied to a constant is just the constant:

1-0.6B
1-0.6B)X; —8-———— = (1—0.1B)Z
(1-0.6B)X; —8- -——= = (1-0.1B)Z,
or 3
(1-0.6B)X, — (1-0.6B) - = (1-0.1B)Z
or

(1-0.6B) (X, —20) = (1—0.1B)Z,.
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So this shifted ARMAC(1, 1) time series model is now written in the first formula-
tion from Definition 8.5, which is ¢(B)(X; —u) = 0(B). The expected value of X; is
1= E[X;] =20. One way to check that we have done all of the algebra correctly is to
use u = 20 as an argument in the first formulation of the model from Definition 8.5 and
perform the algebra to see whether it is equivalent to the second formulation.

The previous example can be generalized from the shifted ARMA(1, 1) model to the shifted
ARMA(p, q) model. The following theorem gives the relationship between u and ji for the two
formulations of the shifted ARMA(p, ¢) models in Definition 8.5.

Theorem 8.4 The parameters u = E[X;| and j for the two shifted ARMA(p, ¢) models from Def-
inition 8.5 are related by

p= £
I=01—¢2——0p
when the coefficients ¢1, ¢2, ..., ¢, correspond to a stationary model.

Proof The second shifted ARMA(p, ¢g) model from Definition 8.5 is
X =+ 01 X1+ 02X o+ 0 X p +Z +01Z1 +02Zi 2+ + 0,7,
Taking the expected value of both sides of this equation yields
EX]=a+0E[X 1]+ 0E[X 2]+ +0pE[X;—p] +0

because all of the white noise terms have expected value zero. Since the time series is
assumed to be stationary, E [X;| = E [X;—1]| = E [X;—2] = - - - = E [X,—p], and this equation
becomes

EX]=a+0EX]+0EX]+ - +0,E[X].
Solving for u = E[X;] gives

u
— . ‘:l
SRR T SE

In the previous example, the value of u = E [X;] could have been calculated by appealing to
Theorem 8.4 with i = 8 and ¢ = 0.6, which gives

u=E[X]= = 20.

1-0.6
This provides an illustration of how Theorem 8.4 provides a mechanism for converting between the
two forms of the shifted ARMA(p, g) models given in Definition 8.5.

This section has provided an introduction to linear models. The first subsection surveyed the two
formulations of the general linear model and introduced the causality and invertibility properties.
The second subsection introduced a special case of the general linear model known as the ARMA
(autoregressive moving average) model. These time series models are inherently probabilistic in
nature. The next section introduces some of the associated statistical topics in time series analysis:
parameter estimation, forecasting, model assessment, and model selection.
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8.2 Statistical Methods

The previous section introduced two linear probability models for time series: the general linear
model and the ARMA model. These models contain parameters which can be used to tune the
model to a particular application. This chapter introduces the statistical methods that are used to
estimate these parameters and assess whether the model with its fitted parameters provides an ade-
quate representation of the probabilistic mechanism governing the time series. As you read the rest
of this book, you should be continually asking yourself whether the new material is associated with
a probability model or presents a statistical method. The statistical methods are presented here in
a somewhat generic manner; the specific implementations on a time series of observations occurs
subsequently. The first subsection in this section introduces three methods for estimating the param-
eters in an ARMA model: the method of moments, least squares, and maximum likelihood. This is
followed by a subsection that considers the important topic of forecasting future observations in a
time series. Subsections on model assessment and model selection complete the section.

8.2.1 Parameter Estimation

The emphasis now shifts from a time series model, which is developed using probability theory, to
statistical questions associated with a realization of a time series. The observed values of this realiza-
tion are denoted by X1, X5, ..., X, when considered abstractly; when specific values are considered,
they are denoted by x1, x2, ..., X,.

Before considering parameter estimation, we consider the topic of model identification. Since p
and g are nonnegative integers, there are an infinite number of ARMA(p, g) models from which to
choose. Which model is appropriate for a particular application? Most statistical software packages
that perform the analysis of a time series have functions that estimate parameters and forecast future
values of the time series. So those two aspects of time series analysis are largely automated. The
part of the process that requires some insight from the modeler is the specification of an appropriate
time series model for a particular application. By what criteria do we decide whether an MA(1),
AR(2), or ARMA(2, 1) is a tentative or a final time series model? The two steps associated with
model identification for an ARMA(p, ¢) model are given next.

1. Inspect the time series plot. The process of identifying a time series model always begins
with a careful inspection of a plot of the time series. Take a few minutes to look for cyclic
variation, trends, step changes, outliers, and nonconstant variance in the plot of the time series.
Visually assess the time series for any serial correlation. The human eye can spot subtleties
that an algorithm might miss. Only you can perform this step. We assume for now that no
trends, step changes, outliers, cyclic variation, or nonconstant variance in the time series have
been identified, so a stationary model for the time series is sought. Modeling cyclic variation,
trends, and nonconstant variance will be taken up subsequently.

2. Inspect the plots of r; and r}. Inspecting plots of the sample autocorrelation function and
the sample partial autocorrelation function is an attempt to conduct a visual pattern match
between the sample autocorrelation patterns with a known inventory of population autocor-
relation patterns for the various ARMA(p, ¢) models. The minimum length of a time series
in order to make meaningful visual comparisons between the sample and population auto-
correlation functions is about n = 60 or n = 70 observations. As will be seen in subsequent
chapters, the shape of the sample autocorrelation function and the sample partial autocorre-
lation function can provide clues as to an appropriate time series model. In some cases, the
values of p and g in the ARMA(p, g) model become immediately apparent upon viewing these
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three plots. In other cases, the situation is murky, and there might be two or three potential
ARMA(p, g) models that seem to be plausible. Since we have assumed that the time series is
stationary in the previous paragraph, there is no need to transform or difference the data based
on these plots in the current setting. The p and ¢ values for the ARMA time series model
identified from this step will be known as the fentative model. Once a tentative model has
been identified, the next step is to estimate the parameters, which accounts for the remainder
of this section.

We would like to estimate the parameters of a stationary and invertible tentative ARMA(p, q)
model. It is assumed that the number of autoregressive terms p and the number of moving av-
erage terms g have been established for a tentative ARMA(p, g) time series model based on an
inspection of the sample autocorrelation and sample partial autocorrelation functions. There are a
total of p+ g+ 1 unknown parameters in a standard ARMA(p, g) model from Definition 8.4: the
autoregressive coefficients ¢1, ¢z, ..., 0,, the moving average coefficients 01, 0,, ..., 0,, and the
population variance of the white noise (5%. The shifted ARMA(p, g) model from Definition 8.5 has
the additional parameter .

Consistent with conventional notation in statistics, hats on unknown parameters denote their
point estimators. The point estimator of the unknown parameter ¢;, for example, is ¢;. The point
estimators developed here are random variables that take on one particular value for an observed time
series X1, X2, ..., X,. Point estimators are typically paired with a 100(1 — )% confidence interval
that gives a sense of the precision of the point estimator. A confidence interval for the unknown
parameter ¢, for example, is typically expressed in the form L < ¢; < U, where L is the random
lower bound of the confidence interval and U is the random upper bound of the confidence interval.

In most practical problems involving a time series model, a shifted ARMA(p, g) model is used
because very few time series are centered around zero. Since the ARMA(p, g) time series model
is generally assumed to be stationary and invertible, it is common practice in time series analysis
to estimate the population mean parameter u with the sample mean X. This is justified by the fact
that E [X;] = u for a stationary and invertible shifted ARMA(p, ¢) model. This is consistent with the
method of moments approach. Once u has been estimated, the new time series which is shifted by
a=Xis

X1 —X, X2 —X, ..., X, —X.

This time series can be fitted to a standard ARMA(p, ¢) model from Definition 8.4. This new time
series has a sample mean value of zero because

_i(xi—f) =

So for now we dispatch with the parameter u and assume that it will typically be estimated by X
for a stationary and invertible ARMA(p, g) model by centering the time series as described above.
Both the original time series and the centered time series will be denoted by as {X;} or {x;} in order
to avoid introducing a new letter (¥; or y;) into the notation. The parameter estimation techniques
that follow will be applied to a standard ARMA(p, ¢) model centered around zero, which assumes
that u has been estimated in the shifted model. This will make the notation somewhat more com-
pact. The population variance of X for mutually independent and identically distributed observations
X1, X2, ..., X, is the well-known formula

1 n

S| =
S| =
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But for a stationary ARMA(p, ¢) time series model with population autocovariance function y(k)
and population autocorrelation function p(k), the population variance of the sample mean is

V[X] =V [i (X, +X2+-~~+Xn)}

1
SVI[Xi+Xp+ -+ X,
n

1 n n
I’TZ Z Z Cov (Xi, Xj)
i=1 j=1

1 n n—1 n

= | LVIK]+2), ) Cov(X, X))
i=1 i=1 j=i+l

1 n—1

- [nv(O) £2 Y (1 k)y(k)
k=1

2 n—1

=X 142 Y <1—k>p(k) .
k=1 n
Notice that this formula collapses to V [X] = 63 /n when p(1) = p(2) =--- =p(n—1) =0 as

expected. This formula should be kept in mind whenever statistical inferences, such as confidence
intervals or hypothesis tests, are made concerning the population mean from a realization of a time
series. The sample mean is a meaningful summary statistic for a time series only when appropriate
transformations have been applied to the time series in order to reduce it to a stationary time series.

Three techniques for the estimation of parameters in a time series model will be introduced here:
the method of moments, least squares, and maximum likelihood estimation. There are three reasons
why just one parameter estimation technique is not adequate. First, an AR(3) model, for example,
might be well fitted with one estimation technique, but an MA(2) model, on the other hand, might be
more compatible with another estimation technique. Second, it is often the case that one technique
will provide initial estimates for a numerical method associated with a second technique. Third,
some of the estimation techniques provide estimators which have degraded statistical properties
near the boundaries of the stationarity or invertibility regions. The three techniques will be discussed
generally below, and then will be illustrated with examples subsequently using real time series data.

Method of Moments

The essence of the method of moments technique is to equate low-order population and sample
moments and solve for all unknown parameters. This method was developed by English mathemati-
cian and biostatistician Karl Pearson. This approach often seems arresting to those encountering it
for the first time because population moments are constants and sample moments are random vari-
ables. Equating constants and random variables is simply a device that is used to get a perfect match
between low-order population and sample moments.

In a non-time-series context with data values X1, X», ..., X, and m unknown population param-
eters, the m equations

0-1=
S

1
t=1
2 1 ¢ 2
E[Xt]:;ZXt

~
Il
—
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1
E[X"] = n Z X"

can be solved to arrive at the m method of moments estimators of the unknown parameters. In some
settings this can be done analytically, but in other settings numerical methods are required.

Returning to a time-series context, the stationarity assumption (see Definition 7.6) places re-
quirements on only the first two population moments E [X;] and E [X,Z]. Stationarity places no
requirements on the third and higher order moments. But stationarity does imply that the autocorre-
lation between two observations depends only on the lag, and this can be exploited to generate the
necessary number of equations to employ the method of moments technique. Consider a stationary
and invertible ARMA(p, g) model, for example, that has four unknown parameters. Solving the set
of four equations in the four unknown parameters

1 n
Em_fo
n/=
1 n
EWF;ZW
t=1
p(l)=nr
p(2)=nr

yields the method of moments estimators for the four unknown parameters. The usual approach to
fitting a time series model to a realization of a time series by the method of moments technique is
to use the first two of these equations, and then equate population and sample autocorrelations at
enough low-order lags in order to account for all unknown parameters. In this way the population
and the sample autocorrelations will match at lower-order lags.

Least Squares Estimation

The least squares estimation technique is used nearly universally in regression analysis. This
method developed by German mathematician Carl Friedrich Gauss. The essence of the least squares
technique is to find the values of the unknown parameters that minimize the sum of squares of the
error terms in a model. In the time series setting, we want to find the values of the parameters that

minimize .
s=Y 7.
1=1

The use of least squares for ARMA(p, g) models requires two steps. First, solve the target model
for Z,, and then substitute that expression into the equation above. At this point, S is written in terms
of the unknown parameters. Second, take the partial derivatives of S with respect to all unknown
parameters and solve for the unknown parameters. The set of equations to solve is often referred to
as the orthonormal equations. The solution to these equations yields the least squares estimates of
the unknown parameters. In some cases these equations can be solved analytically; in other cases
numerical methods are required.

Maximum Likelihood Estimation

Maximum likelihood estimation is the most prevalent technique for estimating unknown param-
eters from a data set in the field of statistics, particularly outside of regression. The method was
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popularized by English statistician Sir Ronald Fisher. The essence of the maximum likelihood esti-
mation technique, whether applied in time series analysis or otherwise, is to select the parameters in
a hypothesized model that are the most likely ones to have resulted in the observed data values. The
maximum likelihood estimators of the unknown parameters are found by maximizing the likelihood
function, which is the joint probability density function of the data values evaluated at their observed
values. The likelihood function is a function of the unknown parameters in the model with the data
values fixed at their observed values. We begin by using maximum likelihood estimation on an
ARMA(0, 0) model in order to establish some of the issues associated with the use of the maximum
likelihood estimation technique to estimate the parameters in a time series model.

Example 8.10 Let x;, xo, ..., x, be a realization of observations from an ARMA(0, 0)
time series model that is simply white noise:

Xt:Zta

where Z; ~ WN (0, G%). Find the maximum likelihood estimator of G%, determine
whether the maximum likelihood estimator is unbiased and consistent, and derive an
exact two-sided 100(1 — o) % confidence interval for 63.

The ARMA(O, 0) time series model has just a single unknown parameter (5%, the popu-
lation variance of the white noise, that needs to be estimated. The likelihood function
is the joint probability density function of the observations:

L(G%) :f(xlax23"'?x"l)'

The x1, x2, ..., x, arguments on L and the G% argument on f are suppressed for brevity.
We are lucky with the ARMA(O, 0) model because we can exploit the fact that the
observations in the time series are mutually independent, which means that the joint
probability density function of the observed values x1, x3, ..., X, is the product of the
marginal probability density functions:

L(07) = f(x1, %2, ..., %) = f(x1) f(x2) ... f(xn),

where f(x) is the probability density function of a single observation in the time series,
which is just white noise. We won’t be so lucky for general ARMA(p, ¢g) models. The
assumption of white noise is vague in the sense that we do not know the functional
form of f(x). We only know that it is a probability distribution with population mean 0
and population variance 62. In order to apply the maximum likelihood estimation tech-
nique, we must make an additional assumption about the distribution of X1, Xo, ..., X,.
So at this point we make the additional assumption that the white noise terms are in fact
Gaussian white noise terms:

1
f(xl-) = 76‘7/‘"2/(20%) —oo < X < o0,
\/2no2
fori=1,2,...,n, which is the probability density function of a N (0, 62) random vari-

able. The assumption of normally-distributed error terms in order to use the maximum
likelihood estimation technique is nearly universal in time series analysis. The associ-
ated likelihood function is

L(62) = [T £(x) = (2n02) ™" T/ (253),
i=1
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The maximum likelihood estimator of 6% is the value of G% that maximizes the likeli-
hood function:

A2 2

Oz = argmax L (GZ) ,

Q

where Q is the parameter space Q = {62|6Z > 0}. It is often the case that the math-
ematics associated with maximizing the natural logarithm of the likelihood function is
easier than the mathematics of maximizing the likelihood function. Both functions are
maximized at the same value because the natural logarithm is a monotonic transforma-
tion. The log likelihood function is

n 1 &
i=

The derivative of the log likelihood function with respect to the unknown parameter 62
is

dln L (c3) n_ 1 z": )
— ===+ ) xi.
do2 202 205~
Equating this derivative to zero and solving for (S% gives the maximum likelihood esti-
mator
o1y o
GZ = — Z X
n /=

1

The maximum likelihood estimator is an unbiased estimator of 62 because

Y[ -

d 1
n = n

Y X7

i=1

L

i=1

1 L 1
=E YVvix]=-n-oc;=o0;

i=1

E[6}] =E

based on the shortcut formula for the population variance and the fact that E[X;] = 0.
This means that although the maximum likelihood estimator might miss the true pa-
rameter value 62 on the low side or on the high side, it is pointing at the correct target
because its expected value (long-run average) is the true parameter value.

By standardizing the X; values, we find that a function of the maximum likelihood
estimator has the chi-square distribution because it can be written as the sum of squares
of mutually independent standard normal random variables:

6z iZ1 i=1

The population variance of the maximum likelihood estimator is

4 ) 4 4

A o no o 20

V(e =%V [f] =Z.m=""2

o n n

because the population variance of a chi-square random variable with n degrees of free-
dom is 2n. The maximum likelihood estimator is a consistent estimator of 62 because
it is unbiased and lim,_,.,V [67] = 0. The maximum likelihood estimator &7 will ap-
proach the true parameter value 62 in the limit as n increases. In other words, for any
positive constant €,

- 2 2 _
,,IEEOPHGZ_GZ! <g)=1.
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The unbiased and consistent point estimator 6% does not convey any sense of the preci-
sion of the point estimator, however. That information is best conveyed in this setting
by a confidence interval. An appropriate pivotal quantity is

which implies that
2

2 noy 2
Xn, 1-o/2 < 2 < Xn,oc/z
Oz

with probability 1 — o.. The second subscript on the quantile of the chi-square distribu-
tion is a right-hand tail probability. Performing the algebra required to isolate 62 in the
center of the inequality results in the exact two-sided 100(1 — a)% confidence interval

~2 ~2
no no
L <o;< 52—,
Xn,OL/Z Xn,lfoc/Z

Common values for o are 0.1, 0.05, and 0.01, which are known as 90%, 95%, and 99%
confidence intervals, respectively. The proper interpretation of a confidence interval
like this one is critical. An incorrect interpretation of this exact confidence interval for,
say, oo = 0.05, is:

“The probability that this confidence interval contains G% is 0.95”

because once the data has been collected and the interval is calculated, it either contains
the unknown parameter 62 or it does not. A probability statement like this one does not
make sense because there are no random variables after the data values are collected.
The correct interpretation of this exact confidence interval for 62 with nominal coverage
0.95 is as follows.

“The confidence interval I have calculated might contain 62 or it might

not. However, if (a) all of the assumptions that I have made concerning
the ARMA(O, 0) time series model with Gaussian white noise are correct,
(b) many realizations of the time series of size n are collected, and (c) the
same procedure was used for calculating a confidence interval for each of the
realizations, then 0.95 is the expected fraction of these confidence intervals
that will contain the true parameter 65.”

Obviously, one would not want to repeat this tedious explanation every time a confi-
dence interval is calculated. So statisticians shorten this by simply saying:

“I am 95% confident that my confidence interval contains the unknown pa-
2 5

rameter G.
The brevity and avoidance of the use of “probability” in this statement aids the proper
interpretation of the confidence interval.

Finally, we consider an application area in which the ARMA(0, 0) might be appro-
priate. The ARMA(O, 0) model has industrial applications in quality control. When
formulating a model for a continuous measurement associated with a product (such as
a ball bearing diameter or the pre-cooked weight of a quarter-pound hamburger) that
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is produced repeatedly over time, management prefers a stationary time series model
with mutually independent consecutive observations. In this particular setting, a shifted
ARMA(O0, 0) is appropriate and justified. This model is used in practice to help de-
tect when the continuous measurement trends away from the mean value in a shifted
ARMA(O, 0) time series model in what is known in quality control as a control chart.

Applying the maximum likelihood estimation technique to the ARMA(O, 0) time series model
was ideal in that the point estimator for 62 could be expressed in closed form and an exact two-sided
confidence interval for (5% could be derived to give an indication of the precision of the point estima-
tor. There are three key take-aways from the ARMA(0O, 0) example involving maximum likelihood
estimation.

e We needed to narrow the assumption of white noise error terms to Gaussian white noise error
terms in order to implement the maximum likelihood estimation technique.

e We were fortunate that the likelihood function could be factored into the product of the
marginal probability density functions because of the mutual independence of the observa-
tions. This will not be the case with the ARMA(p, ¢) model with p > 0 and/or g > 0.

e We were fortunate in the sense that we could establish an exact two-sided 100(1 — o)% con-
fidence interval for G% based on a pivotal quantity. For ARMA(p, ¢) models with p > 0
and/or g > 0 we will generally have only approximate confidence intervals which are based
on asymptotic results.

We now address the third take-away concerning confidence intervals for parameters in ARMA
models that go beyond the ARMA(0, 0) model illustrated in the previous example. The mathematics
associated with deriving the exact distribution of some pivotal quantity becomes too difficult once
autocorrelation is injected into a model, so we use asymptotic results concerning the parameter esti-
mates in order to arrive at approximate confidence intervals. To frame the conversation concerning
these asymptotic results, some notation must be established. Let

B:(Blv|327 "'vBr)/

be a vector that denotes the » unknown parameters in a time series model. In the case of a shifted
ARMA(p, g) model, for example, the elements of B are the p+ ¢+ 2 unknown parameters 01, ¢z, . . .,
0p, 01,02, ...,0,, u and G%. Let x1, x3, ..., x, denote a realization of the time series observations.
The likelihood function is

L(B) :f('xl7'x27 "'7-xn)
and the associated log likelihood function is

lnL(B) = lnf(xl,xg, ...,xn).

The jth element of the score vector is

dln L(B)
B,
for j=1,2,..., r. Equating the elements of the score vector to zero and solving for the unknown pa-
rameters yields the maximum likelihood estimators By, Bo, ..., B,. The (j, k) element of the Fisher

information matrix /() is
B 0In L(B)
g v
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forj=1,2,...,randk=1,2, ..., r, when the expected values exist. The Fisher information matrix
is estimated by the observed information matrix O(p), whose (j, k) element is

i

for j=1,2,...,rand k=1, 2, ..., r. The inverse of the observed information matrix is the asymp-
totic variance—covariance matrix of the parameter estimates. If one is willing to ignore the off-
diagonal elements of this matrix, the square roots of the diagonal elements are estimates of the
standard errors of the point estimators. The asymptotic normality of maximum likelihood estima-
tors allows one to construct approximate confidence intervals for the unknown parameters.

‘We were able to obtain an exact two-sided confidence interval for G% for the ARMA(O, 0) model
in the previous example; the next example goes through the appropriate steps for the model had
we not been so lucky. We return to the analysis of the standard ARMA(O, 0) time series model
because it is the only ARMA(p, ¢) model with a single unknown parameter and associated tractable
mathematics.

Example 8.11 Find an asymptotically exact two-sided 100(1 — a)% confidence interval
for 62 for an ARMA(0, 0) model based on the asymptotic normality of the maximum
likelihood estimator 62. Estimate the actual coverage of this confidence interval for
n =100, 6% =1, and oo = 0.05. What is the impact of n on the actual coverage?

Although we know that there is an exact confidence interval for G% from the previous
example, we pretend that we are unaware of such an interval and try to find an asymp-
totically exact interval based on the inverse of the observed information matrix. This
is done to illustrate the mechanics of constructing the asymptotically exact confidence
interval. From Example 8.10, the maximum likelihood estimator of 62 is

(o}
[
'M=
=
o

Once again treating 62 as a unit, the second partial derivative of the log likelihood
function with respect to 62 is

0*In L (c3) 1

n
Z =
3 (c32) ZGZ sy Z’
The single entry in the 1 x 1 Fisher information matrix is the expected value of the
negative of this partial derivative:

oy =e |- TnleD | L

J (5%)2 Oz i=1 252

Since G% is an unknown parameter, the Fisher information matrix cannot be determined
from the observations from a time series. The 1 x 1 observed information matrix pro-

vides an estimate of the Fisher information matrix from the data values:

9*InL (o2 3
0(62) = ln(cz)} :,7+72x -
62=62

9(03)’
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The inverse of this 1 x 1 matrix is just the reciprocal of the single entry:

(Zt*lx) )

3

0! (63) = 1E

For large values of n, this quantity converges to the variance of 2. So since

an asymptotically exact 100(1 — a)% confidence interval for GZ is

l n Zf X2
GZ_ZOC/z 171 l <Gz<Gz+Za/2 ( ! 1 )

We know that the actual coverage of this two-sided confidence interval converges to the
exact coverage as n — oo. But how does the confidence interval perform for finite values
of n? This can only be assessed by a Monte Carlo simulation experiment.

The Monte Carlo simulation given by the R code below simulates four million time
series of length n = 100 generated from an ARMA(0, 0) model with Gaussian white
noise having variability G% = 1 and estimates the actual coverage of the approximate
95% confidence interval by printing the fraction of the simulated confidence intervals
that contain the arbitrarily-assigned true parameter value 63 = 1.

nrep = 4000000

count = 0

n = 100

alpha = 0.05

crit = gnorm(l - alpha / 2)

for (i in l:nrep) {
X = rnorm(n)
ssq = sum(x A 2)
mle = ssq / n
std = sqrt(2 * ssq * 2 / n A 3)

lo =mle - crit * std
hi = mle + crit * std
if (lo <1 & hi > 1) count = count + 1

3

print(count / nrep)

After a call to set.seed(3) to establish the random number stream, five runs of this
simulation yield the following estimated confidence interval coverages:

0.9402 0.9399 0.9400 0.9401 0.9401.

Although the stated (or nominal) coverage for this confidence interval is 0.95, the Monte
Carlo simulation reveals that the actual coverage is 0.940.

The final question concerns the impact of n on the actual coverage. The Monte Carlo
simulation experiment given above is executed for several other values of n. The actual
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coverage values are shown in Figure 8.3. These values confirm what we suspect about
an asymptotic confidence interval: the actual coverage asymptotically approaches the
stated coverage (indicated by the dashed horizontal line in Figure 8.3). This behavior is
typical of asymptotic confidence intervals.

actual
coverage

O

0.90 - /

0.85 - °

T 1
8 16 32 64 128 256

n

Figure 8.3: Asymptotic 95% confidence interval actual coverage for n = 8, 16,32, ..., 256.

This ends the discussion of the important topic of parameter estimation. The time series model
that emerges from this step is known as a fitted tentative model. Three techniques for parameter
estimation have been introduced: the method of moments, least squares, and maximum likelihood
estimation. In time series analysis, exact confidence intervals for the unknown parameters are typi-
cally mathematically intractable, so we must settle for asymptotically exact confidence intervals.

The next section introduces another important statistical topic that arises frequently in time series
analysis: the prediction of future values in a time series based on a realization of n observations of a
time series, which is typically known as forecasting.

8.2.2 Forecasting

The purpose of forecasting is to predict one or more future values of a time series based on observed
values of a time series xy, X2, ..., X,. Forecasting future values of a time series often plays a critical
role in policy decisions. The closing price of the Dow Jones Industrial Average tomorrow, the
number of oysters in the Chesapeake Bay next year, the high temperature in Tuscaloosa on Saturday,
and a company’s profit next quarter are examples of applications of forecasting.

The term “forecasting” is synonymous with “prediction” and the two terms will be used inter-
changeably. Forecasting is a slightly more popular term in the time series literature. Both terms can
be interpreted as “telling before.”

Forecasting involves extrapolation of the time series model outside of the time frame associated
with the observed values x, xp, ..., X,, typically into the future. The notion of backcasting, which
is predicting values in the past, will not be considered here. Care must be taken to ensure that
the fitted probability model still applies in the time range in which the extrapolation occurs. If
future observations are governed by the same probability model as previous observations, then a
forecasted value is meaningful. Furthermore, if an ARMA(p, g) model is used, it is subject to errors
in identification (for example, the wrong values of p and g or perhaps an ARMA model is used



Section 8.2. Statistical Methods 477

when a non-ARMA model is appropriate) and estimation (for example, due to random sampling
variability or choosing an inferior parameter estimation procedure).

There are several choices for forecasting notation. We assume that the values of a time series
{X;} are given by the observed values xi, x2, ..., x,. We would like to predict the value of the time
series i (for “horizon”) time units into the future, given that we know the values of x, x3, ..., x,
and our forecast is being made at time n. The notation that we will use for this future value of the
time series will be the random variable X}, ;. Its associated predicted value will be denoted by X nthe
This predicted value is defined as the conditional expected value of the future value given the values
of the n observed values:

Xin =E[Xoin | X1 =x1, X2 = X2, ..., Xy = X -

We will use the alternative notation X n(h) for the forecast whenever there might be some ambiguity
associated with the origin of the forecast. The default assumption for forecasting in this book is
that we are making a forecast based on n observed values, and the forecast is being made at time
origin n for h time units into the future. The forecasted value at time n + & can be thought of as
the average of all future possibilities given the history up to time n. But why use the conditional
expectation? Might a quantile of the probability distribution of X, for example, the population
median, provide a better forecast? The rationale behind using the conditional expectation is that it
minimizes the mean square error of the predicted value, which is defined as

E [(Xn—I-h *)A(n+h)2] )

among all linear functions of the observed values xy, x2, ..., x,. For this reason, the forecasted value
given by the conditional expectation is often known as the best linear predictor of X, ., in the sense
of minimizing the mean square error of the predicted value.

Figure 8.4 illustrates the case of a (tiny) time series of just n = 4 observations: xi, x2, X3, X4.
(Recall that n = 60 or n = 70 is the minimum value of 7 in practice. This example with a tiny value
of n is for illustrative purposes only.) The observed values of the time series are indicated by points
which are connected by lines. Each of the three forecasted values, X 5, X 65 X7, is indicated by a o.

Xt

X4

X3
X2

X1

I I I I
1 2 3 4 5 6 7

Figure 8.4: Forecasting three future values from n = 4 observations.
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The three forecasts, associated with 4 = 1, h = 2, and h = 3, are made at time ¢t = n = 4. In addition,
there are three probability density functions, each rotated clockwise 90°, which indicate the prob-
ability distributions of the random future observations Xs, X¢, X7. There are three key observations
associated with this figure.

e The time series values xj, x, x3, x4 increase over time, and the associated forecasted values
X5, X6, X7 continue this trend.

e The population variance of the probability distributions of X5, X, X7 increases as the forecast-
ing time horizon increases. This is consistent with weather prediction, for example, in that the
weather prediction three days from now is less precise than the weather prediction tomorrow.

e The random sampling variability that is apparent in the four observed values xi, xo, x3, x4 is
not apparent in the forecasted values X 5, X ¢, X7. Observed time series values typically exhibit
random sampling variability; forecasted values tend to be smooth.

Our goal in this subsection is to discuss forecasting generally and to introduce techniques for
determining point estimates and interval estimates for future values in a time series. The example
that follows assumes that a valid ARMA model has been specified and the parameters in a time series
model are known, rather than estimated from a realization of the time series. For a long realization
(large n) or significant amounts of previous history associated with a particular time series, this
assumption might not pose any problem. In order to derive a prediction interval for X, ., the white
noise terms are assumed to be Gaussian white noise for mathematical tractability. The reason for
this assumption will be apparent in the following example.

Example 8.12 Consider the shifted stationary AR(1) time series model
X —u= ¢(Xt—1 _,U) +7,

where {Z,} is Gaussian white noise and —1 < ¢ < 1, g, and G% > 0 are fixed, known
parameters. Let x, xo, ..., x,, be one realization of the time series.

(a) Find a point estimate and an exact two-sided 100(1 — a)% prediction interval for
Xot1-

(b) Find a point estimate and an exact two-sided 100(1 — o)% prediction interval for
Xnt2-

Notice that ¢ is a constant here and should not be confused with the polynomial ¢(B).
This is an unusual case because the three parameters ¢, y, and G% are known. In addi-
tion, it is assumed that the AR(1) model is a perfect stochastic model to govern the time
series. Neither of these assumptions are typically satisfied perfectly in practice.

(a) Writing the AR(1) time series model with X,,,; on the left-hand side:

Xni1 —p =0 (X, —p) +Zyy1
or
Xnt1 :.U+¢(xn_,u)+zn+1~

Notice that X, and Z,; are random future values which are set in uppercase,
but x, has already been observed, so it is set in lowercase. Taking the conditional
expected value of both sides of this equation yields the one-step-ahead forecast

E[Xn+1|X1 =x1,X2 =x3, ...,Xn:xn] :,u+(l)(xnf,u)
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(b)

because the expected value of a constant is a constant and the future Gaussian
white noise term has conditional expected value 0. Taking the conditional popu-
lation variance of both sides of the equation yields

V[Xn+1|X1 =x1,X0=x2,..., Xy an] ZG%

because u, 0, and x,, are all constants and the population variance is unaffected by
a shift. So the point estimate of X4 is

Xn+l =u+0(x,—p).

Since X, 11 is a constant, u+ ¢ (x, — i), plus a normal random variable, Z,, it
too is normally distributed with conditional mean X .| and conditional population
variance (5%. So an exact two-sided 100(1 — o) % prediction interval for X,,1; is

Xnt1—20/207 < Xny1 < Xpy1+20/202,

where zy is the 1 — 0,/2 quantile of the standard normal distribution.
Writing the AR(1) time series model with X, on the left-hand side:

Xnp2 —u=0(Xnp1 — 1) +Zni2
or
Xoo =pu+0(Xor1 — ) +Zy1o.

All of the X and Z variables are random future values, so they are set in uppercase.
Taking the conditional expected value of both sides of this equation yields the two-
step-ahead forecast

EXp2| X1 =x1, X0 =x2, ..., Xy = xp)
=+ O(E [Xor1 | X1 =x1, X2 =x2, ..., Xy = Xn] — 1)
= u+0(0(xn —p))
= 1+ 4% (xy — )

because the conditional expected value of Z,,, is zero. Taking the conditional
population variance of both sides of the equation yields

VIXp2 | X1 =x1, X0 =x2, ..., X = X4]
=0V X1 |1 X1 =x1. X2 =12, ..., Xy =X +V [Zui2 | Xy =31, X2 =12, ..., Xy = ;]
= (¢*+1)03.

So the point estimate of X, is
Xn+2 =H+¢2 (X0 — ).

Since X, is written as a constant, u, plus the linear combination of two normally
distributed random variables, ¢ (X,,+; —u) and Z, 1, which is itself normally dis-
tributed, an exact two-sided 100(1 — )% prediction interval for X, 5 is

X2 =202\ /0* +1 62 < Xpi2 < X2 + 2021/ 0* +1 62
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Notice that for ¢ # 0, the prediction interval for X, is wider than the prediction
interval for X, | for the same time series values and the same o value. This is
consistent with intuition because we are less certain as we forecast further out
into the future. This is the typical case in practice. On the other hand, the two
prediction intervals have identical width when ¢ = 0 because the AR(1) time series
model reduces to Gaussian white noise in this case, and each future observation
will have the same precision because of the mutual independence of the X; values
in this case.

This case was ideal in the sense that all three of the parameters, ¢, u, and 6%, are
fixed and known. When these parameters are replaced by their point estimates, ¢,
fi, and 62, the prediction intervals become approximate rather than exact.

The previous example has illustrated the process for determining forecasted values and associ-
ated prediction intervals for an AR(1) time series model with known parameters. Consider general-
izing this process for the A-step-ahead forecast. In order to obtain a point estimate for the forecast,
take the conditional expected value of both sides of the model with X, isolated on the left-hand
side, which effectively results in: (a) present and past values of X; are replaced by their observed
values; (D) future values of Z; are replaced by their conditional expected values, which are zero; and
(¢) future values of X; are replaced by their conditional expected values. After simplification, this
results in the forecast value X nth-

As is typically the case in statistics, a point estimate is usually accompanied by an interval
estimate which gives an indication of the precision of the point estimate. In a time series setting, a
prediction interval for X, j, has the generic form

Xn+h:l:zot/2\/v [Xn+h|Xl =x1,X2=x2,...,Xp :xn}-

This formula assumes that the random future value at time n + A, denoted by X, 1, is normally
distributed. This is usually achieved by assuming that the white noise terms consist of Gaussian
white noise. Unlike confidence intervals, prediction intervals typically do not have widths that
shrink to zero as the sample size n increases.

This ends the important topic of forecasting. Many more examples of forecasting will appear in
subsequent sections in this chapter when special cases of ARMA(p, ¢) models are introduced. We
now turn to another important statistical topic, which is model assessment.

8.2.3 Model Assessment

It is often the case that we have little or no information concerning the underlying physical mech-
anism governing a time series, so we must resort to an entirely data-driven approach to developing
a time series model that adequately approximates the underlying probability mechanism. The usual
approach to building a times series model consists of iterating through the following steps until a
suitable model is formulated. The model building process is—by design—both iterative and inter-
active, making R an ideal platform for carrying out the process.

1. Identify a tentative time series model.
2. Estimate the unknown parameters of the tentative time series model.

3. Assess the adequacy of the fitted time series model.
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The third step is considered in this section. As an instance of this approach, let’s say we decide
(based on inspecting plots of the time series, the sample autocorrelation function, and the sample
partial autocorrelation function) that a shifted AR(2) time series model is a strong candidate for
modeling a particular time series. After the parameters u, 1, 02, and 62 are estimated, we hope
that the fitted model adequately models the underlying probability mechanism for the time series.
If this is the case, then the signal associated with the time series has been captured, and all that
should remain is noise. So how do we test whether or not the fitted model provides an adequate
representation of the time series? One common approach taken in time series modeling is to assess
whether the random shocks {Z; } are mutually independent and identically distributed random vari-
ables with population mean zero and common population variance 2. But these Z, values are not
observed by the modeler, so instead we inspect the residuals, which are estimates of the Z; values. In
time series analysis, this important step is known as diagnostic checking or residual analysis. (This
step is analogous to the similar step in regression analysis.) This process is the rough equivalent of
goodness-of-fit testing from classical statistical theory. A residual value is defined as

[residual] = [observed value] — [predicted value].

The predicted value is the one-step-ahead forecast from the time # — 1. Using the notation from the
forecasting section, the residual at time ¢ can be written as

2; :XZ‘_Xt'

This is one instance in which a more precise notation for a forecasted value would be helpful; this
is more clearly written as A .
Zi=X-X,-1(1).

The hat is added to Z; in order to indicate that the parameters in the fitted model have been estimated
from the observed time series. Only in a simulated time series with known parameters do we observe
Z;. The residuals are ordered in time, so they can be viewed as a time series in their own right.
If the hypothesized and fitted model are adequate, then the time series plot of the residuals will
approximate a time series of white noise. The question here is how closely the residuals resemble
white noise terms.

The behavior of the residuals is an indicator of whether the time series has been adequately mod-
eled. If the model has been specified correctly and the parameter estimates are near their associated
population values, then the residuals should appear to be white noise values, with common popula-
tion mean zero and common population standard deviation. If this is not the case, then the search
for an adequate time series model should continue.

A plot of the residuals over time is a crucial initial step in assessing whether they resemble white
noise terms. Carefully examine the plot for any signs of trend, seasonality, or serial correlation. An
example of a plot of Gaussian white noise was given in Figure 7.3. This step is just as important in
residual analysis as was the inspection of the plot of the original time series. In addition, a plot of the
sample autocorrelation function and the sample partial autocorrelation function of the residuals can
be helpful in assessing whether the residuals closely approximate white noise. But rather than just a
subjective visual inspection, we also want to confirm our intuition with a formal statistical test. The
next four paragraphs briefly survey four statistical tests to assess the following null and alternative
hypotheses:

H)j : the residuals are mutually independent and identically distributed random variables
versus

H; : the residuals are not mutually independent and identically distributed random variables.
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If there is no apparent visual trend, seasonality, or serial correlation in the residuals, then any one
of the four hypothesis tests that follow can be conducted to confirm that the residuals do not exhibit
any of these characteristics.

Count the number of significant spikes in the sample autocorrelation function. This test
begins with a plot of the sample autocorrelation function of the residuals. If the residuals are well
approximated by white noise terms, then the time series model can be judged to be adequate. The
sample autocorrelation function values for white noise terms are approximately mutually indepen-
dent and identically distributed N (0, 1/n) random variables. So if the residuals closely approxi-
mate white noise, then any sample autocorrelation function value will fall between —1.96//n and
1.96/+/n with approximate probability 0.95. We would like to conduct a hypothesis test in which
the null hypothesis is that the sample autocorrelation function values of the residuals are indepen-
dent N (0, 1/n) random variables. A large number of sample autocorrelation values falling outside
of the limits (which serves as the test statistic here) will result in rejecting the null hypothesis. So if
each sample autocorrelation function value can be thought of as a toss of a biased coin in the case
of the residuals being approximately white noise, then for, say, the first m = 40 such values, we
expect 40-0.05 = 2 to fall outside of the limits +1.96/+/n. (Of course, the lag 0 sample autocorre-
lation ry = 1 is not included in the count.) In order to achieve an approximate level of significance
o = 0.05, if four or fewer of the 40 sample autocorrelation function values associated with the resid-
uals fall outside of £1.96/+/n, we fail to reject Hy. The time series model is deemed to be adequate.
But if five or more of the 40 sample autocorrelation function values associated with the residuals
fall outside of +1.96/+/n, this is evidence against the hypothesized model and we reject Hy. The
time series model is deemed to be inadequate. The p-value associated with four or fewer of the
40 sample autocorrelation function values associated with the residuals falling outside of the limits
+1.96/ v/40 can be calculated with the R statement

1 - pbinom(4, 40, 0.05)
This statement returns
[1] 0.04802826

So the exact level of significance for this test is a0 = 0.048, which is quite close to the desired level
of significance of 0.05. Rather than using trial and error with the pbinom function to determine the
number of lags to use as the critical value, the gbinom function can be used to determine the cutoff.

gbinom(®.95, 40, 0.05)
This statement returns
[1] 4

A similar analysis can be applied to lag counts other than the m = 40 sample autocorrelation function
values illustrated above. This analysis assumes that the sample autocorrelation function values of
the residuals are independent and identically distributed normal random variables. One weakness of
this approach is that it simply counts the number of sample autocorrelation function values falling
outside the 95% confidence interval limits and ignores (a) how far outside of the limits the values
fall or (b) how close to the limits they fall when they lie within the limits. This weakness prompts
us to seek a statistical test that captures all of the sample autocorrelation function values associated
with the residuals and includes their magnitudes.

Box-Pierce test. Let r; be the lag k sample autocorrelation function value associated with the
residuals of the fitted time series. As before, we only consider the first m such sample autocorrelation
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function values ry, 72, ..., 1. It is approximately true that for mutually independent and identically
distributed residuals,
ri ~N(0, 1/n).

By the transformation technique, this implies that
\/ﬁ Fi ~ N (0, 1)

Squaring this random variable gives
2 N2
nr ~ %~ (1).
Assuming that the sample autocorrelation function values are uncorrelated, the sum of the first m of
these random variables is

n Y g ~xt(m).
k=1

In the case in which r unknown model parameters have been estimated, the degrees of freedom are
reduced by r:

n Z 12~ (m—r).
k=1

This is the test statistic for the Box—Pierce test for serial correlation. Large values of this test statistic
lead to rejecting Hy and indicate a poor fit. The null hypothesis is rejected at level of significance o
when this test statistic is greater than x,zn,,,a, where the first subscript is the number of degrees of
freedom and the second subscript is the right-hand tail probability associated with this quantile of the
chi-square distribution. There have been several approximations that occurred in formulating this
statistical test. First, the r; values are only approximately normally distributed. Second, the ¢ values
have variances which are less than 1/n for small lag values k. To compound this approximation,
these smaller initial variances are dependent on the model under consideration. Third, the r; values
exhibit some serial correlation even when the residuals are mutually independent and identically
distributed. These three weaknesses prompted a modification of the Box—Pierce test which provides
a test statistic whose distribution more closely approximates the x2(m — r) distribution.

Ljung-Box test. The Box—Pierce test statistic was modified by Ljung and Box as

m }’,?
nn+2 —
m+2 Y
which is approximately x?(m — r), where r is the number of parameters estimated in the model.
Comparing the Box—Pierce and Ljung—Box test statistics, since

n+2

> 1
n—k

for k=1,2,..., m, the Ljung—Box test statistic always exceeds the Box—Pierce test statistic. The
Box-Pierce test is more likely to accept a time series model with a poor fit than the Ljung—Box test
for the same set of residuals. The Ljung—Box test should be used over the Box—Pierce because the
probability distribution of its test statistic is closer to a ?(m — r) random variable under Hy.

Turning point test. As opposed to focusing on the sample autocorrelation function associated
with the residuals, the turning point test considers the number of turning points in the time series of
residuals. A turning point in a time series is defined to be a value associated with a local minimum
or a local maximum. A local minimum occurs when 2171 > Zt and 2, < Z,H. A local maximum
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occurs when Z,_l < Z and Z > Z,+ 1. The random number of turning points in a time series
of length n comprised of strictly continuous observations is denoted by 7. The strictly continuous
assumption is in place to avoid ties in adjacent values. A turning point cannot occur at the first or last
value of the time series. Keep in mind that there might be fewer residuals than original observations.
The n that is used here is the number of residuals. As given in an exercise at the end of this chapter,
if the residuals are mutually independent and identically distributed continuous random variables,
then
2(n—-2) 16n—29

3 90
Furthermore, even though T is a discrete random variable, it is well approximated by the normal
distribution with population mean E[T] and population variance V[T'| for a time series of mutually
independent and identically distributed observations and large n. Thus, an appropriate test statistic
for testing Hy is

E[T)= and VI[T]

T-2(n-2)/3

v/ (16n—29)/90°

which is approximately standard normal for large values of n. The null hypothesis is rejected in
favor of the alternative hypothesis whenever the test statistic is less than —zq/; (which indicates
fewer turning points than expected, which is an indicator of positive serial correlation among the
residuals) or the test statistic is greater than z, /> (which indicates more turning points than expected,
which is an indicator of negative serial correlation among the residuals).

This completes the brief introduction to four statistical tests concerning the mutual independence
of the residuals. There are several other such tests, some of which are introduced in the exercises at
the end of the chapter, but these four are representative of how such tests work. Three questions are
given below concerning issues associated with the analysis of the residuals.

1. What if two time series models are deemed adequate by these statistical tests?

Instances frequently arise in which two or more candidate time series models fail to be rejected
by the statistical tests on residuals that were just surveyed. In these cases, the modeler has
four guiding principles. First, there might be physical considerations that might favor one
model over another. An engineer, for example, might provide some engineering design insight
concerning why one time series model would be favored over another. Second, the model with
the best value of one of the model-selection statistics outlined in the next section, might be
the appropriate choice. Third, if the modeler is torn between two time series models, selecting
the model with the fewer parameters follows the parsimony principle. We would like a time
series model that adequately captures the probabilistic aspects of the time series with the
minimum number of parameters. Fourth, the purpose of the model, for example, description,
explanation, prediction, or simulation, might drive the final choice of the model.

2. If atime series model is deemed inadequate, can the analysis of the residuals guide the modeler
toward a more suitable model?

In some cases, the analysis of the residuals can indeed guide the modeler toward a more
suitable time series model. Here is one instance. Let’s say that a shifted AR(1) model is being
considered as a potential time series model:

Xi—u= (P(Xt—l *,U) + 7.
Isolating the white noise term, this model can be written as

X, —pu—0(Xi—1 —p) = 7.
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The parameters u, ¢, and G% are estimated from the observed time series, and the associated
residuals are calculated and plotted. Rather than appearing as white noise, let’s say that the
residuals appear to look like observations from an MA(1) time series model

Zi =W +6W_y,

where {W; } is a time series of white noise. Combining the two previous equations, this would
lead us in the direction of considering the model

X; *,u*(l)(Xzfl *ll) =W, +0W,_y,

which can be recognized as a shifted ARMA(1, 1) time series model. Thus, the ARMA(1, 1)
composite model has been constructed from the two simpler models. We would then revisit
parameter estimation procedures for the parameters u, ¢, 0, and 6%, and perform model ade-
quacy tests on the associated residual values on the fitted ARMAC(1, 1) model.

3. If a time series model is deemed adequate, should the noise terms be modeled as white noise
or Gaussian white noise?

The four statistical tests for autocorrelation do not assess the normality of the residuals. Draw-
ing a histogram of the residuals is an important first step in terms of determining whether the
residuals are normally distributed. If the histogram appears to be bell-shaped, then the Gaus-
sian white noise aspect of the model is justified. Some time series analysts prefer to view
a histogram of the standardized residuals, and the vast majority of these values should lie
between —3 and 3. A QQ (quantile—quantile) plot is also useful for visually assessing nor-
mality, which can be graphed with the R function qgnorm. A QQ plot which is linear is an
indication of normality. The behavior at the extremes of a QQ plot is typically more variable
than at the center, so some analysts prefer to focus on the behavior between, say, the first and
third quartiles. Assessing the normality of a histogram or the linearity of a QQ plot is sub-
jective. Objective statistical tests for the normality of the residuals include the Shapiro—Wilk,
Anderson—Darling, Cramer—von Mises, and Kolmogorov—Smirnov tests.

Analyzing the residuals is not the only way to assess the adequacy of a time series model. An-
other technique is known as overfitting. ARMA models with a single additional term are fitted to
the original time series. This approach is analogous to forward selection in the stepwise approach
to multiple regression. We will refer to the time series model under consideration as the tentative
model and the overfitted models as enhanced models. For example, if an MA(1) model is being
contemplated as a tentative time series model, then

e adding an additional moving average term yields the enhanced MA(2) model, and
e adding an autoregressive term yields the enhanced ARMA(1, 1) model.

The parameters for these two enhanced models should be fit to the original time series in the usual
fashion. If both of the following two criteria are met, then the tentative time series model should be
accepted as the final model.

e The parameter estimates in the enhanced models are close to the parameter estimates in the
tentative model.

e The additional parameter in the enhanced models does not differ significantly from zero.
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So in the example given above, the parameters in the tentative MA(1) model, 6; and (5%, should
be estimated from the original time series. Then the parameters in the enhanced MA(2) model,
01, 0, and G%, should be estimated from the original time series. If a confidence interval for 6,
contains zero (or you fail to reject the null hypothesis Hy : 6, = 0 versus the alternative hypothesis
H; : 8, # 0), and the other parameter estimates do not vary significantly between the two models,
then the modeler concludes that the extra parameter in the MA(2) model is not necessary. The
same type of thinking applies to the enhanced ARMA(1, 1) model. So in addition to a careful
examination of the residuals, it is also helpful to overfit the model in the autoregressive and moving
average directions to assess whether the additional term significantly improves the fit.

The model assessment techniques described in this subsection will be applied to actual time
series later in this chapter.

8.2.4 Model Selection

Model-selection statistics are helpful when there are two or more tentative fitted ARMA(p, g) mod-
els for a time series which have been deemed adequate by the model assessment techniques outlined
in the previous subsection. One naive approach to model selection is to just add additional terms to
an ARMA(p, g) model and check the resulting sum of the squared residuals. This approach violates
the parsimony principle because it is typically the case that adding parameters to a model results in
a lower sum of squared residuals. Just blindly adding terms to minimize the sum of squares is likely
to produce time series models with superfluous terms that contain no real explanatory value, which
can potentially cause problems in the application of the model.

We seek some statistical measure that strikes a balance between simplicity and capturing the
essence of the probabilistic mechanism governing the time series model. Some statistical measure
which reflects the benefit of an additional parameter, but extracts a penalty for adding parameters
would be helpful to strike this balance.

In the case in which the analyst is presented with multiple plausible tentative fitted models, a
model-selection statistic such as Akaike’s Information Criterion might prove helpful in determining
the best model. This statistic strikes a harmony between a simple model (which might not capture
certain probabilistic aspects of the mechanism governing the time series) and a more complex model
(which might contain unnecessary terms). This is the notion of a parsimonious model which uses as
few parameters as possible to achieve adequate explanatory power. Akaike’s Information Criterion
(AIC), named after Japanese statistician Hirotugu Akaike (1927-2009), extracts a penalty for each
additional parameter that is added to the model. The AIC is

AIC = —2In (L(")) +2r,

where r is the number of unknown parameters that are estimated and L is the likelihood function
evaluated at the maximum likelihood estimators for the » unknown parameters. Since L(-) is maxi-
mized at the maximum likelihood estimators, the first part of the AIC statistic, namely —21n (L()) R
is minimized at the maximum likelihood estimator values because of the negative sign. The 2r term
can be thought of as a penalty term for adding additional parameters to the model. Each additional
parameter added to the model will probably decrease the first term in the AIC involving the log
likelihood function, but will also increase the penalty term because r has been increased. The model
with the lowest value of AIC is deemed by this model-selection statistic to be the most appropriate
parsimonious time series model.

There are two variants of the AIC that provide improved ability to correctly identify a time series
model.
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e The AIC estimates the expected value of the Kullback—Leibler divergence of the estimated
model from the true model, and there is a slight bias in the AIC which is significant for small
values of n. The corrected Akaike Information Criterion, usually denoted by AICC, replaces
the 2r penalty term with 2rn/(n — r — 1), resulting in

2rn

AICC = —2In (L(: _—
n ( ( )) + n—r—1

Since n/(n—r—1) > 1, the AICC always exceeds the AIC for the same time series, meaning

that the penalty for adding parameters is increased. The AICC will be more stingy than the

AIC when it comes to adding parameters. The AICC model-selection statistic compensates

for the AIC’s tendency to overfit models.

e Another variant to the AIC is the Bayesian Information Criterion (BIC) which replaces the
penalty term 2r with r1n n, resulting in

BIC = —2In(L(-)) + rlnn.

As shown in Figure 8.5 for a time series of length » = 50 and r =0, 1,2, ..., 5 unknown
parameters, the BIC places an even higher penalty on additional terms in the time series model
than the AIC and the AICC, which will result, on average, with time series models with fewer
terms. Since the use of maximum likelihood estimation is required for calculating AIC, AICC,
and BIC because all three are a function of the likelihood function L, the white noise terms
are assumed to be normally distributed (that is, Gaussian white noise). A visual check of
this assumption can be made by looking at a histogram of the residuals or a QQ plot of the
residuals.

The time series analyst should consult with people who are familiar with the time series in order
to glean whether there might be some aspects of the data set that might suggest one particular model
or another. The analyst should also not necessarily assume that one of the models suggested in this

penalty
20 BIC
15
AICC
10 AIC
5 —
O —

Figure 8.5: Penalty terms for model-selection statistics AIC, AICC, and BIC.
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chapter might be appropriate for every setting. There are seldom uniquely correct values for p and
q but rather these model-selection statistics are helpful in comparing two fitted tentative models.

In principle, the general linear model and its associated statistical methods are all that is neces-
sary to fit and assess an ARMA(p, g) model. Since each specific ARMA(p, g) model has its own
idiosyncrasies, the first few special cases of the autoregressive and moving average models will be
examined in the next chapter.

8.3 Exercises
8.1 Show that the general linear model
Xi=Z+Zi—1 +V2Zi o+ -
can be written in the form

Xi=Z+mX 1 +T0X o+ .

8.2 For the ARMA time series model
X, =4X, 1 —3X,0—2X; 3+ 7, — 57,1 +6Z;_5.
(a) identify the time series model, and
(b) write the time series model in terms of the backshift operator B.
8.3 For the ARMA time series model
0(B)X, = 8(B)Z,
where ¢(B) = 1 and 8(B) = 1 —0.6B+0.1B2,

(a) identify the time series model, and

(b) write the time series model in purely algebraic form.
8.4 For the ARMA time series model
X, =2X 11— X 2+7Z -7,
(a) identify the time series model, and
(b) write the time series model using the backshift operator.

8.5 Consider the special case of the general linear model

1 1
Xi==X1+2Z — 7.
t 2tl+t 341

(a) Write this model in its causal representation.

(b) Write this model in its invertible representation.

8.6 Show that E [X;] = u for the stationary shifted ARMA(p, ¢) model

Xi—u=01 (X1 —)+ 02 (X2 — )+ +0,(Xi—p — ) +Z,+61Z 1 +62Z; 2+ +0,Z, .
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8.7

8.8

8.9

8.10

8.11

Find E[X;] for the shifted ARMA(2, 1) model
Xl == 7 + 0.4X[7] - 0 1X172 +ZI + 0.3Z[7] .

Let X1, X3, ..., X, be observations from an ARMA(0, 0) time series model with Gaussian
white noise. The maximum likelihood estimator of the population variance of the Gaussian
white noise derived in Example 8.10 is

X2

2
6z = i

-

S =

i=1

An asymptotically exact confidence interval for 62 derived in Example 8.11 is

2(x x?)°

2
2 2 _ A2 2(X, X?)
A <6z+zap\| ——=—

=144
n3

Calculate and plot the actual coverage of a 95% confidence interval for G% as a function of n
forn=38,9,...,256. Use analytic methods rather than Monte Carlo simulation.

Let X1, X5, ..., X, be observations from an ARMA(0, 0) time series model with Gaussian
white noise. Find the probability density function of the maximum likelihood estimator of
the population variance of the Gaussian white noise

X2,

D
6z = i

I

S |-

1

Let X1, X5, ..., X, be observations from an ARMA(0, 0) time series model with Gaussian
white noise. As shown in Example 8.10, the maximum likelihood estimator of the population
variance of the Gaussian white noise is

A2
7 =

and a pivotal quantity for developing an exact two-sided 100(1 — &)% confidence interval
for G% is
)
néz .2
— ~ X (n).
52 "X (n)
Find an exact two-sided 100(1 — a)% confidence interval for 2.

Let X1, X5, ..., X, be observations from an ARMA(O, 0) time series model with Gaussian
white noise having finite positive population variance 62. The maximum likelihood estima-
tor of the population variance of the Gaussian white noise is

X2

A2
6z = i

-

S|

i=1

Conduct a Monte Carlo simulation experiment that provides convincing numerical evidence
that

né2 2 né2
5 < 0y N
Xn,OL/2 Xn, 1-o/2

is an exact 100(1 — )% confidence interval for G% for one particular set of n, o, and G% of
your choice.
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8.12

8.13

8.14

8.15

8.16

8.17

Let X; and X, be jointly distributed random variables. The population mean and variance of
X are uy, and 6)2(1 . The population mean and variance of X, are uy, and 6)2(2. The population
correlation between X; and X, is p = Corr(X;, X»). The value of X; is to be predicted as a
linear function of X; with mX; + b. Find the values of m and b which minimize the mean
square error of the prediction. In other words, find m and b which minimize

E (X2 —mx, - b)ﬂ .

Consider an ARMA(0, 0) model with U(—1, 1) white noise terms. Find an exact two-sided
95% prediction interval for X, .

Suppose an ARMA(2, 1) time series model is a strong candidate for modeling a particular
time series. A long time series is available for analysis, so n is large. The ARMA(2, 1)
model is fitted and residuals are calculated. If the sample autocorrelation function associated
with the residuals is calculated for the first 100 lags, how many values need to fall outside
of +£1.96/+/n in order to reject the null hypothesis Hy, which corresponds to a good fit at a
significance level that is less than ow = 0.05?

Compare the expected p-values for the Box—Pierce and Ljung—Box tests for serial indepen-
dence of a time series consisting of n = 100 mutually independent and identically distributed
standard normal random variables. Consider only the first k = 40 lag values.

LetZ 1, 22, e, Z,, be residual values associated with a fitted time series model. The Durbin—
Watson test statistic defined by

n R R 2 n.
D=Y (Z-2-1) )Y 2
=2

r=1
is useful for testing the serial independence of the residuals.

(a) Conduct a Monte Carlo simulation experiment to estimate the expected value of D
when Z1,Z,, ..., Z1000 are n = 1000 mutually independent and identically distributed
standard normal random variables.

(b) Give an explanation for the result that you obtained in part (a).

The turning point test for serial dependence counts the number of turning points (the number
of local minima and maxima) 7 in a time series of length n comprised of strictly continuous
observations. A turning point cannot occur at the first or last value of the time series.

(a) Show that E[T] = 2(n—2)/3 when the observations in the time series are mutually
independent and identically distributed.

(b) Show that V[T] = (16n—29)/90 when the observations in the time series are mutually
independent and identically distributed.

(c) Perform a Monte Carlo simulation that supports the values of E[T] and V[T| for a time
series of length n = 101.

(d) Argue why T is approximately normally distributed with population mean E[T] and
population variance V[T] for a time series of mutually independent and identically
distributed observations and large n. Suggest an appropriate test statistic for testing the
null hypothesis that there is no serial correlation in the time series.



Section 8.3. Exercises 491

8.18

8.19

8.20

Let X1, Xo, X3, X4 be a time series of mutually independent and identically distributed con-
tinuous random variables. Let T be the number of turning points. Find the probability mass
function of 7.

The nonparametric difference—sign test for serial dependence counts the number of values
in a time series of strictly continuous observations X1, X5, ..., X,, in which X; > X;_{, for
i=2,3,...,n Denote this count by 7.

(a) Show that E[T] = (n—1)/2 when the observations in the time series are mutually
independent and identically distributed.

(b) Show that V[T] = (n+ 1)/12 when the observations in the time series are mutually
independent and identically distributed.

(c) Perform a Monte Carlo simulation that supports the values of E[T] and V[T'] for a time
series of length n = 101.

(d) Argue why T is approximately normally distributed with population mean E[T] and
population variance V[T] for a time series of mutually independent and identically
distributed observations and large n. Suggest an appropriate test statistic for testing the
null hypothesis that there is no serial correlation in the time series.

Suppose an AR(1) model is being considered as a tentative time series model based on a
realization of the time series. A single autoregressive parameter and a single moving average
parameter is added to the tentative model, resulting in an ARMA(2, 1) enhanced model.
Describe any problems that might arise by comparing the AR(1) time series model and the
ARMA(2, 1) time series model.



