
Chapter 8

Time Series Modeling

This chapter presents several popular probability models for describing a time series, along with

the associated statistical methods. Analogous to using the univariate normal distribution to model a

quantitative variable which has a bell-shaped probability distribution, no time series model will pro-

vide a perfect fit to the data. The goal is to identify a probability model which provides a reasonable

approximation to the time series, fit the model to an observed time series, and then use the fitted

model for statistical inference, which is often forecasting.

8.1 Probability Models

A suite of probability models for time series known as linear models are introduced in this section.

The unifying characteristic of these models is that they express the current value of the time series as

a linear function of (a) the current noise term, (b) previous noise terms, and (c) previous values of

the time series. We begin by taking a birds-eye view of these linear time series models by introducing

general linear models (often abbreviated glm) and some of their properties. This is followed by a

section that introduces a suite of time series models that are special cases of general linear models

that are known as ARMA (autoregressive moving average) models. ARMA models are parsimonious

in the sense that they are able to specify a wide variety of underlying probability models that govern

a stationary time series with only a few parameters. With both general linear models and ARMA

models, you will see a great deal of symmetry and some mathematics that works out beautifully on

the road to developing time series models that can be implemented in real-world applications.

8.1.1 General Linear Models

General linear models provide an important way of thinking about how to define a time series model

in a simple and general manner. Working with general linear models also provides some practice

with using the backshift operator B, which was defined in Section 7.3.1. We also consider the causal

and invertible form of general linear models. The causal form is important for establishing station-

arity. The invertible form is important for ensuring a one-to-one relationship between parameter

values and the associated population autocorrelation function.

The concepts of white noise from Definition 7.1 and linear filters from Section 7.3.1 are tied

together in this section to define general linear models. White noise is a time series of mutually

independent random variables denoted by {Zt}. Each element in the white noise time series has

common population mean 0 and common population variance σ2
Z . Time series analysts often refer
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to the Zt values as random shocks whose purpose is to inject randomness into a time series model.

Without these shocks, the time series model would be purely deterministic. Linear filters are a

general way of expressing one time series as a linear combination of the values in another time

series. White noise and linear filters are the key concepts in the definition of general linear models.

As you will see in the next paragraph, there are two distinctly different ways of defining general

linear models.

More specifically, one way to describe a general linear model is to define the current value in

the time series Xt as the current white noise term Zt plus a linear combination of the previous white

noise terms:

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,
where the coefficients ψ1, ψ2, . . . in the infinite series are real-valued constants. This time series

model is stationary when appropriate restrictions are placed on the ψ1, ψ2, . . . values. Since this

description of a general linear model is valid at time t, it is also valid at other time values, for

example,

Xt−1 = Zt−1 +ψ1Zt−2 +ψ2Zt−3 + · · · ,
or

Xt−2 = Zt−2 +ψ1Zt−3 +ψ2Zt−4 + · · · .
Solving these equations for the current white noise value and sequentially substituting into the first

formulation of the general linear model, you can see that there is a second way to formulate a general

linear model:

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · ,
where the coefficients π1, π2, . . . are real-valued constants and appropriate restrictions are placed on

the π1, π2, . . . values in order to achieve stationarity. In this second formulation of a general linear

model, the current value of the time series is a linear combination of the previous values of the time

series plus the current white noise term. This formulation is analogous to that of a multiple linear

regression model with an infinite number of predictor variables.

A reasonable question to ask at this point is why there is no coefficient associated with Zt in both

formulations of the general linear model. Although some authors associate a coefficient ψ0 with Zt ,

we avoid this practice and simply assume that ψ0 = 1. Including a ψ0 parameter is redundant because

a nonzero constant multiplied by a white noise term is still a white noise term. The population

variance of the white noise σ2
Z is essentially absorbed into the ψ0 parameter. Also, some authors use

a − rather than a + between terms on the right-hand side of the second formulation of the general

linear model.

The two formulations for the general linear model involve a random variable on the left-hand

side of the model and random variables on the right-hand side of the model. In some settings, this

might be viewed as a transformation of random variables, but this is not the correct interpretation of

the model in the time series setting. The general linear model formulations define a hypothesized

relationship between the random variable on the left-hand side of the model and the random variables

on the right-hand side of the model. In the first formulation of the general linear model, the current

value of the time series Xt is hypothesized to be a linear combination of the current and previous

noise values. In the second formulation of the general linear model, the current value of the time

series Xt is hypothesized to be a linear combination of the previous values in the time series plus

a noise term. This probability model is hypothesized to govern the process over time. The goal in

constructing a time series model is to write a formula for a model which adequately captures the

probabilistic relationship that governs the time series. Estimation of the model parameters will be

followed by assessments to see if the model holds in an empirical sense.
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The coefficients in the two formulations of a general linear model are related. To make these

two formulations of the general linear model more concrete, we will now look at a specific instance.

Example 8.1 Consider the special case of the first formulation of the general linear

model

Xt = Zt +ψ1Zt−1.

This model only has one coefficient ψ1. The subsequent coefficients are ψ j = 0 for

j = 2, 3, . . . . Find the equivalent form of the general linear model using the second

formulation.

Recall from Section 7.3.1 that the backshift operator B shifts a time series value back

one unit in time, for example,

BXt = Xt−1.

When the backshift operator includes a superscript, the superscript accounts for multiple

backshifts, for example,

B4Zt = Zt−4.

The special case of the general linear model considered here can be converted from its

original form,

Xt = Zt +ψ1Zt−1,

to a form using the backshift operator,

Xt = Zt +ψ1BZt

or

Xt = (1+ψ1B)Zt .

Although it might seem like an unusual operation involving B, both sides of this equa-

tion can be divided by 1+ψ1B, which gives

Xt

1+ψ1B
= Zt .

For ψ1 values on the interval −1 < ψ1 < 1, this can be expanded as a geometric series

with common ratio −ψ1B:

(
1−ψ1B+ψ2

1B2 −·· ·
)

Xt = Zt

or

Xt −ψ1Xt−1 +ψ2
1Xt−2 −·· ·= Zt

or

Xt = Zt +ψ1Xt−1 −ψ2
1Xt−2 + · · · .

This is the second formulation of the general linear model with coefficients π j =(−1) j−1ψ
j
1

for j = 1, 2, . . . and −1 < ψ < 1.

A sleight of hand has occurred in the previous example with respect to the use of the backshift

operator B, first as an operator and then as a variable. This paragraph concerns that dual use. When

B is used as an operator, it has a domain or input, for instance, Xt , and a range or output, for instance,

BXt = Xt−1. In this case, the effect of the operator B on a time series value is to go back in the time
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series one unit of time. The input to B is the value of the time series at time t, and the output from B

is the value of the time series at time t −1. The full domain of the operator B is the entire sequence

of time series values. Why is it acceptable to take an operator like the backshift operator B and use it

as a variable? It can be demonstrated that the backshift operator B functions like a linear map in the

sense of allowing the standard multiplication and addition operations in its domain. In addition to

the standard operations such addition, multiplication, and inversion, we may thus treat polynomials

in B as polynomials in real variables.

For the particular case of the general linear model considered in the previous example, there was

a relationship between the coefficients in the two formulations of the general linear model. We now

consider whether there is a relationship between the coefficients ψ1, ψ2, . . . and π1, π2, . . . in the

general setting. We continue with our use of the backshift operator B. The first formulation of the

general linear model is

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,
which can be rewritten using the backshift operator as

Xt = Zt +ψ1BZt +ψ2B2Zt + · · ·

or

Xt =
(
1+ψ1B+ψ2B2 + · · ·

)
Zt .

The polynomial in B in this formulation of the model is denoted by ψ(B), so the first formulation of

the general linear model can be written compactly as

Xt = ψ(B)Zt ,

where ψ(B) = 1+ψ1B+ψ2B2 + · · · .
Now consider the second formulation of the general linear model:

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · .

Separating the time series terms on the left-hand side of the equation and the white noise term on

the right-hand side of the equation results in

Xt −π1Xt−1 −π2Xt−2 −·· ·= Zt ,

which can be rewritten using the backshift operator as

Xt −π1BXt −π2B2Xt −·· ·= Zt

or
(
1−π1B−π2B2 −·· ·

)
Xt = Zt .

The polynomial in B in this formulation of the model is denoted by π(B), so the second formulation

of the general linear model can be written compactly as

π(B)Xt = Zt ,

where π(B) = 1−π1B−π2B2 −·· · .
Definition 8.1 gives the two formulations of the general linear model expressed in purely alge-

braic form and in terms of polynomials in the backshift operator.
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Definition 8.1 A time series {Xt} can be expressed as a general linear model as

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,

where ψ1, ψ2, . . . are real-valued constants and Zt ∼WN
(
0, σ2

Z

)
, or, equivalently, as

Xt =
(
1+ψ1B+ψ2B2 + · · ·

)
Zt = ψ(B)Zt .

Alternatively, the general linear model for a time series can be written as

Xt = Zt +π1Xt−1 +π2Xt−2 + · · ·

for certain values of the real-valued constants π1, π2, . . . , or, equivalently, as

(
1−π1B−π2B2 −·· ·

)
Xt = π(B)Xt = Zt .

In the previous example, we were able to perform algebraic steps to determine the relationship

between the coefficients in the first formulation of the general linear model (that is, ψ1, ψ2, . . .)
and the coefficients in the second formulation (that is, π1, π2, . . .). This can also be done in the

more general setting. The equations that define the two formulations of the general linear model in

Definition 8.1 written in terms of the backshift operator are

Xt = ψ(B)Zt and π(B)Xt = Zt .

Applying the ψ(B) polynomial to both sides of the second equation gives

ψ(B)π(B)Xt = ψ(B)Zt

or

ψ(B)π(B)Xt = Xt

or

ψ(B)π(B) = 1

for nonzero Xt . Since the product of the polynomials ψ(B) and π(B) is one, they are inverses. For

suitable values of the coefficients, this allows us to calculate the coefficients ψ1, ψ2, . . . from the

coefficients π1, π2, . . . and vice versa. The inverse relationship between ψ(B) and π(B) will now be

confirmed for the polynomials identified in the previous example.

Example 8.2 Verify that ψ(B)π(B) = 1 for the time series model for {Xt} from the

previous example:

Xt = Zt +ψ1Zt−1,

where −1 < ψ1 < 1 and {Zt} is a time series of white noise.

From Example 8.1, the polynomials in the backshift operator are

ψ(B) = 1+ψ1B

and

π(B) = 1−ψ1B+ψ2
1B2 −·· · .
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The product of ψ(B) and π(B) is

ψ(B)π(B) = (1+ψ1B)
(
1−ψ1B+ψ2

1B2 −·· ·
)

=
(
1−ψ1B+ψ2

1B2 −·· ·
)
+
(
ψ1B−ψ2

1B2 +ψ3
1B3 −·· ·

)

= 1

as expected.

The previous discussion constitutes a proof of the following theorem concerning writing the

two forms of the general linear model in terms of polynomials in the backshift operator and the

relationship between the two polynomials ψ(B) and π(B).

Theorem 8.1 The two formulations of the general linear model from Definition 8.1 associated

with the two polynomials ψ(B) and π(B) are equivalent time series models and are related by

ψ(B)π(B) = 1

for certain values of the coefficients.

We will toggle between the purely algebraic formulations of the general linear model and the

associated formulations using the backshift operator B based on which is more convenient and ef-

fective for the mathematics in a particular setting. Definition 8.1 gives two different ways of writing

a general linear model, but is vague concerning any constraints placed on the coefficients. Some

constraints on the coefficients that give the general linear model certain important characteristics

are outlined next. Stationarity will play a central role in these constraints. The stationarity property

implies that the time series is stable over time; this stability allows us to predict how the time series

will behave in the future.

Causality and Invertibility

The general linear model is formulated in two different fashions in Definition 8.1. But we have

not yet defined any general constraints on the coefficients in the two different formulations of the

general linear model. We begin the consideration of appropriate constraints on the coefficients with

some calculations on the first formulation of the general linear model.

The first formulation of the general linear model from Definition 8.1 using the purely algebraic

form is

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · .
We would like to determine constraints on the coefficients ψ1, ψ2, . . . that will result in a stationary

model and also find expressions for quantities associated with the stationary version of this model,

such as E [Xt ], V [Xt ], γ(k), and ρ(k). Taking the expected value of both sides of the defining formula

results in

E [Xt ] = E [Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ]
= E [Zt ]+E [ψ1Zt−1]+E [ψ2Zt−2]+ · · ·
= E [Zt ]+ψ1E [Zt−1]+ψ2E [Zt−2]+ · · ·
= 0

because each of the white noise terms has expected value 0. This is a promising first step toward

achieving stationarity. So far, no constraints are needed on the coefficients ψ1, ψ2, . . . . That will
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change when we compute the population variance of Xt . Taking the population variance of both

sides of the defining formula results in

V [Xt ] =V [Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ]
=V [Zt ]+V [ψ1Zt−1]+V [ψ2Zt−2]+ · · ·
=V [Zt ]+ψ2

1V [Zt−1]+ψ2
2V [Zt−2]+ · · ·

=
(
1+ψ2

1 +ψ2
2 + · · ·

)
σ2

Z

because the white noise terms are mutually independent random variables with common finite popu-

lation variance σ2
Z (see Definition 7.1). Not all values of ψ1, ψ2, . . . will result in a finite population

variance of Xt . Setting ψ1 = ψ2 = · · ·= 1, for example, results in an infinite population variance

of Xt . In order to get a finite population variance, the ψ values must decrease in magnitude rapidly

enough so that

ψ2
1 +ψ2

2 + · · ·< ∞.

One way to achieve this condition is to have finite values for the first q coefficients ψ1, ψ2, . . . , ψq

then zeros thereafter. Any general linear model of the first formulation with coefficients that “cut

off” in this fashion will satisfy the constraint. Another way of considering this constraint is to write

this model using the backshift operator. Using Definition 8.1, the first formulation of the general

linear model is

Xt = ψ(B)Zt =
(
1+ψ1B+ψ2B2 + · · ·

)
Zt .

The polynomial in the backshift operator

ψ(B) = 1+ψ1B+ψ2B2 + · · ·

will be considered for B values that can assume complex values. So B can have the form B = a+bi.

The constraint on the coefficients ψ1, ψ2, . . . is equivalent to ψ(B) converging for all B values falling

on or inside the unit circle. In other words, |B| ≤ 1.

The population autocovariance function for the general linear model stated in the form

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · ·

with coefficients ψ1, ψ2, . . . satisfying the constraint can be calculated by using the definition of the

population covariance:

γ(k) = Cov(Xt , Xt+k)

= Cov(Zt +ψ1Zt−1 +ψ2Zt−2 + · · · , Zt+k +ψ1Zt+k−1 +ψ2Zt+k−2 + · · ·)
= Cov(Zt , ψkZt+k−k)+Cov

(
ψ1Zt−1, ψk+1Zt+k−(k+1)

)
+ · · ·

= ψkσ2
Z +ψ1ψk+1σ2

Z +ψ2ψk+2σ2
Z + · · ·

= (ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·)σ2
Z

for k = 1, 2, . . . because of the mutual independence of the terms in the white noise time series. As

expected from the previous derivation, the autocovariance at lag 0 is the population variance of Xt :

γ(0) =V [Xt ] =
(
1+ψ2

1 +ψ2
2 + · · ·

)
σ2

Z ,

where ψ0, the coefficient of Zt , equals 1. The associated autocorrelation function is

ρ(k) =
γ(k)

γ(0)
=

σ2
Z (ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·)

σ2
Z

(
1+ψ2

1 +ψ2
2 + · · ·

) =
ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·

1+ψ2
1 +ψ2

2 + · · ·
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for k = 1, 2, . . . . Notice that ρ(0) = 1 as expected.

The derivation so far has been general, so when specific values of the coefficients ψ1, ψ2, . . .
are specified, we now have formulas to determine the population autocovariance function and the

population autocorrelation function. Computing these two functions will be illustrated in the next

example.

Example 8.3 Consider a time series model {Xt} described by

Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2,

where {Zt} ∼WN
(
0, σ2

Z

)
. Determine whether this time series is stationary and calcu-

late the population autocovariance function and autocorrelation function.

This time series model is a special case of the first formulation of the general linear

model from Definition 8.1 which expresses Xt as a linear combination of the white

noise terms with coefficients ψ1 = −3/2, ψ2 = 3/4 and ψ j = 0 for j = 3, 4, . . . . The

time series is stationary because

ψ2
1 +ψ2

2 + · · ·=
(

−3

2

)2

+

(
3

4

)2

=
45

16
< ∞.

The population autocovariance function is

γ(k) = (ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·)σ2
Z

=







(
1+(−3/2)2 +(3/4)2

)
σ2

Z k = 0
(
−3/2+(−3/2)(3/4)

)
σ2

Z k = 1

(3/4)σ2
Z k = 2

0 k = 3, 4, . . .

=







61σ2
Z/16 k = 0

−21σ2
Z/8 k = 1

3σ2
Z/4 k = 2

0 k = 3, 4, . . . ,

where ψ0 = 1 is the coefficient of Zt . The associated population autocorrelation function

ρ(k) = γ(k)/γ(0) is

ρ(k) =







1 k = 0

−42/61 k = 1

12/61 k = 2

0 k = 3, 4, . . . ,

which is graphed in Figure 8.1. The population autocorrelation function “cuts off” after

spikes at lags 1 and 2.

The constraint that has been placed on the values of ψ1, ψ2, . . . can be formalized in this defini-

tion of the causal representation of the general linear model.
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Figure 8.1: Population autocorrelation function for Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2.

Definition 8.2 A time series {Xt} is causal if it can be written as

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,

where ψ1, ψ2, . . . are real-valued coefficients that satisfy

ψ2
1 +ψ2

2 + · · ·< ∞.

A time series model that can be written in the causal form is stationary.

The next example illustrates how to convert a general linear model into the causal form in order

to establish stationarity.

Example 8.4 Consider the special case of the general linear model

(

1− 2

5
B

)

Xt = Zt .

Convert this time series model to the causal representation.

The causal form from Definition 8.2 is

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · .

So for the specific case given here,

(

1− 2

5
B

)

(Zt +ψ1Zt−1 +ψ2Zt−2 + · · ·) = Zt .

Expanding the left-hand side of this equation gives

Zt +

(

ψ1 −
2

5

)

Zt−1 +

(

ψ2 −
2

5
ψ1

)

Zt−2 +

(

ψ3 −
2

5
ψ2

)

Zt−3 + · · ·= Zt .
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Equating the coefficients on the left-hand side and right-hand side of this equation as

illustrated in Table 8.1 allows us to solve for ψ1, ψ2, . . . . So the causal form of the time

series model is

Xt = Zt +

(
2

5

)

Zt−1 +

(
2

5

)2

Zt−2 +

(
2

5

)3

Zt−3 + · · · ,

which has coefficients ψ j = (2/5) j, for j = 1, 2, . . . . Notice that

ψ2
1 +ψ2

2 +ψ2
3 + · · ·=

(
2

5

)2

+

(
2

5

)4

+

(
2

5

)6

+ · · ·= 4/25

1−4/25
=

4

21
< ∞,

so the time series is causal because Definition 8.2 is satisfied. Since the time series is

causal, this implies that it is also stationary.

term equation solution

Zt−1 ψ1 −
2

5
= 0 ψ1 =

2

5

Zt−2 ψ2 −
2

5
ψ1 = 0 ψ2 =

(
2

5

)2

Zt−3 ψ3 −
2

5
ψ2 = 0 ψ3 =

(
2

5

)3

...
...

...

Table 8.1: Matching coefficients.

When the second formulation of the general linear model that uses the coefficients π1, π2, . . . is

used, there is an analogous property known as invertibility which is defined next. In this case the

coefficients π1, π2, . . . need to decrease in magnitude rapidly enough so that

π2
1 +π2

2 + · · ·< ∞.

Loosely speaking, a time series model is invertible if there is a one-to-one correspondence between

the coefficients π1, π2, . . . and the associated population autocorrelation function.

Definition 8.3 A time series {Xt} is invertible if it can be written as

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · ,

where π1, π2, . . . are real-valued coefficients that satisfy

π2
1 +π2

2 + · · ·< ∞.

An invertible time series model has a one-to-one correspondence between the coefficients and the

autocorrelation function.

So causality and invertibility are dual properties. Causality indicates that a time series model can

be written in the first formulation of the general linear model from Definition 8.1 with coefficients
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that result in a stationarity model. Invertibility indicates that a time series model can be written in

the second formulation of the general linear model from Definition 8.1 with coefficients that ensure

a one-to-one correspondence between the coefficients and the population autocorrelation function.

There are three unsettling aspects to the general linear model. First, it only considers linear

relationships between the X’s and the Z’s. Situations might arise in which a quadratic term, for ex-

ample, might be appropriate. Second, the general linear model has an infinite number of parameters:

the coefficients ψ1, ψ2, . . . for the first formulation and the coefficients π1, π2, . . . for the second

formulation. ARMA (autoregressive moving average) models, which are special cases of general

linear models that are introduced in the next section, limit the number of parameters in the model.

The third shortcoming concerns the population mean. Taking the expected value of both sides of the

first formulation of the general linear model

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,

for example, gives E [Xt ] = 0. But the vast majority of real-world time series are not centered around

zero. These problems associated with an infinite number of parameters and nonzero mean value will

be overcome by the ARMA models introduced in the next section.

8.1.2 An Introduction to ARMA Models

The autoregressive moving average time series model, universally known as the ARMA model,

provides two twists on the general linear model. First, the ARMA model limits the number of terms,

and therefore limits the number of parameters. Second, the ARMA model includes both types of

terms in the two formulations of the general linear model given in Definition 8.1.

There are several reasons for the popularity of the ARMA time series model. First, the popula-

tion autocorrelation function ρ(k) for an ARMA model can take on a wide variety of shapes, which

makes it an appropriate time series model in a wide variety of applications. Second, the ARMA

model is parsimonious in the sense that it typically requires only a small number of parameters to

achieve an adequate representation of the probability model governing a time series. The notion

of parsimony appears in all branches of statistics in which there is interest in finding an approxi-

mate probability model using the smallest number of parameters. Third, the ARMA model has been

around for several decades, which means that dozens of software packages have been developed

over the years for model identification, parameter estimation, forecasting, etc. Although the empha-

sis here will be on the R language, there are many other software packages that support time series

modeling.

The general linear model from Definition 8.1 used the parameters ψ1, ψ2, . . . for the first for-

mulation and π1, π2, . . . for the second formulation. Of course both of these formulations have the

additional parameter σ2
Z , which is the population variance of the white noise. Tradition dictates that

in the conversion from the first formulation of the general linear model to the ARMA model, the

Greek letter ψ used for coefficients in the general linear model is replaced by θ, and there are q of

these coefficients: θ1, θ2, . . . , θq. Likewise, in the conversion from the second formulation of the

general linear model to the ARMA model, the Greek letter π used for the coefficients in the general

model is replaced by φ, and there are p of these coefficients: φ1, φ2, . . . , φp.

So two key parameters in specifying an ARMA model are p and q, which are both nonnegative

integers. The parameter p is the number of coefficient parameters in the autoregressive portion of

the model; the parameter q is the number of coefficient parameters in the moving average portion of

the model. The format for specifying the orders p and q of an ARMA model with p autoregressive

terms and q moving average terms is ARMA(p, q).
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Definition 8.4 The ARMA(p, q) time series model is

Xt =

autoregressive portion
︷ ︸︸ ︷

φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q
︸ ︷︷ ︸

moving average portion

,

where {Xt} is the time series of interest, {Zt} is a time series of white noise, φ1, φ2, . . . , φp are real-

valued parameters associated with the AR portion of the model, and θ1, θ2, . . . , θq are real-valued

parameters associated with the MA portion of the model.

The autoregressive portion of this time series model is aptly named because the current value

of the time series Xt is regressed on the p previous values of itself. White noise is injected into the

model through {Zt} because it is the widest class of the three noise processes from Definition 7.1

which gives the probabilistic properties that are derived in this chapter.

If an ARMA model only involves, for example, the autoregressive portion of the model with two

terms (that is, no moving average terms because θ1 = θ2 = · · · = θq = 0), then this ARMA(2, 0)

model is specified as an AR(2) model. Likewise, if an ARMA model only involves, for example, the

moving average portion of the model with four terms (that is, no autoregressive terms because φ1 =
φ2 = · · ·= φp = 0), then this ARMA(0, 4) model is specified as an MA(4) model. An ARMA(0, 0)

model is just a time series of white noise, which was analyzed in Examples 7.9 and 7.15.

The ARMA(p, q) time series model from Definition 8.4 can also be written in terms of the

backshift operator B. Taking the original form of the ARMA(p, q) model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

and separating the autoregressive terms on the left-hand side of the equation and the moving average

terms on the right-hand side of the equation results in

Xt −φ1Xt−1 −φ2Xt−2 −·· ·−φpXt−p = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q.

This can be written in terms of the backshift operator as

Xt −φ1BXt −φ2B2Xt −·· ·−φpBpXt = Zt +θ1BZt +θ2B2Zt + · · ·+θqBqZt

or
(
1−φ1B−φ2B2 −·· ·−φpBp

)
Xt =

(
1+θ1B+θ2B2 + · · ·+θqBq

)
Zt

or more compactly as

φ(B)Xt = θ(B)Zt ,

where the polynomials in B are

φ(B) = 1−φ1B−φ2B2 −·· ·−φpBp

and

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq,

and these are often referred to as the characteristic polynomials. This algebra constitutes a proof of

the alternative representation of the ARMA(p, q) time series model using polynomials.
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Theorem 8.2 The ARMA(p, q) time series model can be written using the backshift operator B

as

φ(B)Xt = θ(B)Zt ,

where the characteristic polynomials in B are

φ(B) = 1−φ1B−φ2B2 −·· ·−φpBp

and

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.

Being able to convert between the purely algebraic formulation of an ARMA(p, q) model and the

backshift operator formulation is an important skill in time series analysis. The next three examples

illustrate how to perform these conversions.

Example 8.5 For the ARMA time series model

Xt = 5Xt−1 −2Xt−2 +Zt −4Zt−1 +2Zt−2 −Zt−3,

(a) identify the time series model, and

(b) write the time series model in terms of the backshift operator B.

(a) Since there are two terms in the autoregressive portion of the time series model

with coefficients

φ1 = 5 and φ2 =−2

and three terms in the moving average portion of the time series model with coef-

ficients

θ1 =−4, θ2 = 2, and θ3 =−1,

this is an ARMA(2, 3) model.

(b) The time series model

Xt = 5Xt−1 −2Xt−2 +Zt −4Zt−1 +2Zt−2 −Zt−3

can be separated into autoregressive and moving average portions as

Xt −5Xt−1 +2Xt−2 = Zt −4Zt−1 +2Zt−2 −Zt−3.

This can be written in terms of B as

Xt −5BXt +2B2Xt = Zt −4BZt +2B2Zt −B3Zt

or
(
1−5B+2B2

)
Xt =

(
1−4B+2B2 −B3

)
Zt .

So the polynomials in B that define the coefficients for the ARMA(2, 3) time series

model written in the form φ(B)Xt = θ(B)Zt are

φ(B) = 1−5B+2B2 and θ(B) = 1−4B+2B2 −B3.



Section 8.1. Probability Models 459

The previous example converted an ARMA time series model from a purely algebraic formula-

tion to a formulation that uses the backshift operator. The next example goes in the other direction.

Example 8.6 For the ARMA time series model

φ(B)Xt = θ(B)Zt ,

where φ(B) = 1−0.3B and θ(B) = 1,

(a) identify the time series model, and

(b) write the time series model in purely algebraic form.

(a) Since φ(B) is a first degree polynomial, p = 1. Since θ(B) is a zero degree polyno-

mial, q = 0. So this is an ARMA(1, 0) model, which is more commonly referred

to as an AR(1) model.

(b) The time series model is

(1−0.3B)Xt = 1 ·Zt

or

Xt −0.3BXt = Zt

or

Xt −0.3Xt−1 = Zt .

Isolating Xt on the left-hand side of the equation, the purely algebraic formulation

of this AR(1) model with φ1 = 0.3 is

Xt = 0.3Xt−1 +Zt .

The third and final example of converting between the purely algebraic formulation and backshift

formulation of the ARMA(p, q) model would certainly be classified as a trick question. The example

emphasizes the importance of looking for common factors between the φ(B) and θ(B) polynomials.

Example 8.7 For the ARMA time series model

Xt =−3Xt−1 +Xt−2 +3Xt−3 +Zt −3Zt−1 −4Zt−2,

(a) identify the time series model, and

(b) write the time series model using the backshift operator.

(a) Since there are three terms in the autoregressive portion of the model and two

terms in the moving average portion of the model, one might be temped to con-

clude that this is an ARMA(3, 2) model with autoregressive coefficients

φ1 =−3, φ2 = 1, and φ3 = 3,

and moving average coefficients

θ1 =−3 and θ2 =−4.

But that conclusion is wrong. It is actually an ARMA(2, 1) model because φ(B)
and θ(B) have a common factor, as will be seen in part (b). Writing the time series

model using the backshift operator B makes it easier to recognize this common

factor.
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(b) The time series model

Xt =−3Xt−1 +Xt−2 +3Xt−3 +Zt −3Zt−1 −4Zt−2

can be separated into autoregressive and moving average portions as

Xt +3Xt−1 −Xt−2 −3Xt−3 = Zt −3Zt−1 −4Zt−2

or

Xt +3BXt −B2Xt −3B3Xt = Zt −3BZt −4B2Zt

or
(
1+3B−B2 −3B3

)
Xt =

(
1−3B−4B2

)
Zt

or

φ(B)Xt = θ(B)Zt ,

where

φ(B) = 1+3B−B2 −3B3 and θ(B) = 1−3B−4B2.

The model still looks like an ARMA(3, 2) model. But factoring φ(B) and θ(B)
reveals that both polynomials contain a common factor:

φ(B) = 1+3B−B2 −3B3 = (1+B)
(
1+2B−3B2

)

and

θ(B) = 1−3B−4B2 = (1+B)(1−4B).

The common factor (1+B) in the two polynomials cancels, which means that the

ARMA model can be reduced to

φ(B)Xt = θ(B)Zt ,

where

φ(B) = 1+2B−3B2 and θ(B) = 1−4B,

which is an ARMA(2, 1) model. Written in purely algebraic form, this ARMA(2, 1)

model is

Xt +2Xt−1 −3Xt−2 = Zt −4Zt−1,

or

Xt =−2Xt−1 +3Xt−2 +Zt −4Zt−1,

so the autoregressive coefficients are φ1 =−2 and φ2 = 3, and the moving average

coefficient is θ1 =−4.

Based on this example involving a common factor in the φ(B) and θ(B) polynomials, we will

henceforth assume that the modeler has removed any redundant factors in an ARMA(p, q) time

series model. So any ARMA(p, q) model you see going forward will in this sense be presented in

lowest terms with no common factors between φ(B) and θ(B).
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Since an AR(p) model has a finite number of coefficients φ1, φ2, . . . , φp in the autoregressive

portion of the model, they always satisfy

φ2
1 +φ2

2 + · · ·+φ2
p < ∞,

so AR(p) models are always invertible per Definition 8.3. Likewise, since an MA(q) model has a

finite number of coefficients θ1, θ2, . . . , θq in the moving average portion of the model, they always

satisfy

θ2
1 +θ2

2 + · · ·+θ2
q < ∞,

so MA(q) models are always stationary per Definition 8.2. In an advanced class in time series, you

will prove that an AR(p) model is stationary when all of the p complex roots of the polynomial

φ(B) = 0 lie outside of the unit circle in the complex plane. Likewise, an MA(q) model is invertible

when all of the q complex roots of the polynomial θ(B) = 0 lie outside of the unit circle in the

complex plane. An ARMA(p, q) model is stationary when all of the p complex roots of φ(B) = 0

lie outside of the unit circle in the complex plane. An ARMA(p, q) model is invertible when all of

the q complex roots of θ(B) = 0 lie outside of the unit circle in the complex plane. These results are

summarized below.

Theorem 8.3 The AR(p) model φ(B)Xt = Zt is

• always invertible, and

• stationary when the p roots of φ(B) = 0 lie outside the unit circle in the complex plane.

The MA(q) model Xt = θ(B)Zt is

• always stationary, and

• invertible when the q roots of θ(B) = 0 lie outside the unit circle in the complex plane.

The ARMA(p, q) model φ(B)Xt = θ(B)Zt is

• stationary when the p roots of φ(B) = 0 lie outside the unit circle in the complex plane, and

• invertible when the q roots of θ(B) = 0 lie outside the unit circle in the complex plane.

We now revisit the first numeric example of a time series model that we encountered earlier in

this chapter to check and see if it is both stationary and invertible.

Example 8.8 Consider the time series model for {Xt} that first appeared in Example 8.3

described by

Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2,

where {Zt} ∼WN
(
0, σ2

Z

)
. Identify this time series model and determine whether it is

stationary and invertible.

Since the current and two previous white noise values included in this time series model,

this is an MA(2) model. By Theorem 8.3, all MA(2) models are stationary. To see

whether this model is invertible, we want to calculate the roots of θ(B) = 0 and see if

they lie outside of the unit circle in the complex plane. The purely algebraic form of the

time series model

Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2,
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can be written in terms of the backshift operator as

Xt = Zt −
3

2
BZt +

3

4
B2Zt

or

Xt =

(

1− 3

2
B+

3

4
B2

)

Zt ,

so θ(B) = 1− 3
2
B+ 3

4
B2. To find the values of B that solve θ(B) = 0 requires solving

3

4
B2 − 3

2
B+1 = 0,

which is equivalent to the quadratic equation

3B2 −6B+4 = 0.

Using the quadratic formula, the roots of this quadratic equation are

B =
6±

√
36−48

6

or

B = 1±
√

3

3
i.

Since θ(B) is a second-order polynomial, the complex roots are necessarily complex

conjugates. We now need to determine whether these two roots lie outside of the unit

circle in the complex plane. There are two ways to proceed. The first is to simply

plot these two roots in the complex plane and see if they fall outside of the unit circle.

Figure 8.2 shows that the two roots do indeed fall outside of the unit circle. The second

way to determine whether the roots fall outside the unit circle is to take the sum of

squares of the real and imaginary parts of the roots and see if they exceed 1. In this

case,

(1)2 +

(√
3

3

)2

= 1+
1

3
=

4

3
> 1.

real

imaginary

unit circle

Figure 8.2: Unit circle in the complex plane and the roots of θ(B) = 0.
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Both techniques draw the same conclusion: the two roots of θ(B) = 0 fall outside of the

unit circle in the complex plane, which means that the time series model is invertible.

In conclusion, this MA(2) time series model is both stationary and invertible.

We will get some further practice with these calculations involving the polynomials φ(B) and

θ(B) when we investigate special cases of the ARMA(p, q) model in more detail in the sections that

follow.

Shifted ARMA models

We now address a major shortcoming of the ARMA(p, q) model that–fortunately–is easily over-

come. For a stationary ARMA(p, q) model as it has been defined in Definition 8.4, the expected

value of Xt is E [Xt ] = 0. But most real-world stationary time series are not centered about 0; they

are typically centered about some nonzero constant value. The reason that we have waited this long

to bring up the topic of a time series centered around a value other than zero is that when we shift the

time series, there will be no change in the population autocovariance and autocorrelation functions

because population covariance and correlation are unaffected by shifting the time series. The math-

ematics involved with determining these important functions is much cleaner if you assume that the

time series model is centered about zero. There are two ways to tweak the ARMA(p, q) model to

allow for it to be centered about some constant value. These two alterations are presented next.

The first way to introduce a nonzero central value for an ARMA(p, q) time series model is to

subtract µ from all of the values in the time series. In other words, transform the usual ARMA(p, q)

time series model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q

to the shifted ARMA(p, q) time series model

Xt −µ = φ1 (Xt−1 −µ)+φ2 (Xt−2 −µ)+ · · ·+φp (Xt−p −µ)+Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q.

This can be written compactly in terms of the backshift operator B as

φ(B)(Xt −µ) = θ(B)Zt ,

where φ(B) is the usual polynomial of degree p in B associated with the autoregressive portion of

the model:

φ(B) = 1−φ1B−φ2B2 −·· ·−φpBp,

and θ(B) is the usual polynomial of degree q in B associated with the moving average portion of the

model:

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.

In this particular formulation of a shifted ARMA(p, q) model, the population mean of the process

is E [Xt ] = µ when the model is stationary. This can be established by taking the expected value of

both sides of the shifted ARMA(p, q) time series model.

A second way to formulate a shifted ARMA(p, q) time series model with a nonzero population

mean is to simply add a constant, denoted by µ̃, to the right-hand side of the model:

Xt = µ̃+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q

This can be written in terms of the backshift operator as

φ(B)Xt = µ̃+θ(B)Zt .
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The reason that a tilde has been placed above µ in this formulation is that µ̃ is not the population

mean of the time series model. The two ways of formulating a shifted ARMA(p, q) time series

model in these two fashions are summarized as follows.

Definition 8.5 A shifted ARMA(p, q) time series model with a nonzero population mean µ can

be written in purely algebraic form as

Xt −µ = φ1 (Xt−1 −µ)+φ2 (Xt−2 −µ)+ · · ·+φp (Xt−p −µ)+Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

or equivalently using the backshift operator B as

φ(B)(Xt −µ) = θ(B)Zt .

A second way to formulate a shifted ARMA(p, q) time series model with a nonzero population

mean can be written in purely algebraic form as

Xt = µ̃+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

or equivalently using the backshift operator B as

φ(B)Xt = µ̃+θ(B)Zt ,

where φ(B) and θ(B) are the usual polynomials in the backshift operator B given in Theorem 8.2.

The example that follows illustrates how to convert a shifted time series model from one of these

forms to the other.

Example 8.9 The shifted ARMA(1, 1) model defined by

Xt = 8+0.6Xt−1 +Zt −0.1Zt−1

is written in the second form from Definition 8.5 with µ̃ = 8. Convert it to the first form.

Moving all autoregressive terms and the constant term to the left-hand side of the equa-

tion results in

Xt −0.6Xt−1 −8 = Zt −0.1Zt−1.

Using the backshift operator, this can be written as

(1−0.6B)Xt −8 = (1−0.1B)Zt .

We would like to fold the constant 8 into position on the left-hand side of the equation to

match the first formulation from Definition 8.5. We multiply and divide 8 by (1−0.6B),
keeping in mind that the backshift operator applied to a constant is just the constant:

(1−0.6B)Xt −8 · 1−0.6B

1−0.6B
= (1−0.1B)Zt

or

(1−0.6B)Xt − (1−0.6B) · 8

0.4
= (1−0.1B)Zt

or

(1−0.6B)(Xt −20) = (1−0.1B)Zt .
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So this shifted ARMA(1, 1) time series model is now written in the first formula-

tion from Definition 8.5, which is φ(B)(Xt − µ) = θ(B). The expected value of Xt is

µ = E [Xt ] = 20. One way to check that we have done all of the algebra correctly is to

use µ = 20 as an argument in the first formulation of the model from Definition 8.5 and

perform the algebra to see whether it is equivalent to the second formulation.

The previous example can be generalized from the shifted ARMA(1, 1) model to the shifted

ARMA(p, q) model. The following theorem gives the relationship between µ and µ̃ for the two

formulations of the shifted ARMA(p, q) models in Definition 8.5.

Theorem 8.4 The parameters µ = E[Xt ] and µ̃ for the two shifted ARMA(p, q) models from Def-

inition 8.5 are related by

µ =
µ̃

1−φ1 −φ2 −·· ·−φp

when the coefficients φ1, φ2, . . . , φp correspond to a stationary model.

Proof The second shifted ARMA(p, q) model from Definition 8.5 is

Xt = µ̃+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q.

Taking the expected value of both sides of this equation yields

E [Xt ] = µ̃+φ1E [Xt−1]+φ2E [Xt−2]+ · · ·+φpE [Xt−p]+0

because all of the white noise terms have expected value zero. Since the time series is

assumed to be stationary, E [Xt ] =E [Xt−1] =E [Xt−2] = · · ·=E [Xt−p], and this equation

becomes

E [Xt ] = µ̃+φ1E [Xt ]+φ2E [Xt ]+ · · ·+φpE [Xt ] .

Solving for µ = E[Xt ] gives

µ =
µ̃

1−φ1 −φ2 −·· ·−φp

. �

In the previous example, the value of µ = E [Xt ] could have been calculated by appealing to

Theorem 8.4 with µ̃ = 8 and φ1 = 0.6, which gives

µ = E [Xt ] =
8

1−0.6
= 20.

This provides an illustration of how Theorem 8.4 provides a mechanism for converting between the

two forms of the shifted ARMA(p, q) models given in Definition 8.5.

This section has provided an introduction to linear models. The first subsection surveyed the two

formulations of the general linear model and introduced the causality and invertibility properties.

The second subsection introduced a special case of the general linear model known as the ARMA

(autoregressive moving average) model. These time series models are inherently probabilistic in

nature. The next section introduces some of the associated statistical topics in time series analysis:

parameter estimation, forecasting, model assessment, and model selection.
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8.2 Statistical Methods

The previous section introduced two linear probability models for time series: the general linear

model and the ARMA model. These models contain parameters which can be used to tune the

model to a particular application. This chapter introduces the statistical methods that are used to

estimate these parameters and assess whether the model with its fitted parameters provides an ade-

quate representation of the probabilistic mechanism governing the time series. As you read the rest

of this book, you should be continually asking yourself whether the new material is associated with

a probability model or presents a statistical method. The statistical methods are presented here in

a somewhat generic manner; the specific implementations on a time series of observations occurs

subsequently. The first subsection in this section introduces three methods for estimating the param-

eters in an ARMA model: the method of moments, least squares, and maximum likelihood. This is

followed by a subsection that considers the important topic of forecasting future observations in a

time series. Subsections on model assessment and model selection complete the section.

8.2.1 Parameter Estimation

The emphasis now shifts from a time series model, which is developed using probability theory, to

statistical questions associated with a realization of a time series. The observed values of this realiza-

tion are denoted by X1, X2, . . . , Xn when considered abstractly; when specific values are considered,

they are denoted by x1, x2, . . . , xn.

Before considering parameter estimation, we consider the topic of model identification. Since p

and q are nonnegative integers, there are an infinite number of ARMA(p, q) models from which to

choose. Which model is appropriate for a particular application? Most statistical software packages

that perform the analysis of a time series have functions that estimate parameters and forecast future

values of the time series. So those two aspects of time series analysis are largely automated. The

part of the process that requires some insight from the modeler is the specification of an appropriate

time series model for a particular application. By what criteria do we decide whether an MA(1),

AR(2), or ARMA(2, 1) is a tentative or a final time series model? The two steps associated with

model identification for an ARMA(p, q) model are given next.

1. Inspect the time series plot. The process of identifying a time series model always begins

with a careful inspection of a plot of the time series. Take a few minutes to look for cyclic

variation, trends, step changes, outliers, and nonconstant variance in the plot of the time series.

Visually assess the time series for any serial correlation. The human eye can spot subtleties

that an algorithm might miss. Only you can perform this step. We assume for now that no

trends, step changes, outliers, cyclic variation, or nonconstant variance in the time series have

been identified, so a stationary model for the time series is sought. Modeling cyclic variation,

trends, and nonconstant variance will be taken up subsequently.

2. Inspect the plots of rk and r∗k . Inspecting plots of the sample autocorrelation function and

the sample partial autocorrelation function is an attempt to conduct a visual pattern match

between the sample autocorrelation patterns with a known inventory of population autocor-

relation patterns for the various ARMA(p, q) models. The minimum length of a time series

in order to make meaningful visual comparisons between the sample and population auto-

correlation functions is about n = 60 or n = 70 observations. As will be seen in subsequent

chapters, the shape of the sample autocorrelation function and the sample partial autocorre-

lation function can provide clues as to an appropriate time series model. In some cases, the

values of p and q in the ARMA(p, q) model become immediately apparent upon viewing these
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three plots. In other cases, the situation is murky, and there might be two or three potential

ARMA(p, q) models that seem to be plausible. Since we have assumed that the time series is

stationary in the previous paragraph, there is no need to transform or difference the data based

on these plots in the current setting. The p and q values for the ARMA time series model

identified from this step will be known as the tentative model. Once a tentative model has

been identified, the next step is to estimate the parameters, which accounts for the remainder

of this section.

We would like to estimate the parameters of a stationary and invertible tentative ARMA(p, q)

model. It is assumed that the number of autoregressive terms p and the number of moving av-

erage terms q have been established for a tentative ARMA(p, q) time series model based on an

inspection of the sample autocorrelation and sample partial autocorrelation functions. There are a

total of p+ q+ 1 unknown parameters in a standard ARMA(p, q) model from Definition 8.4: the

autoregressive coefficients φ1, φ2, . . . , φp, the moving average coefficients θ1, θ2, . . . , θq, and the

population variance of the white noise σ2
Z . The shifted ARMA(p, q) model from Definition 8.5 has

the additional parameter µ.

Consistent with conventional notation in statistics, hats on unknown parameters denote their

point estimators. The point estimator of the unknown parameter φ1, for example, is φ̂1. The point

estimators developed here are random variables that take on one particular value for an observed time

series x1, x2, . . . , xn. Point estimators are typically paired with a 100(1−α)% confidence interval

that gives a sense of the precision of the point estimator. A confidence interval for the unknown

parameter φ1, for example, is typically expressed in the form L < φ1 < U , where L is the random

lower bound of the confidence interval and U is the random upper bound of the confidence interval.

In most practical problems involving a time series model, a shifted ARMA(p, q) model is used

because very few time series are centered around zero. Since the ARMA(p, q) time series model

is generally assumed to be stationary and invertible, it is common practice in time series analysis

to estimate the population mean parameter µ with the sample mean X̄ . This is justified by the fact

that E [Xt ] = µ for a stationary and invertible shifted ARMA(p, q) model. This is consistent with the

method of moments approach. Once µ has been estimated, the new time series which is shifted by

µ̂ = X̄ is

x1 − x̄, x2 − x̄, . . . , xn − x̄.

This time series can be fitted to a standard ARMA(p, q) model from Definition 8.4. This new time

series has a sample mean value of zero because

1

n

n

∑
i=1

(xi − x̄) =
1

n

n

∑
i=1

xi −
1

n

n

∑
i=1

x̄ = x̄− 1

n
·n · x̄ = 0.

So for now we dispatch with the parameter µ and assume that it will typically be estimated by x̄

for a stationary and invertible ARMA(p, q) model by centering the time series as described above.

Both the original time series and the centered time series will be denoted by as {Xt} or {xt} in order

to avoid introducing a new letter (Yt or yt) into the notation. The parameter estimation techniques

that follow will be applied to a standard ARMA(p, q) model centered around zero, which assumes

that µ has been estimated in the shifted model. This will make the notation somewhat more com-

pact. The population variance of X̄ for mutually independent and identically distributed observations

X1, X2, . . . , Xn is the well-known formula

V
[
X̄
]
=

σ2
X

n
.
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But for a stationary ARMA(p, q) time series model with population autocovariance function γ(k)
and population autocorrelation function ρ(k), the population variance of the sample mean is

V
[
X̄
]
=V

[
1

n
(X1 +X2 + · · ·+Xn)

]

=
1

n2
V [X1 +X2 + · · ·+Xn]

=
1

n2

n

∑
i=1

n

∑
j=1

Cov(Xi, X j)

=
1

n2

[
n

∑
i=1

V [Xi]+2
n−1

∑
i=1

n

∑
j= i+1

Cov(Xi, X j)

]

=
1

n2

[

nγ(0)+2
n−1

∑
k=1

(n− k)γ(k)

]

=
σ2

X

n

[

1+2
n−1

∑
k=1

(

1− k

n

)

ρ(k)

]

.

Notice that this formula collapses to V
[
X̄
]
= σ2

X/n when ρ(1) = ρ(2) = · · · = ρ(n − 1) = 0 as

expected. This formula should be kept in mind whenever statistical inferences, such as confidence

intervals or hypothesis tests, are made concerning the population mean from a realization of a time

series. The sample mean is a meaningful summary statistic for a time series only when appropriate

transformations have been applied to the time series in order to reduce it to a stationary time series.

Three techniques for the estimation of parameters in a time series model will be introduced here:

the method of moments, least squares, and maximum likelihood estimation. There are three reasons

why just one parameter estimation technique is not adequate. First, an AR(3) model, for example,

might be well fitted with one estimation technique, but an MA(2) model, on the other hand, might be

more compatible with another estimation technique. Second, it is often the case that one technique

will provide initial estimates for a numerical method associated with a second technique. Third,

some of the estimation techniques provide estimators which have degraded statistical properties

near the boundaries of the stationarity or invertibility regions. The three techniques will be discussed

generally below, and then will be illustrated with examples subsequently using real time series data.

Method of Moments

The essence of the method of moments technique is to equate low-order population and sample

moments and solve for all unknown parameters. This method was developed by English mathemati-

cian and biostatistician Karl Pearson. This approach often seems arresting to those encountering it

for the first time because population moments are constants and sample moments are random vari-

ables. Equating constants and random variables is simply a device that is used to get a perfect match

between low-order population and sample moments.

In a non-time-series context with data values X1, X2, . . . , Xn and m unknown population param-

eters, the m equations

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t
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...

E [Xm
t ] =

1

n

n

∑
t=1

Xm
t

can be solved to arrive at the m method of moments estimators of the unknown parameters. In some

settings this can be done analytically, but in other settings numerical methods are required.

Returning to a time-series context, the stationarity assumption (see Definition 7.6) places re-

quirements on only the first two population moments E [Xt ] and E
[
X2

t

]
. Stationarity places no

requirements on the third and higher order moments. But stationarity does imply that the autocorre-

lation between two observations depends only on the lag, and this can be exploited to generate the

necessary number of equations to employ the method of moments technique. Consider a stationary

and invertible ARMA(p, q) model, for example, that has four unknown parameters. Solving the set

of four equations in the four unknown parameters

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

ρ(2) = r2

yields the method of moments estimators for the four unknown parameters. The usual approach to

fitting a time series model to a realization of a time series by the method of moments technique is

to use the first two of these equations, and then equate population and sample autocorrelations at

enough low-order lags in order to account for all unknown parameters. In this way the population

and the sample autocorrelations will match at lower-order lags.

Least Squares Estimation

The least squares estimation technique is used nearly universally in regression analysis. This

method developed by German mathematician Carl Friedrich Gauss. The essence of the least squares

technique is to find the values of the unknown parameters that minimize the sum of squares of the

error terms in a model. In the time series setting, we want to find the values of the parameters that

minimize

S =
n

∑
t=1

Z2
t .

The use of least squares for ARMA(p, q) models requires two steps. First, solve the target model

for Zt , and then substitute that expression into the equation above. At this point, S is written in terms

of the unknown parameters. Second, take the partial derivatives of S with respect to all unknown

parameters and solve for the unknown parameters. The set of equations to solve is often referred to

as the orthonormal equations. The solution to these equations yields the least squares estimates of

the unknown parameters. In some cases these equations can be solved analytically; in other cases

numerical methods are required.

Maximum Likelihood Estimation

Maximum likelihood estimation is the most prevalent technique for estimating unknown param-

eters from a data set in the field of statistics, particularly outside of regression. The method was
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popularized by English statistician Sir Ronald Fisher. The essence of the maximum likelihood esti-

mation technique, whether applied in time series analysis or otherwise, is to select the parameters in

a hypothesized model that are the most likely ones to have resulted in the observed data values. The

maximum likelihood estimators of the unknown parameters are found by maximizing the likelihood

function, which is the joint probability density function of the data values evaluated at their observed

values. The likelihood function is a function of the unknown parameters in the model with the data

values fixed at their observed values. We begin by using maximum likelihood estimation on an

ARMA(0, 0) model in order to establish some of the issues associated with the use of the maximum

likelihood estimation technique to estimate the parameters in a time series model.

Example 8.10 Let x1, x2, . . . , xn be a realization of observations from an ARMA(0, 0)

time series model that is simply white noise:

Xt = Zt ,

where Zt ∼ WN
(
0, σ2

Z

)
. Find the maximum likelihood estimator of σ2

Z , determine

whether the maximum likelihood estimator is unbiased and consistent, and derive an

exact two-sided 100(1−α)% confidence interval for σ2
Z .

The ARMA(0, 0) time series model has just a single unknown parameter σ2
Z , the popu-

lation variance of the white noise, that needs to be estimated. The likelihood function

is the joint probability density function of the observations:

L
(
σ2

Z

)
= f (x1, x2, . . . , xn).

The x1, x2, . . . , xn arguments on L and the σ2
Z argument on f are suppressed for brevity.

We are lucky with the ARMA(0, 0) model because we can exploit the fact that the

observations in the time series are mutually independent, which means that the joint

probability density function of the observed values x1, x2, . . . , xn is the product of the

marginal probability density functions:

L
(
σ2

Z

)
= f (x1, x2, . . . , xn) = f (x1) f (x2) . . . f (xn),

where f (x) is the probability density function of a single observation in the time series,

which is just white noise. We won’t be so lucky for general ARMA(p, q) models. The

assumption of white noise is vague in the sense that we do not know the functional

form of f (x). We only know that it is a probability distribution with population mean 0

and population variance σ2
Z . In order to apply the maximum likelihood estimation tech-

nique, we must make an additional assumption about the distribution of X1, X2, . . . , Xn.

So at this point we make the additional assumption that the white noise terms are in fact

Gaussian white noise terms:

f (xi) =
1

√

2πσ2
Z

e−x2
i /(2σ2

Z) −∞ < xi < ∞,

for i = 1, 2, . . . , n, which is the probability density function of a N
(
0, σ2

Z

)
random vari-

able. The assumption of normally-distributed error terms in order to use the maximum

likelihood estimation technique is nearly universal in time series analysis. The associ-

ated likelihood function is

L
(
σ2

Z

)
=

n

∏
i=1

f (xi) =
(
2πσ2

Z

)−n/2
e−∑n

i=1 x2
i /(2σ2

Z).
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The maximum likelihood estimator of σ2
Z is the value of σ2

Z that maximizes the likeli-

hood function:

σ̂2
Z = argmax

Ω
L
(
σ2

Z

)
,

where Ω is the parameter space Ω =
{

σ2
Z |σ2

Z > 0
}

. It is often the case that the math-

ematics associated with maximizing the natural logarithm of the likelihood function is

easier than the mathematics of maximizing the likelihood function. Both functions are

maximized at the same value because the natural logarithm is a monotonic transforma-

tion. The log likelihood function is

ln L
(
σ2

Z

)
=−n

2
ln
(
2πσ2

Z

)
− 1

2σ2
Z

n

∑
i=1

x2
i .

The derivative of the log likelihood function with respect to the unknown parameter σ2
Z

is
∂ ln L

(
σ2

Z

)

∂σ2
Z

=− n

2σ2
Z

+
1

2σ4
Z

n

∑
i=1

x2
i .

Equating this derivative to zero and solving for σ2
Z gives the maximum likelihood esti-

mator

σ̂2
Z =

1

n

n

∑
i=1

x2
i .

The maximum likelihood estimator is an unbiased estimator of σ2
Z because

E
[
σ̂2

Z

]
= E

[

1

n

n

∑
i=1

X2
i

]

=
1

n
E

[
n

∑
i=1

X2
i

]

=
1

n

n

∑
i=1

E
[
X2

i

]
=

1

n

n

∑
i=1

V [Xi] =
1

n
·n ·σ2

Z = σ2
Z

based on the shortcut formula for the population variance and the fact that E[Xi] = 0.

This means that although the maximum likelihood estimator might miss the true pa-

rameter value σ2
Z on the low side or on the high side, it is pointing at the correct target

because its expected value (long-run average) is the true parameter value.

By standardizing the Xi values, we find that a function of the maximum likelihood

estimator has the chi-square distribution because it can be written as the sum of squares

of mutually independent standard normal random variables:

nσ̂2
Z

σ2
Z

=
n

∑
i=1

(
Xi −0

σZ

)2

=
n

∑
i=1

(
Xi

σZ

)2

∼ χ2(n).

The population variance of the maximum likelihood estimator is

V
[
σ̂2

Z

]
=

σ4
Z

n2
·V
[

nσ̂2
Z

σ2
Z

]

=
σ4

Z

n2
·2n =

2σ4
Z

n

because the population variance of a chi-square random variable with n degrees of free-

dom is 2n. The maximum likelihood estimator is a consistent estimator of σ2
Z because

it is unbiased and limn→∞ V
[
σ̂2

Z

]
= 0. The maximum likelihood estimator σ̂2

Z will ap-

proach the true parameter value σ2
Z in the limit as n increases. In other words, for any

positive constant ε,

lim
n→∞

P
(∣
∣σ̂2

Z −σ2
Z

∣
∣< ε

)
= 1.
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The unbiased and consistent point estimator σ̂2
Z does not convey any sense of the preci-

sion of the point estimator, however. That information is best conveyed in this setting

by a confidence interval. An appropriate pivotal quantity is

nσ̂2
Z

σ2
Z

∼ χ2(n),

which implies that

χ2
n,1−α/2 <

nσ̂2
Z

σ2
Z

< χ2
n,α/2

with probability 1−α. The second subscript on the quantile of the chi-square distribu-

tion is a right-hand tail probability. Performing the algebra required to isolate σ2
Z in the

center of the inequality results in the exact two-sided 100(1−α)% confidence interval

nσ̂2
Z

χ2
n,α/2

< σ2
Z <

nσ̂2
Z

χ2
n,1−α/2

.

Common values for α are 0.1, 0.05, and 0.01, which are known as 90%, 95%, and 99%

confidence intervals, respectively. The proper interpretation of a confidence interval

like this one is critical. An incorrect interpretation of this exact confidence interval for,

say, α = 0.05, is:

“The probability that this confidence interval contains σ2
Z is 0.95”

because once the data has been collected and the interval is calculated, it either contains

the unknown parameter σ2
Z or it does not. A probability statement like this one does not

make sense because there are no random variables after the data values are collected.

The correct interpretation of this exact confidence interval for σ2
Z with nominal coverage

0.95 is as follows.

“The confidence interval I have calculated might contain σ2
Z or it might

not. However, if (a) all of the assumptions that I have made concerning

the ARMA(0, 0) time series model with Gaussian white noise are correct,

(b) many realizations of the time series of size n are collected, and (c) the

same procedure was used for calculating a confidence interval for each of the

realizations, then 0.95 is the expected fraction of these confidence intervals

that will contain the true parameter σ2
Z .”

Obviously, one would not want to repeat this tedious explanation every time a confi-

dence interval is calculated. So statisticians shorten this by simply saying:

“I am 95% confident that my confidence interval contains the unknown pa-

rameter σ2
Z .”

The brevity and avoidance of the use of “probability” in this statement aids the proper

interpretation of the confidence interval.

Finally, we consider an application area in which the ARMA(0, 0) might be appro-

priate. The ARMA(0, 0) model has industrial applications in quality control. When

formulating a model for a continuous measurement associated with a product (such as

a ball bearing diameter or the pre-cooked weight of a quarter-pound hamburger) that
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is produced repeatedly over time, management prefers a stationary time series model

with mutually independent consecutive observations. In this particular setting, a shifted

ARMA(0, 0) is appropriate and justified. This model is used in practice to help de-

tect when the continuous measurement trends away from the mean value in a shifted

ARMA(0, 0) time series model in what is known in quality control as a control chart.

Applying the maximum likelihood estimation technique to the ARMA(0, 0) time series model

was ideal in that the point estimator for σ2
Z could be expressed in closed form and an exact two-sided

confidence interval for σ2
Z could be derived to give an indication of the precision of the point estima-

tor. There are three key take-aways from the ARMA(0, 0) example involving maximum likelihood

estimation.

• We needed to narrow the assumption of white noise error terms to Gaussian white noise error

terms in order to implement the maximum likelihood estimation technique.

• We were fortunate that the likelihood function could be factored into the product of the

marginal probability density functions because of the mutual independence of the observa-

tions. This will not be the case with the ARMA(p, q) model with p > 0 and/or q > 0.

• We were fortunate in the sense that we could establish an exact two-sided 100(1−α)% con-

fidence interval for σ2
Z based on a pivotal quantity. For ARMA(p, q) models with p > 0

and/or q > 0 we will generally have only approximate confidence intervals which are based

on asymptotic results.

We now address the third take-away concerning confidence intervals for parameters in ARMA

models that go beyond the ARMA(0, 0) model illustrated in the previous example. The mathematics

associated with deriving the exact distribution of some pivotal quantity becomes too difficult once

autocorrelation is injected into a model, so we use asymptotic results concerning the parameter esti-

mates in order to arrive at approximate confidence intervals. To frame the conversation concerning

these asymptotic results, some notation must be established. Let

β = (β1, β2, . . . , βr)
′

be a vector that denotes the r unknown parameters in a time series model. In the case of a shifted

ARMA(p, q) model, for example, the elements of β are the p+q+2 unknown parameters φ1, φ2, . . . ,

φp, θ1, θ2, . . . , θq, µ, and σ2
Z . Let x1, x2, . . . , xn denote a realization of the time series observations.

The likelihood function is

L(β) = f (x1, x2, . . . , xn)

and the associated log likelihood function is

ln L(β) = ln f (x1, x2, . . . , xn).

The jth element of the score vector is
∂ ln L(β)

∂β j

for j = 1, 2, . . . , r. Equating the elements of the score vector to zero and solving for the unknown pa-

rameters yields the maximum likelihood estimators β̂1, β̂2, . . . , β̂r. The ( j, k) element of the Fisher

information matrix I(β) is

E

[

−∂2 ln L(β)

∂β j∂βk

]
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for j = 1, 2, . . . , r and k = 1, 2, . . . , r, when the expected values exist. The Fisher information matrix

is estimated by the observed information matrix O
(
β̂
)
, whose ( j, k) element is

[

−∂2 ln L(β)

∂β j∂βk

]

β= β̂

for j = 1, 2, . . . , r and k = 1, 2, . . . , r. The inverse of the observed information matrix is the asymp-

totic variance–covariance matrix of the parameter estimates. If one is willing to ignore the off-

diagonal elements of this matrix, the square roots of the diagonal elements are estimates of the

standard errors of the point estimators. The asymptotic normality of maximum likelihood estima-

tors allows one to construct approximate confidence intervals for the unknown parameters.

We were able to obtain an exact two-sided confidence interval for σ2
Z for the ARMA(0, 0) model

in the previous example; the next example goes through the appropriate steps for the model had

we not been so lucky. We return to the analysis of the standard ARMA(0, 0) time series model

because it is the only ARMA(p, q) model with a single unknown parameter and associated tractable

mathematics.

Example 8.11 Find an asymptotically exact two-sided 100(1−α)% confidence interval

for σ2
Z for an ARMA(0, 0) model based on the asymptotic normality of the maximum

likelihood estimator σ̂2
Z . Estimate the actual coverage of this confidence interval for

n = 100, σ2
Z = 1, and α = 0.05. What is the impact of n on the actual coverage?

Although we know that there is an exact confidence interval for σ2
Z from the previous

example, we pretend that we are unaware of such an interval and try to find an asymp-

totically exact interval based on the inverse of the observed information matrix. This

is done to illustrate the mechanics of constructing the asymptotically exact confidence

interval. From Example 8.10, the maximum likelihood estimator of σ2
Z is

σ̂2
Z =

1

n

n

∑
i=1

x2
i .

Once again treating σ2
Z as a unit, the second partial derivative of the log likelihood

function with respect to σ2
Z is

∂2 ln L
(
σ2

Z

)

∂
(
σ2

Z

)2
=

n

2σ4
Z

− 1

σ6
Z

n

∑
i=1

x2
i .

The single entry in the 1× 1 Fisher information matrix is the expected value of the

negative of this partial derivative:

I
(
σ2

Z

)
= E

[

−∂2 ln L
(
σ2

Z

)

∂
(
σ2

Z

)2

]

=− n

2σ4
Z

+
1

σ6
Z

n

∑
i=1

V [Xi] =
n

2σ4
Z

.

Since σ2
Z is an unknown parameter, the Fisher information matrix cannot be determined

from the observations from a time series. The 1× 1 observed information matrix pro-

vides an estimate of the Fisher information matrix from the data values:

O
(
σ̂2

Z

)
=

[

−∂2 ln L
(
σ2

Z

)

∂
(
σ2

Z

)2

]

σ2
Z = σ̂2

Z

=− n

2σ̂4
Z

+
1

σ̂6
Z

n

∑
i=1

x2
i =

n3

2
(

∑n
i=1 x2

i

)2
.
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The inverse of this 1×1 matrix is just the reciprocal of the single entry:

O−1
(
σ̂2

Z

)
=

2
(

∑n
i=1 x2

i

)2

n3
.

For large values of n, this quantity converges to the variance of σ̂2
Z . So since

σ̂2
Z

D→ N

(

σ2
Z ,

2
(

∑n
i=1 x2

i

)2

n3

)

,

an asymptotically exact 100(1−α)% confidence interval for σ2
Z is

σ̂2
Z − zα/2

√

2
(

∑n
i=1 x2

i

)2

n3
< σ2

Z < σ̂2
Z + zα/2

√

2
(

∑n
i=1 x2

i

)2

n3
.

We know that the actual coverage of this two-sided confidence interval converges to the

exact coverage as n → ∞. But how does the confidence interval perform for finite values

of n? This can only be assessed by a Monte Carlo simulation experiment.

The Monte Carlo simulation given by the R code below simulates four million time

series of length n = 100 generated from an ARMA(0, 0) model with Gaussian white

noise having variability σ2
Z = 1 and estimates the actual coverage of the approximate

95% confidence interval by printing the fraction of the simulated confidence intervals

that contain the arbitrarily-assigned true parameter value σ2
Z = 1.

nrep = 4000000

count = 0

n = 100

alpha = 0.05

crit = qnorm(1 - alpha / 2)

for (i in 1:nrep) {

x = rnorm(n)

ssq = sum(x ^ 2)

mle = ssq / n

std = sqrt(2 * ssq ^ 2 / n ^ 3)

lo = mle - crit * std

hi = mle + crit * std

if (lo < 1 && hi > 1) count = count + 1

}

print(count / nrep)

After a call to set.seed(3) to establish the random number stream, five runs of this

simulation yield the following estimated confidence interval coverages:

0.9402 0.9399 0.9400 0.9401 0.9401.

Although the stated (or nominal) coverage for this confidence interval is 0.95, the Monte

Carlo simulation reveals that the actual coverage is 0.940.

The final question concerns the impact of n on the actual coverage. The Monte Carlo

simulation experiment given above is executed for several other values of n. The actual
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coverage values are shown in Figure 8.3. These values confirm what we suspect about

an asymptotic confidence interval: the actual coverage asymptotically approaches the

stated coverage (indicated by the dashed horizontal line in Figure 8.3). This behavior is

typical of asymptotic confidence intervals.

8 16 32 64 128 256
0.85

0.90

0.95

n

actual

coverage

Figure 8.3: Asymptotic 95% confidence interval actual coverage for n = 8, 16, 32, . . . , 256.

This ends the discussion of the important topic of parameter estimation. The time series model

that emerges from this step is known as a fitted tentative model. Three techniques for parameter

estimation have been introduced: the method of moments, least squares, and maximum likelihood

estimation. In time series analysis, exact confidence intervals for the unknown parameters are typi-

cally mathematically intractable, so we must settle for asymptotically exact confidence intervals.

The next section introduces another important statistical topic that arises frequently in time series

analysis: the prediction of future values in a time series based on a realization of n observations of a

time series, which is typically known as forecasting.

8.2.2 Forecasting

The purpose of forecasting is to predict one or more future values of a time series based on observed

values of a time series x1, x2, . . . , xn. Forecasting future values of a time series often plays a critical

role in policy decisions. The closing price of the Dow Jones Industrial Average tomorrow, the

number of oysters in the Chesapeake Bay next year, the high temperature in Tuscaloosa on Saturday,

and a company’s profit next quarter are examples of applications of forecasting.

The term “forecasting” is synonymous with “prediction” and the two terms will be used inter-

changeably. Forecasting is a slightly more popular term in the time series literature. Both terms can

be interpreted as “telling before.”

Forecasting involves extrapolation of the time series model outside of the time frame associated

with the observed values x1, x2, . . . , xn, typically into the future. The notion of backcasting, which

is predicting values in the past, will not be considered here. Care must be taken to ensure that

the fitted probability model still applies in the time range in which the extrapolation occurs. If

future observations are governed by the same probability model as previous observations, then a

forecasted value is meaningful. Furthermore, if an ARMA(p, q) model is used, it is subject to errors

in identification (for example, the wrong values of p and q or perhaps an ARMA model is used
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when a non-ARMA model is appropriate) and estimation (for example, due to random sampling

variability or choosing an inferior parameter estimation procedure).

There are several choices for forecasting notation. We assume that the values of a time series

{Xt} are given by the observed values x1, x2, . . . , xn. We would like to predict the value of the time

series h (for “horizon”) time units into the future, given that we know the values of x1, x2, . . . , xn

and our forecast is being made at time n. The notation that we will use for this future value of the

time series will be the random variable Xn+h. Its associated predicted value will be denoted by X̂ n+h.

This predicted value is defined as the conditional expected value of the future value given the values

of the n observed values:

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We will use the alternative notation X̂ n(h) for the forecast whenever there might be some ambiguity

associated with the origin of the forecast. The default assumption for forecasting in this book is

that we are making a forecast based on n observed values, and the forecast is being made at time

origin n for h time units into the future. The forecasted value at time n+ h can be thought of as

the average of all future possibilities given the history up to time n. But why use the conditional

expectation? Might a quantile of the probability distribution of Xn+h, for example, the population

median, provide a better forecast? The rationale behind using the conditional expectation is that it

minimizes the mean square error of the predicted value, which is defined as

E
[(

Xn+h − X̂ n+h

)2
]

,

among all linear functions of the observed values x1, x2, . . . , xn. For this reason, the forecasted value

given by the conditional expectation is often known as the best linear predictor of Xn+h in the sense

of minimizing the mean square error of the predicted value.

Figure 8.4 illustrates the case of a (tiny) time series of just n = 4 observations: x1, x2, x3, x4.

(Recall that n = 60 or n = 70 is the minimum value of n in practice. This example with a tiny value

of n is for illustrative purposes only.) The observed values of the time series are indicated by points

which are connected by lines. Each of the three forecasted values, X̂ 5, X̂ 6, X̂ 7, is indicated by a ◦.

1 2 3 4 5 6 7

t

xt

x1

x2

x3

x4

X̂ 5

X̂ 6
X̂ 7

Figure 8.4: Forecasting three future values from n = 4 observations.
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The three forecasts, associated with h = 1, h = 2, and h = 3, are made at time t = n = 4. In addition,

there are three probability density functions, each rotated clockwise 90◦, which indicate the prob-

ability distributions of the random future observations X5, X6, X7. There are three key observations

associated with this figure.

• The time series values x1, x2, x3, x4 increase over time, and the associated forecasted values

X̂ 5, X̂ 6, X̂ 7 continue this trend.

• The population variance of the probability distributions of X5, X6, X7 increases as the forecast-

ing time horizon increases. This is consistent with weather prediction, for example, in that the

weather prediction three days from now is less precise than the weather prediction tomorrow.

• The random sampling variability that is apparent in the four observed values x1, x2, x3, x4 is

not apparent in the forecasted values X̂ 5, X̂ 6, X̂ 7. Observed time series values typically exhibit

random sampling variability; forecasted values tend to be smooth.

Our goal in this subsection is to discuss forecasting generally and to introduce techniques for

determining point estimates and interval estimates for future values in a time series. The example

that follows assumes that a valid ARMA model has been specified and the parameters in a time series

model are known, rather than estimated from a realization of the time series. For a long realization

(large n) or significant amounts of previous history associated with a particular time series, this

assumption might not pose any problem. In order to derive a prediction interval for Xn+h, the white

noise terms are assumed to be Gaussian white noise for mathematical tractability. The reason for

this assumption will be apparent in the following example.

Example 8.12 Consider the shifted stationary AR(1) time series model

Xt −µ = φ(Xt−1 −µ)+Zt ,

where {Zt} is Gaussian white noise and −1 < φ < 1, µ, and σ2
Z > 0 are fixed, known

parameters. Let x1, x2, . . . , xn be one realization of the time series.

(a) Find a point estimate and an exact two-sided 100(1−α)% prediction interval for

Xn+1.

(b) Find a point estimate and an exact two-sided 100(1−α)% prediction interval for

Xn+2.

Notice that φ is a constant here and should not be confused with the polynomial φ(B).
This is an unusual case because the three parameters φ, µ, and σ2

Z are known. In addi-

tion, it is assumed that the AR(1) model is a perfect stochastic model to govern the time

series. Neither of these assumptions are typically satisfied perfectly in practice.

(a) Writing the AR(1) time series model with Xn+1 on the left-hand side:

Xn+1 −µ = φ(xn −µ)+Zn+1

or

Xn+1 = µ+φ(xn −µ)+Zn+1.

Notice that Xn+1 and Zn+1 are random future values which are set in uppercase,

but xn has already been observed, so it is set in lowercase. Taking the conditional

expected value of both sides of this equation yields the one-step-ahead forecast

E [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn] = µ+φ(xn −µ)
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because the expected value of a constant is a constant and the future Gaussian

white noise term has conditional expected value 0. Taking the conditional popu-

lation variance of both sides of the equation yields

V [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn] = σ2
Z

because µ, φ, and xn are all constants and the population variance is unaffected by

a shift. So the point estimate of Xn+1 is

X̂ n+1 = µ+φ(xn −µ) .

Since Xn+1 is a constant, µ+ φ(xn −µ), plus a normal random variable, Zn+1, it

too is normally distributed with conditional mean X̂ n+1 and conditional population

variance σ2
Z . So an exact two-sided 100(1−α)% prediction interval for Xn+1 is

X̂ n+1 − zα/2σZ < Xn+1 < X̂ n+1 + zα/2σZ ,

where zα/2 is the 1−α/2 quantile of the standard normal distribution.

(b) Writing the AR(1) time series model with Xn+2 on the left-hand side:

Xn+2 −µ = φ(Xn+1 −µ)+Zn+2

or

Xn+2 = µ+φ(Xn+1 −µ)+Zn+2.

All of the X and Z variables are random future values, so they are set in uppercase.

Taking the conditional expected value of both sides of this equation yields the two-

step-ahead forecast

E [Xn+2 |X1 = x1, X2 = x2, . . . , Xn = xn]

= µ+φ
(
E [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn]−µ

)

= µ+φ
(
φ(xn −µ)

)

= µ+φ2(xn −µ)

because the conditional expected value of Zn+2 is zero. Taking the conditional
population variance of both sides of the equation yields

V [Xn+2 |X1 = x1, X2 = x2, . . . , Xn = xn]

= φ2V [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn]+V [Zn+2 |X1 = x1, X2 = x2, . . . , Xn = xn]

=
(
φ2 +1

)
σ2

Z .

So the point estimate of Xn+2 is

X̂ n+2 = µ+φ2 (xn −µ) .

Since Xn+2 is written as a constant, µ, plus the linear combination of two normally

distributed random variables, φ(Xn+1 −µ) and Zn+2, which is itself normally dis-

tributed, an exact two-sided 100(1−α)% prediction interval for Xn+2 is

X̂ n+2 − zα/2

√

φ2 +1 σZ < Xn+2 < X̂ n+2 + zα/2

√

φ2 +1 σZ .
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Notice that for φ 6= 0, the prediction interval for Xn+2 is wider than the prediction

interval for Xn+1 for the same time series values and the same α value. This is

consistent with intuition because we are less certain as we forecast further out

into the future. This is the typical case in practice. On the other hand, the two

prediction intervals have identical width when φ= 0 because the AR(1) time series

model reduces to Gaussian white noise in this case, and each future observation

will have the same precision because of the mutual independence of the Xt values

in this case.

This case was ideal in the sense that all three of the parameters, φ, µ, and σ2
Z , are

fixed and known. When these parameters are replaced by their point estimates, φ̂,

µ̂ , and σ̂2
Z , the prediction intervals become approximate rather than exact.

The previous example has illustrated the process for determining forecasted values and associ-

ated prediction intervals for an AR(1) time series model with known parameters. Consider general-

izing this process for the h-step-ahead forecast. In order to obtain a point estimate for the forecast,

take the conditional expected value of both sides of the model with Xn+h isolated on the left-hand

side, which effectively results in: (a) present and past values of Xt are replaced by their observed

values; (b) future values of Zt are replaced by their conditional expected values, which are zero; and

(c) future values of Xt are replaced by their conditional expected values. After simplification, this

results in the forecast value X̂ n+h.

As is typically the case in statistics, a point estimate is usually accompanied by an interval

estimate which gives an indication of the precision of the point estimate. In a time series setting, a

prediction interval for Xn+h has the generic form

X̂ n+h ± zα/2

√

V [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn].

This formula assumes that the random future value at time n+ h, denoted by Xn+h, is normally

distributed. This is usually achieved by assuming that the white noise terms consist of Gaussian

white noise. Unlike confidence intervals, prediction intervals typically do not have widths that

shrink to zero as the sample size n increases.

This ends the important topic of forecasting. Many more examples of forecasting will appear in

subsequent sections in this chapter when special cases of ARMA(p, q) models are introduced. We

now turn to another important statistical topic, which is model assessment.

8.2.3 Model Assessment

It is often the case that we have little or no information concerning the underlying physical mech-

anism governing a time series, so we must resort to an entirely data-driven approach to developing

a time series model that adequately approximates the underlying probability mechanism. The usual

approach to building a times series model consists of iterating through the following steps until a

suitable model is formulated. The model building process is—by design—both iterative and inter-

active, making R an ideal platform for carrying out the process.

1. Identify a tentative time series model.

2. Estimate the unknown parameters of the tentative time series model.

3. Assess the adequacy of the fitted time series model.
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The third step is considered in this section. As an instance of this approach, let’s say we decide

(based on inspecting plots of the time series, the sample autocorrelation function, and the sample

partial autocorrelation function) that a shifted AR(2) time series model is a strong candidate for

modeling a particular time series. After the parameters µ, φ1, φ2, and σ2
Z are estimated, we hope

that the fitted model adequately models the underlying probability mechanism for the time series.

If this is the case, then the signal associated with the time series has been captured, and all that

should remain is noise. So how do we test whether or not the fitted model provides an adequate

representation of the time series? One common approach taken in time series modeling is to assess

whether the random shocks {Zt} are mutually independent and identically distributed random vari-

ables with population mean zero and common population variance σ2
Z . But these Zt values are not

observed by the modeler, so instead we inspect the residuals, which are estimates of the Zt values. In

time series analysis, this important step is known as diagnostic checking or residual analysis. (This

step is analogous to the similar step in regression analysis.) This process is the rough equivalent of

goodness-of-fit testing from classical statistical theory. A residual value is defined as

[residual] = [observed value]− [predicted value] .

The predicted value is the one-step-ahead forecast from the time t −1. Using the notation from the

forecasting section, the residual at time t can be written as

Ẑ t = Xt − X̂ t .

This is one instance in which a more precise notation for a forecasted value would be helpful; this

is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

The hat is added to Zt in order to indicate that the parameters in the fitted model have been estimated

from the observed time series. Only in a simulated time series with known parameters do we observe

Zt . The residuals are ordered in time, so they can be viewed as a time series in their own right.

If the hypothesized and fitted model are adequate, then the time series plot of the residuals will

approximate a time series of white noise. The question here is how closely the residuals resemble

white noise terms.

The behavior of the residuals is an indicator of whether the time series has been adequately mod-

eled. If the model has been specified correctly and the parameter estimates are near their associated

population values, then the residuals should appear to be white noise values, with common popula-

tion mean zero and common population standard deviation. If this is not the case, then the search

for an adequate time series model should continue.

A plot of the residuals over time is a crucial initial step in assessing whether they resemble white

noise terms. Carefully examine the plot for any signs of trend, seasonality, or serial correlation. An

example of a plot of Gaussian white noise was given in Figure 7.3. This step is just as important in

residual analysis as was the inspection of the plot of the original time series. In addition, a plot of the

sample autocorrelation function and the sample partial autocorrelation function of the residuals can

be helpful in assessing whether the residuals closely approximate white noise. But rather than just a

subjective visual inspection, we also want to confirm our intuition with a formal statistical test. The

next four paragraphs briefly survey four statistical tests to assess the following null and alternative

hypotheses:

H0 : the residuals are mutually independent and identically distributed random variables

versus

H1 : the residuals are not mutually independent and identically distributed random variables.
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If there is no apparent visual trend, seasonality, or serial correlation in the residuals, then any one

of the four hypothesis tests that follow can be conducted to confirm that the residuals do not exhibit

any of these characteristics.

Count the number of significant spikes in the sample autocorrelation function. This test

begins with a plot of the sample autocorrelation function of the residuals. If the residuals are well

approximated by white noise terms, then the time series model can be judged to be adequate. The

sample autocorrelation function values for white noise terms are approximately mutually indepen-

dent and identically distributed N (0, 1/n) random variables. So if the residuals closely approxi-

mate white noise, then any sample autocorrelation function value will fall between −1.96/
√

n and

1.96/
√

n with approximate probability 0.95. We would like to conduct a hypothesis test in which

the null hypothesis is that the sample autocorrelation function values of the residuals are indepen-

dent N (0, 1/n) random variables. A large number of sample autocorrelation values falling outside

of the limits (which serves as the test statistic here) will result in rejecting the null hypothesis. So if

each sample autocorrelation function value can be thought of as a toss of a biased coin in the case

of the residuals being approximately white noise, then for, say, the first m = 40 such values, we

expect 40 ·0.05 = 2 to fall outside of the limits ±1.96/
√

n. (Of course, the lag 0 sample autocorre-

lation r0 = 1 is not included in the count.) In order to achieve an approximate level of significance

α = 0.05, if four or fewer of the 40 sample autocorrelation function values associated with the resid-

uals fall outside of ±1.96/
√

n, we fail to reject H0. The time series model is deemed to be adequate.

But if five or more of the 40 sample autocorrelation function values associated with the residuals

fall outside of ±1.96/
√

n, this is evidence against the hypothesized model and we reject H0. The

time series model is deemed to be inadequate. The p-value associated with four or fewer of the

40 sample autocorrelation function values associated with the residuals falling outside of the limits

±1.96/
√

40 can be calculated with the R statement

1 - pbinom(4, 40, 0.05)

This statement returns

[1] 0.04802826

So the exact level of significance for this test is α = 0.048, which is quite close to the desired level

of significance of 0.05. Rather than using trial and error with the pbinom function to determine the

number of lags to use as the critical value, the qbinom function can be used to determine the cutoff.

qbinom(0.95, 40, 0.05)

This statement returns

[1] 4

A similar analysis can be applied to lag counts other than the m= 40 sample autocorrelation function

values illustrated above. This analysis assumes that the sample autocorrelation function values of

the residuals are independent and identically distributed normal random variables. One weakness of

this approach is that it simply counts the number of sample autocorrelation function values falling

outside the 95% confidence interval limits and ignores (a) how far outside of the limits the values

fall or (b) how close to the limits they fall when they lie within the limits. This weakness prompts

us to seek a statistical test that captures all of the sample autocorrelation function values associated

with the residuals and includes their magnitudes.

Box–Pierce test. Let rk be the lag k sample autocorrelation function value associated with the

residuals of the fitted time series. As before, we only consider the first m such sample autocorrelation
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function values r1, r2, . . . , rm. It is approximately true that for mutually independent and identically

distributed residuals,

rk ∼ N(0, 1/n).

By the transformation technique, this implies that

√
nrk ∼ N(0, 1).

Squaring this random variable gives

nr2
k ∼ χ2(1).

Assuming that the sample autocorrelation function values are uncorrelated, the sum of the first m of

these random variables is

n
m

∑
k=1

r2
k ∼ χ2(m).

In the case in which r unknown model parameters have been estimated, the degrees of freedom are

reduced by r:

n
m

∑
k=1

r2
k ∼ χ2(m− r).

This is the test statistic for the Box–Pierce test for serial correlation. Large values of this test statistic

lead to rejecting H0 and indicate a poor fit. The null hypothesis is rejected at level of significance α
when this test statistic is greater than χ2

m−r,α, where the first subscript is the number of degrees of

freedom and the second subscript is the right-hand tail probability associated with this quantile of the

chi-square distribution. There have been several approximations that occurred in formulating this

statistical test. First, the rk values are only approximately normally distributed. Second, the rk values

have variances which are less than 1/n for small lag values k. To compound this approximation,

these smaller initial variances are dependent on the model under consideration. Third, the rk values

exhibit some serial correlation even when the residuals are mutually independent and identically

distributed. These three weaknesses prompted a modification of the Box–Pierce test which provides

a test statistic whose distribution more closely approximates the χ2(m− r) distribution.

Ljung–Box test. The Box–Pierce test statistic was modified by Ljung and Box as

n(n+2)
m

∑
k=1

r2
k

n− k
,

which is approximately χ2(m− r), where r is the number of parameters estimated in the model.

Comparing the Box–Pierce and Ljung–Box test statistics, since

n+2

n− k
> 1

for k = 1, 2, . . . , m, the Ljung–Box test statistic always exceeds the Box–Pierce test statistic. The

Box–Pierce test is more likely to accept a time series model with a poor fit than the Ljung–Box test

for the same set of residuals. The Ljung–Box test should be used over the Box–Pierce because the

probability distribution of its test statistic is closer to a χ2(m− r) random variable under H0.

Turning point test. As opposed to focusing on the sample autocorrelation function associated

with the residuals, the turning point test considers the number of turning points in the time series of

residuals. A turning point in a time series is defined to be a value associated with a local minimum

or a local maximum. A local minimum occurs when Ẑ t−1 > Ẑ t and Ẑ t < Ẑ t+1. A local maximum
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occurs when Ẑ t−1 < Ẑ t and Ẑ t > Ẑ t+1. The random number of turning points in a time series

of length n comprised of strictly continuous observations is denoted by T . The strictly continuous

assumption is in place to avoid ties in adjacent values. A turning point cannot occur at the first or last

value of the time series. Keep in mind that there might be fewer residuals than original observations.

The n that is used here is the number of residuals. As given in an exercise at the end of this chapter,

if the residuals are mutually independent and identically distributed continuous random variables,

then

E[T ] =
2(n−2)

3
and V [T ] =

16n−29

90
.

Furthermore, even though T is a discrete random variable, it is well approximated by the normal

distribution with population mean E[T ] and population variance V [T ] for a time series of mutually

independent and identically distributed observations and large n. Thus, an appropriate test statistic

for testing H0 is
T −2(n−2)/3
√

(16n−29)/90
,

which is approximately standard normal for large values of n. The null hypothesis is rejected in

favor of the alternative hypothesis whenever the test statistic is less than −zα/2 (which indicates

fewer turning points than expected, which is an indicator of positive serial correlation among the

residuals) or the test statistic is greater than zα/2 (which indicates more turning points than expected,

which is an indicator of negative serial correlation among the residuals).

This completes the brief introduction to four statistical tests concerning the mutual independence

of the residuals. There are several other such tests, some of which are introduced in the exercises at

the end of the chapter, but these four are representative of how such tests work. Three questions are

given below concerning issues associated with the analysis of the residuals.

1. What if two time series models are deemed adequate by these statistical tests?

Instances frequently arise in which two or more candidate time series models fail to be rejected

by the statistical tests on residuals that were just surveyed. In these cases, the modeler has

four guiding principles. First, there might be physical considerations that might favor one

model over another. An engineer, for example, might provide some engineering design insight

concerning why one time series model would be favored over another. Second, the model with

the best value of one of the model-selection statistics outlined in the next section, might be

the appropriate choice. Third, if the modeler is torn between two time series models, selecting

the model with the fewer parameters follows the parsimony principle. We would like a time

series model that adequately captures the probabilistic aspects of the time series with the

minimum number of parameters. Fourth, the purpose of the model, for example, description,

explanation, prediction, or simulation, might drive the final choice of the model.

2. If a time series model is deemed inadequate, can the analysis of the residuals guide the modeler

toward a more suitable model?

In some cases, the analysis of the residuals can indeed guide the modeler toward a more

suitable time series model. Here is one instance. Let’s say that a shifted AR(1) model is being

considered as a potential time series model:

Xt −µ = φ(Xt−1 −µ)+Zt .

Isolating the white noise term, this model can be written as

Xt −µ−φ(Xt−1 −µ) = Zt .
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The parameters µ, φ, and σ2
Z are estimated from the observed time series, and the associated

residuals are calculated and plotted. Rather than appearing as white noise, let’s say that the

residuals appear to look like observations from an MA(1) time series model

Zt =Wt +θWt−1,

where {Wt} is a time series of white noise. Combining the two previous equations, this would

lead us in the direction of considering the model

Xt −µ−φ(Xt−1 −µ) =Wt +θWt−1,

which can be recognized as a shifted ARMA(1, 1) time series model. Thus, the ARMA(1, 1)

composite model has been constructed from the two simpler models. We would then revisit

parameter estimation procedures for the parameters µ, φ, θ, and σ2
Z , and perform model ade-

quacy tests on the associated residual values on the fitted ARMA(1, 1) model.

3. If a time series model is deemed adequate, should the noise terms be modeled as white noise

or Gaussian white noise?

The four statistical tests for autocorrelation do not assess the normality of the residuals. Draw-

ing a histogram of the residuals is an important first step in terms of determining whether the

residuals are normally distributed. If the histogram appears to be bell-shaped, then the Gaus-

sian white noise aspect of the model is justified. Some time series analysts prefer to view

a histogram of the standardized residuals, and the vast majority of these values should lie

between −3 and 3. A QQ (quantile–quantile) plot is also useful for visually assessing nor-

mality, which can be graphed with the R function qqnorm. A QQ plot which is linear is an

indication of normality. The behavior at the extremes of a QQ plot is typically more variable

than at the center, so some analysts prefer to focus on the behavior between, say, the first and

third quartiles. Assessing the normality of a histogram or the linearity of a QQ plot is sub-

jective. Objective statistical tests for the normality of the residuals include the Shapiro–Wilk,

Anderson–Darling, Cramer–von Mises, and Kolmogorov–Smirnov tests.

Analyzing the residuals is not the only way to assess the adequacy of a time series model. An-

other technique is known as overfitting. ARMA models with a single additional term are fitted to

the original time series. This approach is analogous to forward selection in the stepwise approach

to multiple regression. We will refer to the time series model under consideration as the tentative

model and the overfitted models as enhanced models. For example, if an MA(1) model is being

contemplated as a tentative time series model, then

• adding an additional moving average term yields the enhanced MA(2) model, and

• adding an autoregressive term yields the enhanced ARMA(1, 1) model.

The parameters for these two enhanced models should be fit to the original time series in the usual

fashion. If both of the following two criteria are met, then the tentative time series model should be

accepted as the final model.

• The parameter estimates in the enhanced models are close to the parameter estimates in the

tentative model.

• The additional parameter in the enhanced models does not differ significantly from zero.
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So in the example given above, the parameters in the tentative MA(1) model, θ1 and σ2
Z , should

be estimated from the original time series. Then the parameters in the enhanced MA(2) model,

θ1, θ2, and σ2
Z , should be estimated from the original time series. If a confidence interval for θ2

contains zero (or you fail to reject the null hypothesis H0 : θ2 = 0 versus the alternative hypothesis

H1 : θ2 6= 0), and the other parameter estimates do not vary significantly between the two models,

then the modeler concludes that the extra parameter in the MA(2) model is not necessary. The

same type of thinking applies to the enhanced ARMA(1, 1) model. So in addition to a careful

examination of the residuals, it is also helpful to overfit the model in the autoregressive and moving

average directions to assess whether the additional term significantly improves the fit.

The model assessment techniques described in this subsection will be applied to actual time

series later in this chapter.

8.2.4 Model Selection

Model-selection statistics are helpful when there are two or more tentative fitted ARMA(p, q) mod-

els for a time series which have been deemed adequate by the model assessment techniques outlined

in the previous subsection. One naive approach to model selection is to just add additional terms to

an ARMA(p, q) model and check the resulting sum of the squared residuals. This approach violates

the parsimony principle because it is typically the case that adding parameters to a model results in

a lower sum of squared residuals. Just blindly adding terms to minimize the sum of squares is likely

to produce time series models with superfluous terms that contain no real explanatory value, which

can potentially cause problems in the application of the model.

We seek some statistical measure that strikes a balance between simplicity and capturing the

essence of the probabilistic mechanism governing the time series model. Some statistical measure

which reflects the benefit of an additional parameter, but extracts a penalty for adding parameters

would be helpful to strike this balance.

In the case in which the analyst is presented with multiple plausible tentative fitted models, a

model-selection statistic such as Akaike’s Information Criterion might prove helpful in determining

the best model. This statistic strikes a harmony between a simple model (which might not capture

certain probabilistic aspects of the mechanism governing the time series) and a more complex model

(which might contain unnecessary terms). This is the notion of a parsimonious model which uses as

few parameters as possible to achieve adequate explanatory power. Akaike’s Information Criterion

(AIC), named after Japanese statistician Hirotugu Akaike (1927–2009), extracts a penalty for each

additional parameter that is added to the model. The AIC is

AIC =−2ln
(
L(·)

)
+2r,

where r is the number of unknown parameters that are estimated and L is the likelihood function

evaluated at the maximum likelihood estimators for the r unknown parameters. Since L(·) is maxi-

mized at the maximum likelihood estimators, the first part of the AIC statistic, namely −2ln
(
L(·)

)
,

is minimized at the maximum likelihood estimator values because of the negative sign. The 2r term

can be thought of as a penalty term for adding additional parameters to the model. Each additional

parameter added to the model will probably decrease the first term in the AIC involving the log

likelihood function, but will also increase the penalty term because r has been increased. The model

with the lowest value of AIC is deemed by this model-selection statistic to be the most appropriate

parsimonious time series model.

There are two variants of the AIC that provide improved ability to correctly identify a time series

model.
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• The AIC estimates the expected value of the Kullback–Leibler divergence of the estimated

model from the true model, and there is a slight bias in the AIC which is significant for small

values of n. The corrected Akaike Information Criterion, usually denoted by AICC, replaces

the 2r penalty term with 2rn/(n− r−1), resulting in

AICC =−2ln
(
L(·)

)
+

2rn

n− r−1
.

Since n/(n− r−1)> 1, the AICC always exceeds the AIC for the same time series, meaning

that the penalty for adding parameters is increased. The AICC will be more stingy than the

AIC when it comes to adding parameters. The AICC model-selection statistic compensates

for the AIC’s tendency to overfit models.

• Another variant to the AIC is the Bayesian Information Criterion (BIC) which replaces the

penalty term 2r with r ln n, resulting in

BIC =−2ln
(
L(·)

)
+ r ln n.

As shown in Figure 8.5 for a time series of length n = 50 and r = 0, 1, 2, . . . , 5 unknown

parameters, the BIC places an even higher penalty on additional terms in the time series model

than the AIC and the AICC, which will result, on average, with time series models with fewer

terms. Since the use of maximum likelihood estimation is required for calculating AIC, AICC,

and BIC because all three are a function of the likelihood function L, the white noise terms

are assumed to be normally distributed (that is, Gaussian white noise). A visual check of

this assumption can be made by looking at a histogram of the residuals or a QQ plot of the

residuals.

The time series analyst should consult with people who are familiar with the time series in order

to glean whether there might be some aspects of the data set that might suggest one particular model

or another. The analyst should also not necessarily assume that one of the models suggested in this
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Figure 8.5: Penalty terms for model-selection statistics AIC, AICC, and BIC.
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chapter might be appropriate for every setting. There are seldom uniquely correct values for p and

q but rather these model-selection statistics are helpful in comparing two fitted tentative models.

In principle, the general linear model and its associated statistical methods are all that is neces-

sary to fit and assess an ARMA(p, q) model. Since each specific ARMA(p, q) model has its own

idiosyncrasies, the first few special cases of the autoregressive and moving average models will be

examined in the next chapter.

8.3 Exercises

8.1 Show that the general linear model

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · ·

can be written in the form

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · .

8.2 For the ARMA time series model

Xt = 4Xt−1 −3Xt−2 −2Xt−3 +Zt −5Zt−1 +6Zt−2.

(a) identify the time series model, and

(b) write the time series model in terms of the backshift operator B.

8.3 For the ARMA time series model

φ(B)Xt = θ(B)Zt ,

where φ(B) = 1 and θ(B) = 1−0.6B+0.1B2,

(a) identify the time series model, and

(b) write the time series model in purely algebraic form.

8.4 For the ARMA time series model

Xt = 2Xt−1 −Xt−2 +Zt −Zt−2,

(a) identify the time series model, and

(b) write the time series model using the backshift operator.

8.5 Consider the special case of the general linear model

Xt =
1

2
Xt−1 +Zt −

1

3
Zt−1.

(a) Write this model in its causal representation.

(b) Write this model in its invertible representation.

8.6 Show that E [Xt ] = µ for the stationary shifted ARMA(p, q) model

Xt −µ= φ1 (Xt−1 −µ)+φ2 (Xt−2 −µ)+ · · ·+φp (Xt−p −µ)+Zt +θ1Zt−1+θ2Zt−2+ · · ·+θqZt−q.
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8.7 Find E[Xt ] for the shifted ARMA(2, 1) model

Xt = 7+0.4Xt−1 −0.1Xt−2 +Zt +0.3Zt−1.

8.8 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise. The maximum likelihood estimator of the population variance of the Gaussian

white noise derived in Example 8.10 is

σ̂2
Z =

1

n

n

∑
i=1

X2
i .

An asymptotically exact confidence interval for σ2
Z derived in Example 8.11 is

σ̂2
Z − zα/2

√

2
(

∑n
i=1 X2

i

)2

n3
< σ2

Z < σ̂2
Z + zα/2

√

2
(

∑n
i=1 X2

i

)2

n3
.

Calculate and plot the actual coverage of a 95% confidence interval for σ2
Z as a function of n

for n = 8, 9, . . . , 256. Use analytic methods rather than Monte Carlo simulation.

8.9 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise. Find the probability density function of the maximum likelihood estimator of

the population variance of the Gaussian white noise

σ̂2
Z =

1

n

n

∑
i=1

X2
i .

8.10 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise. As shown in Example 8.10, the maximum likelihood estimator of the population

variance of the Gaussian white noise is

σ̂2
Z =

1

n

n

∑
i=1

X2
i

and a pivotal quantity for developing an exact two-sided 100(1−α)% confidence interval

for σ2
Z is

nσ̂2
Z

σ2
Z

∼ χ2(n).

Find an exact two-sided 100(1−α)% confidence interval for σ2
Z .

8.11 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise having finite positive population variance σ2
Z . The maximum likelihood estima-

tor of the population variance of the Gaussian white noise is

σ̂2
Z =

1

n

n

∑
i=1

X2
i .

Conduct a Monte Carlo simulation experiment that provides convincing numerical evidence

that
nσ̂2

Z

χ2
n,α/2

< σ2
Z <

nσ̂2
Z

χ2
n,1−α/2

is an exact 100(1−α)% confidence interval for σ2
Z for one particular set of n, α, and σ2

Z of

your choice.



490 Chapter 8. Time Series Modeling

8.12 Let X1 and X2 be jointly distributed random variables. The population mean and variance of

X1 are µX1
and σ2

X1
. The population mean and variance of X2 are µX2

and σ2
X2

. The population

correlation between X1 and X2 is ρ = Corr(X1, X2). The value of X2 is to be predicted as a

linear function of X1 with mX1 + b. Find the values of m and b which minimize the mean

square error of the prediction. In other words, find m and b which minimize

E
[

(X2 −mX1 −b)2
]

.

8.13 Consider an ARMA(0, 0) model with U(−1, 1) white noise terms. Find an exact two-sided

95% prediction interval for Xn+h.

8.14 Suppose an ARMA(2, 1) time series model is a strong candidate for modeling a particular

time series. A long time series is available for analysis, so n is large. The ARMA(2, 1)

model is fitted and residuals are calculated. If the sample autocorrelation function associated

with the residuals is calculated for the first 100 lags, how many values need to fall outside

of ±1.96/
√

n in order to reject the null hypothesis H0, which corresponds to a good fit at a

significance level that is less than α = 0.05?

8.15 Compare the expected p-values for the Box–Pierce and Ljung–Box tests for serial indepen-

dence of a time series consisting of n = 100 mutually independent and identically distributed

standard normal random variables. Consider only the first k = 40 lag values.

8.16 Let Ẑ1, Ẑ2, . . . , Ẑn be residual values associated with a fitted time series model. The Durbin–

Watson test statistic defined by

D =
n

∑
t=2

(
Ẑ t − Ẑt−1

)2
/ n

∑
t=1

Ẑ2
t

is useful for testing the serial independence of the residuals.

(a) Conduct a Monte Carlo simulation experiment to estimate the expected value of D

when Ẑ1, Ẑ2, . . . , Ẑ1000 are n = 1000 mutually independent and identically distributed

standard normal random variables.

(b) Give an explanation for the result that you obtained in part (a).

8.17 The turning point test for serial dependence counts the number of turning points (the number

of local minima and maxima) T in a time series of length n comprised of strictly continuous

observations. A turning point cannot occur at the first or last value of the time series.

(a) Show that E[T ] = 2(n− 2)/3 when the observations in the time series are mutually

independent and identically distributed.

(b) Show that V [T ] = (16n−29)/90 when the observations in the time series are mutually

independent and identically distributed.

(c) Perform a Monte Carlo simulation that supports the values of E[T ] and V [T ] for a time

series of length n = 101.

(d) Argue why T is approximately normally distributed with population mean E[T ] and

population variance V [T ] for a time series of mutually independent and identically

distributed observations and large n. Suggest an appropriate test statistic for testing the

null hypothesis that there is no serial correlation in the time series.
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8.18 Let X1, X2, X3, X4 be a time series of mutually independent and identically distributed con-

tinuous random variables. Let T be the number of turning points. Find the probability mass

function of T .

8.19 The nonparametric difference–sign test for serial dependence counts the number of values

in a time series of strictly continuous observations X1, X2, . . . , Xn in which Xi > Xi−1, for

i = 2, 3, . . . , n. Denote this count by T .

(a) Show that E[T ] = (n − 1)/2 when the observations in the time series are mutually

independent and identically distributed.

(b) Show that V [T ] = (n+ 1)/12 when the observations in the time series are mutually

independent and identically distributed.

(c) Perform a Monte Carlo simulation that supports the values of E[T ] and V [T ] for a time

series of length n = 101.

(d) Argue why T is approximately normally distributed with population mean E[T ] and

population variance V [T ] for a time series of mutually independent and identically

distributed observations and large n. Suggest an appropriate test statistic for testing the

null hypothesis that there is no serial correlation in the time series.

8.20 Suppose an AR(1) model is being considered as a tentative time series model based on a

realization of the time series. A single autoregressive parameter and a single moving average

parameter is added to the tentative model, resulting in an ARMA(2, 1) enhanced model.

Describe any problems that might arise by comparing the AR(1) time series model and the

ARMA(2, 1) time series model.


