
Chapter 7

Time Series Basics

This chapter defines a time series, describes where a time series falls with respect to other stochastic

processes, introduces some basic properties of time series, and introduces some basic operations that

can be applied to a time series. The presentation given here does not replace a full-semester class

on time series analysis, but does provide an elementary introduction to the topic. Each section ends

with a brief review of the computational tools available in R for time series analysis.

7.1 The Big Picture

A time series is a sequence of observed data values that are collected over time. The analysis of

a time series is an important sub-discipline of statistics and data science that has applications in a

variety of areas, including economics, business, science, and engineering.

Classical statistical methods rely on the assumption that the data values collected constitute a

simple random sample, which implies that data values are realizations of mutually independent

and identically distributed random variables. This is nearly universally not the case in time series

analysis because nearby observations collected over time tend to be correlated. Special probability

models and associated statistical methods have been developed to account for this correlation. When

the focus is on the correlation between observations in the time series, analysis tools from the time

domain are employed. When the focus is on the periodic behavior in the time series, analysis tools

from the frequency domain are employed. We begin our exploration of time series with a subsection

containing examples.

7.1.1 What is a Time Series?

The essence of a time series is best captured in a sequence of examples. The first example is the

monthly number of kilowatt hours required for powering the utilities in my home from 2011 through

2018. The second example is the monthly number of international airline passengers between 1949

and 1960. The third example is a realization of what is known as Gaussian white noise. The fourth

example is a realization of what is known as a random walk.

Example 7.1 The monthly number of kilowatt hours to power my home in Williams-

burg, Virginia between 2011 and 2018 are given in Table 7.1. Scan the table carefully

to see if you can determine any patterns in the time series. To provide more context,

here is a little more information about the house that my family lived in between 2011

Section 7.1. The Big Picture 367

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2011 2731 1822 1189 1229 1260 2204 2518 1960 1032 788 1508 2279

2012 1667 1695 1220 872 1189 1164 1851 1789 1370 962 1716 1678

2013 2254 2362 1916 1293 1253 1635 1809 1562 1348 872 1290 2619

2014 3089 2217 2072 1270 1543 1642 1892 1688 1658 984 1609 2577

2015 2712 3363 1887 1494 1260 1127 1865 1741 1430 1588 1535 1626

2016 3004 2344 1969 1431 1456 2029 2294 2036 2173 1132 1834 1713

2017 2583 1810 1728 1145 1253 1696 1936 1875 956 1010 1751 1506

2018 3698 1767 1871 1270 966 1141 1463 1452 1484 1043 1378 1499

Table 7.1: Number of kilowatt hours to power a home.

and 2018. There were no additions made to the home during these years, nor were there

any new windows or insulation installed. The two-zone heat pump system that cools

the house in the summer and heats the house in the winter did not change during these

years. The smallest value in the series occurred in October 2011, when 788 kilowatt

hours were consumed. The largest value in the series occurred in January 2018, when a

spectacular 3698 kilowatt hours were consumed. January 2018 was one of the coldest

Januarys on record in Virginia, which caused the spike in kilowatt hours consumed. The

pipes in my neighbor’s house burst on one cold night in January. Viewed in table form,

the data just looks like a mass of numbers. But plotting the data on a time axis reveals

some of the patterns associated with the data values over time.

We use R to plot the observations over time. The first step is to get the time series

observations into an R vector. This can be done for a small data set with the c function.

The R statement below places the time series into the vector kwh in chronological order.

kwh = c(2731, 1822, 1189, ... , 1499)

Alternatively, if the data set is large and is contained in an external file, the scan func-

tion can be used to read the time series observations from the external file as

kwh = scan("kwh.d")

where kwh.d is a file in the current working directory that contains the energy con-

sumption values in kilowatt hour values, one per line.

The next step is to use the ts function to convert the data values in the vector kwh

to a time series object, which will allow us to use many of the R time series analysis

operators included in the base language.

kwh.ts = ts(kwh, frequency = 12, start = c(2011, 1))

Setting the frequency argument in ts to 12 lets R know that the data is collected

monthly. If the time series consisted of quarterly observations, for example, then

frequency would be set to 4. Setting the start argument to c(2011, 1) lets R know

that the time series starts in January of 2011. If the first observation in the time series

was sampled in March of 2013, for example, then start would be set to c(2013, 3).

The next step is to plot the time series, which can be done with the plot.ts function.

368 Chapter 7. Time Series Basics

plot.ts(kwh.ts)

The time series plot is shown in Figure 7.1. The horizontal axis is the time t, measured

in years. The tick marks on the horizontal axis correspond to the January observation

from each year. The vertical axis is the observed number of kilowatt hours consumed

at time t, denoted by xt . The points in the time series are connected with lines, but this

is largely a matter of personal taste.

Plotting the time series in this fashion is a critical initial step in the analysis of an

observed time series. Carefully examining this plot often informs the analyst of the type

of probability model that might be appropriate. Unusually small and large observations

should be carefully assessed to determine whether the xt value was recorded properly.

Shifts in the heights of the xt values might correspond to events associated with the

time series, such as installing a more efficient heat pump or adding a new room to

the house for kwh.ts. The plot also allows the analyst to inspect the time series for

any trends which correspond to gradual increases or decreases in the mean level of the

process. In addition, the plot allows the analyst to identify any seasonal components,

that is, fluctuations which are periodic in nature, that might be present in the time series.

Some time series have a change in the variability of the observations that may also be

identified in the plot.

There are some preliminary conclusions that can be drawn from the time series plot in

Figure 7.1. First, there does appear to be a 12-month cyclical pattern, that is surely

influenced by the annual outdoor temperature cycles. The peak energy consumption

typically occurs in January. This is consistent with the fact that heat pumps have diffi-

culty during the winter months because there is not much heat to pump, making them

inefficient. Second, after accounting for the annual cycle, there does not seem to be

any systematic increase or decrease to the amount of energy consumed over the 8-year

period. This is consistent with the fact that no energy improvements were made to the

home during the 8-year period. There is, of course, short-term change in the mean value

of the time series due to the seasonal component of the time series, but there does not

2011 2012 2013 2014 2015 2016 2017 2018

1000

1500

2000

2500

3000

3500

t

xt

Figure 7.1: Single home energy consumption (in kilowatt hours) 2011–2018.

Section 7.1. The Big Picture 369

appear to be any long-term change in the mean value of the series. Third, there is signif-

icant random sampling variability associated with the time series. Although forecasts

could be made from this data set for values of the time series into the future, they would

be fairly imprecise predictions because of the random sampling variability. Some of

the variability could be explained by the average outdoor monthly temperature during

a particular month, with hot summer months and cold winter months requiring more

energy to cool and heat the home. Some of the variability could also be explained by

the fact that all months do not have the same number of days, which is easily accounted

for. Time series analysts refer to the random sampling variability that remains after all

of the signal has been accounted for as noise. The terms signal and noise are familiar

terms in fields such as statistics, data science, astrophysics, and electrical engineering.

The term noise is analogous to error from regression theory.

The home energy consumption example has shown that significant insight concerning a time

series can be gleaned by an understanding of the context associated with the time series and the

crucial step of making a simple plot of the data values over time. We will return to the home energy

consumption time series later for further analysis. The next time series illustrates the increase in

international airline travel between 1949 and 1960.

Example 7.2 The number of monthly international airline passengers, in thousands,

between January 1949 and December 1960 resides in an R built-in data set named

AirPassengers. All that is necessary to see the observations is to type the name

of the data set. (Notice that all R commands are case sensitive.)

AirPassengers

The output is shown below.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1949 112 118 132 129 121 135 148 148 136 119 104 118

1950 115 126 141 135 125 149 170 170 158 133 114 140

1951 145 150 178 163 172 178 199 199 184 162 146 166

1952 171 180 193 181 183 218 230 242 209 191 172 194

1953 196 196 236 235 229 243 264 272 237 211 180 201

1954 204 188 235 227 234 264 302 293 259 229 203 229

1955 242 233 267 269 270 315 364 347 312 274 237 278

1956 284 277 317 313 318 374 413 405 355 306 271 306

1957 315 301 356 348 355 422 465 467 404 347 305 336

1958 340 318 362 348 363 435 491 505 404 359 310 337

1959 360 342 406 396 420 472 548 559 463 407 362 405

1960 417 391 419 461 472 535 622 606 508 461 390 432

Again, scan these data values and look for patterns. The lowest number of international

air travelers was 104,000 in November 1949. The highest number of international air

travelers was 622,000 in July 1960. Unlike the previous example, it is not necessary to

convert AirPassengers from a vector to a time series object. Typing

str(AirPassengers)

370 Chapter 7. Time Series Basics

shows that AirPassengers is already a time series object, as shown below, by using

the str (structure) function in R.

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 ...

This useful function tells you that there are 12×12= 144 observations in the time series

and lists the first few observations. By using the help function

help(AirPassengers)

additional information about the time series reveals that the observations are the number

of international airline passengers (in thousands) per month during 1949–1960. Using

the plot.ts function as in the previous example gives a graph of the time series over

time, which is given in Figure 7.2.

Unlike the previous time series, this time series displays a trend. The number of inter-

national airline passengers is increasing over time. Although the number of passengers

is increasing over time, it is not clear whether the increase is linear, quadratic, or ex-

ponential, and this would require further analysis to determine which functional form

provides the best model for the increase. As was the case with the time series from the

first example, there is also a 12-month cycle that is apparent in the data. The months of

July and August–when school is typically not in session–tend to be the busiest months.

The cyclic variation appears to be less sinusoidal in nature than the energy consumption

time series because there is not a sinusoidal external time series (outdoor temperature)

driving the international airline travel time series.

1949 50 51 52 53 54 55 56 57 58 59 1960

0

100

200

300

400

500

600

t

xt

Figure 7.2: International airline passengers (in thousands) 1949–1960.

Before describing a third example of a time series, we define some notation. A common conven-

tion in probability theory is to use uppercase letters, such as X and Y , to denote random variables.

When encountering a time series, it is often helpful to subscript the random variable denoting the

time series observations with t, for time, as Xt . So a time series consisting of the time-ordered ob-

servations X1, X2, . . . , Xn can be referred to in the abstract as {Xt}, which is more compact. But

Section 7.1. The Big Picture 371

when referring to a specific realization of a time series (either collected as data or generated by a

computer via simulation) consisting of the time-ordered observations x1, x2, . . . , xn, we switch to the

lowercase version {xt}. This is why the vertical axes in Figures 7.1 and 7.2 were labeled xt for the

n = 96 home energy consumption observations from Example 7.1 and the n = 144 airline passenger

counts from Example 7.2. The notation developed in this paragraph will be apparent in the formal

definition of noise, which is defined next.

Instead of analyzing a realization of a time series as in the previous two examples, time series

analysts often formulate and fit a probability model for a time series. This process is roughly the

time series equivalent of fitting a univariate probability distribution, such as the normal distribution,

to a data set. We will again refer to the time series as {Xt} when constructing such a time series

model, but when the index values for t are not obvious by context, we add the additional parameter

T , which is the set of allowable values for t using {Xt , t ∈ T}. The set T will almost universally be

either the set of all integers (when it is necessary to consider observations with negative t values) or

the set of all nonnegative integers (when a time origin is necessary).

Most time series cannot be described by a deterministic function. In order to inject randomness

into the time series model, it has become common practice to define noise, which consists of random

shocks that will make a time series model stochastic rather than deterministic. Three varieties of

noise used by time series analysts are defined next. In some application areas, noise might be

referred to as error or disturbance.

Definition 7.1 The time series {Zt} that is a sequence of mutually independent random variables

Z1, Z2, . . . , Zn, each with population mean 0 and finite population variance σ2
Z , is known as white

noise, and is denoted by

Zt ∼WN
(
0, σ2

Z

)
.

The time series {Zt} that is a sequence of mutually independent and identically distributed random

variables Z1, Z2, . . . , Zn, each with population mean 0 and finite population variance σ2
Z , is known

as iid noise, and is denoted by

Zt ∼ IID
(
0, σ2

Z

)
.

The time series {Zt} that is a sequence of mutually independent and identically normally dis-

tributed random variables Z1, Z2, . . . , Zn, each with population mean 0 and finite population vari-

ance σ2
Z , is known as Gaussian white noise, and is denoted by

Zt ∼ GWN
(
0, σ2

Z

)
.

It is clear from Definition 7.1 that the three varieties of noise were defined from the more general

case to the more specific case so that

GWN ⊂ IID⊂WN.

All three varieties share common population means and variances:

E [Zt] = 0 and V [Zt] = σ2
Z .

These three probability models are, in some sense, the simplest possible time series models, although

time series that are well-modeled by the three models are very rare in practice. Rather than approx-

imating a real-world time series, they serve as building blocks for more realistic models. They are

often used to describe the probability distribution of error terms in a probability model for a time

series. In the next example, you will see a plot of a realization of Gaussian white noise.

372 Chapter 7. Time Series Basics

Example 7.3 White noise, iid noise, and Gaussian white noise are just sequences of

mutually independent observations centered around zero. A time series of n = 100

Gaussian white noise observations with population variance σ2
Z = 1, for example, can

be generated and placed in the vector x with the R command

x = rnorm(100)

The choice of n = 100 was arbitrary. Defining x after an optional call to set.seed(8)

to establish the random number stream, the values contained in the vector x can be

converted to a time series with the ts function and then plotted as in the two previ-

ous examples with the plot.ts function. The resulting plot is given in Figure 7.3.

The time series that consists of Gaussian white noise values has a minimum value of

x90 = −3.015 and a maximum value of x79 = 2.376. Of the 100 Gaussian white noise

values, 46 are positive and 54 are negative. Since the time series consists of mutually

independent and identically distributed random variables, x1, x2, . . . , x100 are of no use

in predicting the next value in the time series, x101.

0 10 20 30 40 50 60 70 80 90 100

−3

−2

−1

0

1

2

3

t

zt

Figure 7.3: Time series plot of n = 100 Gaussian white noise observations.

Most time series that are encountered in practice do not behave in a fashion that approximates

white noise, iid noise, or Gaussian white noise. It is more often the case that the value of the

observation in the time series at time t will depend on the values of one or more of the previous

observations in the time series. One time series model that exhibits this dependency is known as a

random walk, which is defined and illustrated next.

Example 7.4 A time series that is a random walk {Xt} is generated by the recursive

equation

Xt = Xt−1 +Zt ,

where {Zt} is Gaussian white noise. This is to say that the current value of the time

series is the previous value of the time series plus a Gaussian white noise term. An

algorithm for generating a random walk {Xt} using Gaussian white noise is given in the

Section 7.1. The Big Picture 373

pseudocode below. Indentation denotes nesting. In the second step, the initial observa-

tion, X1, is arbitrarily set to 0. This step could instead have been X1← µ, where µ is the

mean value of the time series. Alternatively, this start-up condition could instead have

been X1 ← Z1, which starts the time series at a random position rather than 0. These

two alternatives can be combined into X1← µ+Z1.

t← 1

X1← 0

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← Xt−1 +Zt

This algorithm for generating a random walk can be implemented in R using the code

given below. It is assumed that the population variance of the Gaussian white noise is

σ2
Z = 1.

set.seed(8)

n = 100

x = numeric(n)

time = 1

x[1] = 0

while (time < n) {

time = time + 1

z = rnorm(1)

x[time] = x[time - 1] + z

}

x = ts(x)

plot.ts(x)

The realization of the random walk stored in the vector x is plotted in Figure 7.4. The

time series associated with the random walk takes on a decidedly different pattern than

that of the Gaussian white noise from Figure 7.3. This realization of a random walk

looks quite a bit like some graphs of economic data, such as the daily closing price of a

stock or a stock market average. This makes sense because it might be the case that the

probability model for the value of the closing price of the stock might be expressed as

[today’s closing price] = [yesterday’s closing price]+ [noise]

which is equivalent to the random walk model

Xt = Xt−1 +Zt .

The random walk model does such a good job of approximating certain economic data

that it can be difficult to distinguish a real set of economic data from a realization of a

random walk generated by simulation.

As an illustration, Figure 7.5 contains graphs of three time series. One of these time

series is the first n = 100 closing values of the Dow Jones Industrial Average during the

374 Chapter 7. Time Series Basics

0 10 20 30 40 50 60 70 80 90 100

−10
−9
−8
−7
−6
−5
−4
−3
−2
−1

0
1

t

xt

Figure 7.4: Time series plot of n = 100 observations from a random walk.

year 2000. The other two are random walks of length n = 100 with mutually indepen-

dent standard normal noise terms generated by simulation. Spend some time looking

the three graphs over and try to determine which of the three is the real time series val-

ues and which are the random walks generated in R via simulation. In order to make

your task of identifying the Dow Jones Industrial Averages more difficult, the labels on

the vertical axes have been suppressed, and the scales have been set to stretch from the

smallest value to the largest value in the time series.

If you are having a difficult time identifying the stock market average values, it is be-

cause the random walk, which is a very simple time series model, is adequately ap-

proximating the time evolution of the stock market average values. The real data corre-

sponding to the stock market average closes is in the top graph. The two lower graphs

in Figure 7.5 are random walks generated by Monte Carlo simulation.

In this section, we have encountered four examples of time series:

• a time series of n = 96 monthly home energy consumption observations,

• a time series of n = 144 monthly international airline passenger counts,

• a time series of n = 100 observations of Gaussian white noise, and

• two time series of n = 100 observations generated from a random walk, which were compared

to a time series consisting of n = 100 closing values for the Dow Jones Industrial Average.

R has built-in data structures and functions that are useful in the analysis of a time series. Additional

tools beyond just the plotting of a time series will be introduced subsequently.

It is often the case that we want to formulate a hypothetical population probability model for a

time series from observed values of a time series, such as using the random walk model to model the

Dow Jones Industrial Average closing values. This notion of formulating a population probability

model is completely analogous to using the normal distribution to approximate the adult heights of

Swedish women, for example. Once a tentative model has been identified, any unknown parameters

Section 7.1. The Big Picture 375

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100

0 10 20 30 40 50 60 70 80 90 100
t

t

t

xt

xt

xt

Figure 7.5: Which time series of length n = 100 consists of real data?

376 Chapter 7. Time Series Basics

are estimated and goodness-of-fit tests are conducted. After a fitted probability model is accepted

as a reasonable population probability model to describe a time series, a wide variety of statistical

inference procedures can be employed. Broad categories of these statistical inference procedures

are listed and described in the next subsection.

7.1.2 Why Analyze a Time Series?

There is not one universal purpose for conducting a time series analysis. Some of the more common

purposes for conducting a time series analysis include description, explanation, prediction, simu-

lation, control, signal estimation, and segmentation. This list is not comprehensive, but certainly

covers the vast majority of the applications of time series analysis.

• Description. Time series analysis is often useful for describing the time evolution of the

observations in a time series. Plotting the values in the time series, as we have done in the four

examples, is a critical first step for observing trends, seasonal effects, extreme observations,

etc. The time series plot also allows an analyst to easily identify outliers in a time series and

decide whether these outliers were due to a coding error that occurred when inputting the time

series or just random extreme observations. More sophisticated techniques that are helpful in

describing a time series, such as the sample autocorrelation function to detect and quantify

serial dependence in the values of a time series, or the periodogram to detect and quantify

cyclic variation in the values of a time series, will be introduced subsequently.

• Explanation. It is often the case that one time series can be used to explain another time

series. The home energy consumption time series from Example 7.1, for instance, might be

partially explained by a time series of monthly average outdoor temperatures in Williamsburg,

Virginia in 2011–2018. Another time series that might partially explain the home energy

consumption values is the average number of hours of daylight in Williamsburg in a particular

month.

• Prediction. Certain application areas, such as quantitative finance and seismology, engage

in the analysis of a time series for the purpose of forecasting. The prediction of the next

value of the time series, or perhaps the value of the time series h time units into the future,

is often of interest. In quantitative finance, predicting the future value of a particular stock

based on its history to date might be of interest. In seismology, predicting the time of the next

earthquake might be of interest. Forecasted values are typically given by a point estimate and

an associated confidence interval that measures the precision of the point estimate.

• Simulation. Simulating a time series in a discrete-event simulation might be the ultimate goal.

A time series model that adequately mimics the real-world time series is critical in building a

valid simulation model. As an example of such a simulation, financial planners often turn to

simulation to estimate the probability that an individual or a married couple will have enough

money to pay their expenses in retirement. This simulation requires, among other elements,

a time series model that is capable of generating the annual inflation rate over the lifetimes

of the individual or couple. The generation of simulated future annual inflation rates is based

on building a time series model from previous annual inflation rates. Other elements, such as

annual stock market returns or interest rates, would require a separate time series model. The

values in these various time series are often correlated.

• Control. Time series analysis can be performed with the goal of controlling a particular vari-

able. Examples include keeping ball bearing diameters between two prescribed thresholds,

Section 7.1. The Big Picture 377

keeping delivery times below a prescribed threshold, and keeping unemployment in an econ-

omy between two thresholds. A branch of quality control known as statistical process control

refers to the time series plots given earlier as control charts.

• Signal estimation. Certain application areas, such as astrophysics and electrical engineering,

are particularly interested in separating signal from noise. The techniques using spectral anal-

ysis, which is presented subsequently, are particularly adept at detecting cyclic variation in a

time series. Sometimes a very weak signal can be detected in a very noisy time series using

these techniques.

• Segmentation. Economists often find it useful to classify a period of economic activity as a

period of expansion or a period of contraction. They do so by breaking a time series into a

sequence of segments. The challenge here is to identify the boundary points at which times

the economy switches from expansion to contraction and then back again. Determining these

points in time in which the changes in the time series model occur is one of the goals of

segmentation.

A time series is just one instance of a process that evolves randomly over time known as a

stochastic process. The next section classifies stochastic processes based on whether time passes in

a discrete or continuous fashion, and whether the variable of interest at each time step is discrete or

continuous.

7.1.3 Where Does Time Series Analysis Fall in the Modeling Matrix?

The purpose of this subsection is to step back and consider where time series analysis fits in the

larger arena of stochastic processes. The common elements between the four time series we have

encountered so far are that time is measured as an integer (representing months for the first two time

series, the first 100 positive integers for the Gaussian white noise, and trading days for the stock

market averages) and the values of the time series observations are measured on a continuous scale.

So a time series is a sequence of observed data values, measured on a continuous scale, which are

collected over time. In most instances, the observations are taken at equally-spaced points in time.

The observations in the time series are denoted generically by

X1, X2, . . . , Xn,

and can be referred to more compactly as just {Xt}. Table 7.2 shows the position that time series

analysis resides in the 2× 2 table in which the nature of time (discrete or continuous) defines the

rows and the nature of the observed variable (discrete or continuous) defines the columns. Time

series analysis occupies the discrete-time, continuous-state entry in the table. Popular stochastic

time

state

discrete continuous

discrete Markov chains a time series model

continuous continuous-time Markov chains Brownian motion

Table 7.2: Four types of stochastic models in the modeling matrix.

378 Chapter 7. Time Series Basics

process models, such as Markov chains which are often used to model discrete-time and discrete-

state stochastic processes, occupy the other three positions in the table.

The defining characteristic of a time series model is that time is measured on a discrete scale and

the observations are measured on a continuous scale. You have seen four examples of time series.

Here are examples of applications of stochastic models in the other three boxes in Table 7.2.

• The classic example of a discrete-time, discrete-state stochastic process with two states is the

weather on a particular day. If the two states are “rainy” and “sunny” (actually “not rainy”

should be the second state so as to partition the state space so that a cloudy day with no rain

is classified as “not rainy”), then a Markov chain is a potential model for the evolution of the

weather from one day to the next.

• A continuous-time, discrete-state stochastic process that we have all encountered is that of

a single-server queueing system. The state of the system is the number of customers in the

system. If the number of customers in the system can either go up by one (via a customer

arrival) or down by one (via a customer departure), then the state of the system is discrete.

Furthermore, since customer arrivals and departures can occur at any instant, time is measured

on a continuous scale.

• One well-known example of a continuous-time, continuous-state stochastic process is Brown-

ian motion, which is named after Scottish botanist Robert Brown (1753–1858). He described

the motion in 1827 while observing the pollen of the plant Clarkia pulchella immersed in wa-

ter through a microscope. Physicist Albert Einstein (1879–1955) explained that the motion

of the pollen was caused by individual water molecules in 1905. Brownian motion can be

thought of as a random walk in which the time between subsequent observations approaches

zero.

Figure 7.6 contains a 2×2 array of graphs that are analogous to the 2×2 array of stochastic process

models in Table 7.2. The values plotted are one particular realization, also known as a sample

path, of a stochastic process. A stochastic process can be thought of as a probability model which

evolves over time. The dashed lines indicate that time or state is measured discretely. In this sense,

the techniques for analyzing a time series represent 25% of the techniques for analyzing all of the

stochastic processes.

7.1.4 Computing

We review some of the R functions that have been used in this section and also introduce some addi-

tional functions that are useful in time series analysis. All of these functions are available in the base

distribution of R, so they are immediately available upon initiating an R session. These functions

will typically be illustrated here for the built-in time series of monthly international air passenger

counts from 1949 to 1960 named AirPassengers which was first encountered in Example 7.2, but

they could be applied to any time series.

The time series function ts is used to convert data to the internal time series data structure in R.

It takes arguments for the time series observations, the time of the first observation, the time of the

last observation, the number of observations per unit of time, etc. As an illustration, the quarterly

time series observations contained in the vector named data which begin in the second quarter of

1984 is converted to a time series named x via the ts function with the R command

x = ts(data, start = c(1984, 2), frequency = 4)

Section 7.1. The Big Picture 379

tt

tt

xtxt

xtxt

discrete timediscrete time

continuous timecontinuous time

d
is

cr
et

e
st

at
e

d
is

cr
et

e
st

at
e

co
n
ti

n
u
o
u
s

st
at

e
co

n
ti

n
u
o
u
s

st
at

e

Figure 7.6: Graphs of realizations of four classes of stochastic processes.

Once a time series is in the R time series data structure, the plot.ts function can be used to provide

a plot of the time series, for example,

plot.ts(AirPassengers)

The ts.plot command can be used to plot several time series on a single set of axes, for example,

ts.plot(ldeaths, mdeaths, fdeaths)

where the three time series that are built into R being plotted are monthly total deaths, male deaths,

and female deaths from bronchitis, emphysema, and asthma in the United Kingdom from 1974 to

1979.

The next group of time series functions can be thought of as utilities, which are used to extract

information about a time series. Illustrations of the application of these utility functions on the

AirPassengers time series are given below.

length(AirPassengers)

380 Chapter 7. Time Series Basics

start(AirPassengers)

end(AirPassengers)

frequency(AirPassengers)

deltat(AirPassengers)

time(AirPassengers)

cycle(AirPassengers)

The length function returns the length of a time series, which in this case is 144 observations. The

start function returns the time associated with the first observation in the time series, which in

this case is a vector comprised of the two elements 1949 and 1. The end function returns the time

associated with the last observation in the time series. The frequency function shows the period

length of a time series, which in this case is 12 because AirPassengers consists of monthly data.

The deltat function returns the time increment associated with the time series, which in this case

is 1/12. The time function returns the time values for each observation as a time series, which in

this case is 1949, 1949 1
12
, 1949 2

12
, . . . , 1960 11

12
. The cycle function returns integers indicating the

position of each observation in a cycle, which in this case is 12 iterations of the first 12 integers.

7.2 Basic Properties of a Time Series

A time series has some unique properties that will require some special tools to aid in its modeling

and analysis. Central to these properties is the notion of stationarity, which is the subject of one of

the subsections that follow. Once stationarity is established for a time series, then the population

autocorrelation function, and its statistical counterpart, the sample autocorrelation function, can be

helpful in characterizing a time series. These autocorrelation functions give the correlation as a

function of the distance between the values in the time series. We begin by defining the population

autocovariance and autocorrelation.

7.2.1 Population Autocovariance and Autocorrelation

Traditional statistical methods rely on the assumption that observations are mutually independent

and identically distributed. In most practical time series applications, this assumption is violated

because adjacent or nearby values in a time series are correlated. Thus, the special analysis tools

for time series known as the population autocovariance function and the population autocorrelation

function are introduced in this subsection. Before motivating and defining these new notions, we

briefly review the definitions of population covariance and correlation from probability theory in the

next paragraph. The link to time series analysis will be made subsequently.

The defining formula for the population covariance between the random variables X and Y is

Cov(X , Y) = E [(X−µX)(Y −µY)] ,

where µX = E[X] is the expected value of X and µY = E[Y] is the expected value of Y . The units on

the population covariance are the units of X times the units of Y . When X and Y are independent

random variables,

Cov(X , Y) = E [(X−µX)(Y −µY)] = E [X −µX]E [Y −µY] = (µX −µX)(µY −µY) = 0.

Zero covariance does not imply that X and Y are independent. The population correlation between

the random variables X and Y is

ρ = Corr(X , Y) =
Cov(X , Y)

σX σY

=
E [(X−µX)(Y −µY)]

σX σY

= E

[(
X−µX

σX

)(
Y −µY

σY

)]
,

Section 7.2. Basic Properties of a Time Series 381

where σX is the population standard deviation of X and σY is the population standard deviation

of Y . The population correlation is a measure of the linear association between X and Y . The

population correlation is unitless and satisfies −1 ≤ ρ ≤ 1, where the extremes indicate a perfect

linear association.

A time series {Xt} consists of a sequence of observations X1, X2, . . . , Xn indexed over time. Since

we are working with time series models rather than time series data values, the time series values will

typically be set in uppercase in this subsection. The observations are continuous random variables

that have been drawn from some population probability distribution. This probability distribution

can be described by a joint probability density function

f (x1, x2, . . . , xn)

or an associated joint cumulative distribution function

F(x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

The most well-known probability distribution for modeling n random variables X1, X2, . . . , Xn is the

multivariate normal distribution, which is illustrated in the next example.

Example 7.5 Consider an n×1 vector of random variables X = (X1, X2, . . . , Xn)
′, an

associated n× 1 vector of population means µ = (µ1, µ2, . . . , µn)
′, and an associated

n×n variance–covariance matrix Σ. Matrix notation makes the expression of the joint

probability density function of X1, X2, . . . , Xn much more compact than an entirely al-

gebraic approach. The random vector X has the multivariate normal distribution if its

joint probability density function has the form

f (x1, x2, . . . , xn) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)′Σ−1(x−µ) (x1, x2, . . . , xn) ∈ A ,

where

• x= (x1, x2, . . . , xn)
′,

• Σ
−1 is the inverse of the variance–covariance matrix,

• |Σ| is the determinant of the variance–covariance matrix,

• the support is

A = {(x1, x2, . . . , xn) | −∞ < xi < ∞, for i = 1, 2, . . . , n} ,

• the parameter space is

Ω = {(µ,Σ) |µ ∈ R n,Σ is an n×n symmetric, positive semi-definite matrix} .

Although the multivariate normal distribution has some very appealing mathematical and sta-

tistical properties, it has one very significant drawback when it comes to being used as a time

series model. That drawback concerns the number of parameters. There are n mean parameters

µ1, µ2, . . . , µn and n(n+1)/2 parameters in the symmetric variance–covariance matrix Σ. If an an-

alyst has collected just a single realization of a time series x1, x2, . . . , xn, then there are many more

parameters to estimate than data values. So one of the goals for the rest of the section is to establish

properties of a time series which allow us to formulate parsimonious models that adequately model a

382 Chapter 7. Time Series Basics

particular time series with as few parameters as possible. We begin the process of establishing these

properties by defining the population mean function and the population autocovariance function

associated with a time series {Xt}. As you will see, the focus is on the first two population moments

associated with the time series.

Definition 7.2 A time series {Xt} has a population mean function

µ(t) = E [Xt]

provided that the expected values exist for all values of the index t.

So as long as the observations in the time series have expected values that are finite, the popu-

lation mean function gives the expected observed value of the time series at time t. In other words,

the mean values

µ(1), µ(2), . . . , µ(n)

are the expected values of X1, X2, . . . , Xn. This defines what is essentially the first moment of the

time series. The second moment of the time series is defined by the population autocovariance

function.

Definition 7.3 A time series {Xt} has a population autocovariance function

γ(s, t) = Cov(Xs, Xt)

provided that the population covariances exist for all values of the indexes s and t.

Notice that the order associated with the arguments in the population autocovariance function is

immaterial, so γ(s, t) = γ(t, s). Notice also that when the two arguments in the population autoco-

variance function are identical, the expression reduces to the population variance, that is,

γ(s, s) = Cov(Xs, Xs) =V [Xs].

The prefix “auto” means “self.” This prefix is attached to covariance to signify that the population

covariance is being taken between two members of the same time series. The value of γ(s, t) is the

population covariance between two snapshots of the same time series at times s and t.

We now consider a sequence of three examples in which we (a) define a time series model,

(b) calculate the population mean function, and (c) calculate the population autocovariance function.

The three examples, which will be in order of increasing complexity, are

• white noise,

• a three-point moving average, and

• a random walk.

We begin with a process that consists of just white noise.

Example 7.6 Recall from Definition 7.1 that the time series {Zt} that is a sequence

of mutually independent random variables Z1, Z2, . . . , Zn, each with population mean 0

and population variance σ2
Z , is known as white noise, and is denoted by

Zt ∼WN
(
0, σ2

Z

)
.

Section 7.2. Basic Properties of a Time Series 383

Assume that our time series of interest {Xt} is just this white noise; that is, Xt = Zt .

Find the population mean function and the population autocovariance function.

The population mean function is

µ(t) = E [Xt] = E [Zt] = 0

because each term in the white noise time series has expected value 0. The population

autocovariance function is

γ(s, t) = Cov(Xs, Xt) = Cov(Zs, Zt) =

{
σ2

Z t = s

0 t 6= s

because the observations in the time series are mutually independent random variables

and

γ(s, s) = Cov(Xs, Xs) = Cov(Zs, Zs) =V [Zs] = σ2
Z

when t = s.

So the population mean and population autocovariance functions take on a particularly tractable

form in the case of a time series that consists of white noise terms. We now consider calculating the

population mean and population autocovariance functions for a three-point moving average of white

noise.

Example 7.7 We again let the time series {Zt} denote mutually independent random

variables Z1, Z2, . . . , Zn, each with population mean 0 and population variance σ2
Z . This

is again white noise, and is denoted by

Zt ∼WN
(
0, σ2

Z

)
.

This time, however, our time series of interest {Xt} is a three-point moving average of

the white noise, that is,

Xt =
Zt−1 +Zt +Zt+1

3

for t = 2, 3, . . . , n− 1. Find the population mean function and the population autoco-

variance function.

The population mean function is

µ(t) = E [Xt] = E

[
Zt−1 +Zt +Zt+1

3

]
=

1

3

(
E [Zt−1]+E [Zt]+E [Zt+1]

)
= 0

because each term in the white noise time series has expected value 0. The population

autocovariance function is more difficult than in the previous example because identical

white noise terms are used in adjacent three-point moving averages. Assuming that all

appropriate expected values exist, we rely on the formula

Cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jYj

)
=

n

∑
i=1

m

∑
j=1

aib jCov(Xi, Yj)

384 Chapter 7. Time Series Basics

to help with the calculations. The population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= Cov

(
Zs−1 +Zs +Zs+1

3
,

Zt−1 +Zt +Zt+1

3

)

=
1

9
Cov(Zs−1 +Zs +Zs+1, Zt−1 +Zt +Zt+1) .

It is clear that γ(s, t) = 0 when |t− s|> 2 because there is no overlap in the white noise

terms. The mutual independence of Z1, Z2, . . . , Zn implies Cov(Zi, Z j) = 0 when i 6= j.

So let’s check the other cases individually using the formula concerning the population

covariance between sums of random variables. First, the case of t = s:

γ(s, s) =
1

9
Cov(Zs−1 +Zs +Zs+1, Zs−1 +Zs +Zs+1)

=
1

9

[
Cov(Zs−1, Zs−1)+Cov(Zs, Zs)+Cov(Zs+1, Zs+1)

]

=
1

9

(
V [Zs−1]+V [Zs]+V [Zs+1]

)

=
1

9

(
σ2

Z +σ2
Z +σ2

Z

)

=
1

9
·3σ2

Z

=
σ2

Z

3

based on the mutual independence of Z1, Z2, . . . , Zn. Next, consider the case of t = s+1:

γ(s, s+1) =
1

9
Cov(Zs−1 +Zs +Zs+1, Zs +Zs+1 +Zs+2)

=
1

9

[
Cov(Zs, Zs)+Cov(Zs+1, Zs+1)

]

=
1

9

(
V [Zs]+V [Zs+1]

)

=
1

9

(
σ2

Z +σ2
Z

)

=
1

9
·2σ2

Z

=
2σ2

Z

9
.

Finally, consider the case of t = s+2:

γ(s, s+2) =
1

9
Cov(Zs−1 +Zs +Zs+1, Zs+1 +Zs+2 +Zs+3)

=
1

9
Cov(Zs+1, Zs+1)

=
1

9
V [Zs+1]

=
σ2

Z

9
.

Section 7.2. Basic Properties of a Time Series 385

So to summarize, using the symmetry of the population autocovariance function in its

arguments, the population autocovariance function is

γ(s, t) =





σ2
Z/3 |t− s|= 0

2σ2
Z/9 |t− s|= 1

σ2
Z/9 |t− s|= 2

0 |t− s|> 2.

The effect of using common terms from the time series Zt consisting of white noise in

constructing the three-point moving average time series Xt is apparent in the positive

values in the population autocovariance function. There is positive population auto-

covariance at lag 0 (t = s), slightly weaker positive population autocovariance at lag 1

(|t−s|= 1), still slightly weaker positive population autocovariance at lag 2 (|t−s|= 2),

and zero population autocovariance at lags greater than 2. The decreasing magnitude of

the population autocovariance function is due to the fewer common terms in the three-

point moving average as the distance between values in {Xt} increases. The diagram in

Figure 7.7 conveys the intuition associated with the values in the population autocovari-

ance function. The brackets show the mutually independent values of the white noise

terms Z1, Z2, . . . , Zn used in each term in the three-point moving average time series.

Terms in the three-point moving average that are three time units apart, such as X2 and

X5, have no white noise terms in common, and hence have population autocovariance

zero.

white noise→ Z1 Z2 Z3 Z4 Z5 Z6 Z7
. . .

X2

X3

X4

X5

X6

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸
︷ ︸︸ ︷

︷ ︸︸ ︷

Figure 7.7: Relationship between white noise and three-point moving average.

The third and final example concerns the calculation of the population mean function and the

population autocovariance function for a random walk.

Example 7.8 We now return to the random walk model first introduced in Example 7.4.

The time series model for a random walk {Xt} is the recursive equation

Xt = Xt−1 +Zt ,

where {Zt} is white noise. A graph of a realization of a random walk was given in Fig-

ure 7.4. Find the population mean function and the population autocovariance function.

The first step is to write the model in a slightly different fashion. The random walk

model can be written as a summation of the white noise terms:

Xt =
t

∑
i=1

Zi.

386 Chapter 7. Time Series Basics

This formula can be verified by plugging it back into the original random walk model,

yielding
t

∑
i=1

Zi =
t−1

∑
i=1

Zi +Zt .

This alternative formulation of the random walk model aids in the derivation of the pop-

ulation mean function and the population autocovariance function. Using the alternative

formulation, the population mean function is

µ(t) = E [Xt] = E

[
t

∑
i=1

Zi

]
=

t

∑
i=1

E [Zi] = 0

because each term in the white noise time series has expected value 0. Again using

the alternative formulation of the random walk model and the result from the previ-

ous example concerning the population covariance of sums of random variables, the

population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= Cov

(
s

∑
i=1

Zi,
t

∑
j=1

Z j

)

=
s

∑
i=1

t

∑
j=1

Cov(Zi, Z j)

=
min{s, t}

∑
i=1

V [Zi]

= min{s, t}σ2
Z .

The population autocovariance function γ(s, t) is the smaller of the arguments s and t

multiplied by the population variance of the white noise.

The three examples have illustrated how to find the population mean function and the population

autocovariance function for a time series model. Sometimes the population autocorrelation function

is also of interest because population correlation is unitless and always lies between −1 and 1. The

population autocorrelation function is defined next.

Definition 7.4 A time series {Xt} has a population autocorrelation function

ρ(s, t) = Corr(Xs, Xt) =
Cov(Xs, Xt)√

V [Xs]V [Xt]
=

γ(s, t)√
γ(s, s)γ(t, t)

provided that the population covariance exists for all indexes s and t.

We now revisit the previous three examples to compute the population autocorrelation function

for the white noise, three-point moving average, and random walk models.

Example 7.9 The white noise model used

Zt ∼WN
(
0, σ2

Z

)

Section 7.2. Basic Properties of a Time Series 387

and a time series {Xt} which was just white noise, that is, Xt = Zt . Find the population

autocorrelation function.

The population autocovariance function for the white noise time series from Exam-

ple 7.6 was

γ(s, t) =

{
σ2

Z t = s

0 t 6= s.

Since γ(s, s) = σ2
Z , the population autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
=

{
1 t = s

0 t 6= s.

There is perfect positive population correlation between each observation in the time

series and itself because ρ(s, s) = 1. Furthermore, there is zero population correlation

between distinct terms in the time series because ρ(s, t) = 0 for all t 6= s.

Although it lacks practical application in most real-world settings, the population autocorrela-

tion function in the case of white noise is one of the most fundamental population autocorrelation

functions possible. Since iid noise and Gaussian white noise are subsets of white noise, they also

share this same population autocorrelation function. The next example considers the three-point

moving average.

Example 7.10 Find the population autocorrelation function ρ(s, t) for the three-point

moving average time series model

Xt =
Zt−1 +Zt +Zt+1

3
,

where

Zt ∼WN
(
0, σ2

Z

)
.

The population autocovariance function for the three-point moving average time series

from Example 7.7 was

γ(s, t) =





σ2
Z/3 |t− s|= 0

2σ2
Z/9 |t− s|= 1

σ2
Z/9 |t− s|= 2

0 |t− s|> 2.

Since γ(s, s) = σ2
Z/3, the population autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
=





1 |t− s|= 0

2/3 |t− s|= 1

1/3 |t− s|= 2

0 |t− s|> 2.

There is perfect positive population correlation between each observation in the time

series and itself because ρ(s, s) = 1. The population autocorrelation function is positive

and decreases linearly for lags 1 and 2 because of the common terms in the 3-point

moving average, as illustrated previously in Figure 7.7. There is 0 population autocor-

relation for lags of 3 or more because the moving averages contain no common white

noise terms.

388 Chapter 7. Time Series Basics

The third and final example concerns the calculation of the population autocorrelation function

for a random walk model for a time series {Xt}.

Example 7.11 Find the population autocorrelation function ρ(s, t) for the random walk

time series model

Xt = Xt−1 +Zt ,

where

Zt ∼WN
(
0, σ2

Z

)
.

The population autocovariance function for the random walk time series from Exam-

ple 7.8 was

γ(s, t) = min{s, t}σ2
Z .

Since γ(s, s) = sσ2
Z , the population autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
=

min{s, t}σ2
Z√

sσ2
Z · tσ2

Z

=
min{s, t}√

st
.

Since ρ(s, s) = s/s = 1, this can be written as

ρ(s, t) =

{
1 t = s

min{s, t}/
√

st t 6= s.

Once again, there is perfect positive population correlation between each observation in

the time series and itself because ρ(s, s) = 1. This will be the case with any time series

model.

This ends the introduction to three important functions that are associated with a time series

model:

• the population mean function µ(t) = E [Xt],

• the population autocovariance function γ(s, t) = Cov(Xs, Xt), and

• the population autocorrelation function ρ(s, t) = Corr(Xs, Xt).

An important property of a time series, known as stationarity, will be defined and illustrated in

the next subsection. A stationary time series is one in which there is no long-term change in the

probability mechanism governing the time series. Knowing that a time series is stationary will have

an important effect on µ(t), γ(s, t), and ρ(s, t).

7.2.2 Stationarity

A time series {Xt} is stationary if the underlying probability mechanism that governs the time series

is independent of a shift in time. In other words, if you select two different time windows in which to

view a number of observations from the time series, the probability distribution of the observations

in those two time windows will be identical.

Section 7.2. Basic Properties of a Time Series 389

Definition 7.5 The time series {Xt} is strictly stationary if

X1, X2, . . . , Xn

and the shifted observations in the time series

Xk+1, Xk+2, . . . , Xk+n

have the same joint probability distribution for all integers k and all positive integers n.

A strictly stationary time series is also known as a strongly stationary or completely stationary

time series. The next two examples contain the type of thought experiment that is appropriate for

determining whether a time series is strictly stationary.

Example 7.12 Strict stationarity implies that the probability mechanism that governs

the time series does not change with a shift in time. Would the time series of monthly

international airline passengers (in thousands) contained in the AirPassengers time

series in R be likely to have been drawn from a strictly stationary time series model?

Here is the thought associated with making such a judgment. Consider a specific in-

stance of the time series from Definition 7.5 with n = 3 and k = 18 in order to develop

a counterexample. So the question is whether

X1, X2, X3

and the shifted observations in the time series

X19, X20, X21

have the same trivariate probability distribution. In the case of the AirPassengers

observed time series, these values correspond to January, February, and March of 1949

versus July, August, and September of 1950. The first three values in the time series are

x1 = 112, x2 = 118, x3 = 132,

and the three time series observations shifted 18 months into the future are

x19 = 170, x20 = 170, x21 = 158.

From a cursory inspection, the three earlier values in the time series appear to be less

than the three later values. In addition, Figure 7.2 showed a significant upward trend

in the time series as time progresses. Furthermore, a careful inspection of the values

in the AirPassengers time series from Figure 7.2 reveals that the annual peak travel

occurs during the months of July and August. Based on this evidence, we conclude that

the AirPassengers time series is not drawn from a strictly stationary time series. The

hypothesis of an underlying stationary time series model can be rejected because of the

trend and seasonal component that are clearly apparent in Figure 7.2. The underlying

probability mechanism governing the time series appears to be changing over time.

The discussion above would indicate that very few time series which occur in practice would

be strictly stationary. The previous example asks whether a realization appears to be drawn from a

stationary time series model. The next example gives a simple time series model which is strictly

stationary.

390 Chapter 7. Time Series Basics

Example 7.13 Consider the time series from Example 7.3 which consists of Gaussian

white noise with population variance σ2
Z = 1, that is,

Xt ∼ GWN (0, 1) .

Is this time series strictly stationary?

As in the last example, consider n = 3 and k = 18 from Definition 7.5. If the time series

is strictly stationary, then

X1, X2, X3

and the shifted observations in the time series

X19, X20, X21

have the same trivariate probability distribution. In the case of Gaussian white noise

with σ2
X = σ2

Z = 1, (X1, X2, X3)
′

has a trivariate normal distribution with 3× 1 vector

of population means µ = (0, 0, 0)′, and an associated 3× 3 variance–covariance ma-

trix which is the identity matrix. Using the formulation from Example 7.5, the joint

probability density function of X1, X2, X3 is

f (x1, x2, x3) =
1

(2π)3/2
e−(x2

1+x2
2+x2

3)/2 −∞< x1 <∞,−∞< x2 <∞,−∞< x3 <∞.

Because the values in the time series model are mutually independent and identically

distributed, this is also the joint probability density function of X19, X20, X21. So for this

particular choice of n and k, the conditions of Definition 7.5 are satisfied. The probabil-

ity mechanism governing X1, X2, X3 is exactly the same as the probability mechanism

governing X19, X20, X21, so the realization of such a process in Figure 7.3 displays no

trend, no seasonality, no change in variability, and no change in the marginal distribu-

tions of X1, X2, . . . , Xn. But the choices of n = 3 and k = 18 were arbitrary. The joint

probability distributions would be identical regardless of the choices for n and k, so we

conclude that a time series consisting of Gaussian white noise is strictly stationary.

So the international airline passengers data set, just from observing the time series, is not strictly

stationary. The Gaussian white noise process is strictly stationary. There are several implications of

a strictly stationary time series, some of which are listed below.

• The initial n values of the time series X1, X2, . . . , Xn and their associated observations shifted

k time units to the left or right Xk+1, Xk+2, . . . , Xk+n having the same joint probability distri-

bution implies that each must have the same joint cumulative distribution function, that is,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(Xk+1 ≤ x1, Xk+2 ≤ x2, . . . , Xk+n ≤ xn)

for all values of x1, x2, . . . , xn.

• The marginal distribution of each value in the time series is identical. Symbolically,

P(Xs ≤ x) = P(Xt ≤ x)

for all integer time values s and t and all real-valued x.

• The population mean function µ(t) = E [Xt] is constant in time; that is, there is no trend.

Section 7.2. Basic Properties of a Time Series 391

• The population autocovariance function γ(s, t) = Cov(Xs, Xt) is constant with respect to a

shift; that is,

γ(s, t) = γ(s+ k, t + k).

• Any time series consisting of mutually independent and identically distributed random vari-

ables must be strictly stationary.

Strict stationarity is a lot to ask of a time series, and is difficult to establish based on an observed

realization of a time series. So time series analysts have defined a weaker version of strict stationarity

which we will refer to here as just stationarity. Other terms used for this type of stationarity are

• weakly stationary,

• second-order stationary, and

• covariance stationary.

Whereas a strictly stationary time series required that the entire multivariate distribution remain

the same on any time window, a stationary time series only places requirements on the first and

second moments. The population mean function must be constant over time, and the population

autocovariance function must depend only on the lag between the observations.

Definition 7.6 A time series {Xt} is said to be stationary if the following two conditions are

satisfied.

(a) The population mean function µ(t) = E [Xt] exists and is constant in t; that is, there is a

real-valued constant c such that E [Xt] = c for all values of t.

(b) The population autocovariance function γ(s, t) = Cov(Xs, Xt) exists and depends only on

|t− s|; that is, for integers s1, t1, s2, and t2,

γ(s1, t1) = γ(s2, t2)

if |t1− s1|= |t2− s2|.

The first condition implies that the time series has no trend because each observation in the time

series has the same expected value. The second condition implies that the population covariance

between two observations is a function of only the absolute difference between the two time indexes

of the observations. This second condition implies that a stationary time series model only requires

a single argument, which is known as the lag k, when defining the population autocovariance and

autocorrelation function. We will use the same names for these functions, but only use a single

argument when the time series is stationary.

Definition 7.7 For a stationary time series {Xt}, the population autocovariance function is

γ(k) = Cov(Xt , Xt+k) ,

and the population autocorrelation function is

ρ(k) = Corr(Xt , Xt+k) =
γ(k)

γ(0)

for k = 0,±1,±2,

392 Chapter 7. Time Series Basics

The population autocorrelation function for a stationary time series provides an important reflec-

tion of the structure of a time series model. It gives the modeler a view of how observations in the

time series are correlated based on their distance away from one another in the time series. The next

example relates the population correlation matrix and the population autocorrelation function for a

time series model.

Example 7.14 Consider the stationary time series {Xt}with population correlation ma-

trix 


1.0 0.4 −0.2 0.1
0.4 1.0 0.4 −0.2
−0.2 0.4 1.0 0.4
0.1 −0.2 0.4 1.0


 .

There is a population and a sample version of this matrix, but we will refer to this ma-

trix as a population correlation matrix. This particular matrix is a special population

correlation matrix because it corresponds to a stationary time series with equal-valued

elements that are equal distance from the diagonal. The lag 2 population autocorrela-

tions, for example, are all−0.2, and are two positions away from the diagonal elements

in the population correlation matrix. The population autocorrelation function values for

lags 4 and higher are all zero. Some notes on the population correlation matrix for a

stationary time series model are given below.

• The population correlation matrix is symmetric and positive definite, with ones on

the diagonal, and identical elements at a fixed number of entries from the diagonal.

• The population correlation between adjacent observations in the time series is

given by the elements that are just off of the diagonal.

• This particular population correlation matrix has positive eigenvalues λ1 = 1.5,

λ2 = 1.3685, λ3 = 1, and λ4 = 0.1315, which is consistent with the matrix being

positive definite.

Convert this population correlation matrix to a population autocorrelation function.

Figure 7.8 shows the population correlation matrix rotated 45◦ clockwise. With this ro-

tation, the identical elements are now aligned vertically. The vertical dashed lines show

how the elements of the matrix are translated to a population autocorrelation function,

which has nonzero spikes at lags k = −3,−2, . . . , 3. The associated population auto-

correlation function is symmetric. As expected, the lag k population autocorrelation

satisfies −1 ≤ ρ(k) ≤ 1 for k = 0,±1,±2, There is no information conveyed by

including the population autocorrelation values for negative values of k. It is convention

in time series analysis that the spike of height 1 associated with lag k = 0 is included

in the graph of the population autocorrelation function. Furthermore, we always extend

the vertical axis from−1 to 1 so that all population autocorrelation functions are viewed

on an equal footing. Figure 7.9 shows the format that we will use for the plot of the

population autocorrelation function for nonnegative lags k from this point forward.

You might have noticed that the word population precedes autocorrelation function. This con-

vention is not universal, but we do so in order to distinguish the population autocorrelation function

from its statistical counterpart, the sample autocorrelation function. An analogy in the realm of

univariate probability distributions is the distinction between the population mean µ, which is a con-

stant, and its statistical counterpart, the sample mean X̄ , which is a random variable. In the same

Section 7.2. Basic Properties of a Time Series 393




1.0

0.4

−
0.2

0.1

0.4

1.0

0.4

−
0.2

−
0.2

0.4

1.0

0.4

0.1

−
0.2

0.4

1.0




k

−5 −4 −3 −2 −1 0 1 2 3 4 5

ρ(k)

1

0

−1

Figure 7.8: Mapping a correlation matrix to an autocorrelation function.

0 1 2 3 4 5

−1

0

1

k

ρ(k)

Figure 7.9: Population autocorrelation function for nonnegative lag values.

394 Chapter 7. Time Series Basics

sense, the population autocorrelation function ρ(k) is a sequence of population correlations, which

are fixed constants that are indexed by the lag k. The sample autocorrelation function, which will

be introduced in a subsequent section as rk, is a sequence of sample correlations, which are random

variables that are indexed by the lag k.

Several properties of the population autocorrelation function for all stationary time series models

are given next.

Theorem 7.1 For a stationary time series {Xt} with population mean µ and population autocorre-

lation function ρ(k),

• ρ(0) = 1,

• −1≤ ρ(k)≤ 1 for k = 0,±1,±2, . . . ,

• ρ(k) = ρ(−k) for k = 0, 1, 2, . . . ,

• ρ(k) is unitless, and

• ρ(k) does not uniquely determine an underlying time series model.

Proof Consider a stationary time series {Xt} with mean µ, population autocovariance

function γ(k), and population autocorrelation function ρ(k).

• The lag zero population autocorrelation is ρ(0) = 1 because

ρ(0) = Corr(Xt , Xt) =
Cov(Xt , Xt)

σXt σXt

=
V [Xt]

σ2
Xt

=
γ(0)

γ(0)
= 1.

• The lag k population autocorrelation must lie on the closed interval [−1, 1]. In

other words, −1 ≤ ρ(k) ≤ 1, because ρ(k) is defined as a population correlation.

This can also be proved by first principles as follows. The inequality

V [c1Xt + c2Xt+k]≥ 0

holds for any real-valued constants c1 and c2 because all variances are nonnega-

tive. This is equivalent to

c2
1V [Xt]+ c2

2V [Xt+k]+2c1c2Cov(Xt , Xt+k)≥ 0.

or (
c2

1 + c2
2

)
σ2

Xt
+2c1c2γ(k)≥ 0.

When c1 = c2 = 1, this inequality reduces to σ2
Xt
+ γ(k) ≥ 0, which implies that

ρ(k)= γ(k)/σ2
Xt
≥−1. Similarly, when c1 = 1 and c2 =−1, the inequality reduces

to σ2
Xt
− γ(k) ≥ 0, which implies that ρ(k) = γ(k)/σ2

Xt
≤ 1. Combining these two

inequalities gives −1≤ ρ(k)≤ 1.

• Since the time series {Xt} is stationary,

ρ(k) = Corr(Xt , Xt+k) = Corr(Xt−k, Xt) = ρ(−k)

for k = 0, 1, 2,

Section 7.2. Basic Properties of a Time Series 395

• The lag k population autocorrelation is unitless because the units of the numerator

of

ρ(k) =
Cov(Xt , Xt+k)

σXt σXt+k

are the square of the units of Xt , and the units of both σXt and σXt+k
are the units

of Xt . Thus, the units cancel and ρ(k) is unitless.

• This final property can be proved by counterexample. Consider two time series

models. The first is Xt ∼ GWN(0, 1) (that is, Gaussian white noise with σXt = 1).

The second is Xt ∼ IID(0, 1), for example, iid noise with σXt = 1 and error terms

U
(
−
√

3,
√

3
)
. These two time series models have identical population autocor-

relation functions but are not identical time series models. Therefore, ρ(k) does

not uniquely determine an underlying time series model. �

These properties of ρ(k) have important implications in time series analysis. The first result from

Theorem 7.1 indicates that there is perfect positive population autocorrelation between an observa-

tion and itself (that is, an observation at lag k = 0). The initial spike in the population autocorrelation

function at ρ(0) = 1 is generally included in a graph of the population autocorrelation function, al-

though it conveys no information. The second result indicates that all population autocorrelation

functions must lie between −1 and 1. Subsequent plots of ρ(k) will always stretch the vertical axis

from −1 to 1 so that they can easily be compared with one another. The third result indicates that

ρ(k) is an even function in k, so although k can be any integer, it is common practice to only graph

ρ(k) for k = 0, 1, 2, . . . because we know that the reflection about the ρ(k) axis is identical. There

is no need to graph the population autocorrelation function for negative lags because no additional

information is conveyed. The fourth result explains why ρ(k) tends to be more popular than γ(k)
because it is free of the units selected for Xt . The fifth result indicates that a time series model cannot

be determined from its population autocorrelation function. Every stationary time series model has

a population autocorrelation function, but knowing the autocorrelation function does not necessarily

determine the underlying time series model.

We can now revisit the three examples from the previous subsection, namely white noise, a

three-point moving average, and a random walk, to see if they are stationary time series models.

In addition, we will make a plot of their population autocorrelation functions if they happen to be

stationary.

Example 7.15 Consider the white noise time series model

Zt ∼WN
(
0, σ2

Z

)
,

and the time series of interest is just {Xt} = {Zt}. Determine whether this time series

model is stationary, and plot the population autocorrelation function if it is stationary.

Recall from Example 7.6 that the population mean function for the white noise time

series was

µ(t) = 0

for all values of t, so the first condition of Definition 7.6 is satisfied. Recall also that the

population autocovariance function was

γ(s, t) =

{
σ2

Z t = s

0 t 6= s.

396 Chapter 7. Time Series Basics

Since the value of γ(s, t) depends only on |t− s|, the second condition of Definition 7.6

is satisfied, and we conclude that this time series model is stationary. Because the

time series model is stationary, the population autocovariance function can be written

in terms of the single argument k, the lag, as

γ(k) =

{
σ2

Z k = 0

0 k = 1, 2,

Since γ(0) = σ2
Z , the population autocorrelation function written in terms of the lag k is

ρ(k) =

{
1 k = 0

0 k = 1, 2,

It would be perfectly reasonable to consider the range of k to be k = 0,±1,±2, . . . , but

Theorem 7.1 indicates that the population autocorrelation function for a stationary time

series model is always an even function, so we will only report the nonnegative values

of k. A graph of ρ(k) for the white noise process is shown in Figure 7.10. A horizontal

line has been drawn at ρ(k) = 0 for reference. There is a single spike of height 1 at lag

k = 0 which indicates that each observation is perfectly positively correlated with itself.

There are spikes of height 0 at k = 1, 2, . . . , which indicates that distinct observations

in the time series are uncorrelated, as expected from the time series model consisting of

white noise values.

0 1 2 3 4 5

−1.0

−0.5

0.0

0.5

1.0

k

ρ(k)

Figure 7.10: Population autocorrelation function for a white noise time series.

The population autocorrelation function for the white noise time series model is identical to that

for iid noise and Gaussian white noise because those time series models are subsets of the white

noise time series model. We now consider the three-point moving average model.

Example 7.16 Consider the white noise time series model

Zt ∼WN
(
0, σ2

Z

)
,

Section 7.2. Basic Properties of a Time Series 397

and the time series of interest {Xt} is the three-point moving average of the white noise;

that is,

Xt =
Zt−1 +Zt +Zt+1

3
.

Determine whether this time series model is stationary, and plot the population autocor-

relation function if it is stationary.

Recall from Example 7.7 that the population mean function for the white noise time

series was

µ(t) = 0

for all values of t, so the first condition of Definition 7.6 is satisfied. Recall also that the

population autocovariance function was

γ(s, t) =





σ2
Z/3 |t− s|= 0

2σ2
Z/9 |t− s|= 1

σ2
Z/9 |t− s|= 2

0 |t− s|> 2.

Since the value of γ(s, t) depends only on |t− s|, the second condition of Definition 7.6

is satisfied, and we conclude that this time series model is stationary. Because the

time series model is stationary, the population autocovariance function can be written

in terms of the single argument k, the lag, as

γ(k) =





σ2
Z/3 k = 0

2σ2
Z/9 k = 1

σ2
Z/9 k = 2

0 k = 3, 4,

Since γ(0) = σ2
Z/3, the population autocorrelation function written in terms of the lag k

is

ρ(k) =





1 k = 0

2/3 k = 1

1/3 k = 2

0 k = 3, 4,

A graph of ρ(k) for the three-point moving average model is shown in Figure 7.11.

As with all population autocorrelation functions, there is a spike of height 1 at lag

k = 0, which indicates that each observation is perfectly positively correlated with itself.

The spikes at k = 1 and k = 2 reflect the effect of the nearby moving averages being

functions of common white noise observations. Observations in {Xt} that are three or

more indexes apart are uncorrelated because they do not contain any common white

noise terms. This corresponds to ρ(k) = 0 for k = 3, 4,

The previous example concerning a three-point moving average of white noise generalizes to an

m-point moving average of white noise, where m is an odd, positive integer. The more general time

series model is also stationary, and the population autocorrelation function also decreases linearly,

and cuts off at lag m. The derivation of this result is given as an exercise at the end of this chapter.

The third example considers a random walk time series model.

398 Chapter 7. Time Series Basics

0 1 2 3 4 5

−1.0

−0.5

0.0

0.5

1.0

k

ρ(k)

Figure 7.11: Population autocorrelation function for a three-point moving average time series.

Example 7.17 Consider the white noise time series model

Zt ∼WN
(
0, σ2

Z

)
,

and the time series of interest {Xt} is the random walk model; that is,

Xt = Xt−1 +Zt .

Determine whether this time series model is stationary, and plot the population autocor-

relation function if it is stationary.

Recall from Example 7.8 that the population mean function for the white noise time

series was

µ(t) = 0

for all values of t, so the first condition of Definition 7.6 is satisfied. Recall also that the

population autocovariance function was

γ(s, t) = min{s, t}σ2
Z .

Since the value of γ(s, t) does not depend only on |t− s|, the second condition of Def-

inition 7.6 is not satisfied, so we conclude that this time series model is nonstationary.

Because the time series model is nonstationary, we are not able to write the population

autocovariance function in terms of the single argument k. An example of the popula-

tion autocorrelation function not being a function of the lag is

γ(1, 4) = σ2
Z and γ(2, 5) = 2σ2

Z .

Equivalently,

Cov(X1, X4) = σ2
Z and Cov(X2, X5) = 2σ2

Z .

Since observations that are three time indexes apart have different values of the popula-

tion autocovariance function, γ(s, t) does not depend only on |t− s|.

Section 7.2. Basic Properties of a Time Series 399

The statistical analogs of the population autocovariance and autocorrelation functions are the

sample autocovariance and autocorrelation functions, which are calculated from an observed time

series from a stationary model. These two functions are defined in the next subsection.

7.2.3 Sample Autocovariance and Autocorrelation

This section takes up the estimation of the population autocovariance function and the popula-

tion autocorrelation function from a single realization of a time series denoted by the observations

x1, x2, . . . , xn. In addition to the vital plot of a time series, a plot of the sample autocorrelation

function, which is known as the correlogram, can yield additional insight concerning the underlying

probability model governing the time series. The approach that we will take here is to review the

sample versions of the covariance and correlation in terms of data pairs in the next paragraph, and

then adapt these notions to their associated analogs in time series analysis.

This paragraph reviews the estimation of the population covariance and correlation from a data

set of data pairs (Xi, Yi), for i = 1, 2, . . . , n. The population covariance is estimated by the sample

covariance

Ĉov(X , Y) =
1

n

n

∑
i=1

(Xi− X̄)(Yi− Ȳ) ,

where X̄ and Ȳ are the sample means of the associated sample values:

X̄ =
1

n

n

∑
i=1

Xi and Ȳ =
1

n

n

∑
i=1

Yi.

This formula is the statistical analog to the formula

Cov(X , Y) = E [(X−µX)(Y −µY)]

from probability theory. There are two formulas for estimating the population variance from a

random sample—one with n in the denominator and one with n− 1 in the denominator. Since n is

required to be fairly large in time series analysis, the choice between the two is not critical. The

formula with n−1 in the denominator is more prevalent in statistics because

E

[
1

n−1

n

∑
i=1

(Xi− X̄)
2

]
= σ2

X

for mutually independent and identically distributed observations X1, X2, . . . , Xn; that is, the sample

variance S2 is an unbiased estimator of the population variance σ2
X . We use n in the denominator

here because, in spite of being a biased estimator of the population variance in the non-times-series

setting, it leads to certain terms dropping out of a subsequent formula. The population variances can

be estimated by the maximum likelihood estimators

σ̂2
X =

1

n

n

∑
i=1

(Xi− X̄)
2

and σ̂2
Y =

1

n

n

∑
i=1

(Yi− Ȳ)
2
.

An estimate for the population correlation ρ is given by the sample correlation

r = ρ̂ =
Ĉov(X , Y)

σ̂X σ̂Y

=
∑n

i=1 (Xi− X̄)(Yi− Ȳ)√[
∑n

i=1 (Xi− X̄)
2
][

∑n
i=1 (Yi− Ȳ)

2
] .

400 Chapter 7. Time Series Basics

Notice that the 1/n terms in the numerator and the denominator cancel. Had a denominator of n−1,

rather than n, been used in the formulas for Ĉov(X , Y), σ̂2
X , and σ̂2

Y , the same cancellation would

occur. Table 7.3 summarizes the results from Section 7.2.1 and this paragraph.

covariance correlation

population E [(X−µX)(Y −µY)]
E [(X−µX)(Y −µY)]

σX σY

sample 1

n

n

∑
i=1

(Xi− X̄)(Yi− Ȳ)

∑n
i=1 (Xi− X̄)(Yi− Ȳ)√[

∑n
i=1 (Xi− X̄)

2
][

∑n
i=1 (Yi− Ȳ)

2
]

Table 7.3: Population and sample covariance and correlation.

We now translate the concepts from the previous paragraph into the context of the analysis

of a time series. Consider the estimation of γ(k) and ρ(k) from a realization of observations

x1, x2, . . . , xn, which are assumed to be observed values from a stationary time series model. The

lag k sample autocovariance, which estimates γ(k), is

ck =
1

n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄) ,

where x̄ is the sample mean of the observations in the time series. This is not a universal choice

for ck. Since there are n− k terms in the summation, some time series analysts prefer to divide by

n− k rather than n. Because of the two different options for the denominator, it is important to only

calculate ck for k values that are significantly smaller than n. Generally speaking, there should be

at least 60 to 70 observations in a time series to use the techniques described here. Having a large

value of n means that having n or n− k in the denominator is not critical for small values of k. The

units on ck are the square of the units of the observations in the time series. Notice that when k = 0,

the lag 0 sample autocovariance reduces to

c0 =
1

n

n

∑
t=1

(xt − x̄)2 ,

which is an estimate for γ(0) = σ2
X . The lag k sample autocorrelation, which estimates ρ(k), is

rk =
ck

c0

for integer values of k which are significantly smaller than n. As was the case with ρ(k), the lag k

sample autocorrelation is a unitless quantity. When k = 0, r0 = c0/c0 = 1, as desired. The notation

developed here to calculate γ(k) and ρ(k) for a stationary time series model and to estimate these

functions with ck and rk for an observed time series x1, x2, . . . , xn is summarized in Table 7.4.

Section 7.2. Basic Properties of a Time Series 401

lag k autocovariance lag k autocorrelation

population γ(k) = E [(Xt −µX)(Xt+k−µX)] ρ(k) =
γ(k)

γ(0)

sample ck =
1

n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄) rk =
ck

c0

Table 7.4: Population and sample lag k autocovariance and autocorrelation.

Computing Sample Autocovariance and Autocorrelation

We now consider the estimation of the lag k sample autocovariance ck and the lag k sample

autocorrelation rk in R. We write an R function named autocovariance below that has two ar-

guments: the vector containing the time series x and the lag k. The first statement in the function

uses the length function to determine the number of observations in the time series. The second

statement uses the mean function to calculate the sample mean of the values in the time series. The

third statement uses the formula

ck =
1

n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄)

to calculate the lag k sample autocovariance.

autocovariance = function(x, k) {

n = length(x)

xbar = mean(x)

sum((x[1:(n - k)] - xbar) * (x[(k + 1):n] - xbar)) / n

}

We can now write an R function named autocorrelation below that has the same arguments as

the autocovariance function. It uses the formula

rk =
ck

c0

to calculate the lag k sample autocorrelation.

autocorrelation = function(x, k) {

autocovariance(x, k) / autocovariance(x, 0)

}

Time series analysts typically plot the sample autocorrelation function values for the first few

lags. This plot is known as either the sample autocorrelation function or the correlogram. We

illustrate the calculation and plotting of the correlogram for a simulated time series whose elements

are Gaussian white noise, so σX = σZ . Recall that Gaussian white noise, denoted by

Xt ∼ GWN
(
0, σ2

Z

)
,

402 Chapter 7. Time Series Basics

consists of mutually independent N
(
0, σ2

Z

)
observations. Recall from Example 7.15 that the popu-

lation autocovariance function is

γ(k) =

{
σ2

Z k = 0

0 k = 1, 2, . . .

and the population autocorrelation function is

ρ(k) =

{
1 k = 0

0 k = 1, 2,

We expect the sample autocorrelation function to be similar to the population autocorrelation func-

tion except for random sampling variability. The R code below plots the correlogram for the first

20 lags for a time series that consists of n = 100 observations of a Gaussian white noise time series.

We have assumed here that the population variance of the Gaussian white noise is equal to one (that

is, σZ = 1). The first statement in the R code below uses the set.seed function to set the random

number seed to 8. The second statement uses the rnorm function to generate a time series con-

sisting of 100 mutually independent standard normal random variates. The vector correlogram

is initialized to a vector of length 21. This will hold the lag 0 sample autocorrelation function

value (which is always r0 = 1) and the sample autocorrelation function values for lags 1 to 20. The

autocorrelation function defined previously will compute the sample autocorrelation values. Fi-

nally, the plot function is used to plot the sample autocorrelation function. Using the type = "h"

argument in the call to plot graphs the sample autocorrelation values as spikes. This is largely a

matter of personal taste. Some time series analysts prefer to connect them with a line. We take

the spike approach to emphasize that a non-integer value for the lag has no meaning in the context

described here. The ylim = c(-1, 1) argument is included so that the entire potential range of

the sample autocorrelation values −1 ≤ rk ≤ 1 is included. The abline function is used to draw a

horizontal line at rk = 0, and two other dashed lines that will be described subsequently.

set.seed(8)

n = 100

x = rnorm(n)

correlogram = numeric(21)

for (i in 1:21) correlogram[i] = autocorrelation(x, i - 1)

plot(0:20, correlogram, type = "h", ylim = c(-1, 1))

abline(h = 0)

abline(h = c(-1, 1) * 2 / sqrt(n), lty = 2)

The plot of the time series and the correlogram for the first 20 lags are given in Figure 7.12. The

time series plot displays the typical pattern for Gaussian white noise. The observations are mutually

independent, so equally likely to be positive or negative. There are just a handful of observations

more than 2 units away from the population mean function µ(t) = E[Xt] = 0. The correlogram

is exactly what we anticipated for a time series consisting of Gaussian white noise based on our

population autocorrelation function ρ(k), which was one at lag zero and zero at all other lags. We

have r0 = 1, as expected, and then small spikes associated with values of rk at other lag values k

that reflect the random sampling variability in the specific time series values that were generated by

the rnorm function. The correlogram has a horizontal line drawn at correlation 0 to make it clearer

which spikes are positive and which are negative. In addition, the correlogram would be identical

if all of the points in the time series were translated to have arbitrary population mean µ rather than

population mean 0. Correlograms are not influenced by a shift in the time series. Since drawing a

Section 7.2. Basic Properties of a Time Series 403

1 100

−3

−2

−1

0

1

2

3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1.0

−0.5

0.0

0.5

1.0

t

xt

k

rk

Figure 7.12: Time series plot and correlogram for n = 100 Gaussian white noise observations.

correlogram occurs so frequently in the analysis of a time series, R has automated the process with

the acf function (acf is an abbreviation for autocorrelation function). After a call to set.seed(8),

all of the previous calculations can be performed with the single R statement

acf(rnorm(100), ylim = c(-1, 1), lag.max = 20)

When you make this call to the acf function, you will notice that two dashed lines are drawn just

above and just below the horizontal line rk = 0, as was the case in Figure 7.12. These two lines are

95% confidence limits that are helpful for determining whether the sample autocorrelation function

values are statistically different from zero. Even for a time series consisting of Gaussian white noise,

the probability distribution of rk is complicated because the formula for rk is complicated. However,

when the time series {Xt} consists of mutually independent observations, the population mean and

variance of rk are

E [rk]∼=
1

n

and

V [rk]∼=
1

n

404 Chapter 7. Time Series Basics

for k = 1, 2, . . . , and these values are asymptotically normally distributed. This means that an

approximate two-sided 95% confidence interval for rk when n is large and k is significantly less than

n is
1

n
−1.96

1√
n
< rk <

1

n
+1.96

1√
n
,

where 1.96 is the 0.975 fractile of the standard normal distribution. Since n is typically large in time

series analysis, the 1/n term is often assumed to be small enough to ignore. Furthermore, if 1.96 is

rounded to 2, then this approximate 95% confidence interval simplifies to

− 2√
n
< rk <

2√
n
,

The limits at ±2/
√

n are plotted in Figure 7.12 as dashed lines at ±2/
√

100 = ±0.2. We notice

that the spikes in the correlogram in Figure 7.12 fall outside of the confidence interval limits for

lag 2 (just barely) and lag 9. We should not be concerned about this occurring. Since these are

approximate 95% confidence intervals, we would expect to have about 1 in 20 values fall outside of

the limits even if we had mutually independent observations in the time series. Since it appears that

there is little or no pattern to the spikes in Figure 7.12, we conclude that the two spikes that exceeded

the confidence limits are just due to random sampling variability. Significant spikes at lower lags,

for example, lag 1 and lag 2 should be scrutinized more carefully than other lone significant spikes,

such as the one that we saw at lag 9. Furthermore, a significant spike at a lag associated with possible

seasonal variation (for example, lag 12 for monthly data with a suspected annual variation) should

also be scrutinized more carefully than other statistically significant spikes.

Correlogram Examples

Experience is critical in interpreting correlograms. Four examples are given here to illustrate the

recommended thought process associated with the interpretation of a time series and its correlogram.

The four examples are

• a time series with a linear trend illustrated by the population of Australia from 1971–1993,

• a time series of the first 100 Dow Jones Industrial Average closing values in the year 2000,

• a time series of chemical yields, and

• a seasonal time series illustrated by the home energy consumption values from 2011–2018.

For all four time series, we (a) plot the time series, (b) plot the associated correlogram, (c) interpret

the statistically significant spikes in the correlogram, and (d) interpret the shape of the spikes in the

correlogram.

Example 7.18 This example considers the calculation of the sample autocorrelation

function for a time series with a linear trend. The time series consists of n= 89 quarterly

observations, which are the quarterly number of Australian residents (in thousands)

from the second quarter of 1971 through the second quarter of 1993. This time series is

built into R and has the name austres. Plot the time series and associated correlogram,

and interpret the significance of the spikes and shape formed by the values of rk.

We can view the observations in the time series by just typing the name of the data set.

austres

Section 7.2. Basic Properties of a Time Series 405

The output from this command is given below.

Qtr1 Qtr2 Qtr3 Qtr4

1971 13067.3 13130.5 13198.4

1972 13254.2 13303.7 13353.9 13409.3

1973 13459.2 13504.5 13552.6 13614.3

1974 13669.5 13722.6 13772.1 13832.0

1975 13862.6 13893.0 13926.8 13968.9

1976 14004.7 14033.1 14066.0 14110.1

1977 14155.6 14192.2 14231.7 14281.5

1978 14330.3 14359.3 14396.6 14430.8

1979 14478.4 14515.7 14554.9 14602.5

1980 14646.4 14695.4 14746.6 14807.4

1981 14874.4 14923.3 14988.7 15054.1

1982 15121.7 15184.2 15239.3 15288.9

1983 15346.2 15393.5 15439.0 15483.5

1984 15531.5 15579.4 15628.5 15677.3

1985 15736.7 15788.3 15839.7 15900.6

1986 15961.5 16018.3 16076.9 16139.0

1987 16203.0 16263.3 16327.9 16398.9

1988 16478.3 16538.2 16621.6 16697.0

1989 16777.2 16833.1 16891.6 16956.8

1990 17026.3 17085.4 17106.9 17169.4

1991 17239.4 17292.0 17354.2 17414.2

1992 17447.3 17482.6 17526.0 17568.7

1993 17627.1 17661.5

The plot of the time series and the plot of the sample autocorrelation function are

graphed one above the another using the R plot.ts and acf functions. The par func-

tion called with the argument mfrow = c(2, 1) creates a template for a 2×1 matrix

of graphs.

par(mfrow = c(2, 1))

plot.ts(austres, type = "p", cex = 0.4)

abline(h = mean(austres))

acf(austres)

The default on the plot.ts function is to connect the time series values with lines.

That default is modified here by setting the type argument to "p" in order to just plot

points instead. The cex (character expand) parameter controls the size of the points. A

horizontal line has been added to the time series plot using the abline function at the

sample mean value of the time series, x̄ = 15,273, which will aid in the interpretation

of the values of rk. The plots are displayed in Figure 7.13. The time series is plotted

as just points because of the linear growth in the population. The first 46 of the n = 89

observations are below the sample mean, and the remainder are above the sample mean.

Consider now the calculation of c1, the lag 1 sample autocovariance. The formula for

c1 is

c1 =
1

n

n−1

∑
t=1

(xt − x̄)(xt+1− x̄) .

406 Chapter 7. Time Series Basics

1971 1982 1993

13000

14000

15000

16000

17000

18000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1.0

−0.5

0.0

0.5

1.0

t

xt

k

rk

Figure 7.13: Time series plot and correlogram for n = 89 quarterly population observations.

Consider adjacent observations in the time series (that is, observations that are just

one lag apart). The first two observations, x1 and x2, are both less than x̄, so the product

(x1− x̄)(x2− x̄) makes a positive contribution to c1. Likewise, x2 and x3 make a positive

contribution to c1. Likewise, x3 and x4 make a positive contribution to c1. In fact, all

of the adjacent observations make a positive contribution to c1 except for x46 and x47,

which are on opposite sides of x̄, so this pair makes a negative contribution. It is for

this reason that c1 will be positive for this particular time series, and the associated

correlation r1 will be positive and statistically significant. The terms in c1 and c0 are

very similar for this time series, so r1 will be close to 1.

Now consider observations in the time series that are two lags apart. There are now n−2

terms in the summation for c2. The first two observations, x1 and x3, are both less than

x̄, so the product (x1− x̄)(x3− x̄) makes a positive contribution to c2. Likewise, x2 and

x4 make a positive contribution to c2. Likewise, x3 and x5 make a positive contribution

to c2. In fact, all of the observations make a positive contribution to c1 except for two

pairs, x45 and x47 and x46 and x48, which are on opposite sides of x̄. These pairs make a

Section 7.2. Basic Properties of a Time Series 407

negative contribution. So there will be a significant positive value for r2, but it will be

slightly smaller in magnitude than r1. This pattern continues for r3, r4, . . . , r32 as the rk

values are a decreasing value of k. Then at lag 33, which is beyond the lags displayed

in Figure 7.13, there is an approximately equal number of positive and negative terms

in the summation to calculate c33. This results in r33 being the first negative value in

the correlogram. So r33 and the sample autocorrelation function values that follow it

are negative. So in conclusion, a time series with a linear trend (either increasing or

decreasing) has a correlogram in which the initial spikes of rk are linearly decreasing

in k. The correlogram for a time series with a linear or nonlinear trend will not have

a traditional interpretation that will be seen in the other examples because the trend

overwhelms the values in the correlogram. It is often the case that the trend is first

removed, and then the correlogram of the detrended series is analyzed. It is a good

exercise to use the acf function with a bigger lag.max argument than the default to

see what the autocorrelation function does for larger values of k.

The next example considers a time series that has statistically significant positive autocorrelation

values at small lags.

Example 7.19 Consider again the time series of the first n = 100 Dow Jones Industrial

Averages during 2000 that was first detailed in Example 7.4. Plot the time series and

associated correlogram, and interpret the significance of the spikes and shape formed

by the values of rk.

The time series (with a horizontal line drawn at the mean value x̄ = 10,766) and the

correlogram are shown in Figure 7.14. Consider the lag 1 sample autocorrelation. Con-

sidering the adjacent observations in the time series plot, the vast majority lie on the

same side of x̄. This results in a statistically significant positive lag 1 sample autocor-

relation r1. Similar thinking should convince you that there will also be a statistically

significant positive lag 2 sample autocorrelation r2. This time series exhibits runs of

significant length above and below the population mean, so it has a dozen statistically

significant initial spikes on the correlogram. So a time series that is well-modeled by a

random walk (as shown in Example 7.4) has a correlogram with statistically significant

early positive sample autocorrelation values.

The next example considers a stationary time series in which adjacent observations tend to be

on opposite sides of the sample mean.

Example 7.20 Consider the time series consisting of n = 70 consecutive yields from

a batch chemical process from page 32 of Box and Jenkins (1976) given in Table 7.5

(read row-wise). Plot the time series and associated correlogram. Interpret the statistical

significance of the spikes and the shape formed by the values of rk.

The time series plot of the yields, along with a horizontal line at x̄ = 51.1, is given in the

top graph in Figure 7.15. The bottom graph contains the associated correlogram. The

time series plot indicates that a large yield is followed by a small yield in a majority of

the observations, so we expect a negative lag 1 sample autocorrelation function value.

The lag 1 sample autocorrelation function value is r1 = −0.390. Since observations

that are two apart tend to be on the same side of the sample mean, the lag 2 sample

autocorrelation function value is r2 = 0.304. So a time series which tends to jump

above and below the sample mean results in a correlogram whose rk values alternate

408 Chapter 7. Time Series Basics

0 10 20 30 40 50 60 70 80 90 100

9796

10766

11723

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

−1.0

−0.5

0.0

0.5

1.0

t

xt

k

rk

Figure 7.14: Time series plot and correlogram for n = 100 DJIA closing prices.

in sign. These are the only two values of the correlogram that show a statistically

significant difference from zero because they lie outside of the 95% confidence limits.

The dashed horizontal lines corresponding to 95% confidence bounds that determine

47 64 23 71 38 64 55 41 59 48 71 35 57 40

58 44 80 55 37 74 51 57 50 60 45 57 50 45

25 59 50 71 56 74 50 58 45 54 36 54 48 55

45 57 50 62 44 64 43 52 38 59 55 41 53 49

34 35 54 45 68 38 50 60 39 59 40 57 54 23

Table 7.5: A time series of n = 70 consecutive yields from a chemical process.

Section 7.2. Basic Properties of a Time Series 409

1 70

20

30

40

50

60

70

80

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−1.0

−0.5

0.0

0.5

1.0

t

xt

k

rk

Figure 7.15: Time series plot and correlogram of n = 70 yields from a chemical process.

statistical significance are drawn on the correlogram at heights

± 2√
70
∼=±0.239.

These two sample autocorrelation function values might be due to overcorrection by the

personnel running the batch chemical process.

The final example illustrates the impact of a time series with a seasonal component on the shape

of the correlogram.

Example 7.21 Consider again the home energy consumption time series from Exam-

ple 7.1 consisting of n = 84 monthly observations (measured in kilowatt hours) col-

lected between 2011 and 2018. Plot the time series and associated correlogram. In-

terpret the statistical significance of the spikes and the shape formed by the values of

rk.

410 Chapter 7. Time Series Basics

The time series and correlogram are shown in Figure 7.16, with a horizontal line drawn

at the mean value x̄ = 1703 kilowatt hours. The time series displays a seasonal pattern,

with higher energy consumption during the winter months and the summer months. The

winter months tend to draw more energy than the summer months. The correlogram for

a time series with a seasonal component is also cyclic, with a frequency that matches the

frequency in the time series. Since the summer and winter months draw more energy

from the heat pump, the cycle on the correlogram repeats itself with a wavelength of 6.

The fact that the magnitude of r12 is larger than the magnitude of r6 is due to the fact

that the winter months draw more energy than the summer months. For this particular

time series, the shape of the correlogram does not provide much information beyond

confirming that this is a time series with a seasonal component. The more valuable

information is typically gleaned by first detrending the time series (that is, removing

the seasonal component) and inspecting the correlogram of the detrended time series.

The statistically significant sample autocorrelation function value at lag 3, which is

r3 =−0.397, indicates that energy consumption in months that differ by 3 (for example,

2011 2012 2013 2014 2015 2016 2017 2018

1000

1500

2000

2500

3000

3500

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

−1.0

−0.5

0.0

0.5

1.0

t

xt

k

rk

Figure 7.16: Time series plot and correlogram for n = 84 home energy consumption values.

Section 7.2. Basic Properties of a Time Series 411

February and May), tend to have energy consumptions that lie on the opposite side of

the sample mean.

To summarize the section thus far, the population mean function µ(t) = E [Xt] is the expected

value of the time series at time t, and indicates whether a trend and/or cyclic variation is present. The

population autocovariance and population autocorrelation functions reflect the linear relationship

between two values, Xs and Xt , in the time series. A time series is stationary if the population

mean function is constant in t and the population autocovariance function γ(s, t) = Cov(Xs, Xt)
depends only on |t− s|. For a stationary time series, the population autocovariance function and the

population autocorrelation function can be written as a function of the lag k = |t − s| as γ(k) and

ρ(k). The sample autocorrelation function estimates the population autocorrelation function.

Occasions arise in time series analysis in which we are also interested in the correlation be-

tween Xt and Xt+k with the linear dependency on the values between these two values, namely

Xt+1, Xt+2, . . . , Xt+k−1, removed. This leads to what is known as the partial autocorrelation func-

tion, which is presented next.

7.2.4 Population Partial Autocorrelation

One key characteristic of nearly all time series is that nearby observations tend to be correlated. This

makes the notion of autocorrelation crucial in time series analysis because it captures the correlation

between observations in a stationary time series that are separated in time by a prescribed number

of lags. The population autocorrelation function was introduced in Section 7.2.1; its statistical

counterpart, the sample autocorrelation function, was introduced in Section 7.2.3.

It is often difficult to distinguish between population autocorrelation functions for two different

competing, tentative stationary time series models in practice because

• the population autocorrelation functions for the two models are nearly identical, and/or

• there is significant sampling variability in the sample autocorrelation functions making it dif-

ficult to determine which of the two models provides a better fitted model.

As will be seen in subsequently, the sample autocorrelation function is particularly helpful for de-

termining the number of terms to include in a popular time series model known as a moving average

model. However, the sample autocorrelation function is much less helpful for determining the num-

ber of terms to include in another popular time series model known as an autoregressive model. A

second type of autocorrelation function, the partial autocorrelation function, is an ancillary diag-

nostic tool to help determine the number of terms to include in an autoregressive model. As was

the case with the autocorrelation function, there is a population and a sample version of the par-

tial autocorrelation function. The population partial autocorrelation function is introduced in this

subsection.

The notion behind partial autocorrelation is intuitive. Before describing the interpretation of

partial autocorrelation in the context of time series analysis, we present a scenario involving just

partial correlation in a more general setting. Let’s say you are interested in the correlation between

a full-time employee’s age, X , and their annual income, Y . Intuition suggests that this correlation

is positive because annual income tends to rise with age. But there are other factors that influence

income, such as the employee’s education level achieved, the number of years on the job, specific

industry of employment, etc. To simplify, let’s consider just one of these factors, say, the employee’s

years of education achieved, Z. The population partial correlation is the population correlation

between age X and annual income Y with the linear relationship associated with the number of

412 Chapter 7. Time Series Basics

years of education Z removed. We are effectively controlling for the influence of education as we

measure the correlation between X and Y . We regress X on Z to obtain X̃ . We regress Y on Z to

obtain Ỹ . This regression is in the sense of probability rather than its statistical counterpart (which

typically uses least squares for parameter estimation). Finally, we calculate the population partial

correlation Corr
(
X− X̃ ,Y − Ỹ

)
, which is the population correlation between X and Y with the linear

influence of Z removed. Like the ordinary population correlation, the population partial correlation

falls in the closed interval [−1, 1]. The extreme values on this interval correspond to perfect negative

population correlation and perfect positive population correlation, respectively. To summarize, the

partial correlation measures the degree of linear association between two variables, with the linear

association of one or more other variables removed.

Returning to the time series context, the partial autocorrelation reflects the relationship between

observations at a particular lag in a time series with the linear relationship associated with inter-

vening observations removed. The variables whose influence is being removed are the observations

between the two values of the time series of interest. Stated in another fashion, the partial autocor-

relation at lag k is the population correlation between two observations in the time series that are

k time units apart after the removal of the linear influence of the time series observations at lags

1, 2, . . . , k−1. As was the case with autocorrelation, we want to find the population and sample

versions of the partial autocorrelation. We will then have an inventory of possible population partial

autocorrelation shapes that we can match to sample partial autocorrelation functions, which will

help determine the number of terms to include in a time series model. The main role of the sample

partial autocorrelation function is to determine the number of terms to include in an autoregressive

model.

We now develop some general notation concerning partial autocorrelation. Although many au-

thors use φkk to denote the population lag k partial autocorrelation, we will instead use ρ∗(k) to

emphasize that this quantity is still a correlation and to use the symbol φ exclusively for the coeffi-

cients in an autoregressive time series model. The superscript ∗ is used to distinguish the population

partial autocorrelation function from the population autocorrelation function ρ(k). Likewise, we will

use r∗k to denote the sample lag k partial autocorrelation in the next subsection. The superscript ∗ is

used here to distinguish the sample partial autocorrelation function from the sample autocorrelation

function rk.

The next example illustrates the calculation of a population partial autocorrelation for a station-

ary time series model.

Example 7.22 Consider the stationary time series model

Xt = 0.8Xt−1 +Zt ,

where {Zt} ∼WN
(
0, σ2

Z

)
. The current value in the time series is 0.8 times the previous

value in the time series, plus a random shock of white noise Zt . This time series model

is similar to the random walk time series model that was introduced in Example 7.4

and analyzed in Examples 7.8, 7.11, and 7.17. The random walk time series model

was determined to be nonstationary. The one small difference between this time series

model and the random walk is the 0.8 coefficient associated with the Xt−1 term. This

small alteration makes this time series model stationary. What is the population lag 2

partial autocorrelation?

The population lag 2 partial autocorrelation is the population correlation between Xt

and Xt−2 with the linear effect of the intervening observation Xt−1 removed. This is the

population correlation between Xt −0.8Xt−1 and Xt−2−0.8Xt−1, which can be written

Section 7.2. Basic Properties of a Time Series 413

as

ρ∗(2) = Corr(Xt −0.8Xt−1, Xt−2−0.8Xt−1)

=
Cov(Xt −0.8Xt−1, Xt−2−0.8Xt−1)√

V [Xt −0.8Xt−1]V [Xt−2−0.8Xt−1]

=
Cov(Zt , Xt−2−0.8Xt−1)√

V [Zt]V [Xt−2−0.8Xt−1]

=
0√

V [Zt]V [Xt−2−0.8Xt−1]

= 0

because the population covariance between the white noise term at time t, which is

Zt , and the linear combination of the two previous values of the time series, which is

Xt−2−0.8Xt−1, is zero.

We now pivot from the calculation of population partial autocorrelation for a specific time series

model to the calculation of the population partial autocorrelation for a general stationary time series

model. Let’s begin with the calculation of the lag 1 population partial autocorrelation ρ∗(1) for a

stationary time series model. By definition, this is the population correlation between Xt and Xt−1

after removing the linear effect of any observations between Xt and Xt−1. But there aren’t any

observations between Xt and Xt−1, so the lag 1 population partial autocorrelation is simply the lag 1

population autocorrelation: ρ∗(1) = ρ(1). The population partial autocorrelation for higher lags

uses the best linear estimate of each of the two values of interest as a function of the intervening

values. Minimizing the associated mean square error, the population partial autocorrelation can be

determined by solving a set of linear equations. Using Cramer’s rule to solve these equations, the

population lag 2 partial autocorrelation function value is given by the ratio of determinants

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
.

Notice that the denominator is the determinant of the correlation matrix of any two adjacent obser-

vations. The numerator is the determinant of this same matrix with the last column replaced by the

first two population autocorrelation values. This pattern continues for the population lag 3 partial

autocorrelation function value, which is

ρ∗(3) =

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

.

Again, the denominator is the determinant of the correlation matrix of any three sequential obser-

vations. The numerator is the determinant of this same matrix with the last column replaced by the

first three population autocorrelation values (where the lag number matches the row number). This

pattern continues for higher lag values, which leads to the following definition.

414 Chapter 7. Time Series Basics

Definition 7.8 For a stationary time series model, the lag 0 population partial autocorrelation is 1,

the lag 1 population partial autocorrelation is ρ(1), and the lag k population partial autocorrelation

is

ρ∗(k) =

∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2) · · · ρ(1)
ρ(1) 1 ρ(1) · · · ρ(2)
ρ(2) ρ(1) 1 · · · ρ(3)

...
...

...
. . .

...

ρ(k−1) ρ(k−2) ρ(k−3) · · · ρ(k)

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2) · · · ρ(k−1)
ρ(1) 1 ρ(1) · · · ρ(k−2)
ρ(2) ρ(1) 1 · · · ρ(k−3)

...
...

...
. . .

...

ρ(k−1) ρ(k−2) ρ(k−3) · · · 1

∣∣∣∣∣∣∣∣∣∣∣

,

for k = 2, 3,

The next example illustrates the calculation of the population partial autocorrelation function for

a stationary time series model.

Example 7.23 Consider the time series model for {Xt} described by

Xt = Zt −Zt−1 +
1

2
Zt−2,

where {Zt} ∼WN
(
0, σ2

Z

)
. The current value of the time series is a linear combina-

tion of the current and two previous shock values. Find the population autocorrelation

function and the population partial autocorrelation function for the first eight lags.

The population mean function is

µ(t) = E [Xt] = E

[
Zt −Zt−1 +

1

2
Zt−2

]
= E [Zt]−E [Zt−1]+

1

2
E [Zt−2] = 0.

The population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= E
[
(Xs−E [Xs]) (Xt −E [Xt])

]

= E [XsXt]

= E

[(
Zs−Zs−1 +

1

2
Zs−2

)(
Zt −Zt−1 +

1

2
Zt−2

)]

= E [ZsZt]−E [ZsZt−1]+
1

2
E [ZsZt−2]−E [Zs−1Zt]+E [Zs−1Zt−1]−

1

2
E [Zs−1Zt−2]+

1

2
E [Zs−2Zt]−

1

2
E [Zs−2Zt−1]+

1

4
E [Zs−2Zt−2] .

When t = s,

γ(t, t) = E
[
Z2

t

]
+E

[
Z2

t−1

]
+

1

4
E
[
Z2

t−2

]
=V [Zt]+V [Zt−1]+

1

4
V [Zt−2] =

9

4
σ2

Z

Section 7.2. Basic Properties of a Time Series 415

because of the mutual independence of the white noise terms and the fact that the ex-

pected value of each white noise term is zero. When |t − s| = 1, for example, when

t = s−1,

γ(s, t) =−E [Zs−1Zt]−
1

2
E [Zs−2Zt−1] =−

3

2
σ2

Z .

When |t− s|= 2, for example, when t = s−2,

γ(s, t) =
1

2
E [Zs−2Zt] =

1

2
σ2

Z .

When |t− s| = 3, 4, . . . , the population autocovariance is γ(s, t) = 0 because each ex-

pected value in the expansion of γ(s, t) contains independent random variables. Since

the population mean function is constant in time and the population autocovariance is a

function of the lag k = |t− s| (as required by Definition 7.6), we have established that

the time series model is stationary with population autocovariance function

γ(k) =





9σ2
Z/4 k = 0

−3σ2
Z/2 k = 1

σ2
Z/2 k = 2

0 k = 3, 4,

Since ρ(k) = γ(k)/γ(0), the population autocorrelation function is

ρ(k) =





1 k = 0

−2/3 k = 1

2/9 k = 2

0 k = 3, 4, . . . ,

Notice that the population autocorrelation function is independent of the population

variance of the white noise σ2
Z .

We now turn to calculation the population partial autocorrelation function. The lag 0

population partial autocorrelation is ρ∗(0) = 1. From Definition 7.8, the lag 1 pop-

ulation partial autocorrelation is ρ∗(1) = ρ(1) = −2/3. The lag 2 population partial

autocorrelation is the ratio of the determinants of two 2×2 matrices:

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
=

∣∣∣∣
1 −2/3

−2/3 2/9

∣∣∣∣
∣∣∣∣

1 −2/3

−2/3 1

∣∣∣∣
=
−2/9

5/9
=−2

5
=−0.4.

The lag 3 population partial autocorrelation is the ratio of the determinants of two 3×3

matrices:

ρ∗(3)=

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1 −2/3 −2/3

−2/3 1 2/9

2/9 −2/3 0

∣∣∣∣∣∣
∣∣∣∣∣∣

1 −2/3 2/9

−2/3 1 −2/3

2/9 −2/3 1

∣∣∣∣∣∣

=
−8/243

7/27
=− 8

63
∼=−0.1270.

416 Chapter 7. Time Series Basics

Computing determinants by hand gets more tedious as the size of the matrices grows.

The R code below automates this process, using the det function to calculate the deter-

minants. After executing the code, the vector rhostar contains the first eight popula-

tion partial autocorrelation values. Examine the subscripts carefully because there is a

lag zero autocorrelation but R begins its subscripts at 1.

rho = c(1, -2 / 3, 2 / 9, 0, 0, 0, 0, 0, 0)

rhostar = rho

for (k in 2:(length(rho) - 1)) {

a = matrix(1, k, k)

for (i in 1:(k - 1)) a[abs(row(a) - col(a)) == i] = rho[i + 1]

denominator = det(a)

a[, k] = rho[2:(k + 1)]

numerator = det(a)

rhostar[k + 1] = numerator / denominator

}

rhostar

The calculations in this example have been automated in the ARMAacf function in R.

The ar and ma parameters will be described in a subsequent chapter, but notice that

the elements in the ma vector are the coefficients of Zt−1 and Zt−2 in the original time

series model. The first R command below calculates the values of ρ(1), ρ(2), . . . , ρ(8),
and the second R command calculates the values of ρ∗(1), ρ∗(2), . . . , ρ∗(8) because the

pacf argument in the call to ARMAacf is set to TRUE.

ARMAacf(ar = 0, ma = c(-1, 1 / 2), lag.max = 8)

ARMAacf(ar = 0, ma = c(-1, 1 / 2), lag.max = 8, pacf = TRUE)

The resulting population autocorrelation and partial autocorrelation functions are plot-

ted in Figure 7.17. The population autocorrelation function cuts off at lag 2 and the

population partial autocorrelation function has correlations that appear to behave in a

0 1 2 3 4 5 6 7 8

−1

0

1

0 1 2 3 4 5 6 7 8

−1

0

1

kk

ρ(k) ρ∗(k)

Figure 7.17: Population autocorrelation and partial autocorrelation functions.

Section 7.2. Basic Properties of a Time Series 417

damped sinusoidal fashion. Time series analysts refer to this type of population partial

autocorrelation function as one that “tails off.”

7.2.5 Sample Partial Autocorrelation

We now transition from considering the population partial autocorrelation function to considering

its statistical counterpart, the sample partial autocorrelation function. Calculating the sample partial

autocorrelation function is just a matter of replacing the population values with the sample values in

the determinants given in Definition 7.8.

Definition 7.9 For a stationary time series model, the lag 0 sample partial autocorrelation is 1, the

lag 1 sample partial autocorrelation is r1, and the lag k sample partial autocorrelation is

r∗(k) =

∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2 · · · r1

r1 1 r1 · · · r2

r2 r1 1 · · · r3

...
...

...
. . .

...

rk−1 rk−2 rk−3 · · · rk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2 · · · rk−1

r1 1 r1 · · · rk−2

r2 r1 1 · · · rk−3

...
...

...
. . .

...

rk−1 rk−2 rk−3 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

,

for k = 2, 3,

Given an observed time series, the R code from the previous example that used the det function

to calculate the determinants could be used to perform these calculations. The sample partial auto-

correlation function can be calculated much more efficiently, however, by using the built-in pacf

function in R, as illustrated in the next example. The lag in which the sample partial autocorrelation

function values become statistically indistinguishable from zero can be determined by using the ap-

proximate result that for a time series of white noise values, r∗k ∼ N (0, 1/n), for k = 1, 2, For

this reason, the pacf function in R plots dashed lines at the approximate 95% bands at ±1.96/
√

n.

These dashed lines are useful to a time series analyst in determining which sample partial autocor-

relation values differ significantly from zero.

Example 7.24 Plot the time series, sample autocorrelation function, and sample par-

tial autocorrelation function for the n = 70 chemical yield values from Example 7.20,

repeated in Table 7.6 for convenience. The values in the time series should be read

row-wise.

It would be reasonable to simply use the code from the previous example to compute

the sample partial autocorrelation function, but we instead illustrate the use of R’s built-

in pacf function here. In addition, the layout function can be used to stretch the

time series plot from left-to-right on the graphic, but yet compress the plots of the

sample autocorrelation function and the sample partial autocorrelation function. The

elements in the matrix given as the first argument to layout indicate the plot number

being displayed. Stretching the time series plot is important in order to visually detect

418 Chapter 7. Time Series Basics

47 64 23 71 38 64 55 41 59 48 71 35 57 40

58 44 80 55 37 74 51 57 50 60 45 57 50 45

25 59 50 71 56 74 50 58 45 54 36 54 48 55

45 57 50 62 44 64 43 52 38 59 55 41 53 49

34 35 54 45 68 38 50 60 39 59 40 57 54 23

Table 7.6: A time series of n = 70 consecutive yields from a chemical process.

patterns in the time series. Nothing is lost by horizontally compressing the sample

autocorrelation function and the sample partial autocorrelation function as long as the

spike values rk and r∗k are distinct on the plots.

chemical = scan("chemical.d")

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(chemical)

acf(chemical)

pacf(chemical)

If you prefer confidence limits other than the default 95% limits, both acf and pacf

accept a ci argument that accepts any argument between 0 and 1, but defaults to 0.95.

The resulting plots are displayed in Figure 7.18. There are two statistically significant

spikes in the sample autocorrelation function and one statistically significant spike in

the sample partial autocorrelation function.

There will be more examples of computing the partial autocorrelation function and its interpre-

tation subsequently.

7.2.6 Computing

The R plot.ts function generates a plot of a realization of a time series, which is an important ini-

tial step in formulating an appropriate stochastic model for the time series. Many time series analysts

prefer to also see the sample autocorrelation and partial autocorrelation functions along with the plot

of the time series. The layout function can be used to stretch the plot of the time series horizontally,

while horizontally compressing the plots of the sample autocorrelation and partial autocorrelation

functions. The acf function computes the sample autocorrelation function and has arguments that

control the number of lags to display, whether to suppress the plot, etc. The pacf function computes

the sample partial autocorrelation function and has similar arguments. Notice that the acf function

includes the lag 0 sample autocorrelation, which is always 1, but the pacf function does not include

the lag 0 sample partial autocorrelation. The statements below apply these functions to the built-in

R AirPassengers time series.

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(AirPassengers)

acf(AirPassengers)

pacf(AirPassengers)

The vertical axes on all three plots are autoscaled. Use the ylim = c(-1, 1) argument in the acf

and pacf functions in order to stretch the vertical axis from −1 to 1. Finally, the ARMAacf function

can be used to compute the population autocorrelation and partial autocorrelation function values

for a prescribed time series model.

Section 7.3. Operations on a Time Series 419

1 70

20

30

40

50

60

70

80

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

t

xt

kk

rk r∗k

Figure 7.18: Time series plot, rk, and r∗k for n = 70 yields from a chemical process.

7.3 Operations on a Time Series

This section considers operations that can be performed on a time series. The first subsection in-

troduces filters that can be applied to a time series. We have already encountered an example of

a filter when we considered a three-point moving average of a time series consisting of Gaussian

white noise. The second subsection introduces decomposition, which is the process of breaking an

observed time series into its component parts. The AirPassengers time series that is built into

R, for example, can be decomposed into an trend, a seasonal component, and any remaining noise

in the process once the trend and seasonal components have been removed. The third subsection

concerns R functions that can be helpful in implementing these operations.

7.3.1 Filtering

This section takes up the important topic of filtering, which can be thought of as the process of

converting one observed time series {xt} to another time series {yt}. The mathematical operations

required to convert one time series to another can be abstractly depicted as

420 Chapter 7. Time Series Basics

{xt} {yt}
filter

It is often the case that several of these filters can be applied sequentially to a particular observed

time series. Filter 1, for example, converts {xt} to {yt}, and then Filter 2 converts {yt} to {zt}.

{xt} {yt}
filter 1

{zt}
filter 2

The resultant time series {zt} is not associated with the white noise terms Zt from Definition 7.1.

The purpose of such a series of filters applied to a time series might be to remove the trend with the

first filter, and then to remove some seasonal variation with the second filter. If the resulting time

series {zt} looks like random noise values, then the two filters applied in series have successfully

removed the trend and the seasonal variation.

Three different general classes of filters will be considered: transformations, detrending, and

linear filters. These classes of filters allow for the manipulation of a times series for a particular

purpose, such as smoothing or variance stabilization.

Transformations

One simple filter that can be applied to a time series is to apply a transformation to each ele-

ment of the time series. Two transformations that are commonly applied to a time series are the

logarithmic and square root transformations, which are

yt = ln xt

and

yt =
√

xt .

Some common purposes of applying such a transformation are to

• stabilize the variance of the time series (for example, when larger values of xt tend to have

greater variability than smaller values of xt),

• make the trend and seasonal components of a time series appear to be additive, rather than

multiplicative, in nature, and

• make the values in the filtered time series appear to be similar to white noise, iid noise, or

Gaussian white noise (see Definition 7.1). The advantage to having values of the fitted time

series be approximately mutually independent and normally distributed is to enable the use of

easier statistical inference procedures concerning, for example, forecasted values.

The transformation of the values in a time series given in the next example is a variance-

stabilizing transformation which makes significant improvement to a time series in terms of its

visualization and interpretation.

Example 7.25 The Dow Jones Industrial Average (DJIA), also known as the Dow 30,

was devised by Charles Dow and was initiated on May 26, 1896. The average bears

Dow’s name and that of statistician and business associate Edward Jones. The DJIA is

the average stock price of 30 U.S.-based, publicly traded companies, adjusted for stock

splits and the swapping of companies in and out of the average so that it adequately

reflects the composition of the domestic stock market. These adjustments are made by

altering the average’s denominator for historical continuity, which is now much less

than 30.

Section 7.3. Operations on a Time Series 421

The evolution of the DJIA is not a true reflection of the yield of the 30 stocks because

two important factors are not incorporated into the average. First, the average does not

factor in dividends that are paid by some of the 30 companies. Second, the average does

not factor in inflation, which erodes the true return that a stock investment provides. If

dividends were factored into the calculation, the DJIA would be much higher than it is

presently; if inflation were factored into the calculation, the DJIA would be much lower

than it is presently.

This example considers the time series plot of the average annual DJIA closing values

during the 20th century. This plot is generated with the R code given below.

x = 1901:2000

y = ts(scan("dow.d"))

plot.ts(x, y)

The file dow.d contains the 100 annual average closing values. The resulting graph is

shown in Figure 7.19.

The DJIA had a sample mean closing value of 69.52 during 1901 and a sample mean

closing value of 10731.15 during 2000. The linear scale that is used in Figure 7.19 ob-

scures most of the variability of the DJIA during the first half of the century. The graph

can be made more meaningful by using a logarithmic scale on the vertical axis. This is

accomplished by calling the plot.ts function as plot.ts(x, y, log = "y"), re-

sulting in the graph shown in Figure 7.20. This is equivalent to plotting the filtered time

series

yt = log10 xt

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

0

2000

4000

6000

8000

10000

t

xt

Figure 7.19: Dow Jones Industrial Average (1901–2000).

422 Chapter 7. Time Series Basics

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

10

100

1000

10000

t

xt

stable

period

WW I

and

postwar

boom

Great

Depr.

WW II

and

postwar

boom

stable

period

marginal

tax rates

cut

Figure 7.20: Dow Jones Industrial Average (1901–2000) with logarithmic scale.

on a linear vertical scale. An equal percent change now covers the same vertical distance

with the logarithmic vertical scale. Labels have been added to help highlight events that

might have influenced the DJIA.

The stock market crash in October of 1929 is much more pronounced in Figure 7.20.

The DJIA had peaked with a close of 381.20 on September 3, 1929. The market bot-

tomed out on July 8, 1932 when it closed at 41.20, which corresponds to a loss of almost

90%. Each of the two World Wars fought during the twentieth century was followed

by a sustained bull market in the DJIA. The top marginal income tax rate was lowered

from 70% to 28% and the federal budget was brought into balance in the 1980s and

1990s, resulting in a prolonged growth in the DJIA.

Detrending Filters

When a consistent trend in a time series is apparent, as was the case with the international airline

passengers time series from Example 7.2, an analyst typically would like to estimate the trend. Once

the trend has been estimated, the residual time series remaining after detrending can often be fitted

to a time series model. There are two popular types of filters that can be used to detrend a time

series: curve fitting and differencing. These will be considered individually. Time series analysts

often use the term secular trend to describe a long-term, non-periodic trend, but we will refer to it

as just a trend here.

One way to detrend a time series is to fit a curve that approximates the mean value of the time

series. As a simple example, consider a time series that appears to have a linear trend. In this case a

simple linear regression statistical model

Xt = β0 +β1t + εt

Section 7.3. Operations on a Time Series 423

can be fitted to the time series in order to estimate the slope β0 and intercept β1 of the regression

line. The time t plays the role of the predictor in the regression model; the time series observations

Xt play the role of the response in the regression model. It is also possible to have a non-linear trend

in a time series. A quadratic trend in time, for example, could be modeled via

Xt = β0 +β1t +β2t2 + εt .

Note that this model is linear in the β parameters. The statistical models used to detrend a time series

are not limited to just polynomials in time. It is also possible to have an exponential model such as

Xt = β0eβ1t + εt .

This model is not linear in the β parameters. The potential statistical models are endless. A working

knowledge of regression modeling is helpful in constructing an appropriate model for formulating,

estimating, and assessing a model for the trend in a time series.

Example 7.26 This example considers the simplest case of detrending a data set, which

is a linear trend. The data set consists of n = 89 quarterly observations which are the

quarterly number of Australian residents (in thousands) from March 1971 to March

1993 which was first encountered in Example 7.18. This time series is built into R and

has the name austres. Use simple linear regression to estimate the trend in the data

set and calculate the detrended time series.

The raw data values and the time series plot are given in Example 7.18. The time

series plot is repeated in Figure 7.21 for convenience, plotting individual points but not

connecting them with lines. It is clear that the population of Australia is increasing in a

linear fashion over this time period.

The next step is to fit a simple linear regression model to the time series model

Xt = β0 +β1t + εt .

This can be accomplished in R using the lm (for linear model) function.

1971 1982 1993

13000

14000

15000

16000

17000

18000

t

xt

Figure 7.21: Quarterly population of Australia (in thousands) 1971–1993.

424 Chapter 7. Time Series Basics

plot.ts(austres, type = "p", cex = 0.4)

fit = lm(austres ~ seq(1971.25, 1993.25, by = 0.25))

abline(fit$coefficients)

coef(fit)

The fitted slope and intercept of the least square regression line are

β̂0 =−399,861 and β̂1 = 209.426.

The interpretation of the estimated intercept is that in the year 0 the population of Aus-

tralia was negative 400 million. (This is a good illustration that the model should not

be extrapolated significantly outside of the range of the time values in the time series.)

The interpretation of the estimated slope is that the population of Australia increases

by an estimated 209,426 each year over the time window 1971–1993. The plot that in-

cludes the regression line plotted via the abline function is given in Figure 7.22. The

regression line reveals some very slight nonlinear trends in the time series that were not

immediately apparent in the original time series plot in Figure 7.21.

The final step in the analysis is to examine the residual time series after detrending.

Viewing that residual series as a filter, the new time series after detrending is

yt = xt −
(
β̂0 + β̂1t

)
.

The time series {yt} can be calculated and plotted with the additional R statements

austres.detrend = austres - fit$fitted

plot.ts(austres.detrend)

This residual series is plotted in Figure 7.23. The residual series is connected by lines.

In addition, a horizontal dashed line is added at yt = 0. Clearly, the residual series does

not consist of mutually independent noise terms. Its shape might have been influenced

by Australian immigration policies or the Australian economy between 1971 and 1993.

1971 1982 1993

13000

14000

15000

16000

17000

18000

t

xt

Figure 7.22: Quarterly population of Australia (in thousands) 1971–1993 with regression line.

Section 7.3. Operations on a Time Series 425

1971 1982 1993

−160

−80

0

80

160

t

yt

Figure 7.23: Residual time series after detrending for the quarterly population of Australia.

A second way to detrend a time series is to use differencing. The difference operator ∇, is

defined as a filter by

yt = ∇xt = xt − xt−1 = (1−B)xt ,

where B is the backshift operator defined by Bxt = xt−1. Differencing a time series is the discrete

analog of taking a derivative of a continuous function. So a time series that exhibits a linear trend,

for example, will pass through the differencing filter ∇ and result in a time series without a trend.

Notice that there will be one fewer observation in the new time series after applying this filter. If the

original time series observations are x1, x2, . . . , xn, then the differenced series will be y2, y3, . . . , yn.

Likewise, a time series with a quadratic trend can be detrended by applying the differencing operator

∇ twice to the original time series:

yt = ∇2xt = ∇
(
∇xt

)
= ∇

(
xt − xt−1

)
=
(
xt − xt−1

)
−
(
xt−1− xt−2

)
= xt −2xt−1 + xt−2.

This detrending filter can be written with the backshift operator as yt = (1−2B+B2)xt . There will

be two fewer observations in the new time series after applying this filter. If the original time series

observations are x1, x2, . . . , xn, then the twice differenced series will be y3, y4, . . . , yn.

A time series that exhibits a seasonal component can have a seasonal differencing filter applied.

Monthly observations from a time series with an annual seasonal component, for example, can have

the seasonal differencing filter

yt = ∇12xt = xt − xt−12 =
(
1−B12

)
xt

applied to eliminate the seasonal effects. There will be 12 fewer observations in the new time series

after applying this filter. If the original time series observations are x1, x2, . . . , xn, then the time series

observations that result from applying the filter associated with the ∇12 operator are y13, y14, . . . , yn.

We now illustrate the application of a differencing filter. The next example applies a single

difference filter to the Australian population time series.

Example 7.27 Consider again the quarterly population of Australia between 1971 and

1993 from Example 7.26 given in the R built-in data set austres. Apply the single

426 Chapter 7. Time Series Basics

difference filter yt = ∇xt = xt−xt−1 and make a time series plot of the differenced time

series.

The filter

yt = ∇xt = xt − xt−1

is appropriate for detrending because the time series {xt} is approximately linear, as

seen in Figure 7.22. The diff function in R differences the time series. So the differ-

enced time series {yt} can be plotted with the single R statement

plot.ts(diff(austres))

The plot of the differenced time series is given in Figure 7.24. A dashed horizontal line

has height equal to the slope of the line (with respect to quarters) connecting the first

and last points in the time series [that is, a horizontal line at (xn− x1)/(n− 1) = 52.2]

can be added with the abline function with an h (for horizontal) and lty = 2 (for a

dashed line) arguments.

n = length(austres)

abline(h = (austres[n] - austres[1]) / (n - 1), lty = 2)

The original time series increases by 4 · 52.2 = 208.8, or 208,800 residents annually.

This is roughly equal to the slope of the regression line β̂1 = 209.4, or an increase

of 209,400 residents annually from Example 7.26. The filtered time series {yt} does

not appear to exhibit any long-term trend, which was the original purpose of using the

differencing filter.

1971 1982 1993

20

30

40

50

60

70

80

t

yt

Figure 7.24: Filtered time series after differencing the quarterly population of Australia.

So far, two classes of filters have been introduced. The first class is known as a transformation;

the second class is known as a detrending filter. Two types of detrending filters were introduced:

curve fitting and differencing. We now turn to a third class of filter which is known as a linear filter.

Differencing is a special case of a linear filter.

Section 7.3. Operations on a Time Series 427

Linear Filters

Linear filters provide a wide array of options for converting the original time series {xt} to

another time series {yt}. The general form of a linear filter is

yt =
t1

∑
s= t0

csxt+s,

where the coefficients cs are real-valued constants. It is often the case that t0 < 0 and t1 > 0, which

means that the time series {yt} is a linear combination of the chronological current, previous, and

future values of {xt} in time.

One purpose of a linear filter is smoothing the original time series by using what is known as a

moving average. When the coefficients sum to one, written symbolically as

t1

∑
s= t0

cs = 1,

this linear filter is a moving average. One elementary example of a symmetric moving average is

when t0 =−t1 with identical weights

cs =
1

2t1 +1
.

In this case, the smoothed time series {yt} is the arithmetic mean of

• the current value of the time series {xt},

• the t1 previous values of the time series {xt},

• the t1 future values of the time series {xt},

for a total of 2t1 + 1 values averaged. The symmetric moving average {yt} will have 2t1 fewer

observations than the original time series {xt} because the average cannot be computed for the first

and last t1 observations in {xt}. The smoothed values of the first 100 Dow Jones Industrial Average

closing values during the year 2000, introduced in Example 7.4, will be illustrated next.

Example 7.28 Consider the time series {xt} consisting of the first n = 100 closing

values of the Dow Jones Industrial Average during the year 2000 that appeared in the

top graph of Figure 7.5. Graph the original time series {xt} and the linear filter which

is a symmetric moving average of five adjacent values (that is, t1 = 2)

yt =
xt−2 + xt−1 + xt + xt+1 + xt+2

5
.

Notice that the coefficients in this linear filter are all 1/5. This symmetric moving

average is sometimes known as a five-point moving average.

The first step is to write an R function to compute the five-point moving average. The

R function movingAverage5 given below calculates the five-point moving average.

movingAverage5 = function(x) {

n = length(x)

(x[1:(n - 4)] + x[2:(n - 3)] + x[3:(n - 2)] + x[4:(n - 1)] + x[5:n]) / 5

}

428 Chapter 7. Time Series Basics

The original time series of Dow Jones Industrial Averages and the five-point moving

average are plotted in Figure 7.25. The original time series {xt} is plotted as a solid

black line connecting the points. The linear filter {yt} smooths the original time series

and is given by the thicker gray curve, which is a piecewise linear function that connects

the five-point moving average points, given as dots within the gray curve. The original

time series consists of n = 100 points. The five-point moving average loses two points

at the beginning and two points at the end, resulting in just the points y3, y4, . . . , y98.

The moving average successfully smooths the original time series. By averaging the

current value, two previous values, and two future values, the significant variations in

the original time series are damped, and the trend of the Dow Jones Industrial during

the year 2000 is more apparent with the five-point moving average.

0 10 20 30 40 50 60 70 80 90 100

9500

10000

10500

11000

11500

12000

t

xt

Figure 7.25: The first n = 100 DJIA closes in 2000 and a five-point moving average.

We now illustrate the case in which filters are applied to a time series in a serial fashion as

illustrated below.

{xt} {yt}
filter 1

{zt}
filter 2

Let the values in the original time series be

x1, x2, . . . , xn.

Consider the linear filter which is a three-point moving average (in which t1 = 1)

yt =
xt−1 + xt + xt+1

3
.

This linear filter results in the time series {yt} consisting of the observations

x1 + x2 + x3

3
,

x2 + x3 + x4

3
, . . . ,

xn−2 + xn−1 + xn

3
.

Now consider applying this same linear filter again, but this time to {yt}:

zt =
yt−1 + yt + yt+1

3
.

Section 7.3. Operations on a Time Series 429

The second linear filter results in the time series {zt} consisting of the observations

x1 +2x2 +3x3 +2x4 + x5

9
,

x2 +2x3 +3x4 +2x5 + x6

9
, . . . ,

xn−4 +2xn−3 +3xn−2 +2xn−1 + xn

9

when written in terms of the original time series {xt}. Notice that the serial application of the two

linear filters is the same as the application of a single linear filter with the coefficients

1

9
,

2

9
,

3

9
,

2

9
,

1

9
.

The R convolve function calculates the coefficients of the linear filter associated with two linear

filters applied to a time series. In the example described here, the coefficients can be determined

with the R statements

a = c(1 / 3, 1 / 3, 1 / 3)

b = c(1 / 3, 1 / 3, 1 / 3)

convolve(a, b, type = "open")

The application of two linear filters in sequence is illustrated in the next example.

Example 7.29 Consider again the time series {xt} consisting of the first n = 100 clos-

ing values of the Dow Jones Industrial Average during the year 2000. Graph the original

time series {xt} and two serial applications of the five-point moving average

yt =
xt−2 + xt−1 + xt + xt+1 + xt+2

5
.

As in the case of the three-point moving average, we can use the R convolve function

to calculate the coefficients in the convolution of the two linear filters.

a = rep(1 / 5, 5)

convolve(a, a, type = "open")

The convolve function results in the coefficients

1

25
,

2

25
,

3

25
,

4

25
,

5

25
,

4

25
,

3

25
,

2

25
,

1

25

associated with the two linear filters applied in series. These coefficients sum to one as

expected. The convolution of the two moving average filters remains a moving average.

The application of the two linear filters in series has two potential benefits over the

five-point moving average alone:

• the serial application of the two linear filters provides more smoothing than in the

previous example because more observations are used in the moving average, and

the coefficients are all smaller than in the five-point moving average, and

• the serial application of the two linear filters provides a mechanism in which more

distant observations get less weight than nearby observations.

The result of applying this moving average to the Dow Jones Industrial Average closes

is shown in Figure 7.26. As expected, this filter provides more smoothing than the

five-point moving average from the previous example.

430 Chapter 7. Time Series Basics

0 10 20 30 40 50 60 70 80 90 100

9500

10000

10500

11000

11500

12000

t

xt

Figure 7.26: The first n = 100 DJIA closes in 2000 and a nine-point moving average.

Some experimentation is often necessary to achieve a moving average that provides the appro-

priate amount of smoothing. The amount of smoothing desired is problem specific. Another type

of symmetric moving average that places the most weight on the current value xt and decreasing

weight to more distant observations is to use the terms in the expansion of

(
1

2
+

1

2

)2t1

as coefficients in a weighted moving average. When t1 = 2, for example, the coefficients are

1

16
,

4

16
,

6

16
,

4

16
,

1

16
.

The numerators can be recognized as one row in Pascal’s triangle. The weights must sum to 1

because 1/2+1/2 = 1.

For a time series without a trend that contains a seasonal component, a special linear filter can

be applied. Consider a time series of monthly observations with seasonal variation. A common way

to eliminate the seasonal component is the linear filter

yt =
1
2
xt−6 + xt−5 + xt−4 + · · ·+ xt+4 + xt+5 +

1
2
xt+6

12
.

This linear filter has 13 coefficients

1

24
,

1

12
,

1

12
, . . . ,

1

12
,

1

12
,

1

24
,

which places a weight of 1/12 on the current observation xt and each observation within five months

of xt and splits the weight between the two months that are six months before and six months after

the current observation. Notice that the filtered time series {yt} will have 12 fewer observations than

the original time series {xt} because the moving average loses six points at the beginning of the time

series and six points at the end of the time series. This seasonal weighted average will be illustrated

in the next example for the monthly home energy consumption time series.

Section 7.3. Operations on a Time Series 431

Example 7.30 Consider the time series {xt} of n = 96 monthly home energy consump-

tion observations, in kilowatt hours, from Example 7.1. Compute the seasonal moving

average

yt =
1
2
xt−6 + xt−5 + xt−4 + · · ·+ xt+5 + xt+6 +

1
2
xt+6

12

and plot the original time series and the seasonal moving average on the same set of

axes.

The original time series and the seasonal moving average are graphed in Figure 7.27.

The seasonal moving average effectively removes the seasonal component, revealing

a slight upward trend in the first half of the time series and a slight downward trend

toward the end of the time series. Since the time series was collected over an eight-year

period, there are a total of 8 ·12−12 = 84 observations in the seasonal moving average.

An observation from each of the 12 months plays a role in every value calculated in the

seasonal moving average {yt}.
The R code below calculates the seasonal moving average of the energy consumption

values, which are stored in the file named kwh.d. The coefficients of the seasonal

moving average which control the weights allocated to each value in the time series are

stored in the w vector. The seasonal moving average values are stored in the y vector.

x = scan("kwh.d")

w = c(1 / 24, rep(1 / 12, 11), 1 / 24)

n = length(x)

y = numeric(n - 12)

for (i in 1:(n - 12)) y[i] = sum(w * x[i:(i + 12)])

print(y)

2011 2012 2013 2014 2015 2016 2017 2018

1000

1500

2000

2500

3000

3500

t

xt

Figure 7.27: Home energy consumption time series and seasonal moving average.

All of the linear filters we have encountered so far have been symmetric moving averages. Each

of them has reached as far into the past as they have into the future. One weakness of these filters is

432 Chapter 7. Time Series Basics

that in many settings we often do not have any future observations. So in many practical problems

the linear filter

yt =
t1

∑
s= t0

csxt+s

is rewritten to avoid any observations in the future as

yt =
0

∑
s= t0

csxt+s

for some negative integer index t0. The most well-known of these filters is known as the exponentially-

weighted moving average, often abbreviated EWMA, which can be written as

yt =
0

∑
s=−∞

csxt+s,

where the weights cs are given by

cs = α(1−α)−s

for 0 < α < 1 and s = −∞, . . . ,−2,−1, 0. The weights in the exponentially-weighted moving

average must sum to one because they form a geometric series:

0

∑
s=−∞

cs =
0

∑
s=−∞

α(1−α)−s = α
∞

∑
s=0

(1−α)s =
α

1− (1−α)
= 1.

The exponentially-weighted moving average gives weight α to the current observation, and then

geometrically declining weights to previous observations. So the parameter α can be thought of as a

dial or tuning parameter which controls the amount of smoothing. Large values of α mean very little

smoothing; small values of α mean significant smoothing. While it is daunting to think about values

of a time series {xt} running back in time to −∞, it is possible to avoid the infinite summation. The

exponentially-weighted moving average filter can be rewritten as

yt = αxt +α(1−α)xt−1 +α(1−α)2xt−2 + · · ·
= αxt +(1−α) [αxt−1 +α(1−α)xt−2 + · · ·]
= αxt +(1−α)yt−1;

that is, the exponentially-weighted moving average is α times the current value in the time series xt

plus 1−α times the previous value in the moving average. Arbitrarily setting y1 = x1 to initiate this

recursive relationship, the initial terms in the moving average are

y2 = αx2 +(1−α)y1

y3 = αx3 +(1−α)y2

...
...

Notice that the extreme case of α = 1 is possible in this recursive equation, and this corresponds to

a moving average that is identical to the original time series: y1 = x1, y2 = x2, y3 = x3, etc. This

extreme case corresponds to no smoothing at all.

The next example applies the exponentially-weighted moving average to the first n = 100 Dow

Jones Industrial Average closing observations during the year 2000.

Section 7.3. Operations on a Time Series 433

Example 7.31 Consider yet again the time series {xt} consisting of the first n = 100

closing values of the Dow Jones Industrial Average during the year 2000. Graph the

original time series {xt} and the exponentially-weighted moving average with α = 0.2
on the same set of axes.

The original time series {xt} and the exponentially-weighted moving average {yt} are

plotted in Figure 7.28. The exponentially-weighted moving average values are gener-

ated by

yt = αxt +(1−α)yt−1 = 0.2xt +0.8yt−1

for t = 2, 3, . . . , n. The first point in the exponentially-weighted moving average, y2, for

example, is a convex combination of x1 and x2 with coefficients 0.8 and 0.2. Unlike the

symmetric moving averages shown in the previous examples, Figure 7.28 shows that

the exponentially-weighted moving average smooths the original time series, but also

lags the original time series because it is not a symmetric moving average. Adjusting α
can make this exponentially-weighted moving average respond more quickly or more

slowly than that shown in Figure 7.28.

0 10 20 30 40 50 60 70 80 90 100

9500

10000

10500

11000

11500

12000

t

xt

Figure 7.28: The first n = 100 DJIA closes in 2000 and an exponentially-weighted moving average.

This concludes the discussion of filters that can be applied to a time series. The three classes of

filters that were presented in this section are

• transformations,

• detrending filters, and

• linear filters.

Filters can be applied for several different purposes, including: (a) to stabilize the variance of a time

series whose variance increases with time, (b) to stabilize the variance of a time series in which

larger values are more variable than smaller values, (c) to make error terms look approximately

normally distributed, (d) to express a time series with a seasonal component as an additive model,

(e) to detrend a time series containing a trend, (f) to estimate and eliminate a seasonal component

434 Chapter 7. Time Series Basics

in a time series without a trend, and (g) to smooth a time series. Many of these reasons for using a

filter on a time series will be discussed subsequently.

The next section uses two filters in series in order to decompose a time series into trend and

seasonal components. Decomposition will be applied to the international air travel time series and

the home energy consumption time series from the first two examples in this chapter.

7.3.2 Decomposition

The time series plots on the four examples from Section 7.1.1 have revealed certain types of patterns

that appear in many time series. The partial list below contains the most common types of variation

in time series. One common approach to decomposing a time series into these various types of

variation is to remove the detected types of variation one-by-one until only noise (that is, random

variation) remains.

• Trend. The time series consisting of the number of international airline passengers between

1949 and 1961 from Example 7.2 had a clear and obvious long-term systemic increase in its

mean value as air travel became more popular over that time period. Detecting trends and

including them in a time series model is an important part of the analysis of a time series that

will be illustrated in the next example.

• Seasonal variation. Both the home energy consumption time series from Example 7.1 and the

international airline passenger time series from Example 7.2 exhibit seasonal variation. The

period associated with the seasonal variation in both cases was one year. A single time series

is capable of having multiple seasonal variation cycles. Outdoor temperature, for example,

has both an annual cycle (warmer during the summer and cooler during the winter) and a

daily cycle (warmer during the day and cooler during the night). The frequency of the daily

cycle is 365 times greater than the frequency of the annual cycle. (To be more careful, the

frequency is actually 365.2422 times greater.)

• Other cyclical variation. There are other types of cyclical variation that have an unknown pe-

riod that might be included in a mathematical model that describes the time series. Economists,

for example, often refer to business cycles that might influence the values in a time series.

Business cycles typically have a varying and unknown period generally ranging from a few

years to decades.

• Remaining variation. Once the trend, seasonal variation, and other cyclical variation have

been removed from the original time series, a time series with no trend, seasonal, or cyclic

variation is obtained. Once this new time series is obtained, it is common practice to plot these

values to see how closely they approximate noise terms. The final step in constructing a time

series model for the original process is often fitting a time series model to the residual time

series, which reflects the noise terms in the time series model.

We now consider mathematical models for decomposing a time series into these constituent

parts. Just as a probability model like the normal or exponential distribution is used to approximate

the probability distribution from which a data set is drawn in classical statistics, we want to develop

a probability model for the time series {Xt}. This probability model will be more complicated than

the random walk model because we would like it to include both trends and seasonal variation. An

additive model to describe {Xt} is

Xt = mt + st + εt ,

Section 7.3. Operations on a Time Series 435

where the mt term models the trend, the st term models the seasonal variation with fixed period,

and the εt term models the noise. In an ideal probabilistic modeling sequence, once the trend and

seasonality terms have been estimated and removed from the time series, only random variation

remains. We have ignored other cyclic variation (for example, business cycles) in this particular

mathematical model. Notice that the trend term mt and the seasonal variation term st are set in

lowercase because these are assumed to be deterministic functions of t in the model. The stochastic

element of the time series model comes from the εt term. A multiplicative model to describe {Xt} is

Xt = mt · st · εt .

The multiplicative model is often appropriate in the case in which the variance of the time series

increases with time. This is because taking the natural logarithm of both sides of this model yields

ln Xt = ln mt + ln st + ln εt ,

which is an additive model for the time series {ln Xt}.
Decomposing a time series into its constituent parts can be preformed in R with the decompose

function. The additive model is the default. The next example applies the decompose function to

the time series consisting of the international airline passengers.

Example 7.32 Consider again the time series of the number of international airline

passengers (in thousands) between 1949 and 1961 from Example 7.2. Decompose this

time series into its trend, seasonal, and random components using the R decompose

function.

Since the plot of the time series in Figure 7.2 shows that the variance of the time series

is increasing with time, we elect to use the multiplicative model

Xt = mt · st · εt .

The call to the decompose function applied to the AirPassengers built-in data set is

fit = decompose(AirPassengers, type = "multiplicative")

The fitted model that extracts the trend and seasonal components, and calculates the

residual time series once those two components are extracted, is held in a list named

fit. The type argument in the call to the decompose function is used to invoke the

multiplicative model. A plot of the original time series and its decomposition into its

component parts is obtained by the additional R statement

plot(fit)

The associated plot is given in Figure 7.29, which gives four time series stacked one

above the another. The first time series, labeled observed, is the original time series

{xt}, the number of monthly international airline passengers (in thousands). The lower-

case variable name xt is used here because these are observed values of the time series.

The second time series, labeled trend, is the estimate of the trend {mt} returned by the

decompose function. The third time series, labeled seasonal, is the estimate of the sea-

sonal component of the multiplicative model {st} returned by the decompose function.

The seasonal component is identical from one year to the next with period 12 extracted

436 Chapter 7. Time Series Basics

o
b
s
e
rv

e
d

tr
e
n
d

s
e
a
s
o
n
a
l

ra
n
d
o
m

Decomposition of multiplicative time series

1949 50 51 52 53 54 55 56 57 58 59 60 1961

Figure 7.29: Decomposition of the international airline passengers time series.

from the AirPassengers time series. Finally, the fourth time series, labeled random,

is the remaining time series {et} once the trend and seasonal components of the model

have been removed.

A call to the str (structure) function

str(fit)

reveals that the object named fit is a list that consists of six components. One of these

components is named seasonal, which contains the seasonal components of the time

series. This means that fit$seasonal is a time series, which is identical over every

year in the time series. In order to investigate the seasonal component, Figure 7.30

contains one cycle of the seasonal component of the decomposed model. The additional

R statement which can be used to plot the first cycle of the seasonal component is given

below. The subscripts 1:12 extract the values in the first annual cycle.

plot.ts(fit$seasonal[1:12])

Section 7.3. Operations on a Time Series 437

The resulting graph displayed in Figure 7.30 shows that the largest number of interna-

tional airline passengers during the years from 1949 through 1960 occurs in the months

of July and August when school is typically not in session. It also shows a local max-

imum in March which might correspond to families traveling over spring break week.

The global minimum occurs in the month of November.

0.8

0.9

1.0

1.1

1.2

1.3

t

st

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.30: Seasonal component of the international airline passengers time series.

The international airline passengers data set had its own distinct signature for its seasonal compo-

nent. The next example plots the analogous seasonal component for the home energy consumption

data.

Example 7.33 Consider the home energy consumption data from Example 7.1. Using

similar code to the previous example, we can plot the seasonal component of the time

series with the R statements below.

kwh = scan("kwh.d")

kwh.ts = ts(kwh, frequency = 12, start = c(2011, 1))

fit = decompose(kwh.ts)

plot.ts(fit$seasonal[1:12])

The first statement reads the monthly energy consumption observations into a vector

named kwh. The second statement uses the R ts function to convert the observations

into a time series. The third statement uses the R decompose function to decompose

the time series into its constituent trend, seasonal, and remaining variation components

using an additive model (the default). The last statement uses the R plot.ts function to

plot the first 12 elements of the seasonal component of the decomposed time series. The

resulting graph shown in Figure 7.31 reveals a distinctly different seasonal pattern than

the associated graph for the international airline passengers data set. The peak energy

consumption is clearly in January. This peak is consistent with the intuition for the time

series because (a) the outdoor temperature in the winter in Williamsburg is further from

a comfortable indoor temperature than the outdoor in the summer in Williamsburg, and

438 Chapter 7. Time Series Basics

−800
−600
−400
−200

0
200
400
600
800

1000

t

st

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.31: Seasonal component of the home energy consumption time series.

(b) the heat pumps are more energy efficient in the summer than they are in the winter

because there is more heat available to capture. Not surprisingly, the two peaks in the

time series occur in the winter and summer when demand on the heat pumps is the

greatest. Since an additive model was selected, the units on the vertical axis are in

kilowatt hours. The energy consumption bump associated with the number of kilowatt

hours consumed in January, for example, is about 1000 kilowatt hours above the average

monthly energy consumption over the entire eight-year period.

Recall that the additive model is

Xt = mt + st + εt

and the decompose function has provided a fitted time series for the trend component

mt , the seasonal component st , and the error component εt . This indicates that the

original time series can be reconstructed with the R statement

fit$trend + fit$seasonal + fit$random

which yields the original time series fit$x, with the exception of some NA values at

the extreme values, which will be investigated next.

It is important to not treat a function like decompose as a just a black box that decomposes

a time series without knowing the internal workings of the function. It is crucial to know exactly

what is going on inside of decompose for (a) proper interpretation of the output of the function,

and (b) the ability to modify the function. In that light, we now show the intermediate steps that

occurred in decompose using the object names in decompose that resulted in the values plotted in

Figure 7.31.

kwh = scan("kwh.d")

kwh.ts = ts(kwh, frequency = 12, start = c(2011, 1))

l = length(kwh.ts)

Section 7.3. Operations on a Time Series 439

f = frequency(kwh.ts)

trend = filter(kwh.ts, c(0.5, rep(1, f - 1), 0.5) / f)

season = kwh.ts - trend

periods = l / f

index = seq(1, l, by = f) - 1

figure = numeric(f)

for (i in 1:f) figure[i] = mean(season[index + i], na.rm = TRUE)

figure = figure - mean(figure)

seasonal = ts(rep(figure, periods + 1)[seq(l)], start = start(kwh.ts),

frequency = f)

Try typing these statements into R and viewing the resulting objects. The bullet points below give a

line-by-line explanation of the algorithm associated with this R code.

• The first statement reads the home energy consumption time series into the vector kwh.

• The second statement converts the vector named kwh to a time series named kwh.ts with

monthly values beginning in January of 2011 via the ts function.

• The third statement calculates the length of the time series as l = 96.

• The fourth statement extracts the frequency of the time series as f = 12.

• The fifth statement uses the filter function to apply a 13-point moving average to the origi-

nal time series, which results in a time series named trend. The extreme values in this moving

average are identical months separated by one year, each getting weight 1/24, and the interior

11 months each get weight 1/12. Notice that the first six and last six values of the resulting

time series trend are NA, as expected. The 13-point moving average is first reported in July

of 2011, using the 13 values from the original time series from January 2011 to January 2012.

Each value in trend is effectively an annual average of energy consumption, so this is a fairly

flat time series for the energy consumption time series data because there does not appear to

be any significant trend. The values in trend are plotted in Figure 7.27.

• The sixth statement creates a time series named season which is the difference between

the original time series kwh.ts and the time series trend. In time series analysis, this step is

known as detrending. This new time series season isolates the empirical seasonal component,

which will change from one year to the next. The remaining R statements are designed to

average these seasonal components.

• The seventh statement calculates the number of periods in the original time series: l/ f =
96/12 = 8.

• The eighth statement creates a vector named index that will be used in the calculation of the

seasonal component averages. For the energy consumption data, the eight elements of index

are 0, 12, 24, . . . , 84.

• The ninth statement uses the numeric function to initialize the 12-element vector named

figure, which will contain the seasonal component averages.

• The tenth statement contains a for loop which uses the mean function to calculate the seasonal

component averages for each of the 12 months.

• The eleventh statement centers these seasonal component averages around zero.

440 Chapter 7. Time Series Basics

• The twelfth statement uses the ts function to create a time series named seasonal which

contains 8 periods of the seasonal component averages with a frequency of f = 12 and a start

time of January of 2011. These are the values that are plotted in Figure 7.31.

View the decompose function by simply typing

decompose

In addition to the R statements described above, you will see (a) error trapping at the top of the

function, (b) several conditional statements to account for the additive and the multiplicative models,

and (c) code that will adjust to a time series consisting of incomplete periods.

The figures that we have seen so far have plotted a time series {xt} or a filter applied to create

another time series {yt}. The critical initial step of plotting the time series and making a careful

examination of the plot should never be skipped.

7.3.3 Computing

Regression can be used to fit a model to a time series using the built-in lm (linear model) function

in R. This is illustrated for the AirPassengers time series below.

fit = lm(AirPassengers ~ time(AirPassengers))

plot.ts(AirPassengers)

abline(fit$coefficients)

fitted(fit)

The first statement sets the object fit to a list that contains the results of a simple linear regression

of time(AirPassengers) as the independent variable (the predictor) and AirPassengers as the

dependent variable (the response). The second statement plots the time series in the usual fashion

using the plot.ts function. The third statement appends the plot with the regression line using the

abline function. Finally, the fitted values can be extracted by the call to fitted(fit) as shown

above or by using fit$fitted.values.

A second way to remove a trend from a time series x1, x2, . . . , xn is differencing. The difference

operator ∇ defined by

∇xt = xt − xt−1 = (1−B)xt

(where B is the backshift operator defined by Bxt = xt−1) can be used to remove a linear trend. The

R function diff can be used to difference a time series. The following statement creates a time

series that contains the differences between adjacent values in the AirPassengers time series.

diff(AirPassengers)

There will be one fewer observation in the differenced time series than in the original time series. A

quadratic trend in a time series can be detrended by applying the differencing operator ∇ twice to

the original time series:

∇2xt = ∇
(
∇xt

)
= ∇

(
xt − xt−1

)
=
(
xt − xt−1

)
−
(
xt−1− xt−2

)
= xt −2xt−1 + xt−2.

This detrending filter can be written with the backshift operator as (1− 2B+B2)xt . Second-order

differences, denoted by ∇2xt , can be calculated by applying the diff function twice:

diff(diff(AirPassengers))

or by using the differences argument in the diff function:

Section 7.3. Operations on a Time Series 441

diff(AirPassengers, differences = 2)

Monthly observations from a time series with an annual seasonal component, for example, can have

the seasonal differencing filter

∇12xt = xt − xt−12 =
(
1−B12

)
xt

applied to eliminate the seasonal effects. The lag argument is added to the diff function in order

to do this type of seasonal differencing.

diff(AirPassengers, lag = 12)

There will be 12 fewer observations in the new time series after applying this filter.

The backshift operator B, which is useful in writing differencing operations compactly, is defined

by Bxt = xt−1, or more generally as Bmxt = xt−m. A single application of the B operator can be

achieved by a call to the lag function.

lag(AirPassengers)

The first observation in the resulting time series is December of 1948. The time series has simply

been shifted back in time by one month. To apply the B operator twice, denoted by B2, the second

argument should be set to 2.

lag(AirPassengers, 2)

The first observation in the resulting time series is November of 1948. In order to shift a time series

forward in time, a negative value for the second argument is used.

lag(AirPassengers, -3)

The first observation in the resulting time series is April of 1949.

The intersection of several time series can be achieved with the ts.intersect function, which

is illustrated below.

ts.intersect(lag(AirPassengers), AirPassengers, lag(AirPassengers, -1))

The elements of the resulting intersection of the three time series will only be defined on common

time values. A related function named ts.union, will take the union of the constituent time series,

appending an NA to positions in any of the constituent time series without observations.

Occasions arise in which only a subset of a time series is of interest. The window function shown

below extracts the portion of the AirPassengers time series between January of 1951 and June of

1957.

window(AirPassengers, start = c(1951, 1), end = c(1957, 6))

A linear filter can also be applied to a time series using the filter function. The example below

calculates a 12-point moving average of the AirPassengers time series.

filter(AirPassengers, filter = rep(1 / 12, 12), sides = 1)

A time series can be decomposed into trend, seasonal, and random components using the decompose

function.

decompose(AirPassengers)

442 Chapter 7. Time Series Basics

These components can be viewed by embedding this command into the plot function.

plot(decompose(AirPassengers))

This provides only a graph of the four components. The decompose function provides a rather el-

ementary way of decomposing time series. A more sophisticated approach using the loess (locally

estimated scatterplot smoothing) method is the stl (which is an abbreviation for seasonal decom-

position of a time series by loess) function.

stl(AirPassengers, s.window = "periodic")

7.4 Exercises

7.1 White noise (WN), iid noise (IID), and Gaussian white noise (GWN) were introduced in

Definition 7.1. The three classes are related by

GWN ⊂ IID⊂WN.

Indicate the strongest class of noise associated with the following three time series.

(a) X1, X2, . . . , Xn are mutually independent and identically distributed N(0, 1) random

variables.

(b) X1, X2, . . . , Xn are mutually independent random variables with Xt ∼ N(0, 1) when t is

even and Xt ∼U
(
−
√

3,
√

3
)

when t is odd.

(c) X1, X2, . . . , Xn are mutually independent and identically distributed U(−2, 2) random

variables.

7.2 Let X1, X2, . . . , Xn be n observations from the random walk model described in Example 7.4.

Find V
[
X̄
]
, where X̄ is the sample mean.

7.3 The realization of the random walk in Example 7.4 was generated by using a while loop in

R. Write R code to generate the same time series values without using a loop.

7.4 The time series of the number of monthly accidental deaths in the United States from 1973

to 1978 is given in USAccDeaths in R. Make a plot of the time series values and comment

on any features you can glean from the plot.

7.5 Classify each of the following stochastic processes by time (discrete or continuous) and state

(discrete or continuous).

(a) The number of eastbound cars stopped at a particular stoplight over time.

(b) The location of a taxi cab (classified as city, airport, or suburbs) at the end of each

passenger’s ride.

(c) The temperature of a puppy measured at 20-minute intervals.

(d) A person’s internal body temperature over time.

(e) The number of goldfish on inventory at a local pet shop.

Section 7.4. Exercises 443

7.6 Consider the random variables X1, X2, . . . , Xn and Y1, Y2, . . . , Ym with associated finite popu-

lation means, population variances, and population covariances. Show that

Cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jYj

)
=

n

∑
i=1

m

∑
j=1

aib jCov(Xi, Yj)

for real-valued constants a1, a2, . . . , an and b1, b2, . . . , bm.

7.7 The time series {Xt} consists of the number of spots on the up face of sequential rolls of a

fair die.

(a) Is this time series strictly stationary?

(b) What is the population mean function?

(c) What is the population autocovariance function?

(d) What is the population autocorrelation function?

7.8 Consider the (tiny) time series X1, X2, X3, whose values are the cumulative number of spots

showing in three rolls of a fair die. More specifically, if R1, R2, and R3 denote the outcomes

of the three rolls, then X1 = R1, X2 = R1 +R2, and X3 = R1 +R2 +R3.

(a) What is the population mean function?

(b) Is this time series strictly stationary?

(c) Is this time series stationary?

(d) What is the population variance–covariance matrix of X1, X2, X3?

(e) Perform a Monte Carlo simulation which provides convincing numerical evidence that

the population variance–covariance matrix from part (d) is correct.

7.9 Argue whether the time series of monthly home energy consumption observations from Ex-

ample 7.1 is a stationary time series.

7.10 Consider the time series {Xt} consisting of white noise terms defined by

Xt ∼
{

N(0, 1) t odd

U
(
−
√

3,
√

3
)

t even.

(a) Is this time series strictly stationary?

(b) Is this time series stationary?

7.11 The energy consumption time series introduced in Example 7.1 was given in number of

kilowatt hours per month. The varying number of days per month was not taken into account

in the analysis performed on this data set in this chapter. Adjust the time series so that the

varying month length has been taken into account and answer the following.

(a) The original time series had the maximum monthly energy consumption in January of

2018. Which month has the maximum monthly energy consumption in the adjusted

time series?

(b) Make a plot of the time series using the units average daily number of kilowatt hours.

(c) Use the R acf function to calculate the sample autocorrelation at lag 3. Interpret the

sign of the sample lag 3 autocorrelation.

444 Chapter 7. Time Series Basics

7.12 The R built-in data set nhtemp contains the average annual temperatures in New Hampshire

from 1912 to 1971. Plot the time series and correlogram.

7.13 Consider a time series of n = 100 observations which are Gaussian white noise with σZ = 1.

Use Monte Carlo simulation to estimate the probability that the lag 3 sample autocorrelation

falls between −zα/2/
√

100 and zα/2/
√

100, where α = 0.05. Report your estimate to 3-digit

accuracy.

7.14 The sojourn time of a customer in a single-server queue is defined as the waiting time plus

the service time. Consider 100 consecutive sojourn times for customers in a single-server

queue with exponential times between arrivals with population mean 1 and exponential ser-

vice times with population mean 0.9. (This is a special case of what is known in queueing

theory as an M/M/1 queue. The first M is for Markov, and indicates that the times between

arrivals is exponentially distributed. The second M is also for Markov, and indicates that the

service times are exponentially distributed. The 1 indicates that there is a single server.) Also

assume that the first 1000 customer sojourn times have been discarded so that the system has

“warmed up.” A realization of these 100 consecutive sojourn times can be generated in R

and placed into the vector x with the statements

install.packages("simEd")

library(simEd)

x = ssq(maxArrivals = 1100, saveSojournTimes = TRUE,

showProgress = FALSE, seed = 12345)$sojournTimes[1001:1100]

(a) Write a paragraph that outlines whether or not the stationarity assumption is appropriate

in this setting.

(b) Before running a simulation, predict whether the sample lag 3 autocorrelation will be

positive, zero, or negative.

(c) Make three runs of this simulation with three different seeds and plot the three sample

autocorrelation functions on the same set of axes (plot them as points connected by

lines rather than spikes) for the first 20 lags.

7.15 Consider a stationary time series {Xt}. For k = 1, 2, . . . , the lag k population partial autocor-

relation ρ∗(k) can be written as the last component of the vector defined by

Γ−1
k γk,

where Γk is the k× k variance–covariance matrix of any k elements of the time series and

γk =
(
γ(1), γ(2), . . . , γ(k)

)′
. Show that this way of calculating the lag k population partial

autocorrelation is equivalent to that given in Definition 7.8 for k = 1 and k = 2.

7.16 Consider a three-point moving average.

(a) What are the coefficients associated with three of these moving averages applied in

series.

(b) Check your solution using the R convolve function.

(c) Apply this series of three filters to the AirPassengers data set and plot the smoothed

series.

Section 7.4. Exercises 445

7.17 The logarithm and square root transformations are commonly used on a time series whose

variability increases with time. Propose a transformation for a time series whose variability

decreases with time.

7.18 Find the population autocorrelation function for an m-point moving average of a white noise

time series, where m is an odd, positive integer.

7.19 The R decompose function can be used to decompose a time series. Another R function

named stl is a more sophisticated function for decomposing a time series. Apply this func-

tion to the built-in R time series JohnsonJohnson, which contains the quarterly earnings,

in dollars, for one share of stock in Johnson & Johnson from 1960 to 1980. Plot the trend

and seasonal components of the decomposed time series. Which quarter tends to have the

highest quarterly earnings? Considering the seasonal part of the decomposed model, what is

the difference between the best and worst quarter’s earnings to the nearest penny?

