
Chapter 6

Topics in Survival Analysis

The previous two chapters have introduced some probabilistic models and statistical methods that

arise in survival analysis. This chapter surveys some topics that would be a part of a full-semester

course in survival analysis. The first section considers nonparametric methods that arise in survival

analysis, with a focus on estimating the survivor function. The empirical survivor function is used

in the case of a complete data set and the Kaplan–Meier product–limit estimator is used in the case

of a right-censored data set. These methods require no parametric assumptions from the modeler.

The log-rank test, which is a nonparametric hypothesis test used to compare two survivor functions,

is also introduced. The second section introduces the competing risks model, which is appropriate

when multiple risks compete for the lifetime of an item. The third section considers not just a single

failure time, but items which undergo multiple failures, such as an automobile.

6.1 Nonparametric Methods

Nonparametric methods require no parametric assumptions (for example, exponential or Weibull

lifetime models) concerning the lifetime of an item. The emphasis is to let the data speak for itself,

rather than approximating the lifetime distribution by a parametric model. In many applications,

the modeler does not have any clues revealing an appropriate parametric model, so a nonparametric

approach is warranted. The first subsection considers the estimation of the survivor function for a

complete data set of n items placed on test. The second subsection considers the estimation of the

survivor function for a randomly right-censored data set of n items placed on test. Two different

types of derivations both lead to the Kaplan–Meier product–limit estimator. The third subsection

considers the problem of comparing the estimated survivor functions of two different types of items.

In the reliability setting, this might be to compare the lifetimes of Product A versus Product B. In

the biostatistical setting, this might be to compare the survival times of patients undergoing radiation

and chemotherapy for a particular type of cancer.

6.1.1 Survivor Function Estimation for Complete Data Sets

Consider the nonparametric estimation of the survivor function from a complete data set of n life-

times with no ties. The risk set R(t) contains the indexes of all items at risk just prior to time t. Let

n(t) = |R(t)| be the cardinality of R(t). In other words, n(t) is the number of elements in R(t). The



Section 6.1. Nonparametric Methods 319

simplest and most popular nonparametric estimate for the survivor function is

Ŝ(t) =
n(t)

n
t ≥ 0,

which is often referred to as the empirical survivor function. This step function takes a downward

step of size 1/n at each observed lifetime. It is also the survivor function corresponding to a discrete

distribution with n equally likely mass values. Ties are not difficult to adjust for because the formula

for Ŝ(t) remains the same, but the function will take a downward step of d/n if there are d tied

observations at a particular time value.

When there are no ties in the data set, one method for determining asymptotically exact confi-

dence intervals for the survivor function is based on the normal approximation to the binomial distri-

bution. Recall that a binomial random variable X models the number of successes in n independent

Bernoulli trials, each with probability of success p. The expected value and population variance of

the number of successes are E[X ] = np and V [X ] = np(1− p). The fraction of successes, X/n, on

the other hand, has expected value E[X/n] = p and population variance V [X/n] = p(1− p)/n.

Survival to a fixed time t can be considered a Bernoulli trial for each of the n items on test. An

item either survives to time t or it does not. Thus, the number of items that survive to time t, which is

n(t), has the binomial distribution with parameters n and probability of success S(t), where success

is defined to be survival to time t. The empirical survivor function introduced earlier, Ŝ(t) = n(t)/n,

is the fraction of successes, which has expected value

E
[

Ŝ(t)
]

= S(t)

and population variance

V
[

Ŝ(t)
]

=
S(t)

(

1−S(t)
)

n
.

So Ŝ(t) is an unbiased and consistent estimator of S(t) for all values of t. Furthermore, when the

number of items on test n is large and S(t) is not too close to 0 or 1, the binomial distribution assumes

a shape that is closely approximated by a normal probability density function and thus can be used to

find an interval estimate for S(t). Notice that such an interval estimate is most accurate, in terms of

coverage, around the median of the distribution because the normal approximation to the binomial

distribution works best when the probability of success is about 1/2, where the binomial distribution

is symmetric. Replacing S(t) by Ŝ(t) in the population variance formula, an asymptotically exact

two-sided 100(1−α)% confidence interval for the probability of survival to time t is

Ŝ(t)− zα/2

√

Ŝ(t)
(

1− Ŝ(t)
)

n
< S(t)< Ŝ(t)+ zα/2

√

Ŝ(t)
(

1− Ŝ(t)
)

n
.

This confidence interval is also appropriate when there are tied observations, although it becomes

more approximate as the number of ties increases. Confidence limits greater than 1 or less than 0

are typically truncated, as illustrated in the following example.

Example 6.1 For the ball bearing data set from Example 5.5 with n = 23 bearings

placed on test until failure, find a nonparametric survivor function estimator and an

approximate two-sided 95% confidence interval for the probability that a ball bearing

will survive 50,000,000 cycles.

Recall that the ball bearing failure times in 106 revolutions are
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17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96

54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40.

The nonparametric survivor function estimate Ŝ(t) is shown as the solid line in Fig-

ure 6.1. In this figure and others, the downward steps in Ŝ(t) have been connected by

vertical lines. Many analysts find this useful when visually comparing a nonparametric

estimator of S(t) to a fitted parametric model. The empirical survivor function takes

a downward step of size 1/23 at each data value, with the exception of the tied value,

68.64, where it takes a downward step of 2/23. By convention, the survivor function

estimate cuts off after the largest observed failure time. Since the data is given in 106

revolutions, a point estimate for the survivor function at t = 50 is

Ŝ(50) =
16

23
= 0.6957,

and an approximate two-sided 95% confidence interval for the survivor function at

t = 50 is

Ŝ(50)−1.96

√

Ŝ(50)
(

1− Ŝ(50)
)

23
< S(50)< Ŝ(50)+1.96

√

Ŝ(50)
(

1− Ŝ(50)
)

23
,

which reduces to

0.5076 < S(50)< 0.8837.

This process can be performed for all t values, yielding the approximate two-sided 95%

confidence bands for S(t) given by the dashed lines in Figure 6.1. The confidence bands

are truncated at 0 and 1. Also, the lower confidence band appears to be absent prior to

the first observed failure at t(1) = 17.88. This is due to the fact that Ŝ(t) is 1 for t values

between 0 and the first failure time, so the upper and lower confidence limits are both

equal to 1.
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Figure 6.1: Nonparametric survivor function estimate for the ball bearing data set.
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Even though the confidence interval for S(t) from a complete data set of n lifetimes used in the

previous example is intuitive and easy to compute, its performance in terms of its actual coverage is

notoriously poor. One particular instance of its poor performance occurs at time t = 10, where the

approximate two-sided 95% confidence interval has lower and upper bounds equal to 1. It is known

as the Wald confidence interval, and its use is generally frowned upon because better alternatives

exist. Four such alternatives are outlined (without derivation) in the next four paragraphs.

The approximate two-sided 100(1−α)% Clopper–Pearson confidence interval for S(t) has bounds

that can be expressed as the fractiles of beta distributions:

Bn(t),n−n(t)+1,1−α/2 < S(t)< Bn(t)+1,n−n(t),α/2,

for n(t) = 0, 1, 2, . . . , n, where the first two values in the subscripts of B are the parameters of the

beta distribution and the third value in the subscripts is a right-hand tail probability. The Clopper–

Pearson confidence interval bounds can also be written as functions of fractiles of the F distribution.

The bounds on the Wilson–score approximate two-sided 100(1−α)% confidence interval for

S(t) are

1

1+ z2
α/2

/n



 Ŝ(t)+
z2

α/2

2n
± zα/2

√

Ŝ(t)
(

1− Ŝ(t)
)

n
+

z2
α/2

4n2



 ,

where zα/2 is the 1−α/2 fractile of the standard normal distribution. The center of the Wilson–score

confidence interval is
Ŝ(t)+ z2

α/2/(2n)

1+ z2
α/2

/n
,

which is a weighted average of the point estimator Ŝ(t) = n(t)/n and 1/2, with more weight on Ŝ(t)
as n increases.

The Jeffreys approximate two-sided 100(1−α)% interval estimate for S(t) is a Bayesian credible

interval that uses a Jeffreys non-informative prior distribution for S(t). As was the case with the

Clopper–Pearson confidence interval, the bounds of the Jeffreys interval for S(t) are fractiles of beta

random variables:

Bn(t)+1/2,n−n(t)+1/2,1−α/2 < S(t)< Bn(t)+1/2,n−n(t)+1/2,α/2

for n(t) = 1, 2, . . . , n − 1. When n(t) = 0, the lower bound is set to zero and the upper bound

calculated using the formula above; when n(t) = n, the upper bound is set to one and the lower

bound calculated using the formula above.

The bounds of the Agresti–Coull approximate two-sided 100(1−α)% confidence interval for

S(t) are

S̃(t)± zα/2

√

S̃(t)
(

1− S̃(t)
)

ñ
,

where ñ = n+ z2
α/2 and S̃(t) =

(

n(t)+ z2
α/2/2

)

/ñ. In the special case of α = 0.05, if one is willing

to round zα/2 = 1.96 to 2, this interval can be interpreted as “add two successes and add two failures

and use the Wald confidence interval formula.”

Example 6.2 Find the Clopper–Pearson, Wilson–score, Jeffreys, and Agresti–Coull

approximate two-sided 95% confidence intervals for S(50) for the ball bearing lifetimes

from Example 5.5.
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As in the previous example, the point estimator for S(50) is Ŝ(50) = 16/23 = 0.6957.

Using the parameters n = 23, n(50) = 16, α = 0.05, the approximate two-sided 95%

Clopper–Pearson, Wilson–score, Jeffreys, and Agresti–Coull confidence intervals for

S(50) are given in Table 6.1. The R code to compute these confidence intervals is given

below. All confidence intervals are calculated using the binomTest function from the

conf package.

library(conf)

binomTest(23, 16, alpha = 0.05, intervalType = "Wald")

binomTest(23, 16, alpha = 0.05, intervalType = "Clopper-Pearson")

binomTest(23, 16, alpha = 0.05, intervalType = "Wilson-Score")

binomTest(23, 16, alpha = 0.05, intervalType = "Jeffreys")

binomTest(23, 16, alpha = 0.05, intervalType = "Agresti-Coull")

Method 95% confidence interval

Wald 0.508 < S(50)< 0.884

Clopper–Pearson 0.471 < S(50)< 0.868

Wilson–score 0.491 < S(50)< 0.844

Jeffreys 0.493 < S(50)< 0.852

Agresti–Coull 0.489 < S(50)< 0.846

Table 6.1: Approximate 95% confidence intervals for S(50) for the ball bearing data.

The confidence interval bounds vary significantly between the techniques. The narrow-

est confidence interval is the Wilson–score and the widest confidence interval is the

Clopper–Pearson. Some analysts prefer the Clopper–Pearson confidence interval be-

cause it is conservative in the sense that its actual coverage always exceeds the stated

coverage (which is 95% in this example) for all values of S(t). This implies that you will

never claim more precision with your confidence interval than is implied by the stated

coverage. The Clopper–Pearson 95% confidence intervals for S(t) for all values of t are

plotted as confidence bands in Figure 6.2. Unlike the Wald confidence bands depicted

in Figure 6.1, these confidence intervals are not symmetric about the associated point

estimators given by the solid lines, and this non-symmetry is particularly pronounced

at the extremes.

There are dozens of confidence interval procedures for calculating an approximate confidence

interval for S(t). The intervals illustrated in the previous example were selected because of (a) their

popularity with statisticians, (b) their availability in statistical software packages, and (c) their sta-

tistical properties, particularly their actual coverage. The four confidence interval procedures illus-

trated in the previous example all possess the following properties.

• For a fixed number of items on test n, the confidence intervals are complementary for any

particular n(t) and n−n(t) values.

• The confidence intervals are asymptotically exact for 0 < S(t)< 1.

• The confidence intervals do not degenerate to a confidence intervals of width zero for n(t) = 0

or n(t) = n as was the case with the Wald confidence interval.
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Figure 6.2: Clopper–Pearson confidence bands for the ball bearing data set.

This concludes the discussion concerning finding point and interval estimators for S(t) from

a complete data set of lifetimes. We now introduce techniques for estimating S(t) from a right-

censored data set.

6.1.2 Survivor Function Estimation for Right-Censored Data Sets

The general case in which there are both ties and right-censored data values is now considered.

Some new notation must be established in order to derive the nonparametric estimator for S(t). As

before, assume that n items are on test. Let y1 < y2 < · · ·< yk denote the k distinct observed failure

times, and let d j denote the number of observed failures at y j, for j = 1, 2, . . . , k. Let n j = n(y j)
denote the number of items on test just before time y j, for j = 1, 2, . . . , k, and it is customary to

include any values that are right censored at y j in this count.

The search for a survivor function estimator begins by assuming that the data arose from a

discrete distribution with mass values y1 < y2 < · · · < yk. For a discrete distribution, h(y j) is a

conditional probability with interpretation h(y j) = P(T = y j |T ≥ y j). The survivor function can be

written in terms of the hazard function at the mass values as

S(t) = ∏
j |y j≤ t

[

1−h(y j)
]

t ≥ 0.

Thus, a reasonable estimator for S(t) is ∏ j |y j< t

[

1− ĥ(y j)
]

, which reduces the problem of estimating

the survivor function to that of estimating the hazard function at each mass value. An appropriate

element in the likelihood function at mass value y j is

h(y j)
d j
[

1−h(y j)
]n j−d j

for j = 1, 2, . . . , k. The above expression is correct because d j is the number of failures at y j, h(y j)
is the conditional probability of failure at y j, n j −d j is the number of items on test not failing at y j,
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and 1−h(y j) is the probability of failing after time y j conditioned on survival to time y j. Thus, the

likelihood function for h(y1), h(y2), . . . , h(yk) is

L
(

h(y1), h(y2), . . . , h(yk)
)

=
k

∏
j=1

h(y j)
d j
[

1−h(y j)
]n j−d j

and the log likelihood function is

ln L
(

h(y1), h(y2), . . . , h(yk)
)

=
k

∑
j=1

{

d j ln h(y j)+(n j −d j) ln
[

1−h(y j)
]

}

.

The ith element of the score vector is

∂ ln L
(

h(y1), h(y2), . . . , h(yk)
)

∂h(yi)
=

di

h(yi)
− ni −di

1−h(yi)

for i = 1, 2, . . . , k. Equating this element of the score vector to zero and solving for h(yi) yields the

maximum likelihood estimate

ĥ(yi) =
di

ni

,

for i = 1, 2, . . . , k. This estimate for ĥ(yi) is sensible because di of the ni items on test at time yi fail,

so the ratio of di to ni is an appropriate estimate of the conditional probability of failure at time yi.

This derivation may strike a familiar chord because at each time yi, estimating h(yi) with di divided

by ni is equivalent to estimating the probability of success (that is, failing at time yi) for each of the

ni items on test. Thus, this derivation is equivalent to finding the maximum likelihood estimators for

the probability of success for k binomial random variables.

Using this particular estimate for the hazard function at yi, the survivor function estimate be-

comes

Ŝ(t) = ∏
j |y j≤ t

[

1− ĥ(y j)
]

= ∏
j |y j≤ t

[

1− d j

n j

]

,

for t ≥ 0, commonly known as the Kaplan–Meier or product–limit estimator. When the largest

data value recorded corresponds to a failure, the product–limit estimator drops to zero; when the

largest data value recorded corresponds to a right-censored observation, a common convention is

to cut off the product–limit estimator at the current positive value of Ŝ(t). The original journal

article by American mathematician Edward Kaplan and American statistician Paul Meier in 1958

that established the product–limit estimator is one of the most heavily cited papers in the statistics

literature. The following example illustrates the process of calculating the product–limit estimate.

Example 6.3 Use the product–limit estimator to calculate a point estimate of the proba-

bility that a remission time in the treatment group in the 6–MP clinical trial described in

Example 5.6 exceeds 14 weeks. In other words, estimate S(14) using the Kaplan–Meier

estimator.

The data set contains n= 21 patients on test, r = 9 observed failures (leukemia relapses),

and k = 7 distinct observed failure times. The data values, in weeks, are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.
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Table 6.2 gives the values of y j, d j, n j, and 1−d j/n j for j = 1, 2, . . . , 7. The product–

limit survivor function estimate at t = 14 weeks is

Ŝ(14) = ∏
j |y j≤14

[

1− d j

n j

]

=

[

1− 3

21

][

1− 1

17

][

1− 1

15

][

1− 1

12

]

=
176

255

= 0.69.

The product–limit survivor function estimate for all t values is plotted in Figure 6.3.

Downward steps occur at the k = 7 observed failure times. Some software packages

place a vertical hash mark on the Kaplan–Meier estimate to highlight censored values

that occur between observed failure times; these occur at times 9, 11, 17, 19, 20, 25,

32, and 34 in Figure 6.3. The effect of censored observations in the survivor function

estimate is a larger downward step at the next subsequent observed failure time. If there

is a tie between an observed failure time and censoring time (as there is at time 6 in this

example) the standard convention of including the censored value(s) in the risk set when

computing the number of items at risk means that there will be a larger downward step

in the survivor function estimate following the tied value. Since the last observed data

value, 35*, corresponds to a right-censored observation, the survivor function estimate

is truncated at time 35 and is assumed to be undefined for t > 35.

The R code to generate this plot uses the survfit function from the survival pack-

age. The failure and censoring times x1, x2, . . . , xn are held in the vector named time.

The indicator variables δ1, δ2, . . . , δn are held in the vector named status. The Surv

function creates a survival object, which is used in the left-hand side of the formula ar-

gument passed to survfit. The right-hand side of the formula argument to survfit

contains just 1 to indicate that there are no covariates being considered when comput-

ing the product–limit estimator for just the remission times in the treatment group. The

summary function reveals the calculations used in estimating the product–limit estimate

j y j d j n j 1− d j

n j

1 6 3 21 1− 3
21

2 7 1 17 1− 1
17

3 10 1 15 1− 1
15

4 13 1 12 1− 1
12

5 16 1 11 1− 1
11

6 22 1 7 1− 1
7

7 23 1 6 1− 1
6

Table 6.2: Product–limit calculations for 6–MP treatment case.
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and the plot function generates a graph of the product–limit estimate, which is given

in Figure 6.3.

library(survival)

time = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22,

23, 25, 32, 32, 34, 35)

status = c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0)

kmest = survfit(Surv(time, status) ~ 1, conf.type = "none")

summary(kmest)

plot(kmest)
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Figure 6.3: Product–limit survivor function estimate for the 6–MP treatment group.

There is a second and perhaps more intuitive way of deriving the product–limit estimator, of-

ten referred to as the “redistribute-to-the-right” algorithm. This technique begins by defining an

initial probability mass function that apportions equal probability to each of the n data values. In

subsequent passes through the data, this probability mass function estimate is modified as the prob-

ability is redistributed to the right, with special treatment given to right-censored observations. The

algorithm is illustrated next on the 6–MP treatment group data set from Example 5.6.

Example 6.4 Implement the redistribute-to-the-right algorithm for calculating the

Kaplan–Meier product–limit estimate of the survivor function for the remission time

in the treatment group in the 6–MP clinical trial from Example 5.6.

For the n = 21 individuals in the treatment group for the 6–MP experiment, each failure

or censoring time is initially assigned a mass value of 1/n as follows:

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1

21
1

21
1

21
1

21
1

21
1
21

1
21

1
21

1
21

1
21 . . .
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If there were no censored observations, the fractions would be the appropriate estima-

tors for the probability mass function values. This probability mass function corre-

sponds to the empirical survivor function described earlier in this section. Combining

the three tied observed failures at t = 6 yields

6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7

1
21

1
21

1
21

1
21

1
21

1
21

1
21 . . .

As indicated earlier, there are mass values in the product–limit estimator only at ob-

served failure times. Since the random censoring model is assumed, the mass associ-

ated with the individual whose remission time is right censored at 6 weeks can be split

evenly among each of the 17 subsequent failure/censoring times:

6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7 0 6

119
6

119
6

119
6

119
6

119
6

119 . . .

because 1
21 +

1
17 · 1

21 = 6
119 . The probability mass function estimates at t = 6 and t = 7

have now been determined. The mass value 6
119 associated with the right censored

observation at time 9 can be allocated among the 15 subsequent failure/censoring times

as
6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7 0 6

119 0 32
595

32
595

32
595

32
595 . . .

because 6
119 +

1
15 · 6

119 = 96
1785 = 32

595 . After allocating the mass at 10∗ to the subsequent

13 data values and the mass at 11∗ to the subsequent 12 data values, the estimator

becomes
6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7 0 6

119 0 32
595 0 0 16

255 . . .

When this process is continued through all the data values, the resulting probability

mass function defined on the observed failure times corresponds to the product–limit

estimator. To check this for one specific time value, the survivor function estimate at

time 14 is

Ŝ(14) = 1− 1

7
− 6

119
− 32

595
− 16

255
=

176

255
= 0.69,

which matches the result from the previous example.

Since we now have a point estimate for the survivor function, our attention turns to estimating its

population variance in order to construct confidence intervals and conduct hypothesis tests. To find

an estimate for the population variance of the product–limit estimate is significantly more difficult

than for the uncensored case. The Fisher and observed information matrices require the following

partial derivative of the score vector:

∂2 ln L
(

h(y1), h(y2), . . . , h(yk)
)

∂h(yi)∂h(y j)
=− di

h(yi)2
− ni −di
(

1−h(yi)
)2

when i = j and 0 otherwise, for i = 1, 2, . . . , k and j = 1, 2, . . . , k. Both the Fisher and observed

information matrices are diagonal. Replacing h(yi) by its maximum likelihood estimate, the diagonal

elements of the observed information matrix are
[

−∂2 ln L
(

h(y1), h(y2), . . . , h(yk)
)

∂h(yi)2

]

h(yi)=di/ni

=
n3

i

di(ni −di)
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for i= 1, 2, . . . , k. Using some approximations, an estimate for the variance of the estimated survivor

function is

V̂
[

Ŝ(t)
]

=
[

Ŝ(t)
]2

∑
j |y j≤ t

d j

n j(n j −d j)
,

commonly referred to as Greenwood’s formula. The formula can be used to find an asymptotically

exact two-sided confidence interval for S(t) by using the normal critical values as in the uncensored

case:

Ŝ(t)− zα/2

√

V̂
[

Ŝ(t)
]

< S(t)< Ŝ(t)+ zα/2

√

V̂
[

Ŝ(t)
]

.

As was the case with the Wald confidence interval for S(t) in the case of a complete data set, the

confidence interval bounds should be truncated when they are greater than 1 or less than 0, as

illustrated in the next example.

Example 6.5 Use Greenwood’s formula to construct an approximate two-sided 95%

confidence interval for the probability that a remission time in the treatment group in

the 6–MP clinical trial described in Example 5.6 exceeds 14 weeks.

The point estimator for the probability of survival to time 14 from the previous two

examples is Ŝ(14) = 176/255 = 0.69. The estimated variance of the survivor function

estimator at time 14 via Greenwood’s formula is

V̂
[

Ŝ(14)
]

=
[

Ŝ(14)
]2

∑
j |y j≤14

d j

n j(n j −d j)

=

(

176

255

)2 [
3

21(21−3)
+

1

17(17−1)
+

1

15(15−1)
+

1

12(12−1)

]

= 0.011.

Thus, an estimate for the standard deviation of the survivor function estimate at t = 14

is
√

0.011 = 0.11. An approximate two-sided 95% confidence interval for S(14) is

Ŝ(14)− z0.025

√

V̂
[

Ŝ(14)]< S(14)< Ŝ(14)+ z0.025

√

V̂
[

Ŝ(14)]

0.69−1.96
√

0.011 < S(14)< 0.69+1.96
√

0.011

0.48 < S(14)< 0.90.

Using this confidence interval procedure for all values of t, Figure 6.4 shows the 95%

confidence bands for the survivor function. These confidence intervals have also been

cut off after t = 35 because the last observation corresponds to a right-censored indi-

vidual. The bounds are particularly wide because there are only r = 9 observed failure

times.

The R code to calculate this confidence interval for S(14) and plot confidence bands

around the product–limit estimate is given below. Setting the conf.type argument

to "plain" in the call to survfit results in the calculations for the 95% confidence

interval for S(14) presented here. These are displayed in the two right-hand columns in

the call to the summary function. Setting the mark.time argument to TRUE in the call

to plot results in hash marks on the estimated survivor function.
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Figure 6.4: Confidence bands for the product–limit estimate for the 6–MP treatment group.

library(survival)

time = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22,

23, 25, 32, 32, 34, 35)

status = c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0)

kmest = survfit(Surv(time, status) ~ 1, conf.type = "plain")

summary(kmest)

plot(kmest, mark.time = TRUE)

6.1.3 Comparing Two Survivor Functions

This subsection introduces a nonparametric statistical test for determining whether samples of life-

times from two populations arose from the same probability distribution. This test is nonparametric

in the sense that it places no assumptions on the lifetime distribution of either population. The log-

rank test (also known as the Mantel–Cox test, named after American biostatistician Nathan Mantel

and British statistician David Cox or the Mantel–Haenszel test, named after American epidemiolo-

gist William Haenszel) is a nonparametric statistical test that can be used to test the equality of two

survivor functions based on two randomly right-censored data sets collected from the two popula-

tions.

The null and alternative hypotheses for the log-rank test are

H0 : S1(t) = S2(t)

H1 : S1(t) 6= S2(t),

where S1(t) is the survivor function of the lifetimes of items from population 1 and S2(t) is the

survivor function of the lifetimes of items from population 2. A randomly right-censored data set

is collected from each population. The notation established below is similar to that used in the
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Kaplan–Meier product–limit estimator. Let y1 < y2 < · · · < yk be the observed failure times in the

combined data set. Let

• n1 j be the number of items from data set 1 at risk just prior to time y j,

• n2 j be the number of items from data set 2 at risk just prior to time y j,

• n j = n1 j +n2 j,

• d1 j be the number of items from data set 1 that fail at time y j,

• d2 j be the number of items from data set 2 that fail at time y j,

• d j = d1 j +d2 j,

for j = 1, 2, . . . , k.

Just before time y j, there are n j items in the combined sample that are at risk and subject to

potential failure, for j = 1, 2, . . . , k. Of the n j items at risk just before time y j, there are n1 j items

from population 1 and n2 j items from population 2 that are at risk, for j = 1, 2, . . . , k. Under H0,

each of the n j items at risk has an identical conditional time to failure (conditioned on survival to

time y j), for j = 1, 2, . . . , k. Under H0, the random number of failures from population 1 at time

y j, d1 j, is equivalent to sampling d j items without replacement from n j items, n1 j of which are

type 1 and n j −n1 j of which are type 2. Thus, d1 j has the hypergeometric distribution under H0 with

parameters n j, n1 j, and d j, for j = 1, 2, . . . , k.

The population mean of the hypergeometric random variable d1 j under H0 is

E[d1 j] =
d jn1 j

n j

for j = 1, 2, . . . , k. The population variance of d1 j under H0 is

V [d1 j] =
d j(n1 j/n j)(1−n1 j/n j)(n j −d j)

n j −1

for j = 1, 2, . . . , k. So the random variables d11, d12, . . . , d1k are marginally hypergeometric with

population means and variances given above. Standardizing and summing, the log-rank test statistic

Z =
∑k

j=1

(

d1 j −E[d1 j]
)

√

∑k
j=1 V [d1 j]

is asymptotically standard normal in k under H0. Large and small values of the test statistic Z

correspond to departures from H0.

Example 6.6 Perform a log-rank test to compare the survivor functions of the remis-

sion times in the treatment and control groups in the 6–MP clinical trial data from

Example 5.6.

Recall from Example 5.6 that the remission times (in weeks) for the treatment group

(population 1) are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗
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and the remission times for the control group (population 2) are

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23.

The estimated survivor functions for the control and treatment groups are displayed in

Figure 6.5. The use of 6–MP appears to be effective in prolonging remission times,

but is the difference between the two survivor functions statistically significant? The

log-rank test will answer this question.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

t

S(t)

control

treatment

Figure 6.5: Estimated survivor functions for the 6–MP control and treatment and groups.

The k = 17 distinct observed failure times y1 < y2 < · · ·< y17 in the combined sample

are given in the second column of Table 6.3. The next three columns give the number

of patients at risk just prior to time y j in the combined data set (n j), the number of

patients at risk just prior to time y j from population 1 (n1 j), and number of patients

at risk just prior to time y j from population 2 (n2 j). The final three columns give the

number of overall observed remission times at time y j in the combined data set (d j), the

number of observed remission times at time y j from population 1 (d1 j), and the number

of observed remission times at time y j from population 2 (d2 j).

The null and alternative hypotheses for the test are

H0 : S1(t) = S2(t)

H1 : S1(t) 6= S2(t),

and the test statistic is

Z =
∑17

j=1

(

d1 j −E[d1 j]
)

√

∑17
j=1 V [d1 j]

=−4.1.

This test statistic is negative because the observed d1 j values are smaller than their

expected values. Fewer remissions occur in sample 1 (those patients treated with 6–MP)
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j y j n j n1 j n2 j d j d1 j d2 j

1 1 42 21 21 2 0 2

2 2 40 21 19 2 0 2

3 3 38 21 17 1 0 1

4 4 37 21 16 2 0 2

5 5 35 21 14 2 0 2

6 6 33 21 12 3 3 0

7 7 29 17 12 1 1 0

8 8 28 16 12 4 0 4

9 10 23 15 8 1 1 0

10 11 21 13 8 2 0 2

11 12 18 12 6 2 0 2

12 13 16 12 4 1 1 0

13 15 15 11 4 1 0 1

14 16 14 11 3 1 1 0

15 17 13 10 3 1 0 1

16 22 9 7 2 2 1 1

17 23 7 6 1 2 1 1

Table 6.3: Data for calculating the log-rank test statistic.

than expected if the remission time distributions in the two populations were identical.

Since the test statistic is 4.1 standard deviation units from its population mean under

H0, we expect a small p-value, and a rejection of the null hypothesis H0. The p-value is

p = 2 ·P(Z <−4.1) = 0.00004,

so the conclusion is to reject H0. There is statistical evidence that the survivor functions

for the control and treatment groups differ. Figure 6.5 shows that the patients taking

6–MP have longer remission times.

Here are three final observations on the log-rank test. First, the test has been extended from

testing the equality of two populations to testing the equality of several populations. Second, the

Peto log-rank test statistic (named after British statistician Julian Peto) gives differing weights to

the observed failure times. Third, there are several competitors to the log-rank test which should be

considered when using this test.

6.2 Competing Risks

In competing risks models, several causes of failure compete for the lifetime of an item. These

models are also useful for analyzing the relationships between the causes of failure. In addition,

competing risks models are one way of combining several distributions to achieve a lifetime distri-

bution with, for example, a bathtub-shaped hazard function.

In some situations, causes of failure can be grouped into k classes. An electrical engineer, for

instance, might use failure by short and failure by open as a two-element competing risks model for
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the lifetime of a diode. Likewise, an actuary might use heart disease, cancer, accidents, and all other

causes as a four-element competing risks model for human lifetimes. In competing risks analysis, an

item is assumed to be subject to k competing risks (or causes) denoted by C1,C2, . . . ,Ck. Competing

risks, often called multiple decrements by actuaries, can be viewed as a series system of components.

Each risk can be thought of as a component in a series system in which system failure occurs when

any component fails. Analyzing problems by competing risks might require the modeler to include

an “all other risks” classification in order to study the effect of reduction or elimination of one risk.

The origins of competing risks theory can be traced to a study by Daniel Bernoulli in the 1700s

concerning the impact of eliminating smallpox on mortality for various age groups.

A second and equally appealing use of competing risks models is that they can be used to com-

bine component distributions to form more complicated models. Although a distribution with a

bathtub-shaped hazard function is often cited as an appropriate lifetime model, none of the five most

popular lifetime distribution models (exponential, Weibull, gamma, log normal, and log logistic)

can achieve this shape. Competing risks models are one way of combining several distributions to

achieve a bathtub-shaped lifetime distribution. As shown in Figure 6.6, if a DFR Weibull distribu-

tion is used to model manufacturing defect failures and an IFR Weibull distribution is used to model

wear-out failures, then a competing risks model with k = 2 risks yields a bathtub-shaped hazard

function because the hazard functions are summed. We will formally develop this result later in this

section.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

t

h(t)

hX1
(t)

hX2
(t)

hT (t)

Figure 6.6: Hazard functions for a competing risks model.

6.2.1 Net Lifetimes

Competing risks theory is complicated by the existence of net and crude lifetimes. When working

with net lifetimes or net probabilities, the causes C1,C2, . . . ,Ck are viewed individually; that is, risk

C j, j = 1, 2, . . . , k, is analyzed as if it is the only risk acting on the population. When working with

crude lifetimes or crude probabilities, the lifetimes are considered in the presence of all other risks.

The random variables associated with net lifetimes are defined next.



334 Chapter 6. Topics in Survival Analysis

Definition 6.1 Let the random variable X j, having probability density function fX j
(t), survivor

function SX j
(t), hazard function hX j

(t), cumulative hazard function HX j
(t), and corresponding risk

C j, be the net life denoting the lifetime that occurs if only risk j is present, for j = 1, 2, . . . , k.

Unless all risks except j are eliminated, X j is not necessarily observed. In this sense, each

net lifetime is a potential lifetime that is observed with certainty only if all the other k − 1 risks

are eliminated. The observed lifetime of an item, T , is the minimum of X1, X2, . . . , Xk. When the

net lives are independent random variables, the hazard function for the observed time to failure is

hT (t) = ∑k
j=1 hX j

(t), because ST (t) = ∏k
j=1 SX j

(t) for a series system of k independent components,

HT (t) =− ln ST (t), and hT (t) = H ′
T (t):

hT (t) =
d

dt
HT (t)

=
d

dt

[

− ln ST (t)
]

=
d

dt

[

− ln

(

k

∏
j=1

SX j
(t)

)]

=
d

dt

[

k

∑
j=1

− ln SX j
(t)

]

=
d

dt

[

k

∑
j=1

HX j
(t)

]

=
k

∑
j=1

d

dt
HX j

(t)

=
k

∑
j=1

hX j
(t) t ≥ 0.

The net probability of failure in the time interval [a, b) from risk j, denoted by q j(a, b), is the

probability of failure in [a, b) from risk j if risk j is the only risk present, conditioned on survival to

time a. So

q j(a, b) = P(a ≤ X j < b |X j ≥ a)

= 1−P(X j ≥ b |X j ≥ a)

= 1− P(X j ≥ b)

P(X j ≥ a)

= 1−
SX j

(b)

SX j
(a)

= 1− e
−HX j

(b)

e
−HX j

(a)

= 1− e
−(HX j

(b)−HX j
(a))

= 1− e
−∫ b

a hX j
(t)dt

for j = 1, 2, . . . , k.
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6.2.2 Crude Lifetimes

Crude lifetimes are more difficult to work with than net lifetimes because they consider each of the

causes of failure in the presence of all other causes of failure. Crude lifetimes are observed when

lifetime data values are collected in a competing risks model in which all causes of failure are acting

simultaneously in the population.

Definition 6.2 Let the random variable Yj, having probability density function fY j
(t), survivor

function SY j
(t), hazard function hY j

(t), cumulative hazard function HY j
(t), and corresponding risk

C j, be the crude life denoting the lifetime conditioned on risk j being the cause of failure in the

presence of all other risks, for j = 1, 2, . . . , k.

The crude probability of failure in the time interval [a, b) from cause j, denoted by Q j(a, b),
is the probability of failure in [a, b) from risk j in the presence of all other risks, conditioned on

survival of all risks to time a. A well-known result in competing risks theory gives this probability

as

Q j(a, b) = P(a ≤ X j < b, X j < Xi for all i 6= j |T ≥ a)

=
∫ b

a
hX j

(x)e−
∫ x

a hT (t)dt dx

for j = 1, 2, . . . , k. Rather than isolating individual risks, as in the case of net lifetimes, this quantity

considers risk j as it works in the presence of the k− 1 other risks. The probability of failure due

to risk j is defined by π j = P(X j = T ), for j = 1, 2, . . . , k. Since failure will occur from one of the

causes,
k

∑
j=1

π j = 1.

A simple example to illustrate some of the concepts in competing risks is given next before the

general theory is developed.

Example 6.7 Consider an item that is subject to k = 2 causes of failure. Let the random

variables X1 and X2 be the net lives for causes C1 and C2. If the item under consideration

is a cell phone, for instance, cause 1 might be dropping the cell phone and cause 2 might

be all other causes (for example, battery or display failure). In this case, X1 is the life of

the cell phone if the only way it can fail is by being dropped. The second net life, X2,

is the lifetime of the cell phone if it is bolted to a desk and cannot be dropped. The

first crude life, Y1, is the failure time of a cell phone that failed due to being dropped in

the presence of the second cause of failure. Likewise, Y2 is the lifetime of a cell phone

that failed by some mode other than being dropped, but was not bolted to a desk to

avoid its being dropped. Let the observed lifetime, T , be the minimum of X1 and X2.

Also, assume that X1 and X2 are independent and have exponential distributions with

population means 1 and 1/2, respectively. Thus,

SX1
(t) = e−t fX1

(t) = e−t hX1
(t) = 1

and

SX2
(t) = e−2t fX2

(t) = 2e−2t hX2
(t) = 2

for t ≥ 0. The net probabilities of failure in the interval [a,b) are

q1(a, b) = 1− e−
∫ b

a 1dt = 1− e−(b−a)
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and

q2(a, b) = 1− e−
∫ b

a 2dt = 1− e−2(b−a)

for 0 < a < b. The crude probability of failure due to the first risk in the interval [a, b),
Q1(a, b), is the integral of the joint probability density function of X1 and X2 over the

shaded area in Figure 6.7 (illustrated for a = 0.5 and b = 1.2), divided by the integral

of the joint probability density function of X1 and X2 over the area to the northeast of

the point (a, a). Thus,

Q1(a, b) = P(a ≤ X1 < b and X1 < X2 |T ≥ a)

=
P(a ≤ X1 < b and X1 < X2)

P(X1 ≥ a, X2 ≥ a)

=

∫ b

a

∫ ∞

x1

e−w1 2e−2w2 dw2 dw1

∫ ∞

a

∫ ∞

a
e−w1 2e−2w2 dw2 dw1

=
1

3

[

1− e−3(b−a)
]

for 0 < a < b. Similarly,

Q2(a, b) =
2

3

[

1− e−3(b−a)
]

for 0< a< b. The Q j(a, b) expressions have been determined by using their definitions.

Alternatively, the formula given earlier,

Q j(a, b) =
∫ b

a
hX j

(x) e−
∫ x

a hT (t)dt dx,

for j = 1, 2, can be used to determine these quantities. For this particular example,

Q1(a, b) =
∫ b

a
e−

∫ x
a 3dt dx =

1

3

[

1− e−3(b−a)
]
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Figure 6.7: Numerator integration region for Q1(a, b) for a = 0.5 and b = 1.2.
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and

Q2(a, b) =
∫ b

a
2e−

∫ x
a 3dt dx =

2

3

[

1− e−3(b−a)
]

for 0 < a < b because hT (t) = hX1
(t)+ hX2

(t) = 1+ 2 = 3 for t ≥ 0. The probability

of failure due to risk 1, π1, can be found by integrating the joint density of the net lives

f (x1, x2) over the area X1 < X2 or, equivalently, using a = 0 and b = ∞ as arguments in

Q1(a, b), yielding π1 = 1/3. Similarly, π2 = 2/3.

The focus now shifts to the determination of the distribution of the crude lives, Y1 and Y2.

What is the survivor function for items that fail from one risk in the presence of the other

risk? This survivor function is important because data collected in competing risks

models often come in pairs: the cause of failure and the time of failure. The observed

time of failure is typically a crude lifetime because it is observed in the presence of the

other cause(s). The survivor function for the first crude lifetime, SY1
(y1), corresponds

to a cell phone that fails by being dropped in the presence of risk C2. If an analyst had

a large data set of cell phone failure times for those cell phones that failed by being

dropped, an empirical survivor function will converge to SY1
(y1) as the sample size

increases. The survivor function for Y1 is

SY1
(y1) = P(T ≥ y1 |X1 = T )

=
P(T ≥ y1, X1 = T )

π1

=

∫ ∞

y1

∫ ∞

x1

e−w1 2e−2w2 dw2 dw1

1/3

= e−3y1 y1 ≥ 0.

Similarly,

SY2
(y2) = e−3y2 y2 ≥ 0.

This surprising result, that both Y1 and Y2 have the same exponential distribution with

population mean 1/3, can be attributed to the definition of a crude lifetime. Since the

two crude lifetimes are the minimum of two exponential random variables (the expo-

nential net lifetimes), each will have an exponential distribution with a parameter being

the sum of the rates. The crude lifetime Y1, for example, consists of only those expo-

nential(1) random variables that are smaller than another independent exponential(2)

random variable. Likewise, the crude lifetime Y2 consists of only those exponential(2)

random variables that are smaller than another independent exponential(1) random vari-

able. Theorem 4.4 provides the basis for the fact that the minimum of independent

exponential random variables is also exponentially distributed.

As a result, there are two valid ways to generate a random lifetime T for use in Monte

Carlo simulation. First, taking the net lifetime perspective, generate an exponential(1)

random variate and an exponential(2) random variate and choose the minimum as T .

Second, taking the crude lifetime perspective, generate an exponential(3) random vari-

ate T and indicate this is failure from risk 1 with probability 1/3 and failure from risk 2

with probability 2/3.
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6.2.3 General Case

A general theory for competing risks is now developed based on the definitions for net and crude life-

times given previously. Let X1, X2, . . . , Xk be the k continuous net lives and T = min{X1, X2, . . . , Xk}
be the observed failure time of the item. The X j’s are not necessarily independent as they were in

Example 6.7. Letting the net lives have joint probability density function f (x1, x2, . . . , xk), the joint

survivor function is

S(x1, x2, . . . , xk) = P(X1 ≥ x1, X2 ≥ x2, . . . , Xk ≥ xk)

=
∫ ∞

xk

· · ·
∫ ∞

x2

∫ ∞

x1

f (t1, t2, . . . , tk)dt1 dt2 . . . dtk

and the marginal net survival function is

SX j
(x j) = P(X j ≥ x j) = S(0, . . . , x j, . . . , 0)

for j = 1, 2, . . . , k. The survivor function for the observed lifetime T is

ST (t) = P(T ≥ t) = S(t, t, . . . , t).

The probability of failure from risk j can be determined from the joint survivor function because

− ∂

∂x j

S(x1, . . . , x j, . . . , xk) = lim
∆x→0

S(x1, . . . , x j, . . . , xk)−S(x1, . . . , x j +∆x, . . . , xk)

∆x

for j = 1, 2, . . . , k by the definition of the derivative. Thus,

π j =

∫ ∞

0
−
[

∂

∂x j

S(x1, . . . , x j, . . . , xk)

]

x1=x2=···=xk=x

dx

for j = 1, 2, . . . , k. To derive a survivor function for the crude lifetimes, let the random variable J

be the index of the cause of failure so that

P(T ≥ t, J = j) = P(X j ≥ t, X j < Xi for all i 6= j)

=
∫ ∞

t

[∫ ∞

x j

· · ·
∫ ∞

x j

∫ ∞

x j

f (x1, x2, . . . , xk)∏
i 6= j

dxi

]

dx j

for j = 1, 2, . . . , k, where the survivor function for T is obtained by conditioning:

ST (t) = P(T ≥ t)

=
k

∑
j=1

P(T ≥ t |J = j)P(J = j)

=
k

∑
j=1

P(T ≥ t, J = j).

When t = 0, each term in the last summation is one of the π j’s because

π j = P(J = j) = P(T ≥ 0, J = j)

for j = 1, 2, . . . , k. Thus, the distribution of the jth crude life, Yj, is the distribution of T conditioned

on J = j:

SY j
(y j) = P(T ≥ y j |J = j) =

P(T ≥ y j, J = j)

P(J = j)

for j = 1, 2, . . . , k.
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Example 6.8 The competing risks model from Example 6.7, which considered two

independent, exponentially distributed risks, is used to illustrate the use of the formulas

developed thus far. As before, let the net lives have marginal survivor functions

SX1
(t) = e−t SX2

(t) = e−2t

for t ≥ 0. Since the risks are independent, the joint survivor function is

S(x1, x2) = SX1
(x1) ·SX2

(x2) = e−x1−2x2 x1 ≥ 0, x2 ≥ 0.

The probability of failure from the first risk is

π1 =

∫ ∞

0
−
[

∂

∂x1
S(x1, x2)

]

x1 =x2 =x

dx

=

∫ ∞

0
−
[

− e−x1−2x2

]

x1 =x2 =x
dx

=
∫ ∞

0
e−3x dx

=
1

3
.

Since π2 = 1−π1,

π2 =
2

3
.

The probability of survival to time t and risk 1 being the cause of failure is

P(T ≥ t, J = 1) = P(X1 ≥ t, X1 < X2)

=
∫ ∞

t

[∫ ∞

x1

f (x1, x2)dx2

]

dx1

=
∫ ∞

t

∫ ∞

x1

2e−x1−2x2 dx2 dx1

=
∫ ∞

t
e−3x1 dx1

=
1

3
e−3t t ≥ 0.

Similarly,

P(T ≥ t, J = 2) =
2

3
e−3t t ≥ 0.

Thus, the survival function for the first crude lifetime is

SY1
(y1) =

P(T ≥ y1, J = 1)

P(J = 1)
= e−3y1 y1 ≥ 0

and the survival function for the second crude lifetime is

SY2
(y2) =

P(T ≥ y2, J = 2)

P(J = 2)
= e−3y2 y2 ≥ 0.

These results are identical to those derived from first principles in the previous example.

Both crude lifetimes have an exponential(3) distribution.
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To this point, it has been shown how the distribution of the net lives X1, X2, . . . , Xk determines

the distribution of the crude lives Y1, Y2, . . . , Yk. Net lives can be interpreted as potential lifetimes,

while crude lives are the observed lifetimes. When lifetime data for the known cause of failure are

collected, the observed values are Yj’s. An important question is whether the distribution of each Yj

contains enough information to determine the distribution of the X j’s. In general, the answer is

no, but under the assumption of independence of the net lives, the answer is yes. The following

discussion considers results under the assumption of independent net lives. This independence can

often be attained by grouping the k risks so that dependencies occur within, but not between, risks.

Theorem 6.1 Let X1, X2, . . . , Xk be independent net lifetimes. Let Y1, Y2, . . . , Yk be the associated

crude lifetimes with known marginal probability density functions fY1
(t), fY2

(t), . . . , fYk
(t). The

probability of failure from risk j, π j = P(J = j), is known. Then the hazard function for the net

lifetime j is

hX j
(t) =

π j fY j
(t)

k

∑
i=1

πiSYi
(t)

t ≥ 0

for j = 1, 2, . . . , k.

The proof of this result is given in a reference listed in the preface. This result is useful for

determining the effect of removing one or more risks when the distributions of the crude lives are

determined from a data set, as illustrated in the next example.

Example 6.9 Consider again the competing risks model from Example 6.8 in which

the k = 2 risks were assumed to be independent. If a large number of failure times

are collected, and the cause of failure is identifiable (that is, both the failure time and

the index of the risk that caused failure are known), it might be possible to determine

the distribution of the two crude lifetimes. If both are well fitted with an exponential

distribution with failure rate λ = 3, and approximately one-third of the failures are from

cause 1, then

π1 = P(J = 1) =
1

3
π2 = P(J = 2) =

2

3

and

SY1
(t) = e−3t SY2

(t) = e−3t

for t ≥ 0. Therefore, by Theorem 6.1 the hazard functions for the net lives are

hX1
(t) =

1
3 ·3e−3t

1
3 e−3t + 2

3 e−3t
= 1 t ≥ 0

and

hX2
(t) =

2
3 ·3e−3t

1
3 e−3t + 2

3 e−3t
= 2 t ≥ 0.

This result is consistent with the previous two examples.

The previous three examples have considered competing risks models with k = 2 risks and expo-

nentially distributed net and crude lifetimes. This section concludes with an example of a competing

risks model with k = 3 risks and non-exponential net lifetimes.
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Example 6.10 An item is subject to k = 3 competing risks C1, C2, and C3 with the

three associated independent net lifetimes: X1 ∼ Weibull(1, 2), X2 ∼ exponential(1),
and X3 ∼ Weibull(1, 3).

(a) What is the population mean time to failure of the item?

(b) If one of the risks could be eliminated, the elimination of which risk results in the

greatest increase in the population mean time to failure of the item?

(a) The hazard function associated with a Weibull(λ, κ) random variable is

h(t) = κλκtκ−1 t ≥ 0.

The hazard functions for the three net lifetimes are

hX1
(t) = 2t hX2

(t) = 1 hX3
(t) = 3t2

for t ≥ 0. The hazard function for the time to failure of the item T is the sum of

the hazard functions for the three net lifetimes:

hT (t) = 3t2 +2t +1 t ≥ 0.

The associated cumulative hazard function is

HT (t) =
∫ t

0
hT (τ)dτ

=

∫ t

0

(

3τ2 +2τ+1
)

dτ

=
[

τ3 + τ2 + τ
]t

0

= t3 + t2 + t t ≥ 0.

The associated survivor function is

ST (t) = e−HT (t) = e−t3−t2−t t ≥ 0.

So the population mean time to failure of the item is

E[T ] =
∫ ∞

0
ST (t)dt =

∫ ∞

0
e−t3−t2−t dt ∼= 0.4630,

where the integral must be evaluated numerically.

(b) The same procedure given in part (a) can be used to assess the effect of removing

risks. The results are given in Table 6.4. Removing risk 2 makes the greatest

improvement on the population mean lifetime of the item.

Risk eliminated Risk 1 Risk 2 Risk 3

E[T ] 0.5689 0.6637 0.5456

Table 6.4: Mean lifetimes associated with eliminated risks.
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To summarize this section, competing risks models are appropriate when there are k causes

of failure and the occurrence of failure due to any risk causes the item to fail. These k risks can

be thought of conceptually as a k-component series system. The probabilities of failure from the

various causes are denoted by π1, π2, . . . , πk. The net lifetimes X1, X2, . . . , Xk occur if only one risk

is evident at a time in the population. The crude lifetimes Y1, Y2, . . . , Yk occur in the presence of all

other risks. If the net lives are independent, once the distributions of Y1, Y2, . . . , Yk and π1, π2, . . . , πk

are determined, the distribution of the net lives X1, X2, . . . , Xk can be determined.

6.3 Point Processes

So far, the focus has been on a single random variable T , generically referred to as a lifetime, and

methods for estimating its probability distribution. In a reliability setting, T might be the lifetime

of a light bulb. In a biostatistical setting, T might be the post-surgery remission time for a patient

having a particular type of cancer. In an actuarial setting, T might be the time of death for a insured

individual having a life insurance policy. In all of these examples, there is only a single random

variable T that is of interest.

Occasions arise, however, when there are multiple events of interest. In a reliability setting,

the sequence of events might be the repair times for an automobile. In a biostatistical setting, the

sequence of events might be the times at which a cortisone injection is administered to a patient.

In an actuarial setting, the sequence of events might be the times of insurance claims on an insured

dwelling. In all of these examples, the probability mechanism governing the sequence of observa-

tions is of interest.

Point process models are often used to describe the probability mechanism governing a series

of event times. The three elementary point process models considered in this section are Poisson

processes, renewal processes, and nonhomogeneous Poisson processes.

Point process models can be applied to more than just failure times of repairable systems. Point

processes have been used to describe arrival times to queues, earthquake times, hurricane landfall

times, pothole positions on a highway, and other physical phenomena. They have also been used to

describe the occurrence times of sociological events such as crimes, strikes, bankruptcies, and wars.

The examples in this section use reliability jargon, leaving it to the reader to extend the models

to other disciplines. The reliability-centric term “failure” is used instead of the more generic term

“event” for all of the point processes described in this section. The object of interest will continue

to be referred to generically as an “item.”

When the time to repair or replace an item is negligible, point processes are appropriate for

modeling the probabilistic mechanism underlying the failure times. This would be the case for

an automobile that works without failure for months, and then is in the shop for one hour for a

repair in which no mileage is accrued while the maintenance is being performed. These models

would not be appropriate, for example, for an aircraft that spends several months having its engine

overhauled before being placed back into service if availability is of interest. The down time needs

to be explicitly modeled in this case.

A small but important bit of terminology is used to differentiate between nonrepairable items,

which were considered in the previous chapters, and repairable items, which are considered here. A

nonrepairable item, such as a light bulb, has one failure, and the term burn in is used if its hazard

function is decreasing and the term wear out is used if its hazard function is increasing. Figure 6.8

shows hazard functions for an item that undergoes burn in and another that wears out. The × on the

time axis denotes a realization of one possible failure time. The lifetimes of nonrepairable items are

described by the distribution of a single nonnegative random variable, usually denoted by T .
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Figure 6.8: Hazard functions for nonrepairable items in the DFR and IFR classes.

In contrast, a repairable item, such as an automobile, typically fails at several points in time. In

many situations, a nonhomogeneous Poisson process, which is governed by the intensity function

λ(t) that reflects the rate of occurrence of failures, might be the appropriate probabilistic mecha-

nism for modeling the failure history of the item. The intensity function is analogous to the hazard

function in the sense that higher levels of λ(t) indicate an increased probability of failure. The term

improvement is used if the intensity function is decreasing, and the term deterioration is used if the

intensity function is increasing. Figure 6.9 shows intensity functions for an item that improves and

another that deteriorates. Each × on the time axis denotes a failure time associated with a realization.

The improving item has failures that tend to be less frequent as time passes; the deteriorating item

has failures that tend to be more frequent as time passes. The failure times of repairable items are

described by the probability mechanism underlying a sequence of random variables, often denoted

by T1, T2, . . . . These terms are summarized in Table 6.5.
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Figure 6.9: Intensity functions for a repairable improving and deteriorating items.
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Nonrepairable Repairable

Item gets better as time passes Burn in, h′(t)≤ 0 Improving, λ′(t)≤ 0

Item gets worse as time passes Wear out, h′(t)≥ 0 Deteriorating, λ′(t)≥ 0

Table 6.5: Terminology for nonrepairable and repairable items in the reliability setting.

The notation that applies to all three point process models surveyed in this section is presented

next.

In the point processes discussed in this section, failures occur at times T1, T2, . . . , and the time

to replace or repair an item is assumed to be negligible. The origin is defined to be T0 = 0. The

times between the failures are X1, X2, . . . , so Tk = X1 +X2 + · · ·+Xk, for k = 1, 2, . . . . The counting

function N(t) is the number of failures that occur in the time interval (0, t]. In other words,

N(t) = max{k |Tk ≤ t}

for t > 0. The nondecreasing, integer-valued stochastic process described by {N(t), t > 0} is often

called a counting process and satisfies the following two properties.

1. If t1 < t2, then N(t1)≤ N(t2).

2. If t1 < t2, then N(t2)−N(t1) is the number of failures in the time interval (t1, t2].

Let Λ(t) = E[N(t)] be the expected number of failures that occur in the interval (0, t]. The

derivative of Λ(t), which is λ(t) = Λ′(t), is the rate of occurrence of failures. Figure 6.10 shows

one realization of a point process, where N(t) is shown as a step function and the ×s denote the

failure times on the horizontal axis. The curve for the expected number of events by time t, Λ(t),
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Figure 6.10: Point process realization.
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is also on the same axis as N(t). It should be kept in mind that N(t) on this axis is a realization

that will change from one item to another item, but Λ(t) is the underlying population probabilistic

mechanism describing the sequence of events and does not change from one item to another item.

The behavior of the interevent times X1, X2, . . . is always of interest in analyzing a repairable

item. If the interevent times tend to increase with time, the item is improving; if the interevent times

tend to decrease with time, the item is deteriorating. Other variables, such as a new untrained oper-

ator or repairman, must be considered when analyzing the failure times of a repairable item. These

variables are ignored in the presentation of the point process models, but can result in erroneous

conclusions if not considered along with the observed times between failures.

There are two properties that are important to discuss before introducing specific point processes.

The first property is called independent increments. A point process has independent increments if

the number of failures in mutually exclusive intervals are independent. As shown in the realiza-

tion depicted in Figure 6.11, this property implies that the number of failures (the failure times are

depicted by ×s) between times t1 and t2 are independent of the number of failures between times

t3 and t4 because the intervals (t1, t2] and (t3, t4] are nonoverlapping. A second property is called

stationarity. A point process is stationary if the distribution of the number of failures in any time

interval depends only on the length of the time interval. Equivalently, failures are no more or less

likely to occur at one time than another for an item. This is a rather restrictive assumption for an

item because the item can neither deteriorate nor improve.

( ] ( ] t

0 t1 t2 t3 t4

××××

Figure 6.11: Independent increments illustration.

The three point process models, Poisson processes, renewal processes, and nonhomogeneous

Poisson processes, are introduced in separate subsections.

6.3.1 Poisson Processes

The well-known Poisson process is a popular model due to its mathematical tractability, although

it applies only to limited situations. These limited situations include replacement models with ex-

ponential standby items and repairable items with exponential times to failure and negligible repair

times.

Definition 6.3 A counting process N(t) is a Poisson process with rate parameter λ > 0 if

• N(0) = 0,

• the process has independent increments, and

• the number of failures in any interval of length t has the Poisson distribution with mean λt.

There are several implications of this definition of a Poisson process. First, by the last condition

for a Poisson process, the distribution of the number of failures in the interval (t1, t2] has the Poisson

distribution with parameter λ(t2 − t1). Therefore, the probability mass function of the number of
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failures in the interval (t1, t2] is

P
(

N(t2)−N(t1) = x
)

=

[

λ(t2 − t1)
]x

e−λ(t2−t1)

x!
x = 0, 1, 2, . . . .

Second, the number of failures by time t, denoted by N(t), has the Poisson distribution with popula-

tion mean

Λ(t) = E[N(t)] = λt t > 0,

where λ is often called the rate of occurrence of failures. The intensity function is therefore given

by λ(t) = Λ′(t) = λ for t > 0. Third, if X1, X2, . . . are independent and identically distributed expo-

nential random variables, then N(t) corresponds to a Poisson process.

Example 6.11 Consider a socket model in which an infinite supply of light bulbs is

used in a single-component standby system composed of a single socket. As each bulb

fails, it is immediately replaced by a new bulb, and each bulb has an exponential(λ)

time to failure. Find the probability that there are n or fewer failures by time t.

Since the light bulb failure time distributions are each exponential, and the replacement

time is negligible, a Poisson process is the appropriate model here. The probability that

there are n or fewer failures by time t is therefore

P
(

N(t)≤ n
)

=
n

∑
k=0

(λt)ke−λt

k!
n = 0, 1, 2, . . .

for t > 0. When n = 0, this solution reduces to the survivor function for an exponential

distribution (the nonrepairable case). It is easily recognized here that the time of the nth

failure has the Erlang distribution with scale parameter λ and shape parameter n because

Tn = X1 +X2 + · · ·+Xn and X1, X2, . . . , Xn are independent and identically distributed

exponential(λ) random variables.

This model is sometimes also called a homogeneous Poisson process because the failure rate

λ does not change with time (that is, the model is stationary). The next two models are general-

izations of homogeneous Poisson processes. In a renewal process, the assumption of exponentially

distributed times between failures is relaxed; in a nonhomogeneous Poisson process, the stationarity

assumption is relaxed.

6.3.2 Renewal Processes

A renewal process is a natural extension of a Poisson process in which the times between failure are

assumed to have any lifetime distribution, rather than just the exponential distribution.

Definition 6.4 A point process is a renewal process if the times between failures X1, X2, . . . are

independent and identically distributed nonnegative random variables.

The term renewal is appropriate for these models because an item is assumed to be renewed to

its original state after it fails. This is typically not the case for a repairable system consisting of

many components, because only a few of the components are typically replaced upon failure. The

remaining components that did not fail will only be as good as new if they have exponential lifetimes.

Renewal processes are often used, for example, to determine the number of spare components to take

on a mission or to determine the timing of a sequence of repairs.
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One classification of renewal processes that is useful in the study of socket models concerns the

coefficient of variation γ = σ/µ of the distribution of the times between failures. This classification

divides renewal processes into underdispersed and overdispersed processes.

Definition 6.5 A renewal process is underdispersed (overdispersed) if the coefficient of variation

of the distribution of the times between failures is less than (greater than) 1.

Figure 6.12 displays realizations of three different renewal process. The first process is under-

dispersed because the coefficient of variation of the distribution of the time between failures is less

than 1. An extreme case of an underdispersed process is one in which the coefficient of variation of

the distribution of the time between failures is 0 (that is, a deterministic failure time for each item

because σ/µ = 0 implies that σ = 0), which would yield a deterministic renewal process. The un-

derdispersed process is much more regular in its failure times; hence, it is easier to determine when

it is appropriate to replace an item if failure is catastrophic or expensive. A design engineer’s goal

might be to reduce the variability of the lifetime of an item, which in turn decreases the coefficient

of variation. Reduced variation with increased mean is desirable for most items. The second axis

in Figure 6.12 corresponds to a realization of a renewal process that has a coefficient of variation of

the distribution of the time between failures equal to 1. This case sits in between the underdispersed

and overdispersed cases. There is more clumping of failures than in the underdispersed case. The

third axis corresponds to a realization of an overdispersed distribution. There is extreme clumping

of failures here, and many failures occur soon after an item is placed into service. Fortunately, the

overdispersed case occurs less often in practice than the underdispersed case.

t
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γ > 1
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Figure 6.12: Classifying renewal processes based on the coefficient of variation.

Example 6.12 Consider a renewal process with Weibull(λ, κ) time between failures.

Classify the renewal processes into the underdispersed and overdispersed cases.

The shape parameter κ partitions the renewal process into the various cases. When

κ > 1, the process is underdispersed; when κ < 1, the process is overdispersed; when

κ = 1, the process reduces to a Poisson process because the time between failures is

exponential(λ). The sequence of failures depicted on the time axes in Figure 6.12 were

generated by Monte Carlo simulation using Weibull(λ, κ) times between failures. The
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top axis corresponds to κ= 5 (an IFR time between failures distribution) and the pattern

of failures reflects the relatively small standard deviation of the time between failures

distribution. The middle axis corresponds to κ = 1 (the exponential special case of

the Weibull distribution), so this is a realization of a Poisson process. This case is the

dividing line between an underdispersed renewal process and an overdispersed renewal

process. There is more clumping of failures than in the underdispersed case because

the mode of the exponential distribution is zero. A replacement policy is ineffective

in this case because of the memoryless property of the exponential distribution. The

bottom axis corresponds to κ = 1/2 (a DFR time between failures distribution), and

the clumping of failures becomes even more extreme. On all three axes, there are nine

failures, but the pattern of failures differs significantly for the various values of κ.

Two measures of interest that often arise when using a renewal process are the distribution of Tn,

the time of the nth failure, and the distribution of the number of failures by time t. In terms of

the distribution of Tn, there are simple results for the expected value and population variance of

Tn, but the tractability of the distribution of Tn depends on the tractability of the distribution of the

times between failures. Since Tn = X1 +X2 + · · ·+Xn, and the Xi’s are mutually independent and

identically distributed, the expected value and population variance of Tn are

E[Tn] = nE[X ] and V [Tn] = nV [X ],

where E[X ] and V [X ] are the expected value and population variance of the time between failures.

The survivor function for the time of the nth failure, STn(t) = P(Tn ≥ t), can be found as a function

of the distribution of the Xi’s and is tractable only for simple time between failure distributions.

The distribution of the number of failures by time t can be calculated by finding the values of

the mass function P
(

N(t) = n
)

for all values of n. Since exactly n failures occurring by time t is

equivalent to Tn being less than or equal to t and Tn+1 being greater than t,

P
(

N(t) = n
)

= P(Tn ≤ t < Tn+1)

= P(Tn+1 ≥ t)−P(Tn ≥ t)

= STn+1
(t)−STn(t)

for n = 0, 1, 2, . . . and t > 0, and continuous time between failures distribution. Although using the

exponential distribution as the time to failure for each item reduces a renewal process to a Poisson

process, it will be used in the next example because it is one of the few distributions for which these

measures can easily be calculated.

Example 6.13 Consider again a socket model for which the time to failure of each light

bulb inserted in the socket has an exponential distribution with failure rate λ. Find the

expected value and the population variance of Tn, the survivor function of Tn, and the

probability mass function of the number of failures by time t.

First, since each item has population mean time to failure E[X ] = 1/λ, and population

variance of the time to failure V [X ] = 1/λ2, the expected value and the population

variance of the time of failure n are

E[Tn] = nE[X ] =
n

λ
and V [Tn] = nV [X ] =

n

λ2

for n = 0, 1, 2, . . . . Since Tn is the sum of independent and identically distributed

exponential random variables, it has the Erlang distribution with survivor function

STn(t) =
n−1

∑
k=0

(λt)k

k!
e−λt t > 0
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for n = 1, 2, . . . . To find the probability mass function for the number of failures by

time t,

P
(

N(t) = n
)

= STn+1
(t)−STn(t)

=
n

∑
k=0

(λt)k

k!
e−λt −

n−1

∑
k=0

(λt)k

k!
e−λt

=
(λt)n

n!
e−λt

for n = 0, 1, 2, . . . , and t > 0, which is recognized as the Poisson distribution with rate

parameter λt. This simplest case of a renewal process corresponds to a Poisson process.

A more mathematically complicated situation occurs when the gamma distribution is used to

model the time between failures.

Example 6.14 Consider a socket model with a single socket in which the lifetime of

each light bulb to be placed in the socket has the gamma distribution with scale param-

eter λ = 0.001 and shape parameter κ = 5.2, where time is measured in hours. Find the

probability that three light bulbs are sufficient to light the system for 8760 hours (one

year).

Since the mean of the gamma distribution is κ/λ, each light bulb has mean time to

failure µ = 5.2/0.001 = 5200 hours. Thus, the expected time of failure number n = 3

is E [T3] = 3E[X ] = 3(5200) = 15,600 hours, or almost two years. This preliminary

analysis indicates that the probability that three bulbs will be sufficient for one year of

operation should be fairly high.

A result that can be used to determine the exact probability is that the sum of n indepen-

dent and identically distributed gamma random variables also has a gamma distribution.

This result is most easily derived by using the moment generating function approach to

determine the distribution of the sum of independent random variables. Let the random

variable X have a gamma distribution with parameters λ and κ. The moment generating

function of X is

MX (s) = E
[

esX
]

=
∫ ∞

0
esx λ

Γ(κ)
(λx)κ−1e−λx dx

=
λκ

Γ(κ)

∫ ∞

0
xκ−1e−x(λ−s) dx

=
λκ

Γ(κ)

∫ ∞

0

(

u

λ− s

)κ−1

e−u 1

λ− s
du

=

(

λ

λ− s

)κ
1

Γ(κ)

∫ ∞

0
uκ−1e−u du

=

(

λ

λ− s

)κ

for all s < λ. Since X1, X2, . . . , Xn are mutually independent and identically distributed

gamma random variables, the moment generating function of Tn = X1 +X2 + · · ·+Xn is
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the product of n of these moment generating functions:

MTn(s) =
n

∏
i=1

MXi
(s) =

(

λ

λ− s

)nκ

for all s < λ. Thus, if X1, X2, . . . , Xn are independent and identically distributed gamma

random variables with parameters λ and κ, then the probability distribution of their sum

has the gamma distribution with parameters λ and nκ. For the problem at hand, the

time to the third failure, T3, has a gamma distribution with scale parameter λ = 0.001

and shape parameter nκ= (3)(5.2) = 15.6. To find the probability that T3 exceeds 8760,

P(T3 ≥ 8760) = ST3
(8760) = 1− I(15.6, 8.76) = 0.9771,

where I is the incomplete gamma function. The R statement below computes this prob-

ability using the pgamma function, which returns the cumulative distribution function of

a random variable having the gamma distribution.

pgamma(15.6, 8.76)

This completes the brief introduction to renewal processes. The final subsection introduces

nonhomogeneous Poisson processes.

6.3.3 Nonhomogeneous Poisson Processes

The third and final point process introduced here is the nonhomogeneous Poisson process. There are

at least four reasons that a nonhomogeneous Poisson process should be considered for modeling the

sequence of failures of a repairable item.

1. A homogeneous Poisson process is a special case of a nonhomogeneous Poisson process.

2. The probabilistic model for a nonhomogeneous Poisson process is mathematically tractable.

3. The statistical methods for a nonhomogeneous Poisson process are mathematically tractable.

4. Unlike a homogeneous Poisson process or a renewal process, a nonhomogeneous Poisson

process is able to model the failure times of improving and deteriorating items.

One disadvantage with both Poisson processes and renewal processes is that they assume that

the distribution of the time to failure for each item in a socket model with a single socket is identical.

This means that it is not possible for the item to improve or deteriorate. A nonhomogeneous Poisson

process is another generalization of the homogeneous Poisson process for which the stationarity

assumption is relaxed. Instead of a constant rate of occurrence of failures λ, as in a homogeneous

Poisson process, this rate varies over time according to λ(t), which is often called the intensity

function. The cumulative intensity function is defined by

Λ(t) =
∫ t

0
λ(τ)dτ

and is interpreted as the expected number of failures by time t. These two functions are generally

used to describe the probabilistic mechanism governing the failure times of the item, as opposed to

the five distribution representations used to describe the time to failure of nonrepairable items.
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Definition 6.6 A counting process is a nonhomogeneous Poisson process with intensity function

λ(t)≥ 0 defined on t > 0 if

• N(0) = 0,

• the process has independent increments, and

• the probability of exactly n events occurring in the interval (t1, t2] is given by

P
(

N(t2)−N(t1) = n
)

=

[∫ t2

t1

λ(t)dt

]n

e
−
∫ t2

t1

λ(t)dt

n!

for n = 0, 1, 2, . . . .

Thus, if the intensity function is decreasing, the item is improving; if the intensity function is

increasing, the item is deteriorating. For nonhomogeneous Poisson processes, the times between

failures are neither independent nor identically distributed. The time to the first failure in a non-

homogeneous Poisson process has the same distribution as the time to failure of a nonrepairable

item with hazard function h(t) = λ(t). Subsequent failures follow a conditional version of the inten-

sity function that does not depend on previous values of λ(t). The times between these subsequent

failures do not necessarily follow any of the probability distributions (for example, the Weibull dis-

tribution) used in survival analysis.

Since the independent increments property has been retained from the definition of a homoge-

neous Poisson process, this model assumes that previous failure times do not affect the future failure

times of the item. Although this may not be exactly true in practice, the nonhomogeneous Poisson

process model is still valuable because it is mathematically tractable and allows for improving and

deteriorating systems. In addition, parameter estimation for the nonhomogeneous Poisson process

model is simple, which is another attractive feature.

Example 6.15 Consider a nonhomogeneous Poisson process with intensity function

λ(t) = κλκtκ−1 t > 0,

where λ and κ are positive parameters. This intensity function can be recognized as the

same functional form as the hazard function for a Weibull random variable with scale

parameter λ and shape parameter κ, and is often referred to as a power law process. For

this intensity function, if κ < 1, the item is improving because the intensity function is

decreasing, if κ > 1, the item is deteriorating because intensity function is increasing,

and if κ = 1, it reduces to a homogeneous Poisson process with rate parameter λ. Find

the probability that there will be exactly n failures by time t. Also, if failure n occurs at

time tn, find the conditional survivor function for the time to the next failure.

Using Definition 6.6, the number of failures by time t, N(t), has probability mass func-

tion

P
(

N(t) = n
)

=

[∫ t

0
λ(τ)dτ

]n

e
−
∫ t

0
λ(τ)dτ

n!
n = 0, 1, 2, . . .
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for t > 0. Using the fact that Λ(t) =
∫ t

0
κλκτκ−1dτ = (λt)κ for t > 0,

P
(

N(t) = n
)

=
(λt)κn e−(λt)κ

n!
n = 0, 1, 2, . . .

for t > 0. Finding the survivor function for the time to the next failure involves con-

ditioning. Using independent increments, the fact that S(t) = e−H(t), and conditioning,

the conditional survivor function for the time to the next failure is

ST |T> tn(t) = e−(Λ(t)−Λ(tn)) = e−((λt)κ−(λtn)
κ) = e−λκ(tκ−tκ

n ) t > tn.

It was stated earlier that point process models are used in applications outside of reliability.

Figure 6.13 provides an example in which the event of interest is an arrival of a car to a drive-up

window at a fast food restaurant rather than the usual failure time of a repairable item. The intensity

function λ(t) models the arrival rate to the drive-up window, which has peaks at breakfast, lunch,

and dinner times. The highest peak is at lunch when the intensity function is about 6 cars per hour.

Each × along the time axis denotes an arrival time of a car to the drive-up window, and the clusters

during the three meal times are apparent in the realization. The height of the intensity function is

proportional to the probability of an arrival rate in the next instant. As was the case before, the arrival

time values will vary from one realization to the next for the fixed intensity function illustrated in

Figure 6.13.

The renewal process and the nonhomogeneous Poisson process are the two most popular point

process models for modeling the underlying probability mechanism associated with the failure times

of a repairable item. The two models are at the extremes of the repair action associated with a

repairable item with a negligible repair time. One can think of the failures and repairs in a renewal

process as perfect repairs, in which the item is completely restored to a new item. One can think of

the failures and repairs in a nonhomogeneous Poisson process as minimal repairs, in which the item

continues along the same intensity function track that was in play prior to the failure. The terms

perfect repair and minimal repair for an item (that is, a component or a system) are defined next.
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Figure 6.13: Intensity function for arrivals to a fast food restaurant drive-up window.
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Definition 6.7 A perfect repair corresponds to a repair action that returns a failed item to a like

new state in terms of its lifetime distribution.

There are two ways to think about a perfect repair. One way to perform a perfect repair is to

discard the failed item and simply replace it with a new item. This is the case with replacement or

socket model. A second way to perform a perfect repair is to perform the repair in a manner which

makes the item as good as new with respect to its lifetime distribution. Regardless of which of these

options occurs in practice, a renewal process is the appropriate probabilistic model to capture the

time evolution of the repairable item. If all repairs on an item are perfect, then the times between

failure are mutually independent and identically distributed random variables.

Definition 6.8 A minimal repair corresponds to a repair action that restores a failed item to the

same condition as it was just prior to the failure in terms of its future risk of failure.

A nonhomogeneous Poisson process model can provide a reasonable underlying probability

model for the failure sequence for a series system comprised of hundreds, or even thousands of

components with roughly equal reliabilities. A component which fails and is replaced or repaired

leaves the system in nearly the same condition as it was just prior to the failure. The failed compo-

nent is such a small part of the overall system that using a minimal repair is appropriate.

Figure 6.14 shows the relationship between the three point process models that have been pre-

sented in this section. A renewal process is defined by the probability distribution of the time be-

tween events. These events are failures in reliability modeling. This probability distribution can be

defined by any of the five lifetime distribution representations defined in Section 4.1. Figure 6.14

uses the hazard function to define the probability distribution of the time between failures. A renewal

process collapses to a homogeneous Poisson process with positive rate λ when

h(t) = λ t > 0.

A nonhomogeneous Poisson process can be defined by the intensity function λ(t) or the cumulative

intensity function Λ(t). Figure 6.14 uses the intensity function λ(t) to define the probabilistic mech-

anism governing the failure times. A nonhomogeneous Poisson process collapses to a homogeneous

Poisson process with positive rate λ when

λ(t) = λ t > 0.

Renewal
Process

h(t)
Perfect Repairs

Nonhomogeneous
Poisson Process

λ(t)
Minimal Repairs

Homogeneous
Poisson Process

λ

h(t) = λ λ(t) = λ

Figure 6.14: Relationships between point processes.
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The hazard function was introduced in Section 4.1 as a rate of failure using limits. The condi-

tional intensity function can be defined in a similar fashion. Let H t− represent the history of an item

from time zero until just prior to time t. The most informative way to think of H t− is to consider it

a record of the failure times associated with the counting process N(t) for all time values from zero

until just prior to t. Given this history, we can define the conditional intensity function as

λ(t |H t−) = lim
∆t→0

P(failure in the interval (t, t +∆t] |H t−)

∆t
.

The conditional intensity function for an item having independent and identically distributed

times to failure in the IFR class and perfect repairs is illustrated in Figure 6.15. This corresponds

to the risk profile associated with one realization of a renewal process. Each × on the time axis

corresponds to a failure and repair. Each failure and repair restores the item to a like new state, so

the conditional intensity function evolves after the failure like that of a new item.

The opposite extreme in terms of repair action is illustrated in Figure 6.16. This corresponds to

the risk profile associated with one realization of a nonhomogeneous Poisson process. Each × on

the time axis corresponds to a failure and a minimal repair which occurs in a negligible period of

time. Each failure and minimal repair takes the item to the same condition as it was just prior to

the failure in terms of its future risk. So each failure does not change the trajectory of λ(t), which

corresponds to a deteriorating item in this illustration.

There have been several schemes proposed for interpolating between renewal processes (to

model perfect repairs) and nonhomogeneous Poisson processes (to model minimal repairs). One

such scheme assigns a probability p to replacement of the entire item with a new item, which cor-

responds to a perfect repair, so that replacement or repair of just one of many components, which

corresponds to a minimal repair, occurs with probability 1− p. The extreme case of p = 0 corre-

sponds to a nonhomogeneous Poisson process; the extreme case of p = 1 corresponds to a renewal

process.

One final topic, superpositioning, can be applied to any of the three point process models con-

sidered thus far. Poisson, renewal, and nonhomogeneous Poisson processes are useful for modeling
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Figure 6.15: Conditional intensity function for perfect repairs.
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Figure 6.16: Conditional intensity function for minimal repairs.

the failure pattern of a single repairable item. In some situations it is important to model the failure

pattern of several items simultaneously. Examples include a job shop with k machines, a military

mission with k weapons, or an item failing from one of k causes of failure. Figure 6.17 shows a super-

position of the failure times of k = 3 items. The bottom axis contains the superposition of the three

point process realizations on the top three axes. The superposition of several point processes is the

ordered sequence of all failures that occur in any of the individual point processes. An important re-

sult that applies to superpositions of nonhomogeneous Poisson processes is: if λ1(t), λ2(t), . . . , λk(t)
are the intensity functions for k independent items, then the intensity function for the superposition

is λ(t) = ∑k
i=1 λi(t) for t > 0. This result is similar to the result concerning the hazard functions for

net lives in competing risks.

t

t

t

t

0

××× ×××××× ×××××

×××
××××××

×××××

Figure 6.17: Superposition of three point processes.

This ends the presentation of the three point process models considered here: Poisson processes,

renewal processes, and nonhomogeneous Poisson processes. The first two models are only capable

of modeling socket models for which the time between failures has a common distribution, whereas

nonhomogeneous Poisson processes are capable of modeling improving and deteriorating systems,

which are more common in practice. All three of these models are appropriate when there is a

negligible down time (that is, failure and return to service occur at essentially the same point in

time).
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6.4 Exercises

6.1 The failure times of n = r = 20 electric generators (in hours) placed on an accelerated life

test are

7.5 121.5 279.8 592.1 711.5 848.2 1051.7 1425.5 1657.2

1883.6 2311.1 2951.2 5296.6 5637.9 6054.3 6303.9 6853.7

7201.9 9068.5 10,609.7,

as given on page 101 of Zacks, S., Introduction to Reliability Analysis: Probabilistic Models

and Statistical Methods, Springer–Verlag, Inc., New York, 1992.

(a) Assuming that the time to failure of the population of generators at the accelerated

conditions has the exponential distribution, find a point and 95% confidence interval

estimate for the probability of survival to 6000 hours.

(b) Using nonparametric methods, find a point and 95% confidence interval estimate for

the probability of survival to 6000 hours under the accelerated conditions.

6.2 Show that the product–limit estimate reduces to the survivor function estimate for a complete

data set when the failure times are distinct.

6.3 Show that the diagonal elements of the observed information matrix associated with the

product–limit estimate are

[

−∂2 ln L
(

h(y1), h(y2), . . . , h(yk)
)

∂h(yi)2

]

h(yi)=di/ni

=
n3

i

di(ni −di)

for i = 1, 2, . . . , k.

6.4 Find a point estimate and an approximate two-sided 95% confidence interval estimate for the

probability that the remission times exceed 20 weeks for the control and treatment groups of

the 6–MP data set from Example 5.6. Are there any conclusions that can be drawn from the

two confidence intervals concerning the drug 6–MP’s influence on remission times exceeding

20 weeks?

6.5 Thirteen aircraft components are placed on a life test that is discontinued after the tenth

failure. The failure times, in hours, are

0.22 0.50 0.88 1.00 1.32 1.33 1.54 1.76 2.50 3.00,

as given on page 43 of Crowder, M.J., Kimber, A.C., Smith, R.L., and Sweeting, T.J., Statis-

tical Analysis of Reliability Data, Chapman and Hall, New York, 1991.

(a) Assuming that the time to failure of the components in the population has the exponen-

tial distribution, find a point and 95% confidence interval estimate for the probability

of survival to 1.6 hours.

(b) Using nonparametric methods, find a point and 95% confidence interval estimate for

the probability of survival to 1.6 hours.
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6.6 The survival times (in weeks) of patients with acute myelogenous leukemia in the nonmain-

tained group are

5, 5, 8, 8, 12, 16∗, 23, 27, 30, 33, 43, 45,

where the ∗ superscript signifies a right-censored observation, as given on page 49 of Miller,

R., Survival Analysis, John Wiley & Sons, Inc., New York, 1981. Give a nonparametric

estimator of the expected survival time of a patient with acute myelogenous leukemia in the

nonmaintained group.

6.7 The failure times (in minutes) of electrical insulating fluid subjected to constant voltages

below are from Nelson, W. B., “Graphical Analysis of Accelerated Life Test Data with the

Inverse Power Law Model,” IEEE Transactions on Reliability, Vol. R–21, pp. 2–11, 1972.

Voltage Failure time

(kV) (minutes)

28 68.85 426.07 110.29 108.29 1067.6

30 17.05 22.66 21.02 175.88 139.07 144.12 20.46 43.40 194.90

47.30 7.74

32 0.40 82.85 9.88 89.29 215.10 2.75 0.79 15.93 3.91

0.27 0.69 100.58 27.80 13.95 53.24

(a) Plot a nonparametric survivor function estimate for each of the three voltage levels on

a single set of axes.

(b) Fit the accelerated life model with an exponential baseline to the failure times. Re-

port the maximum likelihood estimators and 95% confidence intervals (based on the

observed information matrix) for all unknown parameters. Also, predict the mean time

to failure at 26 kV voltage.

6.8 The lifetimes, in days, on n = 10 identical pieces of equipment are

2 72∗ 51 60∗ 33 27 14 24 4 21∗,

as given in Lawless, J.F., Statistical Models and Methods for Lifetime Data, 2nd ed., John

Wiley & Sons, Inc., Hoboken, NJ, 2003. The asterix denotes a right-censored observation.

Assume that a random right censoring scheme is appropriate.

(a) Find a nonparametric point estimate for S(25).

(b) Find a nonparametric 95% confidence interval for S(25).

(c) Use the relationship H(t) = − ln S(t) to determine a point estimate for H(25) using

your solution to part (a).

(d) One other most popular technique for estimating H(t) is the Nelson–Aalen estimator

Ĥ (t) = ∑
j |y j≤t

d j

n j

,

where y j, d j, and n j have the same meaning as in the Kaplan–Meier product–limit

estimate. Give a point estimate for H(25) using the Nelson–Aalen estimator.

(e) Give a point estimate for S(25) using the Nelson–Aalen estimator.
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6.9 Find all possible values of the Kaplan–Meier product–limit estimate for the survivor function

for n distinct failure and censoring values for n = 1, 2, . . . , 10 and display these values in a

graphic. Research in this area has been conducted by Qin, Y., Sasinowska, H., Leemis, L.,

“The Probability Mass Function of the Kaplan–Meier Product–Limit Estimator,” Forthcom-

ing, The American Statistician, 2023.

6.10 One nonparametric technique for estimating the cumulative hazard function H(t) is the

Nelson–Aalen estimator:

Ĥ (t) = ∑
j |y j≤t

d j

n j

,

where y j, d j, and n j have the same meaning as in the Kaplan–Meier product–limit estimate.

The observed failure times (in hours) of n = 4156 integrated circuits placed on a test that

was terminated at 1370 hours given on page 5 of Meeker, W.Q., Escobar, L.A., Pascual,

F.G., Statistical Methods for Reliability Data, 2nd ed., John Wiley & Sons, Inc., New York,

2022 are given in the table below. The ordered observed failure times are arranged in a

row-wise fashion.

0.10 0.10 0.15 0.60 0.80 0.80 1.20

2.50 3.00 4.00 4.00 6.00 10.00 10.00

12.50 20.00 20.00 43.00 43.0 48.00 48.00

54.00 74.00 84.00 94.00 168.00 263.00 593.00

Give a point estimate for H(0.5) using the Nelson–Aalen estimator.

6.11 Calculate the test statistic and the p-value for the log-rank test associated with the leukemia

remission times in the control and treatment groups for the clinical trial involving 6–MP.

6.12 The remission times (in weeks) for 40 leukemia patients, with 20 patients selected at random

and assigned to treatment A:

1, 3, 3, 6, 7, 7, 10, 12, 14, 15, 18, 19, 22, 26, 28∗, 29, 34, 40, 48∗, 49∗

and the other 20 patients assigned to treatment B:

1, 1, 2, 2, 3, 4, 5, 8, 8, 9, 11, 12, 14, 16, 18, 21, 27∗, 31, 38∗, 44.

are given on page 346 of Lawless, J.F., Statistical Models and Methods for Lifetime Data,

2nd ed., John Wiley & Sons, Inc., Hoboken, N.J., 2003. Conduct the log-rank test to compare

the survivor functions for the two populations and report the appropriate p-value.

6.13 Three independent risks act on a population. The net lives, X j, are exponential(λ j), for

j = 1, 2, 3. Find

(a) q j(a, b),

(b) Q j(a, b),

(c) π j,

for j = 1, 2, 3.
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6.14 A component can fail from one of two identifiable causes. Ken collects a large number of

failures of both types and determined that

π1 = 0.73 π2 = 0.27

and the crude lives have probability density functions

fY1
(t) = 1 0 ≤ t ≤ 1

and

fY2
(t) = θtθ−1 0 ≤ t ≤ 1

for a positive parameter θ. Find the hazard functions of the net lives, X1 and X2, assuming

that the risks are independent.

6.15 In a competing risks model, the distributions of the k crude lifetimes are exponential with

identical parameter λ. In addition, the probabilities of failure from each of the risks (the π j’s)

are known. Assuming that the net lives are independent, find

(a) the mean lifetime of the item,

(b) the mean lifetime of the item if risk j is eliminated, for j = 1, 2, . . . , k.

6.16 Assume that the following are known in a competing risks model with two causes of failure:

π1 =
1

4
π2 =

3

4
SY1

(t) = e−αt SY2
(t) = e−(λt)κ

for t ≥ 0. Assuming that the risks are independent, find

(a) the hazard function for the first net lifetime,

(b) an expression for E[T ],

(c) an expression for the expected time to failure if risk 2 is removed.

The solutions to some parts of this problem might not be closed form.

6.17 If X1, X2, . . . , Xk are independent net lives and X j ∼ exponential (λ j) for j = 1, 2, . . . , k, find

π j = P
(

X j = min{X1, X2, . . . , Xk}
)

for j = 1, 2, . . . , k.

6.18 Beth considers independent net lives X1 and X2, where X j ∼Weibull(λ j, κ) for j = 1, 2. Find

π1 = P
(

X1 = min{X1, X2}
)

.

6.19 Rick uses a competing risks model with two independent risks C1 and C2. The net lifetime

for risk 1 has a log logistic distribution with parameters λ1 and κ1. The net lifetime for risk

2 has a log logistic distribution with parameters λ2 and κ2. Write expressions for π1 and π2.

6.20 Let T be the lifetime of an item that is subject to three independent competing risks, for

which the hazard functions for the crude lives are

hY1
(t) =

a

t +α
t ≥ 0,

hY2
(t) = bt t ≥ 0,

and

hY3
(t) = λ t ≥ 0

for positive parameters a, α, b, and λ. Given the values of π1, π2, and π3, give an expression

for the hazard function for the first net lifetime.
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6.21 Consider a competing risks model with k = 2 independent risks. The first net lifetime, X1,

has a Weibull distribution with parameters λ1 and κ1. The second net lifetime, X2, has a

Weibull distribution with parameters λ2 and κ2. Find the expected remaining lifetime for an

item that is operating at time t0. Simplify your answer as much as possible.

6.22 Consider a competing risks model with k = 2 risks. Let X1 be the net lifetime associated

with risk 1 and let X2 be the net lifetime associated with risk 2. The joint probability density

function of X1 and X2 is

f (x1, x2) = 1 (x1, x2) ∈ A,

where A is the triangular region determined by connecting the points (1, 2), (3, 2), and (3, 1)
in the (x1, x2) plane with lines.

(a) Find π1.

(b) Find the survivor function of T = min{X1, X2}.

6.23 In a competing risks model with k = 2 independent risks, give an expression for Q2(a, b),
where both net lives have Weibull distributions, that is, X1 has a Weibull distribution with

parameters λ1 and κ1 and X2 has a Weibull distribution with parameters λ2 and κ2. Evaluate

Q2(a, b) to four decimal places when a = 1, b = 2, λ1 = 3, κ1 = 1/3, λ2 = 4, and κ2 = 1/4.

6.24 Consider the lifetime T having the bi-Weibull distribution with survivor function

S(t) = e−(λ1t)κ1−(λ2t)κ2
t ≥ 0,

where λ1, λ2, κ1, and κ2 are positive parameters. The distribution has a bathtub-shaped

hazard function if min{κ1, κ2}< 1 < max{κ1, κ2}. Find the time value where h′(t) = 0 for

a bi-Weibull distribution with a bathtub-shaped hazard function.

6.25 Bonnie models the lifetime of an automobile using two dependent competing risks. The first

risk is from accidents and the second risk is from all other causes. The joint survivor function

of the two net lives associated with the two risks on their support is

S(x1, x2) = (1− x1/2)(1− x2/2)
(

1+ x2
1x2/8

)

0 < x1 < 2, 0 < x2 < 2,

where x1 and x2 are the odometer readings measured in hundreds of thousands of miles.

(a) Find the marginal survivor function for X1.

(b) Find the joint probability density function of the net lifetimes.

(c) Find π2.

(d) Find Q2(0.5, 1.2).

(e) Find the expected lifetime of the automobile.

(f) Perform a Monte Carlo experiment to support your solution to part (e).

6.26 The formula for the hazard function of the ith net life in a competing risks model is

hXi
(t) =

1

S(t, t, . . . , t)

[−∂S(x1, x2, . . . , xk)

∂xi

]

x1 =x2 = ···=xk = t

for t ≥ 0 and i = 1, 2, . . . , k. Find hX1
(t) for k = 2 risks and joint survivor function

S(x1, x2) = e−λ1x1−λ2x2−λ3x1x2 x1 ≥ 0, x2 ≥ 0,

for λ1 > 0, λ2 > 0, and λ3 > 0.
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6.27 An item is subject to three competing risks with the associated three independent net life-

times: X1 ∼ Weibull(1, 2), X2 ∼ exponential(1), and X3 ∼ Weibull(1, 3). Write computer

code in a language of your choice to provide the numerical methods necessary to compute

(a) the mean time to failure of the item,

(b) the mean time to failure of the item with each of the risks eliminated individually.

In addition, calculate the mean of each net lifetime and provide a plausible explanation of

why the net lifetime with the largest mean corresponds to the risk that has the greatest impact

on E[T ] when it is eliminated.

6.28 An item can fail from one of two competing risks. The first net lifetime is associated with

accidents and is modeled by X1 ∼ exponential(λ). The second net lifetime is associated with

wear out and is modeled by the random variable X2 with hazard function

hX2
(t) = βt t ≥ 0,

for β > 0. The net lifetimes are independent random variables.

(a) Give an expression for the mean time to failure of the item; that is, find E[T ], where

T = min{X1, X2}. This expression will not be in closed form.

(b) Give an expression for π1. This expression will also not be in closed form.

(c) Use numerical methods to calculate the two quantities given in parts (a) and (b) to seven

digits when λ = 2 and β = 1.

(d) Use Monte Carlo simulation to support your solutions in part (c).

6.29 A repairable item with negligible repair time fails according to a Poisson process with rate

λ = 0.001 failures per hour. Find the probability of two or fewer failures between 3000 and

6000 hours.

6.30 A repairable item with negligible repair time fails according to a renewal process with inter-

failure time having the gamma distribution with parameters λ and κ. Find the probability of

n or fewer failures between times 0 and c.

6.31 Verify that the derivative of the renewal equation is satisfied when the items in a socket model

have exponential lifetimes.

6.32 Consider a renewal process for which the times between failures have the Weibull distribu-

tion with scale parameter λ and shape parameter κ. Find the expected value and population

variance of the time of failure n for n = 1, 2, . . . .

6.33 A repairable item with negligible repair time fails according to a nonhomogeneous Poisson

process with intensity function λ(t) = 0.001+ 0.000001t failures per hour, for t > 0. Find

the probability of two or fewer failures between 3000 and 6000 hours.

6.34 For a nonhomogeneous Poisson process with power law intensity function

λ(t) = λκ(λt)κ−1 t > 0,

find the probability mass function for the number of events between times a and b.
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6.35 Consider an age replacement policy model for which items are replaced at failure or at time c,

whichever comes first. Assuming that the time to failure has the Pareto distribution with

parameters λ and κ, find the expected number of failures by time b. Assume that λ ≪ c ≪ b.

6.36 Two different maintenance procedures are to be compared for a repairable item: age replace-

ment and block replacement. Assume that the item has a lifetime that is a mixture of three

distributions: a Weibull distribution with λ= 0.01 and κ= 0.6 (with p1 = 0.05), an exponen-

tial distribution with λ = 0.002 (with p2 = 0.45), and a Weibull distribution with λ = 0.001

and κ = 3.0 (with p3 = 0.50). Assume that time is measured in hours.

(a) Calculate the theoretical mean lifetime of the item.

(b) Use Monte Carlo simulation to compare the age replacement and block replacement

maintenance strategies for the item with c = 1000 hours.

6.37 Georgie drives a car whose failure times are governed by a nonhomogeneous Poisson process

with power law cumulative intensity function

Λ(t) = (λt)κ t > 0,

where t is measured in miles. If the car has 100,000 miles on the odometer, find the proba-

bility that Georgie can make a 1000-mile trip without a failure.

6.38 Bedrock Motors, Inc. is introducing their new “Tyrano-Taurus Rex” automobile, complete

with a three-year warranty. Each Rex has a failure mechanism governed by a nonhomoge-

neous Poisson process with power law intensity function

λ(t) = λκκtκ−1 t > 0,

where t is time (in years), and λ and κ are positive parameters. If Fred, Wilma, Barney,

and Betty each buy a Rex, find the expected number of failures under warranty that Bedrock

Motors will experience for these four Rexes.

6.39 Cynthia is going camping. She takes along a flashlight which requires two batteries in order

to operate. Cynthia’s batteries each have an exponential time to failure with a mean of 1/λ. If

Cynthia takes five batteries with her (two batteries in the flashlight and three spare batteries),

what is the distribution of time that she will be able to use her flashlight? You may assume

that (a) her battery replacement time is negligible, (b) her flashlight bulb never fails, and

(c) she has a battery tester that allows her to determine which of the two batteries in the

flashlight has failed. Write a short paragraph on the reasonableness of the assumption of

exponential battery lifetimes.

6.40 The event times T1, T2, . . . in a nonhomogeneous Poisson process with cumulative intensity

function Λ(t) can be simulated with

Ti = Λ−1(Ei)

for i = 1, 2, . . . , where E1, E2, . . . are the event times in a unit homogeneous Poisson pro-

cess. Use this result to simulate the event times in a nonhomogeneous Poisson process with

cumulative intensity function Λ(t) = t2 for 0< t < 2. Provide convincing numerical evidence

that you have correctly implemented the algorithm by conducting a Monte Carlo simulation

experiment to estimate the number of events that have occurred by time t = 1.5.
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6.41 Consider a nonhomogeneous Poisson process with intensity function λ(t) and cumulative

intensity function Λ(t) defined on the time interval 0 < t < s, where s is a prescribed, fixed,

positive real number. Define the scaled intensity function as

λ⋆(t) =
λ(t)

Λ(s)
0 < t < s.

(a) Show that

∫ s

0
λ⋆(t)dt = 1.

(b) Find the functional forms of λ⋆(t) for the following intensity functions:

• λ(t) = λ for 0 < t < s,

• λ(t) = κλκtκ−1 for 0 < t < s,

• λ(t) = λκ(λt)κ−1

1+(λt)κ for 0 < t < s,

for positive parameters λ and κ.

6.42 Barbara models the failure times of a digital camera by a nonhomogeneous Poisson process.

Previous data has revealed that the intensity function for the times of warranty claims is

well-modeled by the intensity function

λ(t) = 0.124t t > 0,

where time is measured in years. The camera company is considering offering three consec-

utive one-year term warranties: one upon purchase of the camera, a second after one year

of use, and the third after two years of use. In order to be competitive, the camera company

has decided to make no profit on their warranty policies. Give the three revenue-neutral pre-

miums that a customer has to pay for these warranties. Make the following assumptions to

make your calculations simpler.

• Each repair costs exactly $100.

• A repair is instantaneous.

• Ignore the effect of the time value of money.

• Each repair is a minimal repair in the sense that the repair to the camera does not reset

the intensity function to t = 0 but rather the camera’s age and intensity function are

unaltered by the repair.

6.43 A truck requires a particular nonrepairable electrical component that has an exponential life-

time with a positive failure rate λ failures per hour. A site supports a large fleet of n trucks,

each operating 24 hours a day, 7 days a week. A parts manager can make an order for spare

parts once a week. Assuming that the lead time is 0 (that is, immediate delivery), what is the

minimum number of parts that should be ordered up to each week to ensure that there is a

probability of at least 0.9999 that a truck is not down for lack of this particular nonrepairable

electrical component?

(a) Write a paragraph describing an algorithm that the parts manager should select an order

quantity.

(b) Apply the algorithm from part (a) for n = 20 trucks and λ = 0.001 failures per hour.

(c) Support your solution to part (b) via Monte Carlo simulation.
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6.44 Natasha models power failures in the state of Virginia during the month of March with a

Poisson process with rate λ = 7 failures per month. Given that there have been a total of

4 failures during the first 10 days of March, what is the probability that Virginia will have

more than 12 power outages during the entire month of March?

6.45 The number of annual failures of a particular brand of carburetor is X1 ∼ Poisson(λ1). The

number of annual failures of a second brand of carburetor is X2 ∼ Poisson(λ2). Assuming

that the number of annual failures of the two types of carburetors are independent and that

there are n annual failures observed for both types of carburetors (that is, X1 +X2 = n), what

is the probability distribution of the number of failures of the first carburetor during that

particular year?

6.46 Which repairable system described below is the best candidate for being an improving sys-

tem?

(a) Automobile.

(b) Wooden chair.

(c) Blender.

(d) Operating system.

(e) Lawn mower.

6.47 Consider the three-component series system of repairable components with four cold-standby

spares depicted below. All components are identical with failure rates 0.005 failure per hour.

In this particular system, the failure detection and switching times are negligible. There is a

repair facility with two repairmen. The repair rate is 0.01 repair per hour, and only one re-

pairman can work on a failed component at a time. Find the expected time to system failure

(that is, the expected time when there are fewer than three operating components) assuming

all components are new at t = 0.

series systemqueue for spares repair facility

failed components
queue for

three−component

repaired component flow


