
Chapter 5

Statistical Methods in Survival

Analysis

The previous chapter introduced probability models that are frequently used in survival analysis.

This chapter introduces the associated statistical methods.

The focus in this chapter is the use of maximum likelihood for parameter estimation and infer-

ence. Likelihood theory is illustrated in the first section. The matrix of the expected values of the

opposite of the second partial derivatives of the log likelihood function is known as the Fisher infor-

mation matrix and its statistical analog, the observed information matrix, is useful for determining

confidence intervals for parameters. Asymptotic properties of the likelihood function, which are

associated with large sample sizes, are reviewed in the second section. One distinctive feature of

lifetime data is the presence of censoring, which occurs when only an upper or lower bound on the

lifetime is known. Statistical methods for handling censored data values are introduced in the third

section. The focus is on right censoring, where only a lower bound on the failure time is known.

These methods are applied to the exponential distribution and the Weibull distribution in the next

two sections. Finally, the last section indicates how to fit the proportional hazards model to a data

set consisting of lifetimes with associated covariates.

5.1 Likelihood Theory

There are always merits in obtaining raw data (that is, exact individual failure times), as opposed

to grouped data (counts of the number of failures over prescribed time intervals). Given raw data,

we can always construct grouped data, but the converse is typically not true; therefore, we limit

discussion in this chapter to the raw data case.

The random variable T has denoted a random lifetime in previous chapter. So it is natural to use

T1, T2, . . . , Tn to denote a random sample of n such lifetimes, where n is the number of items on test.

When specific values are given for realizations of such lifetimes, which is typically the case from this

point forward, they are denoted by t1, t2, . . . , tn. In other words, t1, t2, . . . , tn are the experimental

values of the mutually independent and identically distributed random variables T1, T2, . . . , Tn. The

associated ordered observations, or order statistics, are denoted by t(1), t(2), . . . , t(n).

The Greek letter θ is often used to denote a generic unknown parameter. We will refer to θ̂ in

the abstract as a point estimator; when θ̂ assumes a specific numeric value, it will be referred to as a

point estimate. The probability distribution of a statistic is referred to as a sampling distribution.
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Assume that there is a single unknown parameter θ in the probability model for T . Assume

further that the data values t1, t2, . . . , tn are mutually independent and identically distributed random

variables. The joint probability density function of the data values is the product of the marginal

probability density functions of the individual observations:

L(t1, t2, . . . , tn, θ) =
n

∏
i=1

f (ti; θ).

This function is the likelihood function. In order to simplify the notation, the likelihood function is

often written as simply

L(θ) =
n

∏
i=1

f (ti).

The maximum likelihood estimator of θ, which is denoted by θ̂, is the value of θ that maximizes

L(θ).
The next example reviews the associated notions of the log likelihood function, score vector,

maximum likelihood estimator, Fisher information matrix, and observed information matrix for a

two-parameter lifetime model. We assume for now that there are no censored observations in the

data set; all of the failure times are observed.

Example 5.1 Let t1, t2, . . . , tn be a random sample from an inverse Gaussian (Wald)

population having unknown positive parameters λ and µ, where µ is the population

mean. The probability density function of the inverse Gaussian distribution is

f (t) =

√

λ

2π
t−3/2e−λ(t−µ)2/(2µ2t) t > 0.

Find the likelihood function, log likelihood function, score vector, maximum likelihood

estimator, Fisher information matrix, and observed information matrix.

The likelihood function is

L(t, λ, µ) =
n

∏
i=1

√

λ

2π
t
−3/2
i e−λ(ti−µ)2/(2µ2ti)

= λn/2(2π)−n/2

[

n

∏
i=1

ti

]−3/2

e−λ/(2µ2)∑n
i=1 (ti−µ)2/ti ,

where t= (t1, t2, . . . , tn). The likelihood function and any monotonic transformation of

the likelihood function are maximized at the same value. Since the calculus and algebra

is often easier when working with the logarithm of the likelihood function, we do so in

this setting. The log likelihood function is

ln L(t, λ, µ) =
n

2
ln λ− n

2
ln(2π)− 3

2

n

∑
i=1

ln ti −
λ

2µ2

n

∑
i=1

(ti −µ)2

ti
.

The two-component score vector, U(λ, µ), consists of the partial derivatives with re-

spect to the two unknown parameters:

∂ ln L(t, λ, µ)

∂λ
=

n

2λ
− 1

2µ2

n

∑
i=1

(ti −µ)2

ti
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and

∂ ln L(t, λ, µ)

∂µ
=

λ

µ3

[

n

∑
i=1

ti −nµ

]

.

When the second equation is equated to zero, the maximum likelihood estimator µ̂ is

determined. Then using µ̂ as an argument in the first equation and solving for λ̂ results

in the maximum likelihood estimators

λ̂ =

[

1

n

n

∑
i=1

1

ti
− n

∑n
i=1 ti

]−1

and µ̂ =
1

n

n

∑
i=1

ti.

The second partial derivatives of the log likelihood function are

∂2 ln L(t, λ,µ)

∂λ2
=− n

2λ2

∂2 ln L(t, λ,µ)

∂λ∂µ
=

1

µ3

n

∑
i=1

ti −
n

µ2

∂2 ln L(t, λ,µ)

∂µ2
=−3λ

µ4

n

∑
i=1

ti +
2nλ

µ3
.

Since E[T ] = µ for the inverse Gaussian distribution, the Fisher information matrix

consists of the expected values of the negatives of these derivatives:

I(λ, µ) =











E

[−∂2 ln L(t, λ,µ)

∂λ2

]

E

[−∂2 ln L(t, λ,µ)

∂λ∂µ

]

E

[−∂2 ln L(t, λ,µ)

∂µ∂λ

]

E

[−∂2 ln L(t, λ,µ)

∂µ2

]











=







n

2λ2
0

0
nλ

µ3






.

The Fisher information matrix is the variance–covariance matrix of the score vector.

The off-diagonal elements being zero for the inverse Gaussian distribution implies that

the elements of the score vector are uncorrelated. Although this example has simple

closed-form expressions for the Fisher information matrix, it is more often the case that

the elements of the Fisher information matrix are not closed form. The observed infor-

mation matrix can be calculated for all distributions; it uses the maximum likelihood

estimates:

O(λ̂, µ̂ ) =









−∂2 ln L(t, λ,µ)

∂λ2

−∂2 ln L(t, λ,µ)

∂λ∂µ
−∂2 ln L(t, λ,µ)

∂µ∂λ

−∂2 ln L(t, λ,µ)

∂µ2









λ = λ̂, µ = µ̂

=







n

2λ̂2
0

0
nλ̂

µ̂ 3






.

In some cases, it is possible to find the exact distribution of a pivotal quantity which results

in exact statistical inference (that is, constructing exact confidence intervals and performing exact

hypothesis tests). It is more often the case that exact statistical inference is not possible, and asymp-

totic properties associated with the likelihood function must be relied on for approximate inference.

The next section reviews some asymptotic properties that arise in likelihood theory. When a large

data set of lifetimes is available, these properties often lead to approximate statistical methods of

inference.
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5.2 Asymptotic Properties

When the number of items on test n is large, there are some asymptotic results concerning the

likelihood function that are useful for constructing confidence intervals and performing hypothesis

tests associated with a vector of p unknown parameters θθ = (θ1, θ2, . . . , θp)
′
. As indicated in the

example in the last section, the p×1 score vector U(θθ) has elements

Ui(θθ) =
∂ ln L(t, θθ)

∂θi

=
∂

∂θi

n

∑
j=1

ln f (t j, θθ)

for i = 1, 2, . . . , p. Therefore, each element of the score vector is a sum of mutually independent

random variables, and, when n is large, the elements of U(θθ) are asymptotically normally distributed

by the central limit theorem. More specifically, the score vector U(θθ) is asymptotically normal with

population mean 0 and variance–covariance matrix I(θθ), where I(θθ) is the Fisher information matrix.

This means that when the true value for the parameter vector is θθ0 then

U
′(θθ0)I(θθ0)

−1
U(θθ0)

is asymptotically chi-square with p degrees of freedom. This can be used to determine confidence

intervals and perform hypothesis tests with respect to θθ.

The maximum likelihood estimator for the parameter vector θ̂θ can also be used for confidence

intervals and hypothesis testing. Since θ̂θ is asymptotically normal with population mean θθ and

variance–covariance matrix I−1(θθ), when θθ = θθ0,

(

θ̂θ−θθ0

)′
I(θθ0)

(

θ̂θ−θθ0

)

is also asymptotically chi-square with p degrees of freedom. Two statistics that are asymptotically

equivalent to this statistic that can be used to estimate the value of the chi-square random variable

are
(

θ̂θ−θθ0

)′
I
(

θ̂θ
)(

θ̂θ−θθ0

)

and
(

θ̂θ−θθ0

)′
O
(

θ̂θ
)(

θ̂θ−θθ0

)

.

A third asymptotic result involves the likelihood ratio statistic

−2
[

ln L(θθ)− ln L(θ̂θ)
]

=−2ln

[

L(θθ)

L(θ̂θ)

]

,

which is asymptotically chi-square with p degrees of freedom. The conditions necessary for these

asymptotic properties to apply are cited at the end of the chapter.

These three asymptotic results are summarized in the result below, where the a above the ∼ is

shorthand for “asymptotically distributed.”

Theorem 5.1 Let t1, t2, . . . , tn be mutually independent and identically distributed lifetimes from

a population distribution with p unknown parameters θθ = (θ1, θ2, . . . , θp)
′
. Then

U
′(θθ0)I(θθ0)

−1
U(θθ0)

a∼ χ2(p),
(

θ̂θ−θθ0

)′
O
(

θ̂θ
)(

θ̂θ−θθ0

) a∼ χ2(p), −2ln

[

L(θθ)

L(θ̂θ)

]

a∼ χ2(p).
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Example 5.2 Let t1, t2, . . . , tn be a random sample from a population with probability

density function

f (t) =
1√
2πt3

e−(t−µ)2/(2µ2t) t > 0,

where µ is a positive unknown parameter, which is the population mean. This popu-

lation distribution is a special case of the two-parameter inverse Gaussian distribution.

Use one of the asymptotic results from Theorem 5.1 to construct an asymptotically

exact two-sided 100(1−α)% confidence interval for µ.

The first step is to find the maximum likelihood estimator of µ. The likelihood function

is

L(t, µ) =
n

∏
i=1

(

2πt3
i

)−1/2
e−(ti−µ)2/(2µ2ti)

= (2π)−n/2

[

n

∏
i=1

ti

]−3/2

e−∑n
i=1 (ti−µ)2/(2µ2ti).

The log likelihood function is

ln L(t, µ) =−n

2
ln(2π)− 3

2

n

∑
i=1

ln ti −
1

2µ2

n

∑
i=1

(ti −µ)2

ti
.

The score is the derivative of the log likelihood function with respect to µ, which, after

simplification, is

∂ ln L(t,µ)

∂µ
=

1

µ3

[

n

∑
i=1

ti −nµ

]

.

When this equation is equated to zero, the maximum likelihood estimator for µ is

µ̂ =
1

n

n

∑
i=1

ti,

which is the sample mean. The second partial derivative of the log likelihood function

is
∂2 ln L(t, µ)

∂µ2
=− 3

µ4

n

∑
i=1

ti +
2n

µ3
,

which is negative at the maximum likelihood estimator, so the maximum likelihood

estimator maximizes the log likelihood function. The next step is to find the 1 × 1

Fisher information matrix. Using the second partial derivative of the log likelihood

function, the Fisher information matrix is

I(µ) = E

[

−∂2 ln L(t, µ)

∂µ2

]

= E

[

3

µ4

n

∑
i=1

ti −
2n

µ3

]

=
3nµ

µ4
− 2n

µ3
=

n

µ3

because E[X ] = µ for this population distribution. The 1×1 observed information is

O(µ̂ ) =

[

−∂2 ln L(t, µ)

∂µ2

]

µ=µ̂

=
n

µ̂ 3
.
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In order to construct an asymptotically exact two-sided 100(1−α)% confidence interval

for µ, recall that µ̂ is asymptotically normal with population mean µ and variance–

covariance matrix I−1(µ). In other words,

µ̂
a∼ N

(

µ, I−1(µ)
)

.

For large values of n, we replace the Fisher information matrix with the observed infor-

mation matrix:

µ̂
a∼ N

(

µ, O−1(µ̂ )
)

or

µ̂
a∼ N

(

µ,
µ̂ 3

n

)

.

This random variable can be standardized by subtracting its population mean and divid-

ing by its population standard deviation:

µ̂ −µ
√

µ̂ 3/n

a∼ N (0, 1) .

So the probability that this random variable falls between −zα/2 and zα/2 for large n is

lim
n→∞

P

(

−zα/2 <
µ̂ −µ
√

µ̂ 3/n
< zα/2

)

= 1−α.

where zα/2 is the 1−α/2 quantile of the standard normal distribution. Rearranging the

inequality

−zα/2 <
µ̂ −µ
√

µ̂ 3/n
< zα/2

so that µ is in the center of the inequality yields the asymptotically exact two-sided

100(1−α)% confidence interval

µ̂ − zα/2

µ̂ 3/2

√
n

< µ < µ̂ + zα/2

µ̂ 3/2

√
n
,

where µ̂ is the sample mean of the observed data values. The actual coverage of con-

fidence intervals developed in this fashion typically approaches 1−α as the number of

items on test n increases.

All of the statistical methods developed thus far have assumed that we are able to observe all n

of the items on test fail. The associated lifetimes are denoted by t1, t2, . . . , tn. Although this is ideal

and might be the case in some settings, a short testing time or items with long lifetimes might result

in some items that survive the test. The lifetimes of the items which do not fail during the test are

known as right-censored observations. The lifetimes of these items are not observed, but are known

to exceed the time at which the test is concluded. If a decision concerning the acceptability of the

items must be made with some of the items still operating at the end of the test, then a statistical

model must be formulated to account for the unobserved lifetimes of these items. The next section

introduces the important topic of censoring, which is pervasive in survival analysis.
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5.3 Censoring

Censoring occurs in lifetime data sets when only an upper or lower bound on the lifetime is known.

Censoring occurs frequently in lifetime data sets because it is often impossible or impractical to

observe the lifetimes of all the items on test. A data set for which all failure times are known is

called a complete data set. Figure 5.1 illustrates a complete data set of n = 5 items placed on test

simultaneously at time t = 0, where the ×’s denote failure times. Consider the two endpoints of each

of the horizontal segments. It is critical to provide an unambiguous definition of the time origin (for

example, the time a product is purchased or the time a cancer is diagnosed). Likewise, failure must

be defined in an unambiguous fashion. This is easier to define for a light bulb or a fuse than for

a ball bearing or a sock. Outside of a reliability setting, a data set of lifetimes is often generically

referred to as time-to-event data, corresponding to the time between the time origin and the event of

interest. A censored observation occurs when only a bound is known on the time of failure. If a data

set contains one or more censored observations, it is called a censored data set.

The most common type of censoring is known as right censoring. In a right-censored data

set, one or more items have only a lower bound known on their lifetime. The term sample size is

now vague. From this point forward, we use n to denote the number of items on test and use r to

denote the number of observed failures. In an industrial life testing situation, for example, n = 12

cell phones are put on a continuous, rigorous life test on January 1, and r = 3 of the cell phones

have failed by December 31. These failed cell phones are discarded upon failure. The remaining

n−r = 12−3 = 9 cell phones that are still operating on December 31 have lifetimes that exceed 365

days, and are therefore right-censored observations. Right censoring is not limited to just reliability

applications. In a medical study in which T is the survival time after the diagnosis of a particular

type of cancer, for example, a patient can either (a) still be alive at the end of a study, (b) die of a

cause other than the particular type of cancer, constituting a right-censored observation, or (c) lose

contact with the study (for example, if they leave town), constituting a right-censored observation.

Three special cases of right censoring are common in survival analysis. The first is Type II or

order statistic censoring. As shown in Figure 5.2, this corresponds to terminating a study upon one of

the ordered failures. The diagram corresponds to a set of n = 5 items placed on a test simultaneously

at time t = 0. The test is terminated when r = 3 failures are observed. Time advances from left to

right in Figure 5.2 and the failure of the first item (corresponding to the third ordered observed

failure) terminates the test. The lifetimes of the third and fourth items are right censored. Observed

failure times are indicated by an × and right-censoring times are indicated by a ◦. In Type II

censoring, the time to complete the test is random.

1

2

3

4

5

t0

×
×

×
×

×

Figure 5.1: Complete data set with n = 5.
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1

2

3

4

5

t0

◦
◦

×
×

×

Figure 5.2: Type II right-censored data set with n = 5 and r = 3.

The second special case is Type I or time censoring. As shown in Figure 5.3, this corresponds

to terminating the study at a particular time. The diagram shows a set of n = 5 items placed on a

test simultaneously at t = 0 that is terminated at the time indicated by the dotted vertical line. For

the realization illustrated in Figure 5.3, there are r = 4 observed failures. In Type I censoring, the

number of failures r is random.

Finally, random censoring occurs when individual items are withdrawn from the test at any

time during the study. Figure 5.4 illustrates a realization of a randomly right-censored life test with

n = 5 items on test and r = 2 observed failures. It is usually assumed that the failure times and the

censoring times are mutually independent random variables and that the probability distribution of

the censoring times does not involve any unknown parameters from the failure time distribution. In

other words, in a randomly censored data set, items cannot be more or less likely to be censored

because they are at unusually high or low risk of failure.

Although other types of censoring exist, such as left censoring and interval censoring, the focus

of this chapter will be on right censoring because it is the most common type of censoring. In the

case of right censoring, the ratio r/n is the fraction of items which are observed to fail. When r/n

is close to one, the data set is referred to as a lightly censored data set; when r/n is close to zero,

the data set is referred to as a heavily censored data set. In the reliability setting, many data sets are

heavily censored because the items have long lifetimes. In the biomedical setting, certain cancers

have long remission times, resulting in heavily censored data sets.

1

2

3

4

5

t0

◦

×
×

×

×

Figure 5.3: Type I right-censored data set with n = 5 and r = 4.



Section 5.3. Censoring 261

1

2

3

4

5

t0

◦
◦

◦

×

×

Figure 5.4: Randomly right-censored data set with n = 5 and r = 2.

Of the following three approaches to handling the problem of censoring, only one is both valid

and practical. The first approach is to ignore all the censored values and to perform analysis only

on those items that were observed to fail. Although this simplifies the mathematics involved, it

is not a valid approach. If, for example, this approach is used on a right-censored data set, the

analyst is discarding the right-censored values, and these are typically the items that have survived

the longest. In this case, the analyst arrives at an overly pessimistic result concerning the lifetime

distribution because the best items (that is, the right-censored observations) have been excluded from

the analysis. A second approach is to wait for all the right-censored observations to fail. Although

this approach is valid statistically, it is not practical. In an industrial setting, waiting for the last

light bulb to burn out or the last machine to fail may take so long that the product being tested will

not get to market in time. In a medical setting, waiting for the last patient to die from a particular

disease may take decades. For these reasons, the proper approach is to handle censored observations

probabilistically, including the censored values in the likelihood function.

The likelihood function for a censored data set can be written in several different equivalent

forms. Let t1, t2, . . . , tn be mutually independent observations denoting lifetimes sampled randomly

from a population. The corresponding right-censoring times are denoted by c1, c2, . . . , cn. The ti and

ci values are assumed to be independent, for i = 1, 2, . . . , n. In the case of Type I right censoring,

c1 = c2 = · · · = cn = c. The set U contains the indexes of the items that are observed to fail during

the test (that is, the uncensored observations):

U = {i | ti ≤ ci}.

The set C contains the indexes of the items whose failure time exceeds the corresponding censoring

time (that is, those that are right censored):

C = { i | ti > ci}.

This notation, along with an important notion known as alignment, are illustrated in the next exam-

ple.

Example 5.3 Consider the case of n = 5 items placed on test as indicated in Figure 5.5.

Find the sets U and C.

Observe that the right-censored data set depicted in Figure 5.5, unlike the previous right-

censored data sets with n = 5 items on test, does not have all of the items starting on

test at time t = 0. This is quite common in practice. A software engineer, for example,
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1

2

3

4

5

t0

◦

◦

×
×

×

Figure 5.5: Randomly right-censored data set.

cannot get all customers to purchase a computer program at the same time; a medical

researcher evaluating the time between first and second heart attacks cannot get all of

the patients in the study to have their first heart attack at the same time; a casualty

actuary cannot get all customers to purchase motorcycle insurance at the same time. In

all cases, it is necessary to shift each data value back to a common origin. As long as

there are not any changes to the items over the time window of observation, aligning

the data values in this fashion is appropriate. Figure 5.6 displays the aligned data set.

In this particular case, the first, second, and fourth items were observed to fail, and the

failure times for the third and fifth items were right-censored. Therefore, the sets U and

C are

U = {1, 2, 4} and C = {3, 5}.

1

2

3

4

5

t0

◦

◦

×
×

×

Figure 5.6: Aligned randomly right-censored data set.

The usual form for right-censored lifetime data is given by the pairs (xi, δi), where xi =min{ti, ci}
and δi is a censoring indicator variable:

δi =

{

0 ti > ci

1 ti ≤ ci

for i = 1, 2, . . . , n. The (xi, δi) pairs can be reconstructed from the (ti, ci) pairs and vice versa.

Hence, δi is 1 if the failure of item i is observed and 0 if the failure of item i is right censored, and
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xi is the failure time (when δi = 1) or the censoring time (when δi = 0). For the vector of unknown

parameters θθ = (θ1, θ2, . . . , θp)
′, ignoring a constant factor, the likelihood function is

L(x, θθ) =
n

∏
i=1

f (xi, θθ)δiS(xi, θθ)1−δi = ∏
i∈U

f (ti, θθ)∏
i∈C

S(ci, θθ)

where S(ci, θθ) is the survivor function of the population distribution with parameters θθ evaluated

at censoring time ci, i ∈ C. The reason that the survivor function is the appropriate term in the

likelihood function for a right-censored observation is that S(ci, θθ) is the probability that item i

survives to ci. The log likelihood function is

ln L(x, θθ) = ∑
i∈U

ln f (ti, θθ)+ ∑
i∈C

ln S(ci, θθ),

or

ln L(x, θθ) = ∑
i∈U

ln f (xi, θθ)+ ∑
i∈C

ln S(xi, θθ).

Since the probability density function is the product of the hazard function and the survivor function,

the log likelihood function can be simplified to

ln L(x, θθ) = ∑
i∈U

ln h(xi, θθ)+ ∑
i∈U

ln S(xi, θθ)+ ∑
i∈C

ln S(xi, θθ)

or

ln L(x, θθ) = ∑
i∈U

ln h(xi, θθ)+
n

∑
i=1

ln S(xi, θθ),

where the second summation now includes all n items on test. Finally, to write the log likelihood in

terms of the hazard and cumulative hazard functions only,

ln L(x, θθ) = ∑
i∈U

ln h(xi, θθ)−
n

∑
i=1

H(xi, θθ),

since H(t) =− ln S(t). The choice of which of these three expressions for the log likelihood to use

for a particular distribution depends on the particular forms of S(t), f (t), h(t), and H(t). In other

words, one of the distribution representations may possess a mathematical form that is advantageous

over the others.

The next example will use the last version of the log likelihood function to find a maximum

likelihood estimator and an asymptotically exact confidence interval for an unknown parameter.

Example 5.4 Consider a life test with n items on test with random right censoring and

r ≥ 1 observed failures. Assume that previous tests on these same items informs us

that lifetimes of the items are drawn from a Rayleigh population with positive unknown

parameter λ. Find the maximum likelihood estimator and construct an asymptotically

exact two-sided 100(1−α)% confidence interval for λ.

The survivor function for the Rayleigh distribution is

S(t) = e−(λt)2

t ≥ 0.

The associated cumulative hazard function and hazard function are

H(t) =− ln S(t) = (λt)2 t ≥ 0
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and

h(t) = H ′(t) = 2λ2t t ≥ 0.

In the case of random right censoring, the log likelihood function is

ln L(x, λ) = ∑
i∈U

ln h(xi, λ)−
n

∑
i=1

H(xi, λ)

= ∑
i∈U

ln
(

2λ2xi

)

−
n

∑
i=1

(λxi)
2

= r ln 2+2r ln λ+ ∑
i∈U

ln xi −λ2
n

∑
i=1

x2
i ,

where r is the number of observed failures. The single-element score vector can be

found by differentiating the log likelihood function with respect to λ:

∂ ln L(x, λ)

∂λ
=

2r

λ
−2λ

n

∑
i=1

x2
i .

Equating the score to zero and solving for λ yields the maximum likelihood estimator

λ̂ =

√

r

∑n
i=1 x2

i

.

The second derivative of the log likelihood function is

∂2 ln L(x, λ)

∂λ2
=−2r

λ2
−2

n

∑
i=1

x2
i .

As an aside, the 1×1 Fisher information matrix

I(λ) = E

[

−∂2 ln L(x, λ)

∂λ2

]

= E

[

2r

λ2
+2

n

∑
i=1

x2
i

]

cannot be calculated without knowing the probability distribution of the censoring times.

The observed information matrix, however, can be calculated as

O
(

λ̂
)

=

[

−∂2 ln L(x, λ)

∂λ2

]

λ=λ̂

=
2r

λ̂2
+2

n

∑
i=1

x2
i = 4

n

∑
i=1

x2
i .

For large values of n, we know that

λ̂
a∼ N(λ, O−1

(

λ̂
)

)
or

λ̂
a∼ N



λ,

(

4
n

∑
i=1

x2
i

)−1


 .

Standardizing by subtracting the population mean and dividing by the population stan-

dard deviation of λ̂ gives

λ̂−λ
(

4∑n
i=1 x2

i

)−1/2

a∼ N (0, 1) ,
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which implies that

lim
n→∞

P

(

−zα/2 <
λ̂−λ

(

4∑n
i=1 x2

i

)−1/2
< zα/2

)

= 1−α.

Performing the algebra required to isolate λ in the center of the inequality results in an

asymptotically exact two-sided 100(1−α)% confidence interval for λ:

λ̂− zα/2

(

4
n

∑
i=1

x2
i

)−1/2

< λ < λ̂+ zα/2

(

4
n

∑
i=1

x2
i

)−1/2

.

This confidence interval narrows as ∑n
i=1 x2

i increases. So placing a large number of

items on test with a lightly censored data set with r/n close to one will result in a

narrow confidence interval for λ.

To provide a numerical illustration, assume that the n = 5 items on a randomly right-

censored life test with r = 3 observed failures illustrated in Figure 5.6 are

1.3, 0.6, 1.6∗, 1.9, 0.4∗,

where the superscript ∗ denotes a right-censored observation. For this data set,

n

∑
i=1

x2
i = 1.32 +0.62 +1.62 +1.92 +0.42 = 1.69+0.36+2.56+3.61+0.16 = 8.38.

The maximum likelihood estimate of λ is

λ̂ =

√

r

∑n
i=1 x2

i

=

√

3

8.38
= 0.598.

An asymptotically exact two-sided 95% confidence interval for λ is

0.598−1.96(4 ·8.38)−1/2 < λ < 0.598+1.96(4 ·8.38)−1/2

or

0.260 < λ < 0.937.

To summarize the material introduced so far in this chapter, point estimators are statistics calcu-

lated from a data set to estimate an unknown parameter. Confidence intervals reflect the precision

of a point estimator. The most common technique for determining a point estimator for an unknown

parameter is maximum likelihood estimation, which involves finding the parameter value(s) that

make the observed data values the most likely. The maximum likelihood estimators are usually

found by using calculus to maximize the log likelihood function. Most population lifetime distribu-

tions do not have exact confidence intervals for unknown parameters, so the asymptotic properties

of the likelihood function can be used to generate approximate confidence intervals for unknown

parameters. Finally, many data sets in reliability are censored, which means that only a bound is

known on the lifetime for one or more of the data values. The most common censoring mechanism

is known as right censoring, where only a lower bound on the lifetime is known. The number of

items on test is denoted by n and the number of observed failures is denoted by r.

The next section applies the techniques developed so far in this chapter to the exponential distri-

bution.
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5.4 Exponential Distribution

The exponential distribution is popular due to its tractability for parameter estimation and inference.

The exponential distribution can be parameterized by either its population rate λ or its population

mean µ = 1/λ. Using the rate to parameterize the distribution, the survivor, density, hazard, and

cumulative hazard functions are

S(t, λ) = e−λt f (t, λ) = λe−λt h(t, λ) = λ H(t, λ) = λt

for t ≥ 0. Note that the unknown parameter λ has been added as an argument in these lifetime

distribution representations because it is now also an argument in the likelihood function and is

estimated from data.

All the analysis in this and subsequent sections assumes that a random sample of n items from a

population has been placed on a test and subjected to typical environmental conditions. Equivalently,

t1, t2, . . . , tn are independent and identically distributed random lifetimes from a particular popula-

tion distribution (exponential in this section). As with all statistical inference, care must be taken

to ensure that a random sample of lifetimes is collected. Consequently, random numbers should be

used to determine which n items to place on test. In a reliability setting, laboratory conditions should

adequately mimic field conditions. Only representative items should be placed on test because items

manufactured using a previous design may have a different failure pattern than those with the cur-

rent design. This is more difficult in a biomedical setting because of inherent differences between

patients.

Four classes of data sets (complete, Type II right censored, Type I right censored, and randomly

right censored) are considered in separate subsections. In all cases, n is the number of items placed

on test and r is the number of observed failures.

5.4.1 Complete Data Sets

A complete data set is typically the easiest to analyze because extensive analytical work exists for

finding point and interval estimators for parameters. Also, by testing each item to failure, we have

equal confidence in the fitted model in both the left-hand and right-hand tails of the distribution.

A heavily right-censored data set, on the other hand, might fit well in the left-hand tail of the dis-

tribution where failures were observed, but we have less confidence in the right-hand tail of the

distribution where there were few or no failures.

A complete data set consists of failure times t1, t2, . . . , tn. Although lowercase letters are used

to denote the failure times here to be consistent with the notation for censoring times, the failure

times are nonnegative random variables. The likelihood function can be written as a product of the

probability density functions evaluated at the failure times:

L(λ) =
n

∏
i=1

f (ti, λ).

Note that the t argument has been left out of the likelihood expression for compactness. Using the

last expression for the log likelihood function (adapted for a complete data set) from Section 5.3,

ln L(λ) =
n

∑
i=1

[

ln h(ti, λ)−H(ti, λ)
]

.

For the exponential distribution, this is

ln L(λ) =
n

∑
i=1

[

ln λ−λti
]

= n ln λ−λ
n

∑
i=1

ti.
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To determine the maximum likelihood estimator for λ, the single-element score vector

U(λ) =
∂ ln L(λ)

∂λ
=

n

λ
−

n

∑
i=1

ti,

also known as the score statistic, is equated to zero and solved for λ, yielding

λ̂ =
n

∑n
i=1 ti

,

where the denominator is often referred to as the total time on test. Not surprisingly, the maximum

likelihood estimator λ̂ is the reciprocal of the sample mean.

Theorem 5.2 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The maximum likelihood estimator of λ is

λ̂ =
n

∑n
i=1 ti

.

Example 5.5 A complete data set of n = 23 ball bearing failure times associated with

testing the endurance of deep-groove ball bearings has been extensively studied. The

failure times measured in 106 revolutions, ordered for readability, are

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96

54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40.

Notice that there is a single tied value of 68.64 million revolutions. Fit the exponential

distribution to the n = 23 ball bearing failure times.

For this particular data set, the total time on test is ∑n
i=1 ti = 1661.16 million revolutions,

yielding the maximum likelihood estimate

λ̂ =
n

∑n
i=1 ti

=
23

1661.16
= 0.01385

failure per 106 revolutions. The number of significant digits reported in the point es-

timate matches the number of digits in the data set. The value of the log likelihood

function at the maximum likelihood estimate is ln L
(

λ̂
)

= −121.435, which will be

used later in this chapter to compare the exponential and Weibull fits to this data set.

Figure 5.7 displays a graph of the empirical survivor function, which takes a down-

ward step of 1/n = 1/23 at each data value, along with the fitted exponential survivor

function S(t) = e−λ̂t . Empirical and fitted distributions are traditionally compared by

plotting the two the survivor functions on the same set of axes because the probability

density function and hazard function suffer from the drawback of requiring the data to

be divided into cells to plot the empirical distribution. It is apparent from this figure that

the exponential distribution is a very poor fit. This particular data set was chosen for

this example to illustrate one of the shortcomings of using the exponential distribution

to model any data set without assessing the adequacy of the fit. Extreme caution must
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Figure 5.7: Empirical and exponential fitted survivor functions for the ball bearing data set.

be exercised when using the exponential distribution since, as indicated in Figure 5.7,

the exponential distribution is not an adequate probability model for this data set.

There are two clues that the exponential distribution would perform poorly in this set-

ting. First, we neglected to plot a histogram of the ball bearing failure times prior to

fitting the exponential distribution. The histogram in Figure 5.8 indicates a nonzero

mode to the population probability density function, implying that the exponential dis-

tribution is probably not going to be an adequate model. Second, knowing the physics

of failure can be helpful in this case. Ball bearings typically fail by wearing out. When

a ball bearing’s diameter falls outside of a prescribed range, it is considered to be failed.

This indicates that the hazard function for a ball bearing will probably increase over

time, so a distribution with a monotone increasing hazard function from the IFR class
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Figure 5.8: Histogram of the ball bearing failure times.
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would be a better choice than the exponential distribution. As shown in the next sec-

tion, the Weibull distribution provides a much better approximation to this particular

data set. Since the exponential distribution can be fitted to any data set that has at least

one observed failure, the adequacy of the model must always be assessed. The point

and interval estimators associated with the exponential distribution are legitimate only

if the data set is a random sample drawn from an exponential population. That is almost

certainly not the case for this particular data set.

Information matrices. To find the information matrix associated with a complete data set from

an exponential(λ) population, the derivative of the score statistic is required:

∂2 ln L(λ)

∂λ2
=− n

λ2
.

Taking the expected value of the negative of this quantity yields the 1×1 Fisher information matrix

I(λ) = E

[−∂2 ln L(λ)

∂λ2

]

= E
[ n

λ2

]

=
n

λ2
.

If the maximum likelihood estimator λ̂ is used as an argument in the negative of the second partial

derivative of the log likelihood function, the 1×1 observed information matrix is obtained:

O
(

λ̂
)

=

[−∂2 ln L(λ)

∂λ2

]

λ= λ̂

=
n

λ̂2
=

(∑n
i=1 ti)

2

n
.

Confidence interval for λ. Asymptotic confidence intervals for λ based on the likelihood ratio

statistic or the observed information matrix are unnecessary for a complete data set because the

sampling distribution of ∑n
i=1 ti is tractable. In particular, from Theorem 4.5,

2λ
n

∑
i=1

ti =
2nλ

λ̂

has the chi-square distribution with 2n degrees of freedom. Therefore, with probability 1−α,

χ2
2n,1−α/2 <

2nλ

λ̂
< χ2

2n,α/2,

where χ2
2n, p is the (1− p)th fractile of the chi-square distribution with 2n degrees of freedom. Per-

forming the algebra required to isolate λ in the middle of the inequality yields an exact two-sided

100(1−α)% confidence interval for λ.

Theorem 5.3 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. Let λ̂ denote the maximum likelihood estimator of λ.

An exact two-sided 100(1−α)% confidence interval for λ is

λ̂χ2
2n,1−α/2

2n
< λ <

λ̂χ2
2n,α/2

2n
.

A well-known example of a randomly right-censored data set is drawn from the biostatistical

literature. The focus here is on determining an estimate of the remission rate of a complete data set

of remission times for patients in a control group.
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Example 5.6 A clinical trial is conducted to determine the effect of an experimen-

tal drug named 6–mercaptopurine (6–MP) on leukemia remission times. A sample of

n = 21 leukemia patients is treated with 6–MP, and the remission times are recorded.

There are r = 9 individuals for whom the remission time is observed, and the remission

times for the remaining 12 individuals are randomly censored on the right. Letting an

asterisk denote a right-censored observation, the remission times (in weeks) are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.

In addition, 21 other leukemia patients are not given the drug, and they serve as a control

group. For this group there is no censoring and the remission times are

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23.

This data set illustrates the simplest possible use of a covariate for modeling: a single

binary covariate indicating the group to which each data value belongs. Fit the exponen-

tial distribution to the n = 21 remission times in the control group of the 6–MP clinical

trial. Give a point estimator and a 95% confidence interval for λ.

Having learned our lesson from the previous example, we begin by drawing a histogram

of the remission times, which is displayed in Figure 5.9. The shape of the histogram

reveals significant random sampling variability which can be attributed to the small

(n = 21) number patients in the control group. Modeling the remission times with a

probability distribution that has a mode of zero seems reasonable based on the shape of

the histogram, so we will proceed with fitting the exponential distribution.

The total time on test is
21

∑
i=1

ti = 182

weeks. The maximum likelihood estimate is

λ̂ =
n

∑n
i=1 ti

=
21

182
= 0.12
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Figure 5.9: Histogram of the leukemia remission times.
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remission per week. Figure 5.10 shows the empirical survivor function, which takes

a downward step of 1/n = 1/21 at each data point, along with the survivor function

for the fitted exponential distribution. In spite of the discrete nature of the data, the

excessive number of ties, and the fact that the number of patients in the control group

is rather small, the exponential distribution does a reasonable job of approximating the

empirical survivor function.

The observed information matrix is

O
(

λ̂
)

=

[−∂2 ln L(λ)

∂λ2

]

λ=λ̂

=
(∑n

i=1 ti)
2

n
=

1822

21
= 1577.

Since the data set is complete, an exact two-sided 95% confidence interval for the failure

rate of the distribution can be determined. Since χ2
42,0.975 = 26.0 and χ2

42,0.025 = 61.8,

the formula for the confidence interval

λ̂χ2
2n,1−α/2

2n
< λ <

λ̂χ2
2n,α/2

2n

becomes
(0.12)(26.0)

42
< λ <

(0.12)(61.8)

42

or

0.071 < λ < 0.17.

The involvement of the non-symmetric chi-square distribution in this confidence inter-

val means that the interval is not symmetric about the maximum likelihood estimate.

For this and subsequent examples, intermediate calculations involving numeric quan-

tities, such as critical values or total time on test values, are performed to as much

precision as possible, then final values are reported using only significant digits.

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

t

S(t)

Figure 5.10: Empirical and exponential fitted survivor functions for the 6–MP control group.
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The R code given below calculates the maximum likelihood estimator λ̂, calculates the

endpoints of the exact two-sided confidence interval for λ, and conducts the Kolmogorov–

Smirnov goodness-of-fit test. p = 0.55.

x = c(1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15,

17, 22, 23)

n = length(x)

l = n / sum(x)

lo = l * qchisq(0.025, 2 * n) / (2 * n)

hi = l * qchisq(0.975, 2 * n) / (2 * n)

p = ks.test(x, "pexp", l, exact = FALSE)$p.value

print(c(lo, l, hi, p))

Since the p-value for the Kolmogorov–Smirnov test is p = 0.55, there is not sufficient

evidence in the data to reject the null hypothesis that the data values were drawn from

an exponential population. This conclusion is consistent with the empirical and expo-

nential fitted survivor functions in Figure 5.10. The exponential distribution provides a

reasonable approximation to the leukemia remission times.

The importance of assessing model adequacy applies to all fitted distributions—not just the

exponential distribution. Furthermore, if a modeler knows the failure physics (for example, fatigue

crack growth) underlying a process, then an appropriate probability model that is consistent with the

failure physics should be chosen.

So far we have fitted the exponential distribution to two complete data sets: the ball bearing

failure times from Example 5.5 and the 6–MP remission times for the control group from Exam-

ple 5.6. We visually assessed the two fits in Figures 5.7 and 5.10 by comparing the empirical

survivor function, which takes a downward step of 1/n at each data value, with the fitted survivor

function S(t) = e−λ̂t and concluded that the exponential distribution did a very poor job of approx-

imating the ball bearing failure times and a (barely) adequate job of approximating the remission

times of the patients in the control group of the 6–MP clinical trial. This visual assessment was

subjective and was followed by a formal goodness-of-fit test in order to draw these conclusions for

the 6–MP remission times.

Confidence intervals for measures other than λ. It is possible to find point and interval estima-

tors for measures other than λ by using the invariance property for maximum likelihood estimators

and by rearranging the confidence interval formula. Define

L =
λ̂χ2

2n,1−α/2

2n
and U =

λ̂χ2
2n,α/2

2n

as the lower and upper bounds on the exact two-sided 100(1 − α)% confidence interval for λ.

If the measure of interest is µ = 1/λ, for example, then the point estimator is the sample mean

µ̂ = 1
n ∑n

i=1 ti. Rearranging the confidence interval

L < λ <U

by taking reciprocals yields the exact two-sided 100(1−α)% confidence interval for µ:

1

U
< µ <

1

L
.
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As a second example, consider the probability of survival to a fixed time t, S(t) = e−λt . By the

invariance property of maximum likelihood estimators, the maximum likelihood estimator for the

survivor function at time t is

Ŝ(t) = e−λ̂t .

A confidence interval for S(t), on the other hand, can be found by rearranging the confidence interval

L < λ <U

in the following fashion:

−U <−λ <−L

e−Ut < e−λt < e−Lt

e−Ut < S(t)< e−Lt .

These formulas for point and interval estimates for quantities other than λ are illustrated next for a

complete data set that is assumed to be drawn from an exponential population.

Example 5.7 Assuming that the exponential distribution is an appropriate model for

the remission times in the control group of the 6–MP clinical trial, find point estimators

and exact two-sided 95% confidence intervals for the mean remission time and the

probability that a patient in the control group has a remission time that exceeds 10

weeks.

The point estimators in this case are

µ̂ =
1

n

n

∑
i=1

ti =
182

21
= 8.7

weeks and

Ŝ(t) = e−λ̂t ,

which is Ŝ(10) = e−(0.12)(10) = 0.32. The values of L and U for the exact two-sided

95% confidence interval for λ from the previous example are L = 0.071 and U = 0.17.

Finding a confidence interval for the population mean requires taking reciprocals of

these limits:
1

0.17
< µ <

1

0.071

5.9 < µ < 14.

An exact two-sided 95% confidence interval for S(100) using the formula

e−Ut < S(t)< e−Lt

results in

e−(0.17)(10) < S(100)< e−(0.071)(10)

or

0.18 < S(10)< 0.49.

Although the manipulation of the confidence interval for λ is performed here in the case of a

complete data set, these techniques may also be applied to any of the right-censoring mechanisms

to be described in the next three subsections.
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5.4.2 Type II Censored Data Sets

A life test of n items that is terminated when r failures have occurred produces a Type II right-

censored data set. The previous subsection is a special case of Type II censoring when r = n. As

before, assume that the failure times are t1, t2, . . . , tn, the test is terminated upon the rth ordered

failure, the censoring times are c1 = c2 = · · · = cn = t(r) for all items, and xi = min{ti, ci} for

i = 1, 2, . . . , n.

Since h(t, λ) = λ and H(t, λ) = λt for t ≥ 0, the log likelihood function is

ln L(λ) = ∑
i∈U

ln h(xi, λ)−
n

∑
i=1

H(xi, λ) = r ln λ−λ
n

∑
i=1

xi

because there are r observed failures. The expression

n

∑
i=1

xi = ∑
i∈U

ti + ∑
i∈C

ci =
r

∑
i=1

t(i)+(n− r)t(r),

where t(1) < t(2) < · · ·< t(r) are the order statistics of the observed failure times, is the total time on

test. It represents the total accumulated time that the n items accrue while on test.

To determine the maximum likelihood estimator, the log likelihood function is differentiated

with respect to λ,

U(λ) =
∂ ln L(λ)

∂λ
=

r

λ
−

n

∑
i=1

xi

and is equated to zero, yielding the maximum likelihood estimator.

Theorem 5.4 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The associated test is terminated at time t(r) (Type

II right censoring) for r ≥ 1. The censoring times are c1 = c2 = · · · = cn = t(r) for all items, and

xi = min{ti, ci} for i = 1, 2, . . . , n. The maximum likelihood estimator of λ is

λ̂ =
r

∑n
i=1 xi

.

So the maximum likelihood estimator of the failure rate is the ratio of the number of observed

failures to the total time on test. The second partial derivative of the log likelihood function is

∂2 ln L(λ)

∂λ2
=− r

λ2
,

so the information matrix is

I(λ) = E

[−∂2 ln L(λ)

∂λ2

]

=
r

λ2
,

and the observed information matrix is

O
(

λ̂
)

=

[−∂2 ln L(λ)

∂λ2

]

λ=λ̂

=
r

λ̂2
=

(∑n
i=1 xi)

2

r
.

Exact confidence intervals and hypothesis tests concerning λ can be derived by using the result

2λ
n

∑
i=1

xi =
2rλ

λ̂
∼ χ2(2r),
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where χ2(2r) is the chi-square distribution with 2r degrees of freedom. This result can be proved in

a similar fashion to Theorem 4.5 of the exponential distribution from Section 4.2. Using this fact,

an exact two-sided confidence interval for λ can be constructed in a similar fashion to that for a

complete data set. It can be stated with probability 1−α that

χ2
2r,1−α/2 <

2rλ

λ̂
< χ2

2r,α/2.

Rearranging terms yields an exact two-sided 100(1−α)% confidence interval for the failure rate λ.

Theorem 5.5 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The associated test is terminated at time t(r) (Type

II right censoring) for r ≥ 1. The censoring times are c1 = c2 = · · · = cn = t(r) for all items, and

xi = min{ti, ci} for i = 1, 2, . . . , n. An exact two-sided 100(1−α)% confidence interval for the

failure rate λ is
λ̂χ2

2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r
.

Example 5.8 A Type II right-censored data set of n = 15 automotive a/c switches has

been collected. The test was terminated when the fifth failure occurred. The r = 5

ordered observed failure times measured in number of cycles are

t(1) = 1410, t(2) = 1872, t(3) = 3138, t(4) = 4218, t(5) = 6971.

The remaining 10 automotive a/c switches are right-censored at 6971 cycles. Any para-

metric model that is fitted to this data set is only considered valid from 0 to 6971 cycles

unless there is some evidence (perhaps from previous test results) that indicates that the

parametric model is valid beyond 6971 cycles. Fit the exponential distribution to this

data set and give point and interval estimates for the failure rate and the mean time to

failure.

A diagram that can be helpful in visualizing lifetime data sets is given in Figure 5.11.

The top five horizontal lines ending with × denote the r = 5 observed failures and the

bottom n−r = 15−5 = 10 horizontal lines ending with ◦ denote the right-censored ob-

servations at 6971 cycles. Each of the right-censored observations will have an unseen

× somewhere to the right of the censoring time indicated by the ◦. It is a worthwhile

thought experiment to imagine where those ×s might occur for each right-censored ob-

servation in this particular data set. Once you have visualized the approximate positions

of the ten right-censored failure times, try to guess the approximate population mean of

the 15 failure times.

For this particular data set, the total time on test is ∑n
i=1 xi = 87,319 cycles, yielding a

maximum likelihood estimate

λ̂ =
r

∑n
i=1 xi

=
5

87,319
= 0.00005726

failure per cycle. Equivalently, the maximum likelihood estimate of the population

mean time to failure is

µ̂ =
∑n

i=1 xi

r
=

87,319

5
= 17,464
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Figure 5.11: Automotive switches failure and censoring times with n = 5 and r = 3.

cycles. Notice that the estimated mean time to failure exceeds the largest observed fail-

ure time, t(5) = 6971. As long as there is evidence, perhaps from previous testing on

identical or similar automotive switches, to support the exponential failure time distri-

bution, this estimate of the population mean time to failure is meaningful. Figure 5.12
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Figure 5.12: Empirical and exponential fitted survivor functions for the a/c switch data set.
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shows the empirical survivor function (which takes downward steps of 1/n = 1/15 at

each of the five observed failure times) and the associated fitted exponential survivor

function. In this case, the exponential distribution appears to adequately model the

lifetimes through 6971 cycles. The confidence intervals given below are only exact

when the data values are drawn from an exponential population, so assessing the fit is

a crucial part of data analysis. Assessing the adequacy of the fit is more difficult for a

right-censored data set because it is impossible to determine what the lifetime distribu-

tion looks like after the last observed failure time (6971 cycles for this data set) unless

previous test results support the exponential model.

The observed information matrix based on using the failure rate as the unknown param-

eter is

O
(

λ̂
)

=

[−∂2 ln L(λ)

∂λ2

]

λ=λ̂

=
(∑n

i=1 xi)
2

r
=

(87,319)2

5
= 1,525,000,000.

Since the data set is Type II right censored, an exact two-sided 95% confidence interval

for the failure rate of the distribution can be determined. Using the chi-square critical

values, χ2
10,0.975 = 3.247 and χ2

10,0.025 = 20.49, the formula for the confidence interval

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r

becomes
(0.00005726)(3.247)

10
< λ <

(0.00005726)(20.49)

10

or

0.00001859 < λ < 0.0001173.

Taking reciprocals, this is equivalent to an exact two-sided 95% confidence interval for

the population mean number of cycles to failure of

8526 < µ < 53,785.

Not surprisingly, with only r = 5 observed failures, this is a rather wide confidence

interval for µ, and hence there is not as much precision as in the case of the 6–MP

control group data, in which there were n = r = 21 observed remission times. The R

code below calculates the point estimates for λ and µ and the associated exact two-sided

95% confidence intervals.

n = 15

r = 5

x = c(1410, 1872, 3138, 4218, 6971, rep(6971, n - r))

lam = r / sum(x)

mu = 1 / lam

lam.lo = lam * qchisq(0.025, 2 * r) / (2 * r)

lam.hi = lam * qchisq(0.975, 2 * r) / (2 * r)

mu.lo = 1 / lam.hi

mu.hi = 1 / lam.lo
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Hypothesis testing, which is the rough equivalent of interval estimation, is also possible in the

case of Type II censoring because the sampling distribution of 2λ∑n
i=1 xi is tractable. Some aspects

of hypothesis testing in the setting of Type II censoring, such as the alternative hypothesis, one- and

two-tailed tests, and p-values are illustrated in the next example. The example shows how a life test

can be used to check a manufacturer’s claimed mean time to failure.

Example 5.9 The producer of the automotive switches tested in the previous example

claims that the population mean time to failure of their switches is µ = 100,000 cycles.

Is there enough evidence in the data set of 15 switches placed on test to conclude that the

population mean time to failure is less than 100,000 cycles? Assume that the automotive

switch lifetimes are exponentially distributed.

The producer’s claim is certainly suspect because the maximum likelihood estimator

for the population mean time to failure is only µ̂ = 17,464 from the previous example.

The null and alternative hypotheses for the hypothesis test are

H0 : µ = 100,000

H1 : µ < 100,000

or, equivalently,

H0 : λ = 0.00001

H1 : λ > 0.00001

in terms of the failure rate. So the hypothesis test being conducted here is to determine

whether there is statistically significant evidence in the data set to conclude that the

population mean time to failure of the switches is less then 100,000 cycles. Since small

values of ∑n
i=1 xi lead to rejecting H0, the attained level of significance (p-value) is

p = P

(

n

∑
i=1

xi < 87,319

∣

∣

∣
λ = 0.00001

)

.

Since 2λ∑n
i=1 xi ∼ χ2(2r), the p-value, when H0 is true, is

p = P

(

(2)(0.00001)
n

∑
i=1

xi < (2)(0.00001)(87,319)

)

= P
(

χ2(10)< 1.746
)

= 0.002.

This p-value can be calculated with the following R statements.

n = 15

r = 5

x = c(1410, 1872, 3138, 4218, 6971, rep(6971, n - r))

pchisq(2 * 0.00001 * sum(x), 2 * r)

Although the number of observed failures is small, there is adequate evidence from

this data set to conclude that the population mean number of cycles to failure is less

than 100,000 (for example, the null hypothesis can be rejected at significance levels

α = 0.10, 0.05, and 0.01). We conclude that the manufacturer is probably exaggerating

the magnitude of the population mean time to failure based on this hypothesis test.
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The fact that the distribution of 2λ∑n
i=1 xi = 2rλ/λ̂ is independent of n implies that λ̂ has the

same precision in a test of r items tested until all have failed as that for a test of n items tested until r

items have failed. So the justification for obtaining a Type II censored data set over a complete data

set is time savings. The additional costs associated with this time savings are the additional n− r

test stands and the additional n− r items to place on test.

If a limited number of test stands are available for testing, the only way to speed up the test is

to perform a test with replacement in which failed items are immediately replaced with new items.

This will decrease the expected time to complete the test, which is terminated when r of the items

fail. The sequence of failures in this case is a Poisson process with rate nλ.

Although the inference for Type II censoring is tractable, the unfortunate consequence is that the

time to complete the test is a random variable. Constraints on the time to run a life test may make a

Type I censored data set more practical.

5.4.3 Type I Censored Data Sets

The analysis for Type I censored data sets is similar to that for the Type II censoring case. The test is

terminated at time c. The censoring times for each item on test are the same: c1 = c2 = · · ·= cn = c.

The number of observed failures, r, is a random variable. The total time on test in this case is

n

∑
i=1

xi = ∑
i∈U

ti + ∑
i∈C

ci =
r

∑
i=1

t(i)+(n− r)c.

As before, the log likelihood function is

ln L(λ) = ∑
i∈U

ln h(xi, λ)−
n

∑
i=1

H(xi, λ) = r ln λ−λ
n

∑
i=1

xi,

and the score statistic is

U(λ) =
r

λ
−

n

∑
i=1

xi.

The maximum likelihood estimator for r > 0 is

λ̂ =
r

∑n
i=1 xi

,

the information matrix is

I(λ) =
r

λ2
,

and the observed information matrix is

O
(

λ̂
)

=
r

λ̂2
.

The functional form of the maximum likelihood estimator is identical to the Type II censoring case.

For identical values of r, Type I censoring has a larger total time on test ∑n
i=1 xi than the correspond-

ing Type II censoring case because a Type I test ends between failures r and r+1. Thus the expected

value of λ̂ is smaller for Type I censoring than for Type II censoring. One problem that arises with

Type I censoring is that the sampling distribution of ∑n
i=1 xi is no longer tractable, so an exact con-

fidence interval for λ has not been established. Although many more complicated methods exist,

one of the best approximation methods is to assume that 2λ∑n
i=1 xi has the chi-square distribution

with 2r+1 degrees of freedom. This approximation, illustrated in Figure 5.13, is based on the fact
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Figure 5.13: Approximation technique for confidence intervals for Type I censoring.

that if c = t(r), then 2λ∑n
i=1 xi ∼ χ2(2r), and if c = t(r+1), then 2λ∑n

i=1 xi ∼ χ2(2r+2). Since c is

between t(r) and t(r+1), 2λ∑n
i=1 xi will be approximately chi-square with 2r+1 degrees of freedom.

This constitutes a proof, after a little algebra, of the following result.

Theorem 5.6 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The associated test is terminated at time c (Type I

right censoring) for some positive real number c. The censoring times are c1 = c2 = · · · = cn = c

for all items, and xi = min{ti, ci} for i = 1, 2, . . . , n. The maximum likelihood estimator for λ is

λ̂ =
r

∑n
i=1 xi

and an approximate two-sided 100(1−α)% confidence interval for the failure rate λ is

λ̂χ2
2r+1,1−α/2

2r
< λ <

λ̂χ2
2r+1,α/2

2r
.

Example 5.10 A life test of n = 100 light bulbs is run for c = 5000 hours. Failed items

are not replaced upon failure in this Type I right censored data set. If the total time

on test is ∑n
i=1 xi = 384,968 hours, and r = 32 failures are observed, find a point and

interval estimator for the failure rate.

It is impossible to check to see whether the exponential distribution is an appropriate

model for the light bulb failure times from the problem statement because the actual

failure times are not given. Assuming that the exponential model is appropriate, the

maximum likelihood estimate for the failure rate is

λ̂ =
r

∑n
i=1 xi

=
32

384,968
= 0.0000831

failure per hour, or, equivalently, the maximum likelihood estimate for the population

mean time to failure is its reciprocal, 12,030 hours. To obtain an approximate 95%

confidence interval for the failure rate, the chi-square critical values for 2r + 1 = 65

degrees of freedom must be determined. These critical values are χ2
65,0.975 = 44.60 and

χ2
65,0.025 = 89.18. The approximate two-sided 100(1−α)% confidence interval for λ

λ̂χ2
2r+1,1−α/2

2r
< λ <

λ̂χ2
2r+1,α/2

2r

becomes
(0.0000831)(44.60)

64
< λ <

(0.0000831)(89.18)

64
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or

0.0000579 < λ < 0.000116.

Taking reciprocals, this is equivalent to an approximate 95% confidence interval for the

population mean number of cycles to failure of

8630 < µ < 17,260.

The R statements below compute the point and interval estimates.

n = 100

r = 32

ttt = 384968

lam = r / ttt

mu = 1 / lam

lam.lo = lam * qchisq(0.025, 2 * r + 1) / (2 * r)

lam.hi = lam * qchisq(0.975, 2 * r + 1) / (2 * r)

mu.lo = 1 / lam.hi

mu.hi = 1 / lam.lo

5.4.4 Randomly Censored Data Sets

Many of the examples that have the random censoring mechanism for which the failure times

t1, t2, . . . , tn and the censoring times c1, c2, . . . , cn are independent random variables are from bio-

statistics. Random censoring occurs frequently in biostatistics because it is not always possible to

control the time patients enter and exit the study. The log likelihood function, score statistic, infor-

mation matrix, and observed information matrix are the same as in the Type I censoring case. The

total time on test is now simply
n

∑
i=1

xi = ∑
i∈U

ti + ∑
i∈C

ci.

The sampling distribution of ∑n
i=1 xi is more complicated in this case, so asymptotic properties must

be relied on to determine approximate confidence intervals for λ. In the example that follows, three

different approximation procedures for determining a confidence interval for λ are illustrated.

The first technique is based on an approximation to a result that holds exactly in the Type II

censoring case: 2λ∑n
i=1 xi ∼ χ2(2r). The second technique is based on the likelihood ratio statistic,

where −2[ln L(λ)− ln L(λ̂)] is asymptotically chi-square with 1 degree of freedom. The third tech-

nique is based on the fact that the maximum likelihood estimator λ̂ is asymptotically normal with

population mean λ and a population variance that is the inverse of the observed information matrix.

Since this third technique results in a symmetric confidence interval, it should only be used with

large sample sizes.

Example 5.11 Find the maximum likelihood estimate and three approximate 95% con-

fidence intervals for the remission rate λ for the treatment group (those who received

the drug 6–MP) in the leukemia study described in Example 5.6.

For this data set, there are n = 21 individuals on test and r = 9 observed failures. A

“failure” for this data set is the end of a remission period. The total time on test for this
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data set is ∑n
i=1 xi = 359 weeks. The log likelihood function is

ln L(λ) = r ln λ−λ
n

∑
i=1

xi = 9ln λ−359λ.

As shown by the vertical dashed line in Figure 5.14, this function is maximized at

λ̂ =
r

∑n
i=1 xi

=
9

359
= 0.0251

remission per week. The maximum likelihood estimate of the expected remission time

is µ̂ = 359/9 = 39.9 weeks. The value of the log likelihood function at the maximum

likelihood estimate is ln L(λ̂) = −42.17, as indicated by the horizontal dashed line in

Figure 5.14. The observed information matrix is

O
(

λ̂
)

=
(∑n

i=1 xi)
2

r
=

(359)2

9
= 14,320.

The three approximation techniques for determining a confidence interval for λ are out-

lined next. Under the assumption that 2λ∑n
i=1 xi is approximately chi-square with 2r

degrees of freedom (this is satisfied exactly in the Type II censoring case), an approxi-

mate two-sided 100(1−α)% confidence interval for λ is

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r
,

which, for the 6–MP treatment group remission times with α = 0.05, is

(9)(8.23)

(359)(18)
< λ <

(9)(31.53)

(359)(18)

0.01 0.02 0.03 0.04 0.05

−51

−50

−49

−48

−47

−46

−45

−44

−43

−42

λ

ln L(λ)

Figure 5.14: Log likelihood function for the 6–MP treatment group.



Section 5.4. Exponential Distribution 283

because χ2
18,0.975 = 8.23 and χ2

18,0.025 = 31.53, or

0.0115 < λ < 0.0439.

The second approximate confidence interval for λ is based on the likelihood ratio statis-

tic, −2[ln L(λ)− ln L(λ̂)], which is asymptotically chi-square with 1 degree of freedom.

Thus, with probability 1−α, the inequality

−2
[

ln L(λ)− ln L
(

λ̂
)]

< χ2
1,α

is approximately satisfied. For the 6–MP remission times in the treatment group and

α = 0.05, this can be rearranged as

ln L(λ)> ln L
(

λ̂
)

− 3.84

2

because χ2
1,0.05 = 3.84, or

ln L(λ)>−42.17− 3.84

2
.

As shown by the horizontal dashed lines in Figure 5.15, this corresponds to all values

of λ for which the log likelihood function is within 3.84/2 = 1.92 units of its largest

value. The inequality reduces to

9ln λ−359λ >−42.17−1.92,

which can be solved numerically to determine the endpoints. Many computer languages

have an equation solver that can determine the two λ values satisfying

9ln λ−359λ =−42.17−1.92 =−44.09.
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Figure 5.15: Log likelihood function and 95% confidence limits for λ for the 6–MP treatment group.
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In this particular example, the approximate two-sided confidence interval for λ is

0.0120 < λ < 0.0452,

which is shifted slightly to the right of the previous confidence interval. The lower and

upper bounds for this confidence interval are indicated by the vertical dashed lines in

Figure 5.15.

The final confidence interval for λ is based on the fact that the sampling distribution

of λ̂ is asymptotically normal with population mean λ and population variance I(λ)−1.

Replacing I(λ) by the observed information matrix O(λ̂), with approximate probability

1−α,

−zα/2 <
λ̂−λ

O
(

λ̂
)−1/2

< zα/2,

where zα/2 is the 1−α/2 fractile of the standard normal distribution. This is equivalent

to

λ̂− zα/2O
(

λ̂
)−1/2

< λ < λ̂+ zα/2O
(

λ̂
)−1/2

.

For the 6–MP treatment group remission times, an approximate two-sided 95% confi-

dence interval for λ is

9

359
− (1.96)(14,320)−1/2 < λ <

9

359
+(1.96)(14,320)−1/2

or

0.0087 < λ < 0.0414,

which has smaller bounds than the previous two interval estimators.

To summarize the conclusions of this long example, the maximum likelihood estimate

of the failure rate is

λ̂ = 0.0251

remission per week, which corresponds to an estimated mean remission time of 39.9

weeks. The three approximate two-sided 95% confidence intervals for λ are given in

the second column of Table 5.1. Taking reciprocals, the third column contains the

associated approximate two-sided 95% confidence intervals for the population mean

remission time µ. The confidence intervals for λ associated with the first two techniques

are not symmetric about the maximum likelihood estimator because they are based on

the non-symmetric chi-square distribution. Since there are only n = 21 patients in the

clinical trial and only r = 9 observed remission times, we have more faith in the actual

coverage of the first two confidence interval techniques. This conclusion would need to

be confirmed by a Monte Carlo simulation experiment.

Basis for confidence interval Confidence interval for λ Confidence interval for µ

Type II censoring approximate result 0.0115 < λ < 0.0439 22.8 < µ < 87.2
Likelihood ratio statistic 0.0120 < λ < 0.0452 22.1 < µ < 83.0
Asymptotic normality of the MLE 0.0087 < λ < 0.0414 24.1 < µ < 115.1

Table 5.1: Approximate 95% confidence intervals for λ and µ for the 6–MP treatment group.
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To summarize, the maximum likelihood estimator for the failure rate λ in the random censoring

case is the same as in the complete, Type II and Type I censoring cases:

λ̂ =
r

∑n
i=1 xi

.

Three approximate confidence intervals for λ are based on (a) an exact result from Type II censoring,

(b) the asymptotic distribution of the likelihood ratio statistic, and (c) the asymptotic normality of

the maximum likelihood estimator. The confidence interval based on the asymptotic normality of

the maximum likelihood estimator is symmetric and is therefore recommended only in the case of a

large number of items on test.

5.5 Weibull Distribution

The Weibull distribution is typically more appropriate for modeling the lifetimes of items with a

strictly increasing or decreasing hazard function, such as mechanical items. Rather than looking

at each censoring mechanism (for example, no censoring, Type II censoring, Type I censoring)

individually, we proceed directly to the general case of random censoring.

Maximum likelihood estimators. As before, let t1, t2, . . . , tn be the failure times, c1, c2, . . . , cn

be the associated censoring times, and xi = min{ti, ci} for i = 1, 2, . . . , n. The Weibull distribution

has hazard and cumulative hazard functions

h(t, λ, κ) = κλ(λt)κ−1 t ≥ 0

and

H(t, λ,κ) = (λt)κ t ≥ 0.

When there are r observed failures, the log likelihood function is

ln L(λ, κ) = ∑
i∈U

ln h(xi, λ, κ)−
n

∑
i=1

H(xi, λ, κ)

= ∑
i∈U

(

ln κ+κ ln λ+(κ−1) ln xi

)

−
n

∑
i=1

(λxi)
κ

= r ln κ+κr ln λ+(κ−1) ∑
i∈U

ln xi −λκ
n

∑
i=1

xκ
i ,

and the 2×1 score vector has elements

U1(λ, κ) =
∂ ln L(λ, κ)

∂λ
=

κr

λ
−κλκ−1

n

∑
i=1

xκ
i

and

U2(λ, κ) =
∂ ln L(λ, κ)

∂κ
=

r

κ
+ r ln λ+ ∑

i∈U

ln xi −
n

∑
i=1

(λxi)
κ ln(λxi).

When these equations are set equal to zero, the simultaneous equations have no closed-form solution

for λ̂ and κ̂:
κr

λ
−κλκ−1

n

∑
i=1

xκ
i = 0,
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r

κ
+ r ln λ+ ∑

i∈U

ln xi −
n

∑
i=1

(λxi)
κ ln(λxi) = 0.

One piece of good fortune, however, to avoid solving a 2× 2 set of nonlinear equations, is that the

first equation can be solved for λ in terms of κ as

λ =

(

r

∑n
i=1 xκ

i

)1/κ

.

Notice that λ reduces to the maximum likelihood estimator for the exponential distribution when

κ = 1. Using this expression for λ in terms of κ in the second element of the score vector yields

a single, albeit more complicated, expression with κ as the only unknown. After applying some

algebra, this equation reduces to

g(κ) =
r

κ
+ ∑

i∈U

ln xi −
r ∑n

i=1 xκ
i ln xi

∑n
i=1 xκ

i

= 0,

which must be solved iteratively. One technique that can be used to solve this equation is the

Newton–Raphson procedure, which uses

κ j+1 = κ j −
g(κ j)

g′(κ j)
,

where κ0 is an initial estimator. The iterative procedure can be repeated until the desired accuracy

for κ is achieved; that is, |κ j+1 −κ j|< ε, for some small positive real number ε. When the accuracy

is achieved, the maximum likelihood estimator κ̂ is used to calculate λ̂ =
(

r/∑n
i=1 xκ̂

i

)1/κ̂
. The

derivative of g(κ) reduces to

g′(κ) =− r

κ2
− r

(∑n
i=1 xκ

i )
2





(

n

∑
i=1

xκ
i

)(

n

∑
i=1

(ln xi)
2xκ

i

)

−
(

n

∑
i=1

xκ
i ln xi

)2


 .

Determining an initial estimator κ0 is not trivial. When there are no censored observations, Menon’s

initial estimator for κ0 is

κ0 =

{

6

(n−1)π2

[

n

∑
i=1

(ln ti)
2 − (∑n

i=1 ln ti)
2

n

]}−1/2

.

Least squares estimation can be used in the case of a right-censored data set. The Newton–Raphson

procedure can fail to converge to the maximum likelihood estimators. A bisection algorithm or fixed

point algorithm often provides more reliable convergence.

Fisher and observed information matrices. The 2×2 Fisher and observed information matri-

ces are based on the following partial derivatives:

−∂2 ln L(λ,κ)

∂λ2
=

κr

λ2
+κ(κ−1)λκ−2

n

∑
i=1

xκ
i ,

−∂2 ln L(λ,κ)

∂λ∂κ
=− r

λ
+

[

(

κλκ−1
)

(

n

∑
i=1

xκ
i ln xi

)

+

(

n

∑
i=1

xκ
i

)

(

κλκ−1 ln λ+λκ−1
)

]
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=− r

λ
+λκ−1

[

κ
n

∑
i=1

xκ
i ln xi +(1+κ ln λ)

n

∑
i=1

xκ
i

]

,

−∂2 ln L(λ,κ)

∂κ2
=

r

κ2
+

n

∑
i=1

(λxi)
κ(ln λxi)

2.

The expected values of these quantities are not tractable, so the Fisher information matrix does not

have closed-form elements. The observed information matrix, however, can be determined by using

λ̂ and κ̂ as arguments in these expressions.

Example 5.12 Example 5.5 showed that the exponential distribution was a poor ap-

proximation to the ball bearing data lifetimes. The histogram in Figure 5.8 indicated

that a probability distribution with a nonzero mode and an increasing hazard function

might provide a better fit. Fit the Weibull distribution to the ball bearing lifetimes and

assess the fit.

The maximum likelihood estimates, using the Newton–Raphson technique described

previously, are λ̂ = 0.0122 and κ̂ = 2.10. Figure 5.16 shows the empirical survivor

function, along with the fitted exponential and Weibull survivor functions. It is clear

that the Weibull distribution is superior to the exponential distribution in fitting the ball

bearing failure times because it is capable of modeling wear out. The log likelihood

function evaluated at the maximum likelihood estimators is ln L(λ̂, κ̂) = −113.691.

The log likelihood function is shown in Figure 5.17.

The observed information matrix is

O
(

λ̂, κ̂
)

=

[

681,000 875

875 10.4

]

,

revealing a positive correlation between the elements of the score vector. Using the fact

that the likelihood ratio statistic, −2
[

ln L(λ, κ)− ln L
(

λ̂, κ̂
)]

, is asymptotically χ2(2),
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Figure 5.16: Exponential and Weibull fits to the ball bearing data.
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Figure 5.17: Log likelihood function for the ball bearing data.

an approximate 95% confidence region for the parameters is all λ and κ satisfying

−2[ln L(λ, κ)+113.691]< 5.99,

since χ2
2,0.05 = 5.99. The 95% confidence region is shown in Figure 5.18, and, not sur-

prisingly, the line κ = 1 is not interior to the region. This indicates that the exponential

distribution is not an appropriate model for this particular data set. This is yet more

statistical evidence that the ball bearings are wearing out. Note that the boundary of

this region is a level surface of the log likelihood function shown in Figure 5.17 that is

cut 5.99/2 units below the maximum of the log likelihood function.

The R code to generate the confidence region is given below. The crplot function

contained in the conf package calculates the maximum likelihood estimates λ̂ and κ̂
and plots the 95% confidence region. The first argument to crplot contains the data

values, the second argument contains α, and the third argument contains the name of the

population distribution. Setting the pts argument to FALSE means the points along the

boundary are connected by lines; setting the origin argument to TRUEmeans the origin

is included in the plot; setting the info argument to TRUE means the maximum likeli-

hood estimates and boundary points in the confidence region can easily be retrieved.

library(conf)

bb = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84,

51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,

93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40)

crplot(bb, 0.05, "weibull", pts = FALSE, origin = TRUE, info = TRUE)

As further evidence that the Weibull distribution is a significantly better model than

the exponential, the likelihood ratio statistic can be used to determine whether κ is

significant. Evaluating the log likelihood values at the maximum likelihood estimators
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Figure 5.18: Confidence region (α = 0.05) for λ and κ for the ball bearing data.

in the Weibull and exponential fits, the likelihood ratio statistic is

−2
[

ln L
(

λ̂
)

− ln L
(

λ̂, κ̂
)]

=−2[−121.435+113.691] = 15.488.

This value shows that there is a statistically significant difference between κ and 1 when

it is compared with the critical value χ2
1,0.05 = 3.84.

If we are still uncertain as to whether κ is significantly different from 1, the standard

errors of the distribution of the parameter estimators can be computed by determining

the inverse of the observed information matrix

O−1(λ̂, κ̂) =

[

0.00000165 −0.000139

−0.000139 0.108

]

.

This matrix is an estimate of the variance–covariance matrix for the parameter estimates

λ̂ and κ̂. The standard errors of the parameter estimates are the square roots of the

diagonal elements

σ̂
λ̂
= 0.00128 σ̂κ̂ = 0.329.

Thus, an asymptotic 95% confidence interval for κ is

2.10− (1.96)(0.329)< κ < 2.10+(1.96)(0.329)

or

1.46 < κ < 2.74,

since z0.025 = 1.96. Since this confidence interval does not contain 1, the parameter κ is

statistically significant. Three different techniques have all drawn the same conclusion:

the ball bearings are wearing out because there is a statistically significant difference

between κ̂ = 2.10 and κ = 1.
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5.6 Proportional Hazards Model

Parameter estimation for the proportional hazards model, which was introduced in Section 4.6, is

considered in this section. Since there is now a vector of covariates in addition to a failure or censor-

ing time for each item on test, special notation must be established to accommodate the covariates.

The proportional hazards model has the unique feature that the baseline distribution need not be

defined in order to estimate the regression coefficients associated with the covariates.

A lifetime model that incorporates a vector of covariates z = (z1, z2, . . . , zq)
′ models the impact

of the covariates on survival. The reason for including this vector may be to determine which

covariates significantly affect survival, to determine the distribution of the lifetime for a particular

setting of the covariates, or to fit a more complicated distribution from a small data set, as opposed

to fitting separate distributions for each level of the covariates.

The proportional hazards model was defined in Section 4.6 by

h(t, z) = ψ(z)h0(t),

for t ≥ 0, where h0(t) is a baseline hazard function. The covariates increase the hazard function

when ψ(z)> 1 or decrease the hazard function when ψ(z)< 1. The goal of this section is to develop

techniques for estimating the q× 1 vector of regression coefficients ββ from a data set consisting of

n items on test and r observed failure times.

The notation used to describe a data set in a lifetime model involving covariates will borrow

some notation established earlier in this chapter, but also establish some new notation. As before,

n is the number of items on test and r is the number of observed failures. The failure time of the

ith item on test, ti, is either observed or right censored at time ci, for i = 1, 2, . . . , n. As before, let

xi = min{ti, ci} and δi be a censoring indicator variable (1 for an observed failure and 0 for a right-

censored value), for i = 1, 2, . . . , n. In addition, a q×1 vector of covariates zi = (zi1, zi2, . . . , ziq)
′ is

collected for each item on test, for i = 1, 2, . . . , n. Thus, zi j is the value of covariate j for item i, for

i = 1, 2, . . . , n and j = 1, 2, . . . , q. This formulation of the problem can be stated in matrix form as

x=











x1

x2

...

xn











δδ =











δ1

δ2

...

δn











and Z =











z11 z12 . . . z1q

z21 z22 . . . z2q

...
...

. . .
...

zn1 zn2 . . . znq











.

Each row in the Z matrix consists of the values of the q covariates collected on a particular item. The

matrix approach is useful because complicated systems of equations can be expressed compactly and

operations on data sets can be performed efficiently by a computer. For parameter estimation, the

survivor, density, hazard, and cumulative hazard functions now have the extra arguments z and ββ
associated with them:

S(t, z, θθ, ββ) f (t, z, θθ, ββ) h(t, z, θθ, ββ) H(t, z, θθ, ββ),

for t ≥ 0, where the vector θθ = (θ1, θ2, . . . , θp)
′ consists of the p unknown parameters associated

with the baseline distribution, which must be estimated along with the regression coefficients ββ.

Parameter estimation for the proportional hazards model can be divided into two cases. The first

case is when the baseline distribution is known. This case applies when previous test results have

indicated that a particular functional form of the baseline distribution is appropriate. The second

case is when the baseline distribution is unknown. This is almost certainly the case when looking

at a data set of lifetimes and covariates for the first time without any guidance with respect to an

appropriate baseline distribution.
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5.6.1 Known Baseline Distribution

When the baseline distribution is known, the parameter estimation procedure follows along the same

lines as in the previous sections. The hazard function and cumulative hazard function in the propor-

tional hazards model are

h(t, z, θθ, ββ) = ψ(z)h0(t)

and

H(t, z, θθ, ββ) = ψ(z)H0(t)

for t ≥ 0, where θθ is a p×1 vector of unknown parameters associated with the baseline distribution.

For simplicity and mathematical tractability, only the log linear form of the link function, which is

ψ(z) = eββ′z , is considered here. This assumption is not necessary for some of the derivations, so

many of the results apply to a wider range of link functions. When the log linear form of the link

function is assumed, the hazard function and cumulative hazard function become

h(t, z, θθ, ββ) = eββ′zh0(t)

and

H(t, z, θθ, ββ) = eββ′zH0(t)

for t ≥ 0, where θθ is a p×1 vector of unknown parameters associated with the baseline distribution.

The log likelihood function is

ln L(θθ, ββ) = ∑
i∈U

ln h(xi, zi, θθ, ββ)−
n

∑
i=1

H(xi, zi, θθ, ββ)

= ∑
i∈U

[

ββ ′
zi + ln h0(xi)

]

−
n

∑
i=1

eββ′ziH0(xi).

This expression can be differentiated with respect to all the unknown parameters to arrive at the score

vector, which is then equated to zero and solved numerically to arrive at the maximum likelihood

estimates.

Two observations with respect to this model formulation are important. First, the maximum

likelihood estimates for θθ and ββ for most of the models in this section cannot be expressed in closed

form (as was the case for the exponential distribution in Section 5.4), so numerical methods typically

need to be used to find the values of the estimates. Second, the choice of whether to use a model

of dependence or to examine each population separately is dependent on the number of unique

covariate vectors z and the number of items on test, n. If, for example, n is large and there is only a

single binary covariate (that is, only two unique covariate vectors, z1 = 0 and z1 = 1), it is probably

wiser to analyze each of the two populations separately by the techniques described earlier.

Although numerical methods are required to find θ̂θ and β̂β in general, there are closed-form

expressions in a very narrow case that satisfies the following conditions.

• The log linear link function ψ(z) = eββ′z is used to incorporate the vector of covariates z into

the lifetime model.

• The baseline distribution is exponential(λ), which means that the baseline hazard function is

h0(t) = λ and the baseline cumulative hazard function is H0(t) = λt for t ≥ 0.

Under these assumptions, the general form for the hazard function in the proportional hazards model

h(t, z, θθ, ββ) = ψ(z)h0(t)
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reduces to the special case

h(t, z, λ, ββ) = λeββ′z.

for t ≥ 0. It is often more convenient notationally to define an additional covariate, z0 = 1, for all n

items on test. This allows the baseline parameter λ = eβ0z0 to be included in the vector of regression

coefficients, rather than being considered separately. The baseline hazard function is effectively

absorbed into the link function. In this case, the hazard function can be expressed as

h(t, z, ββ) = eββ′z

for t ≥ 0, where ββ = (β0, β1, . . . , βq)
′ and z = (z0, z1, . . . , zq)

′. The corresponding cumulative haz-

ard function is

H(t, z, ββ) = teββ′z

for t ≥ 0. Using this parameterization, the log likelihood function is

ln L(ββ) = ∑
i∈U

ln h(xi, zi, ββ)−
n

∑
i=1

H(xi, zi, ββ)

= ∑
i∈U

ββ′
zi −

n

∑
i=1

xie
ββ′zi .

Differentiating this expression with respect to β j yields the elements of the score vector

∂ ln L(ββ)

∂β j

= ∑
i∈U

zi j −
n

∑
i=1

xizi je
ββ′zi

for j = 0, 1, . . . , q. When the elements of the score vector are equated to zero, the resulting set of

q+ 1 nonlinear equations in ββ must be solved numerically in the general case. There is a closed-

form solution for this set of simultaneous equations when there is a single binary covariate, often

referred to as the two-sample case.

To find the observed information matrix and the Fisher information matrix, a second partial

derivative of the log likelihood function is required:

∂2 ln L(ββ)

∂β j∂βk

=−
n

∑
i=1

xizi jzikeββ′zi

for j = 0, 1, . . . , q and k = 0, 1, . . . , q. The observed information matrix can be determined by using

the maximum likelihood estimate β̂β as an argument in this second partial derivative. Thus, the ( j, k)
element of the observed information matrix is

[

−∂2 ln L(ββ)

∂β j∂βk

]

ββ= β̂β

=
n

∑
i=1

xizi jzike β̂β
′
zi

for j = 0, 1, . . . , q and k = 0, 1, . . . , q. For computational purposes, this can be expressed in matrix

form as

O
(

β̂β
)

=Z
′
B̂Z,

where B̂ is an n× n diagonal matrix whose elements are x1e β̂β
′
z1 , x2e β̂β

′
z2 , . . . , xne β̂β

′
zn . The Fisher

information matrix is more difficult to calculate because it involves the expected value of the second

partial derivative:

E

[

−∂2 ln L(ββ)

∂β j∂βk

]

=
n

∑
i=1

zi jzikeββ′ziE[xi]
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for j = 0, 1, . . . , q and k = 0, 1, . . . , q. Determining the value of E[xi] will be considered separately

in the paragraphs that follow for uncensored (r = n) and censored (r < n) data sets.

For a complete data set, E[xi] = E[ti], for i = 1, 2, . . . , n, because there is no censoring. Since the

population mean of the exponential distribution is the reciprocal of the failure rate and the ith item

on test has failure rate eββ′zi , E[xi] = e−ββ′zi . Returning to the Fisher information matrix, the ( j, k)
element is

E

[

−∂2 ln L(ββ)

∂β j∂βk

]

=
n

∑
i=1

zi jzikeββ′zie−ββ′zi =
n

∑
i=1

zi jzik

for j = 0, 1, . . . , q and k = 0, 1, . . . , q. This result for the Fisher information matrix has a particularly

tractable matrix representation

I(ββ) =Z
′
Z,

which is a function of the matrix of covariates only.

For a censored data set, the expression for E[xi] is a bit more complicated. Since the failure rate

for the ith item on test is eββ′zi ,

E[xi] = E
[

min{ti, ci}
]

=
∫ ci

0
ti fTi

(ti)dti + ciP[ti ≥ ci]

=
∫ ci

0
tie

ββ′zie−eββ ′zi tidti + cie
−eββ ′zi ci

= e−ββ′zi

(

1− e−eββ ′zi ci

)

for i = 1, 2, . . . , n, by using integration by parts. This means that the ( j, k) element of the Fisher

information matrix is

E

[

−∂2 ln L(ββ)

∂β j∂βk

]

=
n

∑
i=1

zi jzikeββ′zie−ββ′zi

[

1− e−eββ ′zi ci

]

=
n

∑
i=1

zi jzik(1− γi),

where γi = e−eββ ′zi ci is the probability that the ith item on test is censored, for i = 1, 2, . . . , n. The

potential censoring time for the ith item on test, ci, must be known for each item in order to compute

the Fisher information matrix, which is not always the case in practice. Letting ΓΓ be a diagonal

matrix with elements γ1, γ2, . . . , γn, the Fisher information matrix can be written in matrix form as

I(ββ) =Z
′(I−ΓΓ)Z,

which is independent of the failure times.

Before ending the discussion on the exponential baseline distribution, the two-sample case,

where a binary covariate z1 is used to differentiate between the control (z1 = 0) and treatment

(z1 = 1) cases, is considered. This case is of interest because the maximum likelihood estimates

can be expressed in closed form. The notation for the two-sample case is summarized in Table 5.2.

As before, z0 = 1 is included in the vector of covariates to account for the baseline distribution. The

set of two nonlinear equations for finding the estimates of ββ = (β0,β1)
′ obtained by setting the score

vector equal to 0 is

∑
i∈U

zi0 −
n

∑
i=1

xizi0eβ0zi0+β1zi1 = 0,

∑
i∈U

zi1 −
n

∑
i=1

xizi1eβ0zi0+β1zi1 = 0.
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Let r0 > 0 be the number of observed failures in the control group (z1 = 0), and let r1 > 0 be the

number of observed failures in the treatment group (z1 = 1). Since z0 = 1 for all items on test, the

equations reduce to

r0 + r1 −
n

∑
i=1

xie
β0+β1zi1 = 0,

r1 −
n

∑
i=1

xizi1eβ0+β1zi1 = 0.

These equations can be further simplified by partitioning the summations based on the value of z1:

r0 + r1 − ∑
i |zi1=0

xie
β0 − ∑

i |zi1=1

xie
β0+β1 = 0,

r1 − ∑
i |zi1=1

xie
β0+β1 = 0.

Letting λ0 = eβ0 be the failure rate in the control group (z1 = 0) and letting λ1 = eβ0+β1 be the failure

rate in the treatment group (z1 = 1), the equations become

r0 + r1 −λ0 ∑
i |zi1=0

xi −λ1 ∑
i |zi1=1

xi = 0,

r1 −λ1 ∑
i |zi1=1

xi = 0.

When these equations are solved simultaneously, the maximum likelihood estimates for λ0 and λ1

are the same as those for the exponential distribution with two separate populations:

λ̂0 =
r0

∑i |zi1=0 xi

and λ̂1 =
r1

∑i |zi1=1 xi

.

These estimators are the ratio of the number of observed failures to the total time on test within the

two groups.

Example 5.13 The patients in the 6–MP drug experiment described in Example 5.6 are

broken down into a control group that did not receive the drug (z1 = 0) and a treatment

group that did receive the drug (z1 = 1). The remission times, in weeks, for the 21

patients in the control group are

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23.

Control Group Treatment Group

Number of failures r0 r1

Baseline covariate z0 1 1

Binary covariate z1 0 1

Table 5.2: Single binary covariate proportional hazards model notation.



Section 5.6. Proportional Hazards Model 295

The remission times for the 21 patients that received the drug are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.

There are a total of n = 42 patients in the clinical trial, and there are a total of r = 30

observed cancer recurrences, r0 = 21 of which are in the control group and r1 = 9 of

which are in the treatment group. The values of x, δδ, and Z are given in Figure 5.19;

the control group values have been arbitrarily placed first in the x vector. Note that for

this analysis the order of the observations in the x vector is irrelevant. For tied values,

the censored values have been placed last.

The maximum likelihood estimates for the failure rates for the two populations are

λ̂0 =
r0

∑i |zi1=0 xi

=
21

182
= 0.115 and λ̂1 =

r1

∑i |zi1=1 xi

=
9

359
= 0.0251

or, equivalently, in terms of the estimated mean remission times, the expected remis-

sion times of the control and treatment groups are estimated to be 182
21

= 8.67 weeks

and 359
9

= 39.9 weeks, respectively. These estimates can be easily converted to the

coefficients in the proportional hazards model:

β̂0 = ln

[

21

182

]

=−2.16 and β̂1 = ln

[

(9)(182)

(359)(21)

]

=−1.53.

Confidence intervals can be determined separately for the two populations because the

remission times in each are assumed to be exponentially distributed. Using the tech-

niques from Section 5.4, an exact two-sided 95% confidence interval for λ0 is

(0.115)(26.00)

42
< λ0 <

(0.115)(61.78)

42

0.0714 < λ0 < 0.170

based on the chi-square distribution with 42 degrees of freedom. An approximate two-

sided 95% confidence interval for λ1 is

(0.0251)(8.23)

18
< λ1 <

(0.0251)(31.53)

18

0.0115 < λ1 < 0.0439

based on the chi-square distribution with 18 degrees of freedom. The first confidence

interval is exact because the control group contains no censored observations, and the

second confidence interval is approximate because the treatment group has randomly

censored observations. Since these confidence intervals do not overlap, it can be con-

cluded that 6–MP is effective in increasing remission times. If the side effects from

6–MP are minor, it should be prescribed to all leukemia patients.

Since exact confidence intervals apply only to the two-sample case with an exponential

baseline distribution and Type II censoring, asymptotic intervals will also be calculated

here to illustrate how they are developed in the general case. The Fisher information

matrix cannot be calculated for this data set because the observed remission times do
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Figure 5.19: Data values for the 6–MP experiment with a single binary covariate.
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not have corresponding known censoring times. The observed information matrix, on

the other hand, is easily calculated using the matrix formulation

O
(

β̂β
)

=Z
′
B̂Z =

[

30 9

9 9

]

,

where B̂ is a 42× 42 diagonal matrix with elements x1eβ̂β
′
z1 , x2eβ̂β

′
z2 , . . . , x42eβ̂β

′
z42 .

Since the determinant of this matrix is (30)(9)−92 = 189, it has inverse

O−1
(

β̂β
)

=

[

9/189 −9/189

−9/189 30/189

]

,

which estimates the variance–covariance matrix of the maximum likelihood estimates.

The off-diagonal elements of O−1
(

β̂β
)

indicate a negative correlation between β̂0 and

β̂1. The square roots of the diagonal elements yield asymptotic estimates for the stan-

dard deviation of the regression parameter estimates. Thus, the asymptotic estimated

standard deviation of the estimate for β0 is

√

V̂
[

β̂0

]

=

√

9

189
= 0.218,

and the asymptotic estimated standard deviation of the estimate for β1 is

√

V̂
[

β̂1

]

=

√

30

189
= 0.398.

These values can be used in the usual fashion to obtain asymptotically valid confidence

intervals and perform hypothesis testing with respect to the regression parameter esti-

mates. Note that β̂1 = −1.53 is more than three standard deviation units away from 0,

supporting the conclusion that there is a statistically significant difference between the

patients who take 6–MP versus those that do not with respect to their remission times.

Since the sign of β̂1 is negative, the drug prolongs the remission times. More specif-

ically, since the proportional hazards model is being used, a patient taking the 6–MP

drug will have a hazard function that is estimated to be eβ̂1 = e−1.53 = 0.217 times that

of a patient who does not take the drug.

Parameter estimation for single binary covariate is ideal in the sense that the parameter estimates

can be expressed in closed form. The next subsection considers the more common situation in which

the baseline distribution is unknown.

5.6.2 Unknown Baseline Distribution

In many applications, the baseline distribution is not known. Furthermore, the modeler may not be

interested in the baseline distribution, rather only in the influence of the covariates on survival. A

technique has been developed for the proportional hazards model that allows the coefficient vector ββ
to be estimated without knowledge of the parametric form of the baseline distribution. This type

of analysis might be appropriate when the modeler wants to detect which covariates are significant,

to determine which covariate is the most significant, or to analyze interactions among covariates.

This technique is characteristic of nonparametric methods because it is impossible to misspecify the

baseline distribution.
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The focus of this estimation technique is on the indexes of the components on test, as will

be seen in the derivation to follow. Since this procedure is very different from all previous point

estimation derivations, an example will be carried through the derivation to illustrate the notation

and the method. The purpose in this small example is to determine whether light bulb wattage

influences light bulb survival. This introduction to parameter estimation will alternate between the

small example and the general case. In this example and the derivation, it is initially assumed that

there is no censoring and there are no tied observations.

Example 5.14 A set of n = 3 light bulbs are placed on test. The first and second bulbs

are 100-watt bulbs and the third bulb is a 60-watt bulb. A single (q = 1) covariate z1

assumes the value 0 for a 60-watt bulb and 1 for a 100-watt bulb. The purpose of the test

is to determine if the wattage has any influence on the survival distribution of the bulbs.

The baseline distribution is unknown and unspecified, so there is only one parameter in

the proportional hazards model, the regression coefficient β1, that needs to be estimated.

This small data set is used for illustrative purposes only, and we would obviously need

to collect more than three data points to detect any statistically significant difference

between the two wattages. Let t1 = 80, t2 = 20, and t3 = 50 denote the lifetimes of the

three bulbs. From the notation developed earlier in this chapter,

x=





80

20

50



 δδ =





1

1

1



 Z =





1

1

0



 .

The order statistics are t(1) = 20, t(2) = 50, and t(3) = 80. Figure 5.20 illustrates the

definitions made thus far. Recall that the first subscript on zi j is the bulb number and

the second subscript is the covariate number. The risk set R(t), parameterized by the

t

Bulb 1: 100 watts

Bulb 2: 100 watts

Bulb 3: 60 watts

20

t(1)

50

t(2)

80

t(3)

t3

t2

t1

Covariate
values

z11 = 1

z21 = 1

z31 = 0

×

×

×

Figure 5.20: Proportional hazards parameter estimation notation.
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failure times, is defined as the set of indexes of bulbs at risk just prior to time t. In this

case

R(t(1)) = R(t2) = R(20) = {1, 2, 3}
since all bulbs are at risk just prior to t(1). At time t(2), the risk set is

R(t(2)) = R(t3) = R(50) = {1, 3}

since bulbs 1 and 3 are at risk just prior to t(2). Finally, at time t(3), the risk set is

R(t(3)) = R(t1) = R(80) = {1}

since only bulb 1 is still on test just prior to t(3). Similar to the concept of a pointer

array from computer science, a rank vector r is used here to simplify the notation. The

ith element of the rank vector is the index of the item that fails at t(i), for i = 1, 2, 3. For

this particular data set,

r =





2

3

1





because bulb 2 fails first, bulb 3 fails next, and bulb 1 fails last. The failure times for

each bulb can therefore be determined from the order statistics and the rank vector.

The notation defined in the example is easily extended from three items on test with a single

binary covariate to the general case. Let t1, t2, . . . , tn be n distinct lifetimes. Each lifetime ti has an

associated q×1 vector of covariates zi, for i = 1, 2, . . . , n. The ith order statistic is given by t(i), and

the risk set R(t(i)) is the set of indexes of all items that are at risk just prior to t(i), for i = 1, 2, . . . , n.

The ith element of the rank vector r = (r1, r2, . . . ,rn)
′ is the index of the item that fails at time t(i),

for i = 1, 2, . . . , n. The observed failure times and their associated indexes are equivalent to the

observed order statistics and the associated rank vector. Now that the new notation has been defined,

the emphasis transitions to determining the probability that a particular permutation of the indexes

appears in the rank vector.

Example 5.15 We now return to the light bulb life test described in Example 5.14. The

joint probability distribution of the elements of the rank vector, denoted by f (r1, r2, r3),
is now considered for the data set containing n = 3 observations. In this case, there are

3! = 6 possible permutations of the ranks of the observations:




1

2

3









1

3

2









2

1

3









2

3

1









3

1

2









3

2

1



 .

If the wattage of the light bulb had no influence on the survival time, then clearly

f (r1, r2, r3) =
1
6

for all six permutations because all three items are drawn from a ho-

mogeneous population with respect to survival. Switching to the non-equally-likely

case, the probability mass function for the rank vector will be determined by finding the

conditional probabilities associated with the ranks. For example, assume that a failure

has just occurred at time t(2) = 50, and the history up to time 50, which is bulb 2 failed

at time t(1) = 20, is known. The bulb that fails at time 50 is either bulb 1 or bulb 3. For

small ∆t, the conditional probability that the bulb failing at time 50 is bulb 1 is

P
(

r2 = 1
∣

∣ t(1) = 20, t(2) = 50, r1 = 2
)

=
P(bulb 1 fails at time 50)

P(one item from R(t(2)) fails at time 50)
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=
h(50, z11)∆t

h(50, z11)∆t +h(50, z31)∆t

=
h(50, z11)

h(50, z11)+h(50, z31)

=
ψ(z11)h0(50)

ψ(z11)h0(50)+ψ(z31)h0(50)

=
ψ(z11)

ψ(z11)+ψ(z31)

=
eβ1z11

eβ1z11 + eβ1z31

=
eβ1

eβ1 +1

because the first bulb is 100 watts (z11 = 1) and the third bulb is 60 watts (z31 = 0). Note

that the baseline hazard function has dropped out of this expression, so this probability

will be the same regardless of the choice of h0(t). Also, the first two order statistics,

t(1) and t(2), were not used in the calculation of this conditional probability. By similar

reasoning, the conditional probability that the 60-watt bulb is the second to fail is

P
(

r2 = 3
∣

∣ t(1) = 20, t(2) = 50,r1 = 2
)

=
1

eβ1 +1
.

In the example, as well as in the general case, the conditional probability expression does not

involve the failure times, making it possible to shorten P(r j = i | t(1), t(2), . . . , t( j), r1, r2, . . . , r j−1) to

just P(r j = i |r1, r2, . . . , r j−1). The probability that the jth element of the rank vector will be equal

to i, given t( j) and the failure history up to t( j), is

P
(

r j = i
∣

∣r1, r2, . . . , r j−1

)

=
h(t( j), zi)∆t

∑k∈R(t( j))
h(t( j), zk)∆t

=
h(t( j), zi)

∑k∈R(t( j))
h(t( j), zk)

=
ψ(zi)h0(t( j))

∑k∈R(t( j))
ψ(zk)h0(t( j))

=
ψ(zi)

∑k∈R(t( j))
ψ(zk)

=
eββ′zi

∑k∈R(t( j))
eββ′zk

.

Example 5.16 We continue with the light bulb life test with n = 3 bulbs on test from

Examples 5.14 and 5.15. It is now a simple task to use this conditional probability to

determine the probability mass function for the indexes. For the three light bulbs, this

probability mass function is

f (r1, r2, r3) = f (r3 |r1, r2) f (r1, r2)

= f (r3 |r1, r2) f (r2 |r1) f (r1)

= f (r1) f (r2 |r1) f (r3 |r1, r2)
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over all six permutations of the rank vector. Since the sequence that was observed for

the rank vector was r = (2, 3, 1)′, this becomes

f (2, 3, 1) = f (2) f (3 |2) f (1 |2, 3)

=
ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z31)

ψ(z11)+ψ(z31)
· ψ(z11)

ψ(z11)

=
eβ1z21

eβ1z11 + eβ1z21 + eβ1z31
· eβ1z31

eβ1z11 + eβ1z31

=
eβ1

eβ1 + eβ1 +1
· 1

eβ1 +1

=
eβ1

(

2eβ1 +1
)(

eβ1 +1
) .

Treating this expression as a likelihood function L(β1), the problem reduces to deter-

mining the β1 value that maximizes the log likelihood function

ln L(β1) = β1 − ln
(

2eβ1 +1
)

− ln
(

eβ1 +1
)

.

The score statistic is

∂ ln L(β1)

∂β1
= 1− 2eβ1

2eβ1 +1
− eβ1

eβ1 +1
.

Setting the score statistic to zero and solving for the maximum likelihood estimate,

β̂1 = (− ln 2)/2 = −0.347. Since β̂1 < 0, there is lower risk for the 100-watt bulbs

than for 60-watt bulbs. More specifically, the hazard function for 100-watt light bulbs

is eβ̂1 =
√

2/2 = e−0.347 = 0.707 times that of the baseline hazard function for 60-watt

bulbs, regardless of what baseline distribution is considered. To see if this regression

coefficient is statistically significant involves calculating the negative of the derivative

of the score:

−∂2 ln L(β1)

∂β2
1

=
2eβ1

(

2eβ1 +1
)2

+
eβ1

(

eβ1 +1
)2
.

When this expression is evaluated at β1 = β̂1 =−0.347, the 1×1 observed information

matrix is 0.485, so the asymptotic estimate of the variance of β̂1 is 1/0.485 = 2.06, and

the asymptotic estimate of the standard deviation of β̂1 is
√

2.06= 1.44. Since β̂1 is only

a fraction of a standard deviation away from 0, z1 is not statistically significant. This re-

sult is not surprising considering the small number of light bulbs placed on the life test.

Note that these values are only asymptotically correct and are obviously poor approx-

imations when n = 3. The p-value for testing H0 : β1 = 0 versus H1 : β1 6= 0 is 0.809,

indicating that there is no statistical evidence that wattage influences the longevity of a

light bulb for this tiny data set. In addition, only the order of the failure times and not

their numerical values were used to find β̂1. This means, for example, that the failure

time of the third bulb, t3, could have fallen anywhere on the interval (20,80), and the

estimate would have been the same because the order of the observed failure times was

not changed.

The R code below confirms the calculations given above. The coxph function, which is

part of the survival package, is used to calculate the estimated regression coefficient
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β̂1 = −0.347, which is stored in b, the 1× 1 observed information matrix, which is

stored in v, and the p-value for the hypothesis test, which is stored in p.

library(survival)

failtimes = c(80, 20, 50)

censor = c(1, 1, 1)

z = c(1, 1, 0)

bulbs.fit = coxph(Surv(failtimes, censor) ~ z)

b = bulbs.fit$coef

v = bulbs.fit$var

p = 2 * pnorm(b / sqrt(v))

The procedure for estimating β1 can be generalized from the example without any significant

difficulties. The probability mass function for the indexes, or the likelihood function for ββ, is now

L(ββ) = f (r1) f (r2 |r1) . . . f (rn |r1, r2, . . . , rn−1)

=
n

∏
j=1

ψ(zr j
)

∑k∈R(t( j))
ψ(zk)

=
n

∏
j=1

e
ββ′zr j

∑k∈R(t( j))
eββ′zk

.

The log likelihood is

ln L(ββ) =
n

∑
j=1



ββ′
zr j

− ln ∑
k∈R(t( j))

eββ′zk



 .

The score vector has sth component

∂ ln L(ββ)

∂βs

=
n

∑
j=1

[

zsr j
−

∑k∈R(t( j))
zskeββ′zk

∑k∈R(t( j))
eββ′zk

]

for s = 1, 2, . . . , q. The vector of maximum likelihood estimators β̂β is obtained when the elements

of the score vector are equated to zero and solved via numerical methods. To determine an estimate

for the variance of β̂β, the score vector must be differentiated to calculate the observed information

matrix. The diagonal elements of the inverse of the observed information matrix are asymptotically

valid estimates of the variance of β̂β.

There are two approaches to handle right censoring that do not significantly complicate the

derivation presented thus far. The first approach is to assume that right censoring occurs immediately

after a failure occurs when a failure time and right-censoring time coincide. This assumption is valid

for a Type II censored data set, but will involve an approximation for more general right-censoring

schemes. In this case the rank vector is shortened to only r elements, corresponding to the indexes

of the observed failure times t(1), t(2), . . . , t(r). The likelihood function is

L(ββ) =
r

∏
j=1

ψ(zr j
)

∑k∈R(t( j))
ψ(zk)

=
r

∏
j=1

e
ββ′zr j

∑k∈R(t( j))
eββ′zk

.
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The log likelihood function is

ln L(ββ) =
r

∑
j=1



ββ′
zr j

− ln ∑
k∈R(t( j))

eββ′zk



 .

The score vector has sth component

∂ ln L(ββ)

∂βs

=
r

∑
j=1

[

zsr j
−

∑k∈R(t( j))
zskeββ′zk

∑k∈R(t( j))
eββ′zk

]

for s = 1, 2, . . . , q. Using the quotient rule, the derivative of the score vector is

∂2 ln L(ββ)

∂βs∂βt

=−
r

∑
j=1

(

∑k∈R(t( j))
eββ′zk

)(

∑k∈R(t( j))
zskztkeββ′zk

)

−
(

∑k∈R(t( j))
zskeββ′zk

)(

∑k∈R(t( j))
ztkeββ′zk

)

(

∑k∈R(t( j))
eββ′zk

)2

for s = 1, 2, . . . , q and t = 1, 2, . . . , q. The elements of the observed information matrix are obtained

by using the maximum likelihood estimates as arguments in the negative of this expression.

The second approach to right censoring is to write the likelihood function as the sum of all like-

lihoods for complete data sets that are consistent with the censoring pattern. Fortunately, this second

approach yields the same likelihood function as the first approach, as illustrated by the following

example.

Example 5.17 In the previous example, the data set consisted of three observed failure

times: 80, 20, 50. Now, if the situation changes so that the lifetime of the third light bulb

is right censored at time 50, the data set is 80, 20, 50*, as is illustrated in Figure 5.21.

Using the first approach to right censoring, the observed rank vector is now r = (2, 1)′,
and the likelihood function is

L(β1) =
2

∏
j=1

ψ(zr j
)

∑k∈R(t( j))
ψ(zk)

=
ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z11)

ψ(z11)

=
ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
.

For the second approach to right censoring, there are two possibilities for the rank vector

if there was no censoring: if the third bulb failed before time 80, the observed rank

vector would be r = (2, 3, 1)′; if the third bulb failed after time 80, the observed rank

vector would be r = (2, 1, 3)′. In the first case, the likelihood function would be that

from the previous example:

ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z31)

ψ(z11)+ψ(z31)
· ψ(z11)

ψ(z11)
.

In the second case, the likelihood function would be

ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z11)

ψ(z11)+ψ(z31)
· ψ(z31)

ψ(z31)
.
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Figure 5.21: Proportional hazards model with censoring.

The sum of these two likelihood functions is

ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
,

which is the same result as in the first approach to handling right censoring.

Tied lifetimes are typically handled by an approximation. When there are several failures at

the same time value, each is assumed to contribute the same term to the likelihood function. Con-

sequently, all the items with tied failure times are included in the risk set at the time of the tied

observation. This approximation works well when there are not many tied observations in the data

set and has been implemented in many software packages that estimate the vector of regression

coefficients ββ.

Example 5.18 Fit the Cox proportional hazards model via maximum likelihood to the

remission times in the 6–MP clinical trial with a single binary covariate z1 for the control

(z1 = 0) and treatment (z1 = 1) groups. The data values are given in Example 5.6.

Using numerical methods, the maximum likelihood estimate for the single regression

parameter is β̂1 = −1.51. The log likelihood function attains a value of −86.38 at the

maximum likelihood value, the observed information matrix has a single value 5.962,

and the inverse of the observed information matrix is 1/5.962 = 0.168. This means that

an asymptotic estimate of the standard deviation of the maximum likelihood estimate is

√

V̂
[

β̂1

]

=
√

0.168 = 0.41,

which indicates that the maximum likelihood estimate is 1.51/0.41 = 3.7 standard de-

viations units away from 0. It can be concluded, with a p-value less than 0.001, that
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the 6–MP drug is effective in increasing the remission times for leukemia patients,

assuming that the proportional hazards model is appropriate here. Regardless of the

baseline hazard function h0(t) chosen, the hazard function in the treatment case is

eβ̂1 = e−1.51 = 0.221 times that of the baseline hazard function for all time values. Note

that no work has been done here to assess model adequacy, and all these conclusions

have been based on the fact that the proportional hazards model adequately describes

the distribution of the remission time with the single binary covariate.

The R code below uses the coxph function in the survival package to compute β̂1

and a p-value for the appropriate hypothesis test.

library(survival)

x1 = c(1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12,

12, 15, 17, 22, 23)

d1 = rep(1, length(x2))

z1 = rep(0, length(x2))

x2 = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22, 23,

25, 32, 32, 34, 35)

d2 = c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)

z2 = rep(1, length(x1))

x = c(x1, x2)

d = c(d1, d2)

z = c(z1, z2)

ph = coxph(Surv(x, d) ~ z)

summary(ph)

The data set is contained in the gehan data frame in the MASS package, so the Cox

proportional hazards model can also be fitted with the statements

library(survival)

library(MASS)

summary(coxph(Surv(time, cens) ~ treat, data = gehan))

which reverses the roles of the treatment and control groups, resulting in the reversal of

the sign of β̂1.

The last example moves from the single binary covariate case to the case in which there are

q > 1 covariates which can assume discrete and continuous values. The survival analysis appli-

cation comes from sociology, and the analyst is attempting to determine which of the covariates

significantly influences survival.

Example 5.19 The proportional hazards model has been used in diverse applications.

Recidivism considers the probability that an inmate will return to prison in the future

after release. Recidivism can be predicted using survival models. Several factors related

to inmate background that could affect an inmate’s adjustment to society are potential

screening variables. North Carolina collected recidivism data on n = 1540 prisoners in

1978. The lifetime of interest here is the time of release until the time of return to prison.

Obviously, not all inmates will return to prison, so a more complicated split model, for

which some of the lifetimes are assumed to be infinite, may also be used. In addition,
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there is significant right censoring in the data set. The purpose of the study is to assess

the impact of the q = 15 covariates. The covariates z1, z2, . . . , z15 are time served, age,

number of prior convictions, number of rule violations in prison, education, race, gen-

der, alcohol problems, drug problems, marital status, probationary period, participation

in a work release program, type of crime, crime against person, and crime against prop-

erty. Many of these covariates are coded as indicator variables. Table 5.3 presents the

estimates of the regression coefficients and their standard deviations in order of their

significance. The column labeled Covariate gives a short description of the covari-

ate considered. The next two columns give the regression coefficient estimator and an

asymptotic estimate of its standard deviation. The column labeled β̂
/

√

V̂
[

β̂
]

gives a

test statistic for testing H0 : βi = 0 versus H1 : βi 6= 0, for i = 1, 2, . . . , 15. The column

labeled p-value indicates the attained significance of the covariates. A value less than

α = 0.05 indicates that a covariate is a statistically significant indicator of recidivism.

Ten of the fifteen covariates are statistically significant. This example includes indica-

tor variables (such as gender) and can easily be extended to include other regression

modeling tools such as nonlinear and interaction terms in the regression model.

Name Covariate β̂
√

V̂
[

β̂
] β̂

√

V̂
[

β̂
] p-value Significant

z2 AGE −3.3420 0.5195 −6.4328 0.0000 •
z3 PRIORS 0.8355 0.1371 6.0957 0.0000 •
z1 TSERVD 1.1666 0.1957 5.9616 0.0000 •
z6 WHITE −0.4444 0.0876 −5.0701 0.0000 •
z8 ALCHY 0.4285 0.1043 4.1103 0.0000 •
z13 FELON −0.5782 0.1633 −3.5412 0.0002 •
z9 JUNKY 0.2819 0.0970 2.9058 0.0018 •
z7 MALE 0.6745 0.2423 2.7834 0.0027 •
z15 PROPTY 0.3894 0.1578 2.4678 0.0068 •
z4 RULE 3.0788 1.6890 1.8229 0.0342 •
z10 MARRIED −0.1532 0.1077 −1.4227 0.0774

z5 SCHOOL −0.2507 0.1933 −1.2966 0.0974

z12 WORKREL 0.0865 0.0902 0.9587 0.1688

z14 PERSON 0.0737 0.2425 0.3039 0.3806

z11 SUPER −0.0088 0.0966 −0.0914 0.4636

Table 5.3: North Carolina recidivism model.

This chapter has contained a brief introduction to some of the statistical methods that are used

in survival analysis. The key modeling features that indicate the use of survival analysis are (a) a

population lifetime distribution with nonnegative support, (b) appreciable dispersion, (c) possibly

right-censored data values, (d) possibly a vector of covariates which might influence the lifetime

distribution. The exponential, Weibull, and Cox proportional hazards model were fitted to complete

and right-censored data sets in this chapter.
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5.7 Exercises

5.1 Consider a large batch of light bulbs whose lifetimes are known to have exponential(1) life-

times. Gina knows that the population distribution is exponential, but she does not know the

value of the population mean. She estimates the population mean lifetime of the light bulbs

by averaging n observed lifetimes from bulbs chosen at random from the batch. Find the

smallest value of n that assures, with probability of at least 0.95, that the sample mean is

within 0.2 of the population mean

(a) exactly,

(b) approximately, using the central limit theorem.

5.2 Libby is a statistician for a light bulb company. She knows that the lifetimes of the 60-watt

bulbs that her company manufactures are exponentially distributed with population mean

1500 hours. She conducts a life test in which 39 of their 60-watt bulbs are placed on life test

until they fail and the average of the failure times is recorded. Find the probability that the

sample mean exceeds 1600 hours using

(a) the central limit theorem,

(b) the exact distribution of the sample mean.

5.3 Let t1, t2, . . . , tn be a random sample from an exponential(λ) population, where λ is a positive

unknown failure rate parameter. Find an unbiasing constant cn so that cnt(1) is an unbiased

estimator of 1/λ, where t(1) = min{t1, t2, . . . , tn} is the first order statistic. Hint: the unbias-

ing constant cn is a function of the number of items on test n.

5.4 Debbie purchases a laptop computer with a random lifetime T whose probability distribution

is a special case of the log logistic distribution with survivor function

S(t) =
1

1+λt
t > 0,

where λ is a positive unknown scale parameter. From just a single observation of the lifetime

of her laptop computer, find an exact two-sided 90% confidence interval for λ.

5.5 Let t1, t2, . . . , tn be a random sample from an exponential population with mean θ, where θ
is a positive unknown parameter. An exact two-sided 90% confidence interval for θ is

27 < θ < 55.

Carol is not concerned about large values of θ. Only small values of θ are of concern. What

is an exact one-sided 95% confidence interval of the form θ > k, for some constant k?

5.6 If t1, t2, . . . , tn are n mutually independent observations from a log normal distribution with

probability density function

f (t) =
1√

2πσt
e
− 1

2

(

ln t−µ
σ

)2

t ≥ 0

for σ > 0 and −∞ < µ < ∞, find the maximum likelihood estimators of µ and σ and exact

two-sided 100(1−α)% confidence intervals for µ and σ in terms of t1, t2, . . . , tn.
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5.7 Let t1, t2, . . . , t7 be a random sample of the lifetimes of n = 7 items on test drawn from an

exponential population with positive unknown mean θ.

(a) Find an exact two-sided 90% confidence interval for the median by finding a pivotal

quantity based on the sample median t(4).

(b) Give an exact two-sided 90% confidence interval for the median for the n = 7 rat sur-

vival times in the treatment group from Efron and Tibshirani (1993, page 11):

16, 23, 38, 94, 99, 141, 197.

(c) Conduct a Monte Carlo simulation experiment to provide convincing numerical evi-

dence that the exact two-sided 90% confidence interval for the median is indeed an

exact two-sided 90% confidence interval for an exponential population when θ is arbi-

trarily set to 1.

5.8 This chapter has emphasized confidence intervals. Another type of statistical interval is

known as a prediction interval, which contains a future value of an observation with a pre-

scribed probability. Let t1, t2, . . . , tn be a random sample from an exponential population

with a positive unknown mean θ. Conduct a Monte Carlo simulation experiment that pro-

vides convincing numerical evidence that the 100(1−α)% prediction interval for tn+1

t̄

F2n,2,α/2

< tn+1 <
t̄

F2n,2,1−α/2

is an exact prediction interval for the arbitrary parameter settings n = 11, α = 0.05, and

θ = 19.

5.9 Let T1, T2, T3 be mutually independent random variables such that Ti is exponentially dis-

tributed with mean iθ, for i = 1, 2, 3, where θ is a positive unknown parameter.

(a) Find the maximum likelihood estimator θ̂.

(b) Find the probability density function of the maximum likelihood estimator θ̂.

(c) Is θ̂ an unbiased estimator of θ?

(d) Find an exact two-sided 100(1−α)% confidence interval for θ.

(e) Perform a Monte Carlo simulation experiment to evaluate the coverage of the confi-

dence interval for θ = 10 and α = 0.1.

5.10 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =
θ

tθ+1
t ≥ 1,

where θ is a positive unknown parameter.

(a) Find the maximum likelihood estimator of θ.

(b) Use the invariance property to find the maximum likelihood estimator of the median of

the distribution.
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5.11 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =

√

λ

2πt 3
e−λ(t−1)2/(2t) t > 0,

where λ is a positive unknown parameter. This distribution is known as the standard Wald

distribution which is a special case of the inverse Gaussian distribution Find the maximum

likelihood estimator of λ.

5.12 Let T1, T2, . . . , Tn be mutually independent and identically distributed random variables from

a population having probability density function

f (t) = 7e−7(t−θ) t ≥ θ.

Find the limiting distribution of n
(

T(1)−θ
)

. Support this limiting distribution by conducting

a Monte Carlo simulation experiment.

5.13 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =
θ

(1+ t)θ+1
t ≥ 0,

where θ is a positive unknown parameter. Calculate an asymptotically exact two-sided

100(1−α)% confidence interval for θ based on the asymptotic normality of the maximum

likelihood estimator.

5.14 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =

√

1

2πt3
e−(t−θ)2/(2tθ2) t > 0,

where θ is a positive unknown parameter. This population distribution is a special case of

the inverse Gaussian distribution. Calculate an asymptotically exact two-sided 100(1−α)%
confidence interval for θ based on the asymptotic normality of the maximum likelihood

estimator. Hint: the expected value of T is E[T ] = θ.

5.15 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =
θ

(1+θt)2
t ≥ 0,

where θ is a positive unknown parameter. This is a special case of the log logistic distribution.

(a) Find the maximum likelihood estimator of θ. Hint: The maximum likelihood estimator

cannot be expressed in closed form.

(b) Find the maximum likelihood estimate of θ for the n = 7 rat survival times (in days) of

the treatment group from Efron and Tibshirani (1993, page 11):

16, 23, 38, 94, 99, 141, 197.

(c) Find an asymptotically exact two-sided 95% confidence interval for θ based on the

likelihood ratio statistic for the rat survival times from part (b).
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5.16 If n items from an exponential population with failure rate λ are placed on a life test that is

terminated after r failures have occurred, show that

V

[

n

∑
i=1

xi

]

=
r

λ2
,

where xi = min{ti, ci}, ti is the time to failure of the ith item, and ci is the right-censoring

time for the ith item, i = 1, 2, . . . , n.

5.17 If n items from an exponential population with failure rate λ are placed on a life test that is

terminated after r failures have occurred, find the expected time to complete the test if

(a) failed items are not replaced,

(b) failed items are immediately replaced with new items.

5.18 Find the score, maximum likelihood estimator, and Fisher information matrix for a Type II

censored random sample from a population with

f (t) =
θ

tθ+1
t ≥ 1,

where θ is a positive unknown parameter.

5.19 The lifetimes of studio light bulbs, measured in days, is exponentially distributed with an

unknown failure rate λ. James places n studio light bulbs on test at noon on one day and

subsequently checks for failed bulbs at noon on subsequent days until all bulbs have failed.

Let r1, r2, . . . , rk be the number of observed bulb failures, some of which may be zero, on

the k days that the bulbs are inspected. Find the maximum likelihood estimator for λ. Also,

give the maximum likelihood estimate for the data values r1 = 8, r2 = 5, r3 = 2, r5 = 1, and

all other ri values equal zero.

5.20 James’s friend Alexandra decides to simplify matters from the previous question by assum-

ing that all failures that occur during any interval occur at midnight. What is Alexandra’s

maximum likelihood estimator for λ as a function of n and r1, r2, . . . , rk?

5.21 Dre conducts a life test on n items from an exponential population with mean θ. He observes

only the value of a single order statistic t(k), where k is known. So k− 1 lifetimes are left

censored at t(k), one lifetime is observed at t(k), and n− k lifetimes are right censored at t(k).

(a) What is the score statistic for estimating θ?

(b) What is the maximum likelihood estimator for θ when n = 30, k = 11, and t(11) = 15.5?

5.22 Consider a Type II right-censored life test with n items on test and r = 1 failure is observed at

time t(1). Assume that the items placed on the life test have lifetimes that are well described

by a Rayleigh(λ) population.

(a) What is the maximum likelihood estimator for λ?

(b) What is an exact confidence interval for λ?

(c) What is the expected width of the confidence interval from part (b)?

(d) Verify the coverage and expected width of the exact confidence interval for λ = 2,

n = 7, and α = 0.05 via Monte Carlo simulation.
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5.23 A randomly right-censored data set is collected from a population with hazard function

h(t) = θ(1+ t) t ≥ 0,

where θ is a positive parameter.

(a) Find the maximum likelihood estimator θ̂.

(b) Give an expression for the observed information matrix.

(c) Give an asymptotically exact confidence interval for θ based on the observed informa-

tion matrix.

5.24 Candice conducts a life test in which n items are simultaneously placed on test at time 0.

The test is concluded at time c > 0. Assuming that the lifetimes of the items are from

an exponential population with mean θ, find the distribution of the number of failures that

occur by time c.

5.25 Show that when a random sample is drawn an exponential(λ) population with Type II right

censoring
2rλ

λ̂
∼ χ2(2r),

where χ2(2r) is the chi-square distribution with 2r degrees of freedom.

5.26 Consider a Type II right censored sample of n items on test and r observed failures drawn

from an exponential population with mean θ. Show that the maximum likelihood estimate θ̂
is unbiased.

5.27 Assume that a life test without replacement is conducted on n items from an exponential pop-

ulation with failure rate λ. The exact failure times are not known, but the test is terminated

upon the rth ordered failure at time t(r). Find a point estimator for λ.

5.28 Consider a population of items with exponential(λ) lifetimes. A life test with replacement is

terminated when r failures occur or at time c, whichever occurs first. This is a combination

of Type I and Type II right censoring. Find the expected number of items that fail during the

test as a function of λ.

5.29 For a life test of n items with exponential(λ) lifetimes (items are not replaced upon failure)

which is continued until all items fail, show that

E
[

λ̂
]

=
n

n−1
λ,

where λ is the population failure rate and λ̂ is the maximum likelihood estimator for λ. Thus,

an unbiasing constant for λ̂ is un = (n−1)/n. Equivalently,

E

[

n−1

n
λ̂

]

= E
[

unλ̂
]

= λ.

Find an unbiasing constant for the case of Type II right censoring.

5.30 Give a point and 95% interval estimator for the median lifetime of the 6–MP treatment group

assuming that the data have been drawn from an exponential(λ) population.
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5.31 Consider the following Type II right censored data set for the lifetime of a product (n = 5

and r = 3) drawn from an exponential population with failure rate λ:

3.6 3.9 8.5.

(a) Find the maximum likelihood estimator for the mean of the population.

(b) Find the maximum likelihood estimator for S(5).

(c) Find an exact two-sided 80% confidence interval for E
[

T 3
]

.

(d) Find an exact one-sided 95% lower confidence interval for S(5).

(e) Find the p-value for the test H0 : λ = 0.04 versus H1 : λ > 0.04.

(f) Find the value of the log likelihood function at the maximum likelihood estimate.

(g) Find the value of the observed information matrix.

(h) Assume the data values

3.8 4.6 6.0 9.6

constitute a complete data set for a different product. Find an exact two-sided 90%

confidence interval for the ratio of the failure rates of the two products if both are

assumed to come from exponential populations.

5.32 Sara observes a single observed lifetime T from an exponential(λ) population, where λ is a

positive unknown rate parameter. Find an exact two-sided 95% confidence interval for λ.

5.33 Justin places a single item is placed on test (n = 1). The only information that is available

is that the item failed between times a and b, where a < b. In other words, the single item’s

lifetime is interval censored. Assuming that the population time to failure is exponential(λ),

what is the maximum likelihood estimator of λ?

5.34 Natalie conducts a life test with n = 19 items on test and random right censoring. Let

t1, t2, . . . , t19 be the independent exponential(2) times to failure. Let c1, c2, . . . , c19 be the

independent exponential(1) censoring times, which are independent of the times to failure.

Use Monte Carlo simulation to estimate the actual coverage of the following approximate

confidence interval procedures for the population failure rate λ at for α = 0.05.

(a) The confidence interval consisting of all λ satisfying

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r
.

(b) The confidence interval consisting of all λ satisfying

λ̂− zα/2O
(

λ̂
)−1/2

< λ < λ̂+ zα/2O
(

λ̂
)−1/2

.

(c) The confidence interval consisting of all λ satisfying

2[ln L(λ̂)− ln L(λ)]< χ2
1,α.

Replicate the experiment so as to estimate the actual coverages to three digits of accuracy.
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5.35 Sixty-watt light bulb lifetimes are known to be exponentially distributed with unknown pos-

itive population mean θ from previous test results. The company that produces these light

bulbs would like to estimate θ by testing n bulbs to failure at one facility and m bulbs to fail-

ure at a second facility. Let X1, X2, . . . , Xn be the independent lifetimes of the bulbs tested

at the first facility; let Y1, Y2, . . . , Ym be the independent lifetimes of the bulbs tested at the

second facility. An unbiased estimate of θ is the convex combination

θ̂ = pθ̂X +(1− p)θ̂Y ,

where 0 < p < 1, θ̂X = X̄ is the maximum likelihood estimator of θ for the data from the first

facility, and θ̂Y = Ȳ is the maximum likelihood estimator of θ for the data from the second

facility. Find the value of p that minimizes V
[

θ̂
]

.

5.36 Ash would like to test the hypothesis

H0 : λ = 17

versus

H1 : λ > 17

using a single value T from an exponential(λ) population, where λ is a positive unknown

population failure rate. The null hypothesis is rejected if T < 0.01. Find the significance

level α for the test.

5.37 Let T be an observation from an exponential population with positive unknown population

mean θ. This observation is used to test

H0 : θ = 6

versus

H1 : θ = 2.

(a) Find the critical value for the test for a fixed significance level α.

(b) Find β for a fixed significance level α.

5.38 Paul collects a random sample t1, t2, . . . , tn from an exponential population with positive

unknown mean θ. Show that the sample mean, t̄, and n times the first order statistic, nt(1),

are both unbiased estimators of θ.

5.39 Jessica and Mary collect a random sample t1, t2, . . . , tn of light bulb lifetimes drawn from an

exponential(λ) population, where λ is a positive unknown failure rate. The bulbs are stamped

with “1000 hour MTTF,” indicating that the mean time to failure equals 1000 hours. They

would like to determine whether there is statistical evidence in the sample that indicates the

bulbs last longer than 1000 hours.

(a) State the appropriate H0 and H1.

(b) Jessica uses the test statistic t̄ and Mary uses the test statistic nt(1) to test the hypothesis.

Find the critical values for their test statistics when α = 0.05 and n = 10.

(c) Draw the power curves associated with each of the test statistics from part (b) on the

same set of axes using a computer. Again assume that α = 0.05 and n = 10.
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5.40 Camille observes a single lifetime T from an exponential population with a positive unknown

population mean θ. She would like to test

H0 : θ = 1

versus

H1 : θ > 1

at α = 0.07 using T as a test statistic.

(a) Find the critical value c for this test.

(b) Plot the power function for this test.

5.41 Ellen collects a random sample t1, t2, . . . , t10 of light bulb lifetimes from an exponential(λ)

population, where λ is a positive unknown failure rate. Ellen is a reliability engineer. She

is confident from previous test results that the time to failure for these light bulbs is expo-

nentially distributed. She is interested in testing whether a manufacturer’s claim that the

population mean time to failure for the bulbs is 1000 hours. So she would like to test

H0 : λ = 0.001

versus

H1 : λ > 0.001.

She is in a hurry. She places ten bulbs on test and only observes the first bulb fail at t(1) = 14

hours, and would like to draw a conclusion at 14 hours. Give the p-value for the test based

on the value of this single order statistic.

5.42 Liz collects a random sample of lifetimes t1, t2, . . . , tn from an exponential(λ) distribution,

where λ is a positive unknown failure rate parameter. She conducts a significance test of

H0 : λ = 1

versus

H0 : λ 6= 1,

which achieves a p-value of p = 0.07 for a particular data set. If she then computes an

exact two-sided 95% confidence interval for λ for this particular data set, will the confidence

interval contain 1?

5.43 Karen fits the ball bearing data set to the Weibull distribution parameterized as

S(t) = e−(λt)κ
t ≥ 0,

yielding maximum likelihood estimates λ̂ = 0.0122 and κ̂ = 2.10. Ute also wants to fit the

same data set to the Weibull distribution, but she uses the parameterization

S(t) = e−ρtβ
t ≥ 0.

What will be the maximum likelihood estimates ρ̂ and β̂ that Ute obtains for the ball bearing

data set?
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5.44 Jay conducts a life test with n = 5 items on test which is terminated when r = 3 items

have failed. Failed items are not replaced in this traditional Type II right-censored data set.

Assuming that the time to failure of an item in the population has a Weibull(λ, κ) distribution

with known, positive parameters λ and κ, what is the probability density function of the time

to complete the life test?

5.45 Jennie collects a random sample t1, t2, . . . , t7 from a Rayleigh population with probability

density function

f (t) = 2θ−2te−(t/θ)2

t > 0,

where θ is a positive unknown parameter. She would like to test

H0 : θ = 10

versus

H1 : θ > 10

using the test statistic t(1) = min{t1, t2, . . . , t7}, which assumes the value t(1) = 6. Find the

p-value for her test.

5.46 Mildred collects a random sample t1, t2, . . . , tn from a Rayleigh(λ) population with survivor

function

S(t) = e−(λt)2

t > 0,

where λ is a positive unknown parameter.

(a) Find the maximum likelihood estimator of λ.

(b) Show that the log likelihood function is maximized at the maximum likelihood estima-

tor λ̂.

(c) Given that the expected value of T is E[T ] =
√

π/(2λ), find the method of moments

estimator of λ.

5.47 Find the elements of the score vector for the log logistic distribution for a randomly right-

censored data set.

5.48 Bryan places n items on test and observes r failures. Assuming that the failure times of the

items follow the log logistic distribution and censoring is random, set up an expression for

the boundary of a 95% confidence region for the shape parameter κ and scale parameter λ of

the log logistic distribution based on the likelihood ratio statistic. Assume that the survivor

function for the log logistic distribution is

S(t) =
1

1+(λt)κ
t ≥ 0,

for λ > 0 and κ > 0. It is not necessary to solve for the maximum likelihood estimators.

5.49 Consider a proportional hazards model with n = 3 items on test and distinct failure times

t1, t2, t3. Compute the joint probability mass function values for the 3! = 6 possible rank

vectors, and show that they sum to 1.

5.50 Give the equations that must be solved in order to find the maximum likelihood estimators

λ̂, κ̂, and β̂β for a proportional hazards model with log logistic baseline distribution and log

linear link function. A random right-censoring scheme is used.
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5.51 Joyce fits the Cox proportional hazards model with unknown baseline distribution given in

Examples 5.14, 5.15, and 5.16 to the n = 3 light bulb failure times. The purpose of the study

was to determine the effect of wattage on survival for 60-watt and 100-watt light bulbs.

(a) What is the value of the regression coefficient for wattage if it were coded as z = 60

and z = 100 rather than as a binary covariate?

(b) Write a short paragraph indicating whether or not these two approaches are fundamen-

tally equivalent ways of coding the covariate. If they differ, is one method of coding

the covariate superior to the other for the purpose of the study?

5.52 Survival times (in weeks) for two groups of leukemia patients (AG positive and AG neg-

ative blood types), along with an additional covariate, white blood cell count are given in

Feigl, P. and Zelen, M., “Estimation of Exponential Survival Probabilities with Concomitant

Information,” Biometrics, Vol. 21, No. 4, pp. 826–838, 1965, and are displayed below.

AG positive group AG negative group

Survival time White blood count Survival time White blood count

65 2300 56 4400

156 750 65 3000

100 4300 17 4000

134 2600 7 1500

16 6000 16 9000

108 10500 22 5300

121 10000 3 10000

4 17000 4 19000

39 5400 2 27000

143 7000 3 28000

56 9400 8 31000

26 32000 4 26000

22 35000 3 21000

1 100000 30 79000

1 100000 4 100000

5 52000 43 100000

65 100000

(a) Fit the Cox proportional hazards model to the survival times. Code the blood type as

the indicator variable z1, using 1 for AG positive and 0 for AG negative. The second

covariate z2 is the natural logarithm of the white blood cell counts minus the sample

mean of the natural logarithms of the white blood cell counts. Include the interaction

term (z1− z̄1)z2 in the model. Use the Breslow method for handling tied survival times.

(b) Write a sentence interpreting the sign of β̂1, β̂2, and β̂3 in terms of risk to the patient.

(c) Give a 95% confidence interval for β1.

(d) If covariates associated with p-values that are less than 0.10 are considered statistically

significant, what is the fitted hazard function for a leukemia patient with baseline hazard

function h0(t), white blood cell count 9000 who has AG positive blood type? Hint: The

sample mean of the natural logarithms of the white blood cell types is 9.52 and the mean

of the blood types coded as an indicator variable is 17/33 = 0.515.
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5.53 Consider the Cox proportional hazards model with a single (q = 1) binary covariate z1, an

exponential(λ) baseline distribution, and a log linear link function. The baseline distribution

can be absorbed into the link function by creating an artificial covariate z0 = 1 and setting

λ = eβ0z0 .

(a) For a randomly right-censored data set, find the score vector.

(b) For a randomly right-censored data set, find closed-form expressions for the maximum

likelihood estimators β̂0 and β̂1.

(c) For the n = 3 observations given in vector form below, calculate the maximum likeli-

hood estimates β̂0 and β̂1.

x=





80

20

50



 δδ =





1

1

1



 Z =





1

1

0



 .

(d) What is the hazard function of the fitted model for the data from part (c)?

(e) Use the observed information matrix to give approximate two-sided 95% confidence

intervals for β0 and β1 for the data from part (c).

(f) Give the p-values for testing the hypotheses

H0 :βi = 0

H1 :βi 6= 0

for i = 0, 1, for the data from part (c).

5.54 The wattage of the n = 3 light bulbs in Example 5.16 was coded as the covariate z1 = 0 for

a 60-watt bulb and z1 = 1 for a 100-watt bulb. When the Cox proportional hazards model

with an unspecified baseline hazard function was fit to the data set, the point estimate for the

regression parameter was β̂1 = −0.347. Without doing the derivation from scratch, what is

the point estimate for the regression parameter if the wattage (that is, 60 watts or 100 watts)

of the bulb were used as the covariate.

5.55 Mark fits a Cox proportional hazards model with unknown baseline distribution to a data

set of drill bit failure times (measured in number of items drilled) with q = 2, for which the

covariates denote the turning speed (revolutions per minute, rpm) and the hardness of the

material (Brinell hardness number, BHN) being drilled. The turning speeds range from 2400

to 4800 rpm and the hardness of the materials ranges from 250 to 440 BHN. Interactions are

not considered and the variables are not centered. The fitted model has estimated regression

vector β̂β = (0.014, 0.45)′, and the inverse of the observed information matrix is

O−1(β̂β) =

[

0.000081 0.000016

0.000016 0.010000

]

.

Write a paragraph interpreting these results.


