
Chapter 3

Topics in Regression

The previous two chapters have provided a detailed introduction to the basic principles underlying

simple linear regression. This chapter will cover some additional topics in regression, but not with

the same detail as in the previous two chapters. Sometimes just a single example will illustrate

a regression topic that deserves an entire chapter in a full-semester regression course. The topics

considered in this chapter are forcing a regression line through the origin, diagnostics, remedial

procedures, the matrix approach to simple linear regression, multiple linear regression, weighted

least squares estimators, regression models with nonlinear terms, and logistic regression.

3.1 Regression Through the Origin

Applications occasionally arise in which it is of benefit to force a regression line to pass through the

origin. To illustrate such applications, return to Examples 1.1 and 1.3 in which Bob and Cheryl each

had the number of sales per week as an independent variable X . In both of the examples, X = 0

sales per week corresponds to Y = 0 commissions (for Bob) and Y = 0 revenue per week (from

Cheryl’s sales). In these settings it is sensible to force the regression line to pass through the origin;

estimating a population intercept does not make sense. The resulting regression model does not

contain the β0 parameter. The simple linear regression model forced through the origin, sometimes

abbreviated RTO for regression through the origin, is defined next.

Definition 3.1 A simple linear regression model forced through the origin is given by

Y = β1X + ε,

where

• X is the independent variable, assumed to be a fixed value observed without error,

• Y is the dependent variable, which is a continuous random variable,

• β1 is the population slope of the regression line, which is an unknown constant, and

• ε is the error term, a random variable that accounts for the randomness in the relationship

between X and Y , which has population mean zero and finite population variance σ2.
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The regression parameter β1 can be estimated using least squares from the data pairs (Xi, Yi) for

i = 1, 2, . . . , n.

Theorem 3.1 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs satisfying ∑n
i=1 X2

i > 0. The least

squares estimator of β1,

β̂1 =
∑n

i=1 XiYi

∑n
i=1 X2

i

,

minimizes the sum of the squared deviations between Yi and the associated fitted value β̂1Xi in the

simple linear regression model forced through the origin.

Proof The sum of squared deviations between the observed values of the dependent

variable and the associated fitted values is

S =
n

∑
i=1

(Yi −β1Xi)
2.

To minimize S with respect to β1, take the derivative of S with respect to β1:

dS

dβ1
=−2

n

∑
i=1

Xi(Yi −β1Xi) = 0

or
n

∑
i=1

XiYi −β1

n

∑
i=1

X2
i = 0.

This equation can be solved in closed-form for β̂1 as

β̂1 =
∑n

i=1 XiYi

∑n
i=1 X2

i

.

To show that the least squares estimator β̂1 minimizes S, take a second derivative of S:

d2S

dβ2
1

= 2
n

∑
i=1

X2
i .

Since ∑n
i=1 X2

i > 0, this second derivative, which is just twice a sum of squares, must

be positive. Hence, S is minimized at β̂1. �

The next example conducts a hypothesis test to determine whether it is appropriate to drop the

intercept term from the simple linear regression model based on the data pairs, and then proceeds to

fit the reduced model.

Example 3.1 The R built-in data set Formaldehyde consists of the n = 6 data pairs

given in Table 3.1. The independent variable carb is the carbohydrate level (ml) and

the dependent variable optden is the optical density in a chemical experiment. Fit a

simple linear regression to the model using the ordinary least squares estimates. If there

is no statistically significant difference between the estimated intercept and zero, then

fit a simple linear regression model forcing the regression line to pass through the origin

to the data pairs.
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carb optden

0.1 0.086

0.3 0.269

0.5 0.446

0.6 0.538

0.7 0.626

0.9 0.782

Table 3.1: Formaldehyde data set from R.

The scatterplot given in Figure 3.1 shows a strong linear relationship between carbohy-

drates (measured in ml) and optical density (measured by the reading of the resulting

purple color on a spectrophotometer) for the n = 6 data pairs. The nearly-perfect lin-

ear relationship provides overwhelming visual evidence that a simple linear regression

model is appropriate for approximating the relationship between X and Y .

The R commands below fit the standard simple linear regression model (including an

intercept) to the six data pairs.

fit = lm(optden ~ carb, data = Formaldehyde)
summary(fit)

The point estimates for the intercept and slope of the regression line are

β̂0 = 0.00509 and β̂1 = 0.876.

The call to summary(fit) indicates that there is no statistically significant difference

between the point estimate for the intercept and 0. The p-value associated with the

hypothesis test

H0 : β0 = 0
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Figure 3.1: A scatterplot of the Formaldehyde data pairs.
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versus

H0 : β0 6= 0

is 0.55, which is statistical evidence that the intercept does not differ significantly from

β0 = 0. This p-value, perhaps along with some information about the chemical experi-

ment itself, might cause the experimenter to consider the reduced model which is forced

through the origin. This hypothesis test requires normally distributed error terms. The

usual analysis of residuals to determine whether a simple linear regression model with

normal error terms is appropriate in this setting will be abandoned here because of the

small sample size. Histograms and statistical tests have diminished meaning with only

n = 6 data pairs. The best we can do to assess the normality of the error terms is to use

a graphical display such as a QQ plot.

Using Theorem 3.1, the least squares estimate for the slope of the regression line forced

through the origin is

β̂1 =
∑n

i=1 XiYi

∑n
i=1 X2

i

= 0.884,

which can be calculated with the R statements given below.

x = Formaldehyde$carb
y = Formaldehyde$optden
beta = sum(x * y) / sum(x * x)
print(beta)

Not surprisingly, the slope of the regression line forced through the origin is very close

to the slope of the regression line with the model that includes an intercept. The optical

density increases by 0.884 for every unit increase in the carbohydrates. Figure 3.2

contains a scatterplot of the data pairs and the associated regression line forced through

the origin. The model clearly provides an adequate approximation to the relationship

between the independent variable X and the dependent variable Y over the scope of the

model shown in Figure 3.2.
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Figure 3.2: A scatterplot of the Formaldehyde data pairs with the fitted regression line.
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These calculations can be performed in R by adding -1 or +0 to the formula argument

in the lm function, which forces the regression line to pass through the origin.

fit2 = lm(optden ~ carb - 1, data = Formaldehyde)
fit2$coefficients

These R statements calculate the estimated slope of the regression line as β̂1 = 0.884.

Analogous theorems to those that were applied to simple linear regression with a pop-

ulation intercept parameter β0 and a population slope parameter β1 from Chapter 1 can

also be derived associated with the simple linear regression model forced through the

origin. In addition, the assumption of normal error terms from Chapter 2 can be added

to the simple linear regression model forced through the origin, which allows for sta-

tistical inference (that is, constructing confidence intervals and performing hypothesis

tests) concerning the population slope of the regression line β1. For example, the addi-

tional R command

confint(fit2)

gives a very narrow 95% confidence interval for β1 as

0.869 < β1 < 0.899.

The narrowness of the confidence interval is a reflection of how close the points fall to

the regression line in Figure 3.2.

The next example revisits the regression modeling of the stopping distance as a function of the

speed of a car in the built-in cars data frame.

Example 3.2 Recall from Example 2.8 that X , the speed of a car in miles per hour, was

used as an independent variable, and Y , the stopping distance in feet, was used as a de-

pendent variable in a simple linear regression model. There are n = 50 data pairs in the

cars data frame that is built into R. One critique of the simple linear regression model

that was constructed for the data pairs in the built-in cars data frame from Example 2.8

was that the regression function did not pass through the origin (stationary cars require

no stopping distance). Write R code to estimate the slope of the regression line through

the origin and comment on the acceptability of this model.

The physics of the experiment indicates that stationary cars require no distance to stop,

so forcing a regression line through the origin is appropriate in this setting. The R code

below estimates the slope of the regression line that is forced to pass through the origin.

x = cars$speed
y = cars$dist
fit = lm(y ~ x - 1)

Figure 3.3 is a scatterplot of the data pairs (not jittered for ties) with the regression line

superimposed. A car requires an additional distance of β̂1 = 2.91 feet to stop for every

additional mile per hour in speed.

The additional R statements
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Figure 3.3: Fitted model Y = β̂1X of speed X and stopping distance Y for the cars data.

table(sign(fit$residuals))
sum(fit$residuals ^ 2)

reveal that 32 data pairs fall below the regression line and only 18 data pairs fall above

the regression line. A plot of the standardized residuals can be generated with the R

statements

res = lm(dist ~ speed - 1, data = cars)$residuals
plot(cars$speed, res / sqrt(sum(res ^ 2) / (length(cars$speed) - 2)))

and is given in Figure 3.4. The sum of squares increases from SSE = 11,354 as cal-

culated in Example 2.8 for the full simple linear regression model to SSE = 12,954 by
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Figure 3.4: Standardized residuals for the cars data.
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forcing the regression line through the origin. It is universally the case that SSE stays

the same or increases by forcing the regression line to pass through the origin. Using

the model as a subscript, this can be written symbolically as

SSEY=β0+β1X+ε ≤ SSEY=β1X+ε.

The nonsymmetry of the residuals in Figure 3.4 suggests that the fitted linear regression

function might not be adequate. Perhaps a regression model with higher-order terms or

a nonlinear model is worth investigating.

This ends the discussion of forcing the regression line through the origin. Occasions arise in

regression modeling in which it is more appropriate to fit a statistical model with fewer parameters.

Some of the results from the full simple linear regression model generalize to simple linear regres-

sion forced through the origin. The point estimate for β1, for example, is unbiased. Three examples

of results that do not generalize are (a) the residuals do not necessarily sum to zero, (b) the re-

gression line does not necessarily pass through the point
(

X̄ , Ȳ
)

, and (c) it is possible that SSE can

exceed the total sum of squares SST , which can result in a negative value of R2.

3.2 Diagnostics

Diagnostic procedures are applied to fitted regression models to assess their conformity to the as-

sumptions (for example, constant variance of the error terms) implicit in the simple linear regression

model. We have already considered one such diagnostic procedure from the previous chapter, which

is the examination of the residuals to assess their independence, constant variance, and normality.

Two other diagnostic procedures will be examined here, which are the identification of data pairs

known as leverage points and the identification of data pairs known as influential points. The subse-

quent section considers remedial procedures, which can be applied to a regression model that fails

to satisfy one or more of the assumptions implicit in a regression model.

3.2.1 Leverage

Data pairs that have the ability to exert more influence on the regression line than other data pairs

due to their independent variable values are known as leverage points. These data pairs should be

given more scrutiny than the others because of the potential tug that they have on the regression line.

More specifically, when the value of the independent variable is unusually far from X̄ (either low or

high), the data pair has the potential to exert more pull on the regression line than other points.

We begin developing the notion of leverage by expressing the predicted value of Yi, denoted by

Ŷi, as a function of Yi. Using Theorems 1.1 and 1.3, the predicted value of Yi is

Ŷi = β̂0 + β̂1Xi

= Ȳ − β̂1X̄ + β̂1Xi

= Ȳ + β̂1 (Xi − X̄)

=
1

n

n

∑
j=1

Yj +
n

∑
j=1

a jYj (Xi − X̄)

=
1

n

n

∑
j=1

Yj +
n

∑
j=1

X j − X̄

SXX

Yj (Xi − X̄)
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=
n

∑
j=1

[

1

n
+

(Xi − X̄)(X j − X̄)

SXX

]

Yj

=
n

∑
j=1

hi jYj

for i = 1, 2, . . . , n. The hi j values form the elements of an n× n matrix H, which is often referred

to as the hat matrix or the projection matrix. The reason that this matrix is known as the projection

matrix is that it provides a linear transformation from the observed values of the dependent variable

to the associated fitted values. The diagonal elements of the hat matrix are known as the leverages

of the data pairs, which are defined next.

Definition 3.2 The leverage of data pair (Xi, Yi) in a simple linear regression model is

hii =
1

n
+

(Xi − X̄)
2

SXX

for i = 1, 2, . . . , n.

The leverage is a measure of a data pair’s potential to influence the regression line. Notice that

the leverage is a function of the values of the independent variable X1, X2, . . . , Xn only; the heights

of the data pairs do not play a role. Since the two denominators in the expression from Definition 3.2

are constants for a particular data set, only the numerator (Xi − X̄)
2

changes for each value of Xi.

It reflects the distance between a particular Xi value and its associated sample mean. The leverage

increases as the distance between Xi and X̄ increases. There are several results concerning the

leverages; one that concerns the average of the leverages is presented next.

Theorem 3.2 For data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) in a simple linear regression model,

the sample mean of the leverages is 2/n.

Proof The sample mean of the leverages is

h11 +h22 + · · ·+hnn

n
=

1

n

[

1

n
+

(X1 − X̄)
2

SXX

+
1

n
+

(X2 − X̄)
2

SXX

+ · · ·+ 1

n
+

(Xn − X̄)
2

SXX

]

=
1

n

[

1+
(X1 − X̄)

2
+(X2 − X̄)

2
+ · · ·+(Xn − X̄)

2

SXX

]

=
1

n

[

1+
SXX

SXX

]

=
2

n
. �

To summarize what we know about the n leverages,

• the leverages are the diagonal elements of the hat matrix H,

• all leverages are positive, with a minimum of 1/n (for Xi = X̄) and a maximum of 1, and

• the sum of the leverages is 2, so the average of the leverages is 2/n.
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If all of the leverages are equal (this is always the case, for example, for n = 2 data pairs), then each

leverage is 2/n, which is the average from Theorem 3.2. We would like to establish a threshold at

which a data pair has the ability to exert a significant influence over the regression line so that such

points might be examined with additional scrutiny. Such data pairs are known as leverage points.

Although not used universally, a common way to identify a leverage point is if the leverage hii is

more than twice the average of the leverages. Symbolically, a point is designated a leverage point if

hii >
4

n
.

This threshold will be illustrated in the next example.

Example 3.3 To illustrate the identification of leverage points, we consider the first

data set in Anscombe’s quartet. For notational convenience, the n = 11 data pairs have

been ordered by their independent variable values in Table 3.2. We will investigate the

leverages associated with this data set and two other data sets with an extra data pair

appended.

Xi Yi

4.0 4.26

5.0 5.68

6.0 7.24

7.0 4.82

8.0 6.95

9.0 8.81

10.0 8.04

11.0 8.33

12.0 10.84

13.0 7.58

14.0 9.96

Table 3.2: Data set I (sorted by Xi) in Anscombe’s quartet.

The R code below calculates the n= 11 leverages using the formula from Definition 3.2.

x = 4:14
xbar = mean(x)
sxx = sum((x - xbar) ^ 2)
n = length(x)
leverages = 1 / n + (x - xbar) ^ 2 / sxx

Notice that the values of Y1, Y2, . . . , Y11 are not needed to compute the leverages. The

leverages are displayed in Table 3.3. Not surprisingly, the leverages are symmetric about

X̄ = 9 because the values of the independent variable are equally spaced. The leverage

for X6 = 9 is just 1/n = 1/11 ∼= 0.09, which is the first term in hii in Definition 3.2.

None of the leverages exceeds the threshold value 4/n = 4/11 ∼= 0.36, so this data set

does not contain any leverage points.

Calculating leverages is so common in regression analysis that R has two built-in func-

tions that calculate leverages. The hat function calculates the leverages for Anscombe’s

first data set with the single statement
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i 1 2 3 4 5 6 7 8 9 10 11

Xi 4 5 6 7 8 9 10 11 12 13 14

hii 0.32 0.24 0.17 0.13 0.10 0.09 0.10 0.13 0.17 0.24 0.32

Table 3.3: Leverages for data set I in Anscombe’s quartet.

hat(4:14)

Alternatively, the hatvalues function with the fitted model as an argument can be used

to calculate the leverages.

x = 4:14
y = c(4.26, 5.68, 7.24, 4.82, 6.95, 8.81, 8.04, 8.33, 10.84, 7.58, 9.96)
fit = lm(y ~ x)
hatvalues(fit)

The top graph in Figure 3.5 is a scatterplot of the data pairs and the associated regres-

sion line. From a cursory visual assessment, using a simple linear regression model to

describe the relationship between X and Y seems reasonable for these data pairs. The

leverages for the first three data pairs are identified on the graph. All three graphs in

Figure 3.5 have the same horizontal and vertical scales for easier comparison.

The middle graph in Figure 3.5 includes all of the data values from the Anscombe’s

first data set, but adds the additional data pair (19, 12.5), which was gleaned from

Anscombe’s fourth data set. The leverages are given in Table 3.4, with the lever-

age for the data pair (19, 12.5) set in boldface because it has a leverage that exceeds

4/n = 4/12 ∼= 0.33. This data pair is a leverage point that warrants particular scrutiny.

Although the data pair has the ability to exert unusual effect on the regression line, it is

clear that the data point does not alter the regression line from where it was in the top

graph. So although the new data pair is a leverage point (and is therefore circled in the

middle graph), it does not contradict the existing trend from the other 11 points. In this

sense, the leverage point provides some (scant) evidence that the scope of the model

can be extended from 4 ≤ X ≤ 14 to 4 ≤ X ≤ 19.

The bottom graph in Figure 3.5 includes all of the data values from the Anscombe’s first

data set, but adds the additional data pair (19, 4). Since the values of the independent

variable have not changed, the leverages match those from Table 3.4. The leverage

point (19, 4) is circled on the graph. This leverage point exerts a significant downward

tug on the right side of the regression line relative to the pattern established by the first

11 data pairs. A simple linear regression model is not appropriate in this case. There

are several potential explanations for the deleterious effects of this leverage point.

i 1 2 3 4 5 6 7 8 9 10 11 12

Xi 4 5 6 7 8 9 10 11 12 13 14 19

hii 0.25 0.20 0.16 0.12 0.10 0.09 0.08 0.09 0.11 0.13 0.17 0.50

Table 3.4: Leverages for data set I in Anscombe’s quartet with appended X12 = 19.
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Figure 3.5: Fitted regression models and leverage points.
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• The leverage point might have been incorrectly recorded.

• The leverage point might be fundamentally different than the others and does not

belong in the data set.

• The leverage point might indicate that a nonlinear regression model is appropriate.

• The leverage point might signal that the scope of the model should be restricted to

4 ≤ X ≤ 14, where a simple linear regression appears to be appropriate.

• The leverage point is legitimate and not fundamentally different than the others.

It might just happen to be an extreme value. The linear model still might be

appropriate, but more data pairs need to be collected to show that this is the case.

The previous example has indicated a fitted simple linear regression model is likely to pass close

to a leverage point. Leverage points exert more tug on the regression line than those points whose

independent variable value is closer to X̄ . The next illustration of identifying leverage points revisits

the heights of couples from Example 2.7.

Example 3.4 Identify the leverage points for the n = 96 pairs of couples heights from

Example 2.7.

The following R statements load the PBImisc package, set x to the heights of the wives,

set y to the associated heights of the husbands, calculate the leverages using the hat
function, store the indexes of those points whose leverage exceeds 4/n in the vector i,
plot the data pairs using the plot function, plot the regression line using the abline
function, and circle the leverage points using the symbols function.

library(PBImisc)
x = heights$Wife
y = heights$Husband
n = length(x)
leverages = hat(x)
i = leverages > 4 / n
m = sum(i)
fit = lm(y ~ x)
plot(x, y, pch = 16)
abline(fit$coefficients)
symbols(x[i], y[i], circles = rep(0.7, m), inches = FALSE, add = TRUE)

The resulting graph is displayed in Figure 3.6. There are a total of ten leverage points—

seven on the left end of the scope of the model and three on the right end of the scope

of the model. Examining each of the ten leverage points carefully, nine of the ten

do not seem out of step with the rest of the data values. The leverage point (147, 178),
however, which corresponds to an unusually short wife marrying and fairly tall husband,

is clearly a point that exerts a significant upward tug on the left side of the regression

line. Assuming that the X and Y values were recorded correctly, there is no reason

to remove this point from the data set. The impact of this point on the slope of the

regression line is minimized by the large sample size.

Identifying leverage points is helpful for knowing which points to more carefully scrutinize. It is

not appropriate to simply delete a leverage point because it falls far from the regression line. Lever-

age points can be helpful in highlighting an aspect of the model that was not originally considered
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Figure 3.6: Fitted regression model and leverage points for the n = 96 data pairs.

relevant. The next subsection considers how to determine if a leverage point (or any other point)

does produce a significant impact on β̂0 and β̂1.

3.2.2 Influential Points

Leverage points have the potential to produce large changes in the values of β̂0 and β̂1 when they are

deleted. How can we determine whether a leverage point (or any other point) does have significant

impact on the regression line? American statistician R. Dennis Cook suggested a quantity that

measures the influence of each data pair on the regression line.

Definition 3.3 For a simple linear regression model, Cook’s distances D1, D2, . . . , Dn associated

with the n data pairs have the following three equivalent definitions.

• Di =
∑n

j=1(Ŷj − Ŷj(i))
2

2 ·MSE
,

• Di =
n(β̂0(i)− β̂0)

2
+2(β̂0(i)− β̂0)(β̂1(i)− β̂1)∑n

i=1 Xi +(β̂1(i)− β̂1)
2

∑n
i=1 X2

i

2 ·MSE
,

• Di =
e2

i hii

2 ·MSE (1−hii)
2
,

where MSE is the mean square error (see Theorem 1.8), Ŷj(i) is the fitted value of data pair j with

data pair i removed, β0(i) is the estimated intercept of the regression line for the simple linear

regression model with data pair i removed, β1(i) is the estimated slope of the regression line for the

simple linear regression model with data pair i removed, and hii is the leverage of data pair i (see

Definition 3.2), for i = 1, 2, . . . , n.

The equivalence between the three very diverse formulas in Definition 3.3 is left as an exercise.

The data pairs must not be collinear because MSE appears in the denominator of each formula. Each
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of the three formulas is helpful in developing intuition about Cook’s distance, so each is illustrated

in the following three examples.

Example 3.5 Use the first formula from Definition 3.3 to calculate the Cook’s distances

for the n = 11 data pairs in the Anscombe’s first data set (sorted by the values of the

independent variable), appended with the point (X12, Y12) = (19, 4). This was the last

data set encountered in Example 3.3.

The bottom graph in Figure 3.5 shows that the first 11 data pairs are consistent with an

underlying linear model, but the 12th data pair is not consistent with this model. The

first formula from Definition 3.3 is

Di =
∑n

j=1(Ŷj − Ŷj(i))
2

2 ·MSE

for i = 1, 2, . . . , n. Since the term Ŷ j − Ŷj(i) is a measure of the effect of dropping data

pair i from the data set on the fitted value, larger values for Di indicate that data pair

i is more influential. Squaring Ŷ j − Ŷj(i) assures that the direction of the fitted value

when data pair i is dropped makes a positive contribution to Di. The R code below

loops through the data points, excluding the data pairs one-by-one. Hence there will

in general be a total of n+ 1 simple linear regression models fitted when using the

first formula for computing Cook’s distance—one regression model for all data pairs

included and n other regression models for dropping each data pair once.

x = c(4:14, 19)
y = c(4.26, 5.68, 7.24, 4.82, 6.95, 8.81, 8.04, 8.33, 10.84,

7.58, 9.96, 4)
n = length(x)
fit = lm(y ~ x)
mse = sum(fit$residuals ^ 2) / (n - 2)
fitted = fit$fitted.values
cooks = numeric(n)
for (i in 1:n) {
fit.exclude = lm(y[-i] ~ x[-i])
beta0 = fit.exclude$coefficients[1]
beta1 = fit.exclude$coefficients[2]
fitted.exclude = beta0 + beta1 * x
cooks[i] = sum((fitted - fitted.exclude) ^ 2) / (2 * mse)

}
print(cooks)

Several of the Cook’s distances are given in Table 3.5. Consistent with the bottom

graph in Figure 3.5, the 12th Cook’s distance D12 = 3.621 is substantially larger than

i 1 2 3 4 · · · 11 12

Di 0.236 0.029 0.005 0.069 · · · 0.128 3.621

Table 3.5: Cook’s distances for Anscombe’s data set I with (X12, Y12) = (19, 4) appended.
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the second-largest Cook’s distance D1 = 0.236. So the 12th data pair, (X12, Y12), is the

most influential point. The first data pair, (X1, Y1), is the second most influential point.

Notice that these are the two points with the highest leverage (see Table 3.4).

To show some of the geometry associated with the calculation of D1, D2, . . . , Dn , Fig-

ure 3.7 shows the regression line

Y = β̂0 + β̂1X = 6.09+0.114X

fitted to all n = 12 data pairs, which are indicated by solid points (•). This regression

line corresponds to the fitted value at X12 = 19 of

Ŷ12 = 6.09+(0.114)(19) = 8.25.

The other regression line,

Y = β̂0(12)+ β̂1(12)X = 3.00+0.500X ,

is the regression that excludes the influential 12th data pair (X12, Y12) = (19, 4). This

regression line corresponds to the fitted value at X12 = 19 of

Ŷ12(12) = 3.00+(0.500)(19) = 12.50.

The two fitted values are indicated by open points (◦). So when calculating D12 using

the first formula in Definition 3.3, one of the terms in the numerator is
(

Ŷ12 − Ŷ12(12)

)2
= (8.25−12.50)2 = (−4.25)2 = 18.07,

which makes a huge contribution to the numerator of D12.

4 19

3

13

Y = β̂0+ β̂1X

Y = β̂ 0(1
2)
+ β̂ 1(1

2)
X

Ŷ12

Ŷ12(12)

X

Y

Figure 3.7: Calculating Cook’s distances using fitted values.

The previous example has indicated that Cook’s distance is a measure of the influence of each

data pair based on the effect of removing each data pair sequentially, and measuring the associated

impact on the fitted values. If the fitted values are not substantially altered by removing data pair i,

then Di will be small; if the fitted values are substantially altered by removing data pair i, then Di

will be large. This, however, does not explain why the denominator 2 ·MSE is in all four formulas

in Definition 3.3. That will be addressed in the next example.
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Example 3.6 Use the second formula from Definition 3.3 to calculate the Cook’s dis-

tances for the n = 11 data pairs in the Anscombe’s first data set (sorted by the values of

the independent variable), appended with the point (X12, Y12) = (19, 4).

The second formula for computing Cook’s distance for data pair i from Definition 3.3

is

Di =
n(β̂0(i)− β̂0)

2
+2(β̂0(i)− β̂0)(β̂1(i)− β̂1)∑n

i=1 Xi +(β̂1(i)− β̂1)
2

∑n
i=1 X2

i

2 ·MSE

for i = 1, 2, . . . , n. This formula emphasizes the change in the regression coefficients

when data pair i is dropped. Figure 3.8 shows (a) the estimators
(

β̂0, β̂1

)

for all n = 12

data pairs as a +, (b) the associated confidence regions for β0 and β1 at levels 0.25, 0.5,

and 0.75, and (c) twelve points indicated by solid circles (•) giving the values of the

slope and intercept when data pair i is dropped, for i = 1, 2, . . . , n. Not surprisingly, the

estimated slope and intercept when the 12th data point, (X12, Y12) = (19, 4), is dropped,

strays the furthest from
(

β̂0, β̂1

)

. The other 11 estimated slope and intercept pairs all

fall within the 0.25 confidence region.

The connection with the confidence region for β0 and β1 in this case illuminates why

the 2 ·MSE appears in the denominator of all of the formulas for Di in Definition 3.3.

Compare the right-hand side of the second formula in Definition 3.3 with the expression

in Theorem 2.16. They are identical except that β0 is replaced by β0(i) and β1 is replaced

by β1(i). So under the assumption that the data pairs are drawn from a simple linear

regression model, one would expect that Di is approximately F(2, n−2). Some suggest

using the median of a F(2, n−2) distribution as a threshold for classifying a data pair

as an influential point. Another approach is to observe that the population mean and

variance of an F(2, n−2) random variable are

E[Di] =
n−2

n−4
(for n > 4) and V [Di] =

(n−2)3

(n−4)2(n−6)
(for n > 6).

3 4 5 6 7 8 9

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

0.5

β0

β1

D1 = 0.24

D12 = 3.62

(

β̂0(1), β̂1(1)

)

= (7.22, 0.03)

(

β̂0(12), β̂1(12)

)

= (3.00, 0.50)

(

β̂0, β̂1

)

= (6.09, 0.11)

Figure 3.8: Calculating Cook’s distances using the parameter estimates.
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So in the limit as the number of data pairs increases,

lim
n→∞

E[Di] = 1 and lim
n→∞

V [Di] = 1.

It is for this reason that a threshold of 1 is used as a simple threshold for classifying a

data point as influential based on Cook’s distance. Regardless of whether the median

of an F(2,10) random variable (which is 0.743) or 1 is used as a threshold, the first 11

points are not deemed to be influential points, and the 12th point, (19, 4), is deemed to

be an influential point.

One weakness associated with the first two formulas for computing the Cook’s distances in

Definition 3.3 involves computation time. There are n+1 regression lines to estimate (one for all of

the data pairs and then another n associated with dropping each of the data pairs). For large values

of n, this can require significant computation time. The third formula is much faster, as illustrated

next.

Example 3.7 Use the third formula from Definition 3.3 to calculate the Cook’s dis-

tances for the n = 96 data pairs in the data set of heights of wives and husbands from

Example 2.7.

The third formula for computing Cook’s distance for data pair i from Definition 3.3 is

Di =
e2

i hii

2 ·MSE (1−hii)
2

for i = 1, 2, . . . , n. The advantage to using this formula over the other two formulas is

that it only requires one regression line to be calculated, rather than n+ 1 regression

lines in the other two formulas. This is a substantial time savings for large values of n.

The R code below calculates Cook’s distances for the heights data.

library(PBImisc)
x = heights$Wife
y = heights$Husband
n = length(x)
fit = lm(y ~ x)
mse = sum(fit$residuals ^ 2) / (n - 2)
lev = hat(x)
cooks = fit$residuals ^ 2 * lev / (2 * mse * (1 - lev) ^ 2)
plot(cooks)

The n = 96 Cook’s distances are plotted in Figure 3.9. The 12th data pair, which is

(X12, Y12) = (147, 178), has a spectacular Cook’s distance of D12 = 0.192. Since this

does not exceed the first threshold (which is the median of an F random variable with

2 and 94 degrees of freedom: 0.698) or the second threshold (which is 1 using the

asymptotic result), we conclude that there are no influential points. Cook’s distances

are calculated so frequently in regression analysis that R includes a function named

cooks.distance that calculates the Cook’s distances, as illustrated below.

library(PBImisc)
x = heights$Wife
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Figure 3.9: Cook’s distances for the heights data.

y = heights$Husband
fit = lm(y ~ x)
cooks.distance(fit)

Cook’s distances are effective for identifying influential points. Once an influential point in a

simple linear regression model has been identified, there are several possible next steps.

• The influential point might have been recorded or coded improperly; a typographical error has

occurred. In most situations, this is easily remedied.

• The influential point has some unusual characteristic that is not present with the other data

points that might account for it being deemed influential. Depending on the setting, the influ-

ential point can be removed and the regression model can be refitted without the influential

point.

• The influential point might provide some evidence that an alternative regression model is

appropriate. This might be a nonlinear regression model or a linear regression model with

additional independent variables.

• The influential point might be at one of the extremes of the scope of the model. This might

indicate that the scope of the model is too wide; narrowing the scope should be considered. It

is often the case that a simple linear regression model is valid only over a rather limited scope.

This might result in eliminating all data points outside of the narrowed scope and refitting the

simple linear regression model.

• The high-leverage point is indeed within the scope of the model and was recorded correctly,

but its extreme influence on the regression line is resulting in poor diagnostic measures. One

approach here is to collect more data values, particularly at the extreme values of the inde-

pendent variable within the scope of the model in order to mitigate the effect of the influential

point.
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3.3 Remedial Procedures

The diagnostic procedures presented in the previous section are designed to identify assumptions

associated with the simple linear regression model that are not satisfied for a particular set of n data

pairs. But these diagnostic procedures do not suggest remedies when model assumptions are not

satisfied. This section considers remedial procedures.

Reasons that simple linear regression model with normal error terms can fail to satisfy the as-

sumptions given in Definition 2.1 include

• the regression function is not linear,

• the regression model has not included an important independent variable,

• the error terms have a variance that varies with X ,

• the error terms are not independent,

• the error terms are not normally distributed,

• the scope of the regression model is too wide,

• the scope of the regression model is too narrow, and

• an influential point has an unusually strong effect on the regression line.

Two common approaches to handling a regression model which violates one or more of the

assumptions are (a) formulate and fit a regression model with nonlinear terms, and (b) transform

the X-values or the Y -values (or both) in a fashion so that the simple linear regression assumptions

are satisfied. Regression models with nonlinear terms will be considered in a subsequent section in

this chapter; transformations will be considered here. Transformations will be illustrated in a single

(long) example.

Example 3.8 A simple linear regression model with normal error terms for the speed

of a car X (in miles per hour) versus the stopping distance Y (in feet) for the built-in R

cars data set was abandoned in Example 2.8 for several reasons. A scatterplot (without

jittering) with the associated regression line is displayed in Figure 3.10. The purpose of

this example is to see whether a transformation can overcome the problems associated

with

• the relationship between X and Y appears to be slightly nonlinear,

• the variance of the error terms appears to be increasing in X , and

• the residuals do not appear to be normally distributed.

Rather than providing a complete inventory of all possible patterns and associated po-

tential helpful transformations, four transformations will be illustrated here. This trial-

and-error approach is not what is typically relied on in practice. There are some patterns

associated with data pairs that tend to give clues as to which transformations will be ef-

fective.

The first transformation is X ′ = X2. The R code below implements the transformation,

generates a scatterplot of the transformed data pairs, and plots the associated regression

line.
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Figure 3.10: Scatterplot and regression line of speed X and stopping distance Y .

x = cars$speed ^ 2
y = cars$dist
plot(x, y)
abline(lm(y ~ x)$coefficients)

This scatterplot appears in the upper-left graph in Figure 3.11. Tick mark labels have

been suppressed on these graphs because the interest is in gazing at the data pairs in

order to determine whether the transformed data pairs conform to the simple linear re-

gression model with normal error terms. For the transformation X ′ = X2, little progress

is made on the constant variance issue. The first 19 data pairs, which are associated with

speeds from 4 to 13 miles per hour, seem to have a smaller variance in their stopping

distances than the faster speeds. This transformation is deemed ineffective.

The second transformation is Y ′ = ln Y . The R code below implements the transfor-

mation, generates a scatterplot of the transformed data pairs, and plots the associated

regression line.

x = cars$speed
y = log(cars$dist)
plot(x, y)
abline(lm(y ~ x)$coefficients)

This scatterplot appears in the upper-right graph in Figure 3.11. The transformation

Y ′ = ln Y also results in a nonconstant variance in the error terms; this time the variance

in the stopping distances is greater for the slower speeds. So this transformation is also

abandoned for lack of constant variance of the error terms.

The third transformation is Y ′ =
√

Y . The R code below implements the transformation,

generates a scatterplot of the transformed data pairs, and plots the associated regression

line.

x = cars$speed
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Figure 3.11: Scatterplots and estimated regression lines for transformed cars data.

y = sqrt(cars$dist)
plot(x, y)
abline(lm(y ~ x)$coefficients)

This scatterplot appears in the lower-left graph in Figure 3.11. The transformation

Y ′ =
√

Y is the first to show some promise for the use of the simple linear regression

model with normal error terms. The variance of the error terms appears to be constant

over the scope of the model. There is nothing magical, however, about the 1/2 power in

the transformation Y ′ =
√

Y =Y 1/2. Might the cube root be a superior transformation to

the square root? This prompts a fourth transformation, which is Y ′ = Y λ, and is known

as the Box–Cox transformation, named after British statisticians George Box and David

Cox. They suggested a similar transformation in 1964, which is

Y ′ =
Y λ −1

λ
,

and the fitting of the λ parameter by maximum likelihood estimation can be performed

by the boxcox function in the MASS package in R.

So the fourth transformation is Y ′ = (Y λ −1)/λ. The R code below calculates the max-

imum likelihood estimator of λ, implements the transformation, generates a scatterplot

of the transformed data pairs, and plots the associated regression line. The boxcox
function generates the log likelihood function for estimating λ, and the which.max
function extracts the maximum likelihood estimator.
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library(MASS)
x = cars$speed
y = cars$dist
bc = boxcox(y ~ x, plotit = FALSE, lambda = seq(0, 1, by = 0.01))
lambda = bc$x[which.max(bc$y)]
y = (y ^ lambda - 1) / lambda
plot(x, y)
abline(lm(y ~ x)$coefficients)

The log likelihood function and an associated 95% confidence interval for λ is generated

by setting the plotit argument to FALSE in the call to boxcox. This confidence interval

includes λ = 1/2. The maximum likelihood estimator λ̂ = 0.43 falls between a square

root and cube root transformation. This scatterplot appears in the lower-right graph in

Figure 3.11, and is very similar to the square root transformation; either would work

fine for this data set. Since the last two scatterplots and associated regression lines are

nearly identical, we move forward with the transformation Y ′ =
√

Y . So the tentative

fitted model is

E
[
√

Y
]

= 1.28+0.322X

where the regression coefficients β′
0 = 1.28 and β′

1 = 0.322 are calculated with the R

statement

lm(sqrt(cars$dist) ~ cars$speed)$coefficients

The next step is to assess the aptness of the model by examining the residuals. The

four graphs (read row-wise) in Figure 3.12 are (a) the residuals associated with the

transformed model
√

Y = 1.28+0.322X plotted against their index, (b) the standardized

residuals ei/
√

MSE associated with the transformed model plotted against the value of

the independent variable Xi, (c) a histogram of the standardized residuals ei/
√

MSE

for the transformed model, and (d) a QQ plot of the standardized residuals ei/
√

MSE

for the transformed model with theoretical quantiles on the horizontal axis and sample

quantiles on the vertical axis. Although there is some nonsymmetry in the histogram

of the residuals (which might be due to the binning of the 50 data pairs), the residual

plots and the QQ plot make the simple linear regression model with normal error terms

for the transformed data pairs seem plausible. A roughly mound-shaped histogram is

typically adequate for the normality assumption. Moving from the visual assessment to

statistical tests, the R code

x = cars$speed
y = sqrt(cars$dist)
fit = lm(y ~ x)
shapiro.test(fit$residuals)
max(cooks.distance(fit))

gives a p-value for the Shapiro–Wilk test of p = 0.314. This is a big improvement

over the p-value obtained in Example 2.8, which rejected normality with p = 0.0215.

The transformation is effective. The largest Cook’s distance is 0.134, which occurs

at the 49th observation (X49, Y49) = (24, 120). Returning to the 49th observation in
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Figure 3.12: Visual assessment of the residuals of the transformed model.

Figure 3.12, we see that it achieves the largest Cook’s distance because of its leverage,

but does not appear to be inconsistent with the transformed model.

So the visual assessment and statistical tests lead us to believe that a simple linear

regression model with normal error terms for the transformed data is appropriate. The

fitted regression model is

E
[
√

Y
]

= 1.28+0.322X .

All of the statistical inference techniques can now be applied to the transformed data.

For example, confidence intervals for the β′
0 and β′

1 (the intercept and slope of the

regression line for the transformed data) can be calculated with the R statements

x = cars$speed
y = sqrt(cars$dist)
fit = lm(y ~ x)
confint(fit)

which give the 95% confidence intervals

0.303 < β′
0 < 2.25 and 0.263 < β′

1 < 0.382.

Figure 3.13 displays all of the exact two-sided 95% confidence intervals for E[
√

Yh ]
and all of the exact two-sided 95% prediction intervals for

√

Y ∗
h for all values of Xh in
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Figure 3.13: Transformed cars model 95% confidence and prediction intervals.

the scope of the regression model. For Xh = 21 miles per hour, for example, an exact

two-sided 95% prediction interval for
√

Y ∗
h is

5.78 <
√

Y ∗
h < 10.3,

which can be calculated with the R commands

x = cars$speed
y = sqrt(cars$dist)
fit = lm(y ~ x)
predict(fit, data.frame(x = 21), interval = "prediction")

So to translate this back to the original units, for a 51st car going Xh = 21 miles per

hour, the expected stopping distance using the transformed model is

Ŷh =
(

1.28+0.322 ·21
)2

= 64.8

feet, and an exact two-sided 95% prediction interval for the associated stopping distance

is

33.5 < Y ∗
h < 106.

The previous example took a trial-and-error approach to determining an appropriate transfor-

mation to apply to the raw data pairs in order to satisfy the assumptions implicit in a simple linear

regression model with normal error terms. There are templates that can give a more systematic

approach to determining these transformations.

There is a nice synergy between matrix algebra and regression, which will be presented in the

next section.
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3.4 Matrix Approach to Simple Linear Regression

So far, a purely algebraic approach has been taken to simple linear regression modeling. This section

considers a matrix-based approach. There are (at least) four reasons to take this approach. First, the

mathematical expressions are in many cases much more compact; summations from the algebraic

approach are often equivalent to matrix multiplications. Second, matrix algebra can easily be imple-

mented on a computer. Third, the matrix approach generalizes very easily to the multiple regression

case in which there are several independent variables. Fourth, the matrix approach generalizes very

easily to weighted least squares, which will be introduced in the next section.

We begin the matrix approach by defining certain critical matrices, which will be set in boldface.

Let X be an n× 2 matrix whose first column is all ones and whose second column contains the

observed values of the independent variable, Y be an n×1 vector which holds the observed values

of the dependent variable, βββ be a 2×1 vector which holds the population intercept and slope, and εεε
be an n×1 vector which holds the error terms:

X =











1 X1

1 X2

...
...

1 Xn











, Y =











Y1

Y2

...

Yn











, βββ =

[

β0

β1

]

, and εεε =











ε1

ε2

...

εn











.

The X matrix is known as the design matrix.

As before, the values of the independent variable (the second column of X) are assumed to be

fixed constants observed without error with at least two distinct values, the values of the dependent

variable contained in Y are assumed to be continuous random responses, and the elements of the

vector εεε are assumed to be mutually independent random variables, each with population mean 0

and finite positive population variance σ2. Stated another way, the expected value of εεε is the zero

vector and the variance–covariance matrix of εεε is










σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2











.

The simple linear regression model

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n, can be written more explicitly in terms of each observed data pair as

Y1 = β0 +β1X1 + ε1

Y2 = β0 +β1X2 + ε2

...

Yn = β0 +β1Xn + εn

which, in matrix form, is










Y1

Y2

...

Yn











=











1 X1

1 X2

...
...

1 Xn











·
[

β0

β1

]

+











ε1

ε2

...

εn










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or simply

Y = Xβββ+εεε.

This explains why the artificial column of ones appears as the first column of the X matrix; it is to

account for the intercept term. To force a regression line through the origin, simply omit the column

of ones in the X matrix. Taking the expected value of both sides of this equation results in

E[Y] = Xβββ

because E[εi] = 0, for i = 1, 2, . . . , n, (that is, E[εεε] = 0). The left-hand side of this equation, E[Y], is

an n-element column vector with elements E[Y1], E[Y2], . . . , E[Yn]. The sum of squares which is to

be minimized to find the least squares estimators is

S = (Y−Xβββ)′ (Y−Xβββ) .

With this notation established, the algebraic results concerning the simple linear regression

model can be restated more compactly in terms of these matrices. The results have already been

proved, so there is no need to prove them again when stated in matrix form. The ′ superscript de-

notes transpose. It is a good exercise to perform the algebra necessary to see that the algebraic and

matrix versions of these definitions and theorems match. The dimensions of the matrices should be

checked for conformity.

• Definition 1.1. The simple linear regression model is

Y = Xβββ+εεε,

where E[εεε] = 0, V [εεε] = σ2I, and I is the n×n identity matrix.

• Theorem 1.1. The least squares estimators of βββ, denoted by β̂ββ = (β̂0, β̂1

)′
, solve the normal

equations

X′Xβ̂ββ = X′Y.

The X matrix has rank 2 because there are at least two distinct Xi values. So X′X is invertible

and the normal equations have the unique solution

β̂ββ =
(

X′X
)−1

X′Y,

by premultiplying both sides of the normal equations by
(

X′X
)−1

.

• Theorem 1.2. The least squares estimator of βββ in a simple linear regression model is an

unbiased estimator of βββ because

E[β̂ββ]= βββ.

• Theorem 1.3. The least squares estimators of βββ in the simple linear regression model can be

written as linear combinations of the dependent variables:

β̂ββ =
(

X′X
)−1

X′Y,

where the coefficients in the linear combinations are given by
(

X′X
)−1

X′.

• Theorem 1.4. The variance–covariance matrix of the least squares estimators of βββ is

σ2
(

X′X
)−1

.
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• Theorem 1.5 (Gauss–Markov theorem). The least squares estimators of βββ in a simple linear

regression model, β̂ββ = (X′X)−1X′Y, have the smallest population variance amongst all linear

unbiased estimators of βββ.

• Definition 1.2. The vector of fitted values in a simple linear regression model is the n× 1

column vector

Ŷ= Xβ̂ββ = X(X′X)−1X′Y,

which is a linear combination of the dependent variables. The vector of residuals is the n×1

column vector

e = Y− Ŷ

= Y−Xβ̂ββ

= Y−X(X′X)−1X′Y

=
(

I−X(X′X)−1X′)Y,

which is also a linear combination of the dependent variables. The matrix I is the n×n identity

matrix.

• Theorem 1.6. For the simple linear regression model with fitted values Ŷand residuals e,

• e′1 = 0,

• Y′1 = Ŷ′1

• Ŷ′e = 0,

where 1 is an n-element column vector of ones.

• Theorem 1.7. An unbiased estimator of σ2 in a simple linear regression model is

σ̂2 = MSE =
e ′e

n−2
.

• Theorem 1.8. The sums of squares can be partitioned in a simple linear regression model as

SST = SSR+SSE or

(Y− Ȳ)
′
(Y− Ȳ)= (Ŷ− Ȳ)

′
(Ŷ− Ȳ)+(Y− Ŷ)

′
(Y− Ŷ),

where Ȳ is an n-element column vector with identical elements which are each the sample

mean of the values of the dependent variable.

• Definition 1.3. The coefficient of determination in a simple linear regression model is

R2 =
SSR

SST
=
(Ŷ− Ȳ)

′
(Ŷ− Ȳ)

(Y− Ȳ)
′
(Y− Ȳ)

,

when (Y− Ȳ)
′
(Y− Ȳ) 6= 0. The coefficient of correlation is

r =±
√

R2,

where the sign associated with r is positive when β̂1 ≥ 0 and negative when β̂1 < 0.
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• Definition 2.1. The simple linear regression model with normal error terms is

Y = Xβββ+εεε,

where εεε ∼ N
(

0, σ2I
)

.

• Theorem 2.1. For the simple linear regression model with normal error terms, the maximum

likelihood estimators of βββ are

β̂ββ = (X′X)−1X′Y

and the maximum likelihood estimator of σ2 is

σ̂2 =
1

n
(Y−Xβ̂ββ)

′
(Y−Xβ̂ββ).

Since the vector of error terms εεε consists of independent and identically distributed normal

random variables, Y = Xβββ+εεε is a vector of independent and identically distributed normal

random variables, and the linear transformation β̂ββ = (X′X)−1X′Y has normally distributed

elements.

• Theorem 2.2. For the simple linear regression model with normal error terms,

e′e
σ2

∼ χ2(n−2),

and is independent of β̂ββ.

• Theorem 2.3. For the simple linear regression model with normal error terms, an exact two-

sided 100(1−α)% confidence interval for σ2 is

e′e

χ2
n−2,α/2

< σ2 <
e′e

χ2
n−2,1−α/2

.

• Theorems 2.4 and 2.7. For the simple linear regression model with normal error terms,

β̂ββ ∼ N(βββ, σ2(X′X)−1).

• Theorem 2.12. For the simple linear regression model with normal error terms, an exact two-

sided 100(1−α)% confidence interval for E[Yh] for a given value of the independent variable

Xh is

X′
h β̂ββ− tn−2,α/2

√

σ̂2X′
h(X

′X)−1Xh < E[Yh]< X′
h β̂ββ+ tn−2,α/2

√

σ̂2X′
h(X

′X)−1Xh,

where Xh = (1, Xh)
′ and σ̂2 = MSE.

• Theorem 2.15. For the simple linear regression model with normal error terms, an exact two-

sided 100(1−α)% prediction interval for Y ⋆
h for a given value of the independent variable Xh

is

X′
h β̂ββ−tn−2,α/2

√

σ̂2
(

1+X′
h(X′X)

−1
Xh

)

<Y ⋆
h <X′

h β̂ββ+tn−2,α/2

√

σ̂2
(

1+X′
h(X′X)

−1
Xh

)

,

where Xh = (1, Xh)
′ and σ̂2 = MSE.
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• Theorem 2.16. Under the simple linear regression model with normal error terms and param-

eters estimated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn),

(

β̂ββ−βββ
)′

X′X
(

β̂ββ−βββ
)

2 ·MSE
∼ F(2, n−2).

• Theorem 2.17. Under the simple linear regression model with normal error terms and pa-

rameters estimated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), the values of β0 and

β1 satisfying
(

β̂ββ−βββ
)′

X′X
(

β̂ββ−βββ
)

2 ·MSE
≤ F2,n−2,α

form an exact joint 100(1−α)% confidence region for β0 and β1.

• Definition 3.2. Under the simple linear regression model, the hat matrix is

H = X
(

X′X
)−1

X′.

The diagonal elements of the hat matrix are the leverages. The matrix equation

Ŷ= HY

indicates that H transforms Y to Ŷ. The hat matrix is symmetric (that is, H = H′) and idem-

potent (that is, HH = H).

The matrix approach applied to a simple linear regression model is illustrated for a small sample

size next.

Example 3.9 Consider again the sales data set from Example 1.3. Let the independent

variable X be the number of sales per week that Cheryl completes. Each sale results in

a random amount of revenue to the company that can be attributed to Cheryl. Let the

dependent random variable Y be the associated total revenue to the company from the

sales attributed to Cheryl for that week, in thousands of dollars. The data pairs for the

past n = 3 weeks are

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), and (X3, Y3) = (2, 2).

Use the matrix approach to simple linear regression to define the matrices X, Y, βββ, and

εεε. Calculate the least squares estimates of the population intercept β0 and population

slope β1, the fitted values, the hat matrix, the residuals, the unbiased estimate of the

variance of the error terms, SST , SSR, SSE, R2, r, an exact 95% confidence interval

for E[Yh] when Xh = 5 weekly sales, and an exact 95% prediction interval for Y ⋆
h when

Xh = 5 weekly sales using the matrix approach to simple linear regression.

The X, Y, βββ, and εεε matrices associated with the n = 3 data pairs are

X =





1 6

1 8

1 2



 , Y =





2

9

2



 , βββ =

[

β0

β1

]

, and εεε =





ε1

ε2

ε3



 .

The R code below uses the matrix approach to simple linear regression to calculate the

estimate of the intercept β̂0, the estimate of the slope β̂1, the fitted values Ŷ, the hat
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matrix H, the residuals e, and the estimate of the population variance of the error terms

σ̂2. SST , SSR, SSE, R2, r, an exact 95% confidence interval for E[Yh] when Xh = 5,

and an exact 95% prediction interval for Y ⋆
h when Xh = 5 using the matrix approach to

simple linear regression. The t function computes a matrix transpose, the diag function

creates an identity matrix, and the solve function computes the inverse of X ′X . The

matrix multiplication operator is %*%.

x = c(6, 8, 2)
y = c(2, 9, 2)
x = cbind(1, x)
beta = solve(t(x) %*% x) %*% t(x) %*% y
yhat = x %*% beta
H = x %*% solve(t(x) %*% x) %*% t(x)
n = length(y)
e = (diag(n) - H) %*% y
sighat = (t(e) %*% e) / (n - 2)
ybar = rep(mean(y), n)
sst = t(y - ybar) %*% (y - ybar)
ssr = t(yhat - ybar) %*% (yhat - ybar)
sse = t(y - yhat) %*% (y - yhat)
R2 = ssr / sst
r = sign(beta[2]) * sqrt(R2)
alpha = 0.05
conf1 = c(sum(e ^ 2) / qchisq(1 - alpha / 2, n - 2),

sum(e ^ 2) / qchisq(alpha / 2, n - 2))
xh = matrix(c(1, 5), 2, 1)
half2 = qt(1 - alpha / 2, n - 2) *

sqrt(sse / (n - 2) * t(xh) %*% solve(t(x) %*% x) %*% xh)
conf2 = c(t(xh) %*% beta - half2, t(xh) %*% beta + half2)
half3 = qt(1 - alpha / 2, n - 2) *

sqrt(sse / (n - 2) * (1 + t(xh) %*% solve(t(x) %*% x) %*% xh))
conf3 = c(t(xh) %*% beta - half3, t(xh) %*% beta + half3)

The output of this code is given in the equations that follow. The least squares estimators

of the intercept and slope of the regression line are

β̂ββ =
(

X′X
)−1

X′Y =

[

3 16

16 104

]−1 [
1 1 1

6 8 2

]





2

9

2



=

[

−1

1

]

.

The fitted values are

Ŷ= Xβ̂ββ =





1 6

1 8

1 2





[

−1

1

]

=





5

7

1



 .

The 3×3 hat matrix H is

H=X
(

X′X
)−1

X′=





1 6

1 8

1 2





[

3 16

16 104

]−1 [
1 1 1

6 8 2

]

=





5/14 3/7 3/14

3/7 5/7 −1/7

3/14 −1/7 13/14



 .
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The diagonal elements of the hat matrix are the leverages h11, h22, h33. The vector of

residuals is

e = (I−H)Y =





9/14 −3/7 −3/14

−3/7 2/7 1/7

−3/14 1/7 1/14









2

9

2



=





−3

2

1



 .

The fitted values and the residuals computed here are consistent with the geometry

shown in Figure 1.15 from Example 1.8. The unbiased estimate of the population vari-

ance of the error terms is

σ̂2 = MSE =
e ′e

n−2
=

1

3−2

[

−3 2 1
]





−3

2

1



= 14.

The sums of squares can be partitioned as SST = SSR+SSE using

(Y− Ȳ)
′
(Y− Ȳ)= (Ŷ− Ȳ)

′
(Ŷ− Ȳ)+(Y− Ŷ)

′
(Y− Ŷ),

where Ȳ is an n-element column vector with identical elements which are each the

sample mean of the values of the dependent variable. For the n = 3 data pairs, this

becomes

(

−7

3

)2

+

(

14

3

)2

+

(

−7

3

)2

=

(

2

3

)2

+

(

8

3

)2

+

(

−10

3

)2

+(−3)2 +22 +12

or
98

3
=

56

3
+14.

Figure 3.14 show the geometry associated with SST = SSR+ SSE for the three data

pairs. The sum of the areas of the three squares in the top graph is SST ; the sum of the

areas of the three squares in the middle graph is SSR; the sum of the areas of the three

squares in the bottom graph is SSE.

The coefficient of determination and the correlation coefficient in a simple linear re-

gression model are

R2 =
SSR

SST
=
(Ŷ− Ȳ)

′
(Ŷ− Ȳ)

(Y− Ȳ)
′
(Y− Ȳ)

=
56/3

98/3
=

4

7
= 0.57 and r = 0.76.

The three intervals are

2.8 < σ2 < 14000,

−24 < E[Yh]< 32,

and

−51 < Y ⋆
h < 59.

The intervals are unusually wide because there are only n = 3 data pairs which have

significant deviation from the regression line. Notice that these results match those

obtained earlier by algebraic methods and by using the lm (linear model) function as

given in Examples 1.3, 1.7, 1.8, and 1.10.
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Figure 3.14: Geometry associated with SST = SSR+SSE for the sales data.
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Theorem 2.2 stated that under the simple linear regression model with normal errors,

SSE

σ2
∼ χ2(n−2).

An outline of the proof of Theorem 2.2 was given in Chapter 2 in purely algebraic terms. An outline

of the proof to the result using the matrix approach to simple linear regression is given here to

contrast the difference between the two approaches.

Proof (Outline only; matrix approach) As given in the matrix version of Definition 1.2,

the vector of fitted values in a simple linear regression model is the n×1 column vector

Ŷ= X
(

X′X
)−1

X′Y.

The sum of squares for error in matrix form is

SSE = (Y− Ŷ)
′
(Y− Ŷ)

=
[

Y−X
(

X′X
)−1

X′Y
]′ [

Y−X
(

X′X
)−1

X′Y
]

=
[

Y′−Y′X′′((X′X)
′)−1

X′
][

Y−X
(

X′X
)−1

X′Y
]

= Y′
[

I−X
(

X′X
)−1

X′
][

I−X
(

X′X
)−1

X′
]

Y.

Let R = I−X
(

X′X
)−1

X′, where I is the n× n identity matrix. This matrix plays a

critical role in the proof. The matrix R is symmetric because

R′ =
[

I−X
(

X′X
)−1

X′
]′
= I′−X′′((X′X)

′)−1
X′ = I−X

(

X′X
)−1

= R.

The matrix R is idempotent because

R2 =
[

I−X
(

X′X
)−1

X′
][

I−X
(

X′X
)−1

X′
]

= I2 −2X
(

X′X
)−1

X′+X
(

X′X
)−1

X′X
(

X′X
)−1

X′

= I−X
(

X′X
)−1

X′

= R.

Since R is a symmetric idempotent matrix, it is a projection matrix. This has two

implications. First, the rank of R equals the trace of R, which in this case is n− 2.

Second, all eigenvalues of R are either zero or one, and in this setting, there are n− 2

ones and 2 zeros. The rest of the proof proceeds as follows. Since R is symmetric matrix

it can be orthogonally diagonalized as R = UDU′, where U is an orthogonal matrix

and D is a diagonal matrix with n− 2 ones and 2 zeros on the diagonal. The assumed

normality of the error terms in the model results in normally distributed residuals, which

can be simplified to yield SSE/σ2 ∼ χ2(n−2). �

The matrix approach gives an alternative way of computing measures of interest in a simple

linear regression. Using matrices also allows the following two helpful extensions to simple linear

regression.
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• Removing the first column of the X matrix that consists entirely of ones corresponds to forcing

a regression line through the origin.

• Adding additional columns to the X matrix corresponds to including additional independent

variables to the regression model, which is known as multiple linear regression. This is the

topic of the next section.

3.5 Multiple Linear Regression

Multiple linear regression can often be applied when there are several independent variables (or pre-

dictors) X1, X2, . . . , Xp which can be used to explain a continuous dependent (or response) variable

Y . Three examples are listed below.

• The asking price of a home Y is a function of

– the number of square feet in the home,

– the number of bedrooms, and

– acreage of the land associated with the home.

• The annual amount of money a person donates to charity Y is a function of

– the nationality of the person,

– the annual income of the person,

– the net worth of the person,

– the religious affiliation of the person,

– the age of the person, and

– the gender of the person.

• The stopping distance of a car Y is a function of

– the speed of the car,

– the weight of the car, and

– the type of brakes installed on the car.

One way to formulate a multiple linear regression model is to treat the left-hand side of the

model as an expected value:

E[Y ] = β0 +β1X1 +β2X2 + · · ·+βpXp.

Since E[Y ] denotes a conditional expectation of Y given the values of the p independent variables

X1, X2, . . . , Xn, a more careful way to write this model is

E[Y |X1, X2, . . . , Xn] = β0 +β1X1 +β2X2 + · · ·+βpXp.

So far, there has been no consideration of the probability distribution of the error terms, and that

is addressed in the formal definition of a multiple linear regression model given next.
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Definition 3.4 A multiple linear regression model is given by

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε,

where

• X1, X2, . . . , Xp are the independent variables, assumed to be a fixed values observed without

error,

• Y is the dependent variable, which is a continuous random variable,

• β0 is the population intercept of the regression plane, an unknown constant parameter,

• β1, β2, . . . , βp are unknown constant parameters which control the inclination of the regres-

sion plane, and

• ε is the error term, a continuous random variable with population mean zero and positive,

finite population variance σ2 that accounts for the randomness in the relationship between

X1, X2, . . . , Xp and Y .

To estimate the parameters in a multiple linear regression model, we collect n observations

which each consist of the p independent variables and the associated dependent variable. In most

applications, p > n. Occasions arise (often in biostatistical applications) in which p < n. The

formulation of the simple linear regression model with notation included for the n observations is

Yi = β0 +β1Xi1 +β2Xi2 + · · ·+βpXip + εi

for i = 1, 2, . . . , n. So Xi j denotes the value of the jth independent variable collected on the ith

observational unit. In the real estate example given at the beginning of this section, X83 is the value

of the third independent variable (acreage) collected on the 8th home collected by the analyst. The

associated asking price of the 8th home is Y8.

Figure 3.15 shows a portion of the population regression plane E[Y ] = β0 +β1X1 +β2X2 for a

multiple linear regression model with p = 2 independent variables X1 and X2. The plane extends

outward from the portion shown in Figure 3.15. The regression parameters β0, β1, and β2 are fixed

constants. The intercept β0 is positive in Figure 3.15 because the plane strikes the Y -axis above the

origin. Based on the inclination of the population regression plane relative to the X1- and X2-axes it

is clear that β1 < 0 and β2 > 0. To avoid clutter and highlight the geometry and notation, only the

ith data triple (Xi1, Xi2, Yi) and the associated error term εi are shown in the figure.

Figure 3.16 shows a portion of the estimated regression plane Y = β̂0 + β̂1X1 + β̂2X2 for a

multiple linear regression model with p = 2 independent variables X1 and X2. The estimated re-

gression parameters β̂0, β̂1, and β̂2 are random variables which are estimated from n data triples

(X11, X12, Y1) , (X21, X22, Y2) , . . . , (Xn1, Xn2, Yn). The estimated regression parameters are random

variables because the dependent variable values Y1, Y2, . . . , Yn are random variables. The estimated

intercept β̂0 is positive in Figure 3.16 because the plane strikes the Y -axis above the origin. Based

on the inclination of the estimated regression plane relative to the X1- and X2-axes it is clear that

β̂1 < 0 and β̂2 > 0. To avoid clutter and highlight the geometry and notation, just the ith data triple

(Xi1, Xi2, Yi), the associated fitted value (Xi1, Xi2, Ŷi), and the associated residual ei are shown in the

figure.

When there are p > 2 independent variables, the estimated regression model is a hyperplane in

R p+1. Residual i is the distance ei = Yi − Ŷi, for i = 1, 2, . . . , n.
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(0, 0, β0)

(Xi1, Xi2, 0)

(Xi1, Xi2, Yi)

(

Xi1, Xi2, E[Yi]
)

E[Y ] =
β0+β1X1+β2X2

εi

X1

X2

Y

Figure 3.15: Population regression plane and a sample point.
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(

Xi1, Xi2, Ŷi

)

Y = β̂0+ β̂1X1+ β̂2X2

ei

X1

X2

Y

Figure 3.16: Estimated regression plane and a sample point.

When the error terms are assumed to be normally distributed, this model is known as the multiple

linear regression model with normal error terms. This additional assumption allows for statistical

inference concerning parameters and predicted values in a similar manner to that described in Chap-

ter 2.

The multiple linear regression model can also be expressed in terms of matrices. Relative to the

simple linear regression model, additional columns are appended to the X matrix, and the βββ vector

is expanded to include the parameters associated with the additional parameters:

X =











1 X11 X12 · · · X1p

1 X21 X22 · · · X2p

...
...

...
. . .

...

1 Xn1 Xn2 · · · Xnp











, Y =











Y1

Y2

...

Yn











, βββ =











β0

β1

...

βp











, and εεε =











ε1

ε2

...

εn











.
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The vectors Y and εεε remain unchanged from the simple linear regression formulation. The first row

of X corresponds to the values of the independent variables collected on the first observational unit,

the second row of X corresponds to the values of the independent variables collected on the second

observational unit, etc. As was the case in simple linear regression, X is known as the design matrix.

The good news about the matrix approach to multiple linear regression is that the definitions

and results from simple linear regression only require some minor tweaking in order to generalize

to multiple regression. Several of these definitions and results are given below. In many cases, it

is just a matter of replacing the word “simple” with the word “multiple” or updating the degrees of

freedom to account for the p independent variables. It is assumed that the X matrix has rank p+1

(that is, a full rank matrix), which means that the columns of X are linearly independent.

• The multiple linear regression model is

Y = Xβββ+εεε,

where E[εεε] = 0, V [εεε] = σ2I, and I is the n×n identity matrix.

• The least squares estimators of βββ, denoted by β̂ββ = (β̂0, β̂1, . . . , β̂p

)′
, solve the normal equa-

tions

X′Xβ̂ββ = X′Y.

Since X has full rank, X′X is invertible and the normal equations have the unique solution

β̂ββ =
(

X′X
)−1

X′Y,

by premultiplying both sides of the normal equations by
(

X′X
)−1

.

• The least squares estimator of βββ in a multiple linear regression model is an unbiased estimator

of βββ because

E[β̂ββ]= βββ.

• The least squares estimators of βββ in the multiple linear regression model can be written as

linear combinations of the dependent variables:

β̂ββ =
(

X′X
)−1

X′Y,

where the coefficients in the linear combinations are given by
(

X′X
)−1

X′.

• The variance–covariance matrix of the least squares estimators of βββ is

σ2
(

X′X
)−1

.

• (Gauss–Markov theorem) The least squares estimators of βββ in a multiple linear regression

model, β̂ββ = (X′X)−1X′Y, have the smallest population variance amongst all linear unbiased

estimators of βββ.

• The vector of fitted values in a multiple linear regression model is the n×1 column vector

Ŷ= Xβ̂ββ = X(X′X)−1X′Y,
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which is a linear combination of the dependent variables. The vector of residuals is the n×1

column vector

e = Y− Ŷ

= Y−Xβ̂ββ

= Y−X(X′X)−1X′Y

=
(

I−X(X′X)−1X′)Y,

which is also a linear combination of the dependent variables. The matrix I is the n×n identity

matrix.

• The multiple linear regression model with normal error terms is

Y = Xβββ+εεε,

where εεε ∼ N
(

0, σ2I
)

.

• For the multiple linear regression model with normal error terms, the maximum likelihood

estimators of βββ are

β̂ββ = (X′X)−1X′Y

and the maximum likelihood estimator of σ2 is

σ̂2 =
1

n
(Y−Xβ̂ββ)

′
(Y−Xβ̂ββ).

Since the vector of error terms εεε consists of independent and identically distributed normal

random variables, Y = Xβββ+εεε is a vector of independent and identically distributed normal

random variables. Since β̂ββ is a linear transformation of Y , β̂ββ ∼ N
(

βββ, σ2
(

X′X
)−1
)

.

• Under the multiple linear regression model, the n×n hat matrix is

H = X
(

X′X
)−1

X′.

The diagonal elements of the hat matrix are the leverages. The matrix equation

Ŷ= HY

indicates that H transforms Y to Ŷ. The hat matrix is symmetric (that is, H = H′) and idem-

potent (that is, HH = H). The trace of the hat matrix is ∑n
i=1 hii = p+1.

The example of multiple linear regression that follows considers p = 2 predictors of the sales

price of a home.

Example 3.10 In Example 2.9, the sales price, Y , of homes sold in Ames, Iowa be-

tween 2006 and 2010 with between 2500 and 3500 square feet were fitted to a simple

linear regression model with the square footage as an independent variable X . There

were n = 120 homes in the data frame that fit this criteria. In that analysis, the value

of the land was estimated to be $21,233 (although this was outside of the scope of the

simple linear regression model), and the price of the home increased by an average of

$112 with each additional square foot of indoor space. Fit a multiple linear regression
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model with normal error terms to the same data set using two independent variables, X1,

the square footage of indoor space, and X2, the square footage of the lot. The dependent

variable is again the sales price Y .

The multiple regression model in this setting is

Y = β0 +β1X1 +β2X2 + ε,

where ε ∼ N
(

µ, σ2
Z

)

. The R code below estimates the regression parameters β0, β1, and

β2. The regression function

E[Y ] = β0 +β1X1 +β2X2,

is a plane in R 3. The values of β1 and β2 control the tilt of the regression plane,

and the value of β0 is the intercept of the regression plane with the E[Y ] axis. The

regression plane will be fitted in two fashions in R: the matrix approach to multiple

linear regression and the built-in lm function. The R code below defines the X and Y

matrices, and then uses the formula

β̂ββ =
(

X′X
)−1

X′Y

to calculate the estimates of the regression coefficients.

library(modeldata)
i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500
sqft = ames$Gr_Liv_Area[i]
lotarea = ames$Lot_Area[i]
X = cbind(1, sqft, lotarea)
Y = ames$Sale_Price[i]
beta = solve(t(X) %*% X) %*% t(X) %*% Y

These R statements return the least squares regression parameter estimates β̂0 = 26,515,

β̂1 = 96.88, and β̂2 = 2.65. The intercept is not meaningful in this setting because it is

associated with a home with 0 square feet and no land. This situation does not make

sense nor does it fall in the scope of the model. The naive interpretation of the other

regression coefficients in the fitted model are (a) the sales price of a home increases

by an average of $96.88 for each additional square foot in the home, and (b) the sales

price of the home increases by $2.65 for each additional square foot in the lot size.

The interpretation of the estimated regression coefficients is more nuanced in the case

of multiple independent variables because those independent variables are often corre-

lated. So reporting that “the value of β̂1 = 96.88 means that the sales price of the house

increases by an average of $96.88 for each additional square foot of interior space with

the lot size fixed” is not quite accurate because the interior space and lot size might

be correlated. Larger homes might be built on larger lots, for example. Regression

analysts acknowledge possible correlations between the independent variables by just

stating “the sales price increases by an average of $96.88 for each additional square foot

of interior space, adjusted for lot size” when interpreting β̂1. Likewise, “the sales price

increases by an average of $2.65 for each additional square foot of lot size, adjusted for

interior square footage” when interpreting β̂2.

A second way to calculate the estimated regression coefficients is to use R’s built-in lm
function.
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library(modeldata)
i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500
sqft = ames$Gr_Liv_Area[i]
lotarea = ames$Lot_Area[i]
price = ames$Sale_Price[i]
fit = lm(price ~ sqft + lotarea)
summary(fit)

The call to the summary function prints the following output concerning the fitted mul-

tiple linear regression model.

Call:
lm(formula = price ~ sqft + lotarea)

Residuals:
Min 1Q Median 3Q Max

-226718 -61645 -5756 62774 288215

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.652e+04 1.087e+05 0.244 0.8077
sqft 9.688e+01 4.043e+01 2.396 0.0181 *
lotarea 2.645e+00 1.660e+00 1.593 0.1138
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 99890 on 117 degrees of freedom
Multiple R-squared: 0.08339, Adjusted R-squared: 0.06772
F-statistic: 5.322 on 2 and 117 DF, p-value: 0.006134

The estimated regression coefficients match those that were calculated using the matrix

approach to multiple linear regression. The right-hand column of p-values tells us that

the size of a home is a statistically significant predictor of the sales price of a home, but

the lot size is not a statistically significant predictor of the sales price of a home.

A multiple linear regression model can easily be adapted to include nonlinear terms. A multiple

regression model with two independent variables X1 and X2, for example, with a linear relationship

between X1 and Y and a quadratic relationship between X2 and Y which includes an intercept term

is

Y = β0 +β1X1 +β2X2 +β3X2
2 + ε.

Using the R lm function to estimate the coefficients will be illustrated in Section 3.7.

Multiple linear regression has many more modeling issues that arise than simple linear re-

gression. The subsections that follow consider the following topics within multiple regression:

(a) handling categorical independent variables which fall in categories rather than quantitative val-

ues, (b) handling the case in which independent variables have interactive effects, (c) extending the

ANOVA table to multiple independent variables, (d) calculation of the coefficient of determination

for multiple linear regression, and an adjustment that can be made to reduce its bias, (e) the effect of

multicollinearity among the independent variables, and ( f ) algorithms for model selection.
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3.5.1 Categorical Independent Variables

Some regression models include independent variables which are not naturally quantitative, but are

rather categorical. These categorical independent variables require some special treatment in order

to be included in a multiple linear regression model. The cases in which a categorical indepen-

dent variable falls in one of two categories will be considered separately from the case in which a

categorical independent variable falls in one of more than two categories.

Categorical independent variable which falls in one of two categories. Consider a multiple

linear regression model with p = 2 independent variables, X1, which is age, and X2, which is gender.

The dependent variable is the annual salary Y . So the multiple linear regression model is

Y = β0 +β1X1 +β2X2 + ε.

Regression models assume that the independent variables are quantitative rather than categorical

like gender. One solution to this problem is to code the gender as 0 for female and 1 for male. The

independent variable X2 in this case is known as a dummy variable or an indicator variable. As a

particular instance, consider n = 6 data points consisting of three women (ages 26, 71, and 34) and

three men (ages 44, 65, and 21). In this case the design matrix is

X =

















1 26 0

1 71 0

1 34 0

1 44 1

1 65 1

1 21 1

















.

The elements of the six-element column vector Y are the associated salaries. The value of β̂0 is not

meaningful here. Not only is it outside of the scope of the model, its interpretation as the annual

salary of a newborn baby girl doesn’t fit with societal norms. Newborn baby girls seldom earn

annual salaries. The value of β̂1 indicates the increase in annual salary for each additional year in

age, adjusted for gender. Since salaries tend to rise over time, we anticipate that β̂1 will be positive.

The value of β̂2 indicates the change in salary associated being male rather than female, adjusted for

age. If β̂2 is significantly greater than zero, then men’s salaries are significantly higher than women’s

salaries, adjusted for age; if β̂2 is significantly less than zero, then women’s salaries are significantly

higher than men’s salaries, adjusted for age. The choice of using an indicator of 0 for women and 1

for men was arbitrary. See if you can predict what would happen if instead we used 0 for men and 1

for women.

Categorical independent variable which falls in one of more than two categories. Let’s

extend the regression model to predict the annual salary to include another categorical variable:

political affiliation. This categorical variable will have three levels: Republican, Democrat, and

Independent. The third category includes anyone who is not affiliated with the two main political

parties in the United States. Although it might be tempting to just let X3 = 1 denote a Republican,

X3 = 2 denote a Democrat, and X3 = 3 denote an Independent, this will likely produce erroneous

results for two reasons. First, using the ordering X3 = 1, X3 = 2, and X3 = 3 implies an ordering of

the salaries associated with individuals from the three different political affiliations for β3 > 0, or

the opposite ordering of the salaries associated with individuals from the three political affiliations

for β3 < 0. This ordering might not be the correct ordering. Second, leaving a gap of 1 between each

of the values of X3 indicates that there is a known and equal salary gap between individuals from

the ordered different political affiliations. The usual way to account for a categorical independent
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variable which can take on c values is to define c−1 independent indicator variables. In the case of

political affiliation, the independent variables X3 and X4 can be defined as

X3 =

{

0 not a Republican

1 Republican

and

X4 =

{

0 not a Democrat

1 Democrat.

So now the multiple linear regression model with p = 4 independent variables is

Y = β0 +β1X1 +β2X2 +β3X3 +β4X4 + ε.

In this fashion, the expected value of an Independent’s salary is given by

E[Y ] = β0 +β1X1 +β2X2,

the expected value of an Republican’s salary is given by

E[Y ] = β0 +β1X1 +β2X2 +β3X3,

and the expected value of a Democrat’s salary is given by

E[Y ] = β0 +β1X1 +β2X2 +β4X4.

With this arrangement of the levels of the categorical variable representing the political affiliation,

there is no predicted ordering of salaries by the three political affiliations nor are the gaps between

the affiliations necessarily equal.

As a particular instance, consider n = 6 data points with three women (a 26-year-old Indepen-

dent, a 71-year-old Democrat, and a 34-year-old Republican) and three men (a 44-year-old Indepen-

dent, a 65-year-old Democrat, and a 21-year-old Republican) in the study. The appropriate design

matrix is

X =

















1 26 0 0 0

1 71 0 0 1

1 34 0 1 0

1 44 1 0 0

1 65 1 0 1

1 21 1 1 0

















.

The value of β̂3 is the estimated difference between the mean annual salary of an Independent and

a Republican, adjusted for age and gender. The value of β̂3 is the estimated difference between the

mean annual salary of an Independent and a Democrat, adjusted for age and gender. This example

has been for illustrative purposes only. Estimating five parameters β0, β1, . . . ,β4 from just six data

values will almost certainly not provide strong statistical evidence concerning the effect of age,

gender, and political affiliation on salary. Furthermore, many other important factors, such as years

of education, years on the job, and type of work, have not been included in this regression model.

3.5.2 Interaction Terms

The multiple linear regression model

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε
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assumes a linear relationship between each independent variable and Y and the slope associated with

an independent variable is identical at all values of the other independent variables within the scope

of the multiple linear regression model. This relationship is illustrated for some selected data points

of smaller homes from the Ames, Iowa housing data set from Examples 2.9 and 3.10. In this case,

X1 is the interior square footage, X2 is an indicator variable reflecting the lot size,

X2 =

{

0 lot size is less than or equal to 10,000 square feet

1 lot size is greater than 10,000 square feet,

and Y is the sales price. The multiple linear regression model with the p = 2 independent variables

is

Y = β0 +β1X1 +β2X2 + ε.

Figure 3.17 shows a scatterplot of the interior square footage and sales price of homes on smaller

lots (X2 = 0 as open points) and larger lots (X2 = 1 as solid points). The values of β̂0, β̂1, and β̂2

are indicated on the graph. The estimated intercept β̂0 = 21,473, although slightly outside of the

scope of the model, gives the estimated sales price of a small lot containing no dwelling as $21,473.

The estimated regression coefficient β̂1 = 31.33 indicates that the sales price of a home increases

by an estimated $31.33 for each additional interior square foot, adjusted for lot size. The estimated

regression coefficient β̂2 = 35,693 indicates that homes on larger lots cost $35,693 more, on average,

than homes on smaller lots, adjusted for interior square feet. Notice that this formulation of the

multiple linear regression model forces the slopes of the two lines in Figure 3.17 to be identical,

regardless of the value of X2.

But is the assumption of equal slopes of the two lines in Figure 3.17 justified? Separate simple

linear regression models are fitted to the homes built on smaller and larger lots, and the results are

plotted in Figure 3.18. The lines do not appear to be parallel in this case, indicating that a more

complex regression model is warranted. There appears, in this case, to be an interaction effect

0 500 1000 1500 2000 2500

0

40,000

80,000

120,000

β̂0

β̂2

slope: β̂1

slope: β̂1

smaller lots (X2 = 0)

larger lots (X2 = 1)

X1

Y

Figure 3.17: Fitted multiple linear regression model Y = β0 +β1X1 +β2X2 + ε.
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Figure 3.18: Fitted simple linear regression models Y = β0 +β1X1 + ε.

between X1 and X2. This means that the effect of one independent variable (X1, for example, the

interior size) on Y is altered based on the value of another independent variable (X2, the lot size

indicator).

Regression analysts account for this interaction by including cross-product terms in the regres-

sion model. In this Ames housing data set example, the regression model with an interaction term

is

Y = β0 +β1X1 +β2X2 +β3X1X2 + ε.

If the regression parameter β̂3 differs statistically from 0, then the inclusion of the interaction term

is warranted. Notice that when X2 = 0 (smaller lots), the model reduces to

Y = β0 +β1X1 + ε,

which is a simple linear regression model with intercept parameter β0 and slope parameter β1. On

the other hand, when X2 = 1 (larger lots), the model reduces to

Y = β0 +β1X1 +β2 +β3X1 + ε

or

Y = β0 +β2 +(β1 +β3)X1 + ε

which is a simple linear regression model with intercept parameter β0 + β2 and slope parameter

β1 +β3. It is in this fashion that the two non-parallel lines depicted in Figure 3.18 can be estimated

in a single regression model. Not surprisingly, it requires four parameters, β0, β1, β2, and β3, to do

so. The multiple linear regression model with an interaction term can be fitted using the lm function

in R by simply replacing the usual + in the formula with *. All four parameters are statistically

significant at the 0.05 level in this case, so the inclusion of an interaction term is warranted.
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3.5.3 The ANOVA Table

The degrees of freedom for the sums of squares in multiple linear regression are modified because

of the additional parameters estimated relative to those given in the ANOVA table from Table 2.2

for simple linear regression. The ANOVA table for a multiple linear regression model with p inde-

pendent variables and normal error terms is given in Table 3.6. Formulas for the sums of squares

Source SS df MS F

Regression SSR p MSR MSR/MSE

Error SSE n− p−1 MSE

Total SST n−1

Table 3.6: Basic ANOVA table for multiple linear regression.

using the matrix formulation for multiple linear regression are SST = SSR+SSE, which is

(Y− Ȳ)
′
(Y− Ȳ)= (Ŷ− Ȳ)

′
(Ŷ− Ȳ)+(Y− Ŷ)

′
(Y− Ŷ),

where Ȳ is an n-element column vector with identical elements which are each the sample mean of

the values of the dependent variable. Equivalently,

SST = Y′Y−Y′JY/n, SSR = β̂ββ
′
X′Y−Y′JY/n, SSE = Y′Y− β̂ββ

′
X′Y,

where J is an n×n matrix with all elements being equal to 1. The mean square error for regression

is MSR = SSR/p, the mean square error is MSE = SSE/(n − p − 1), and the test statistic F =
MSR/MSE can be used for testing

H0 : β1 = β2 = · · ·= βp = 0

versus

H1 : not all β1, β2, . . . , βp equal 0

where F has an F(p, n − p − 1) distribution under H0. The anova function in R can be used

to generate an ANOVA table associated with a multiple linear regression model fitted by the lm
function. For the Ames, Iowa housing data from Example 3.10 which used p = 2 independent

variables (interior square footage and lot size), the R summary function returns the test statistic

F = 5.322, which is associated with a p-value of p = 0.006 based on the F distribution with p = 2

and n− p−1= 120−2−1= 117 degrees of freedom. There is strong statistical evidence that one or

both of the coefficients β̂1 and β̂2 is statistically different from zero. One or both of the independent

variables is effective in predicting the sales price.

3.5.4 Adjusted Coefficient of Determination

The coefficient of determination for a multiple linear regression model is defined as

R2 =
SSR

SST
=

SST −SSE

SST
= 1− SSE

SST
,

and it measures the fraction of variation in Y1, Y2, . . . , Yn about Ȳ that is accounted for by the linear

relationship between the independent variables X1, X2, . . . , Xp and Y . As before 0 ≤ R2 ≤ 1, and the
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extreme cases are associated with β̂1 = β̂2 = · · ·= β̂p = 0 (for R2 = 0) and all Y -values falling in the

estimated regression hyperplane (for R2 = 1).

Now consider a multiple linear regression model with p independent variables X1, X2, . . . , Xp.

What is the effect on SST and SSE of adding another independent variable, Xp+1, to the model?

Adding another independent variable does not affect SST because it depends only on Y1, Y2, . . . , Yn.

The value of SSE cannot increase with the addition of the new independent variable because either

(a) SSE will remain the same if β̂p+1 = 0, or (b) SSE will decrease if β̂p+1 6= 0. The impact on R2

is that it must stay the same or increase for every additional independent variable that is added to the

model.

It is for this reason that R2 tends to be a biased estimator of the fraction of variation in Y1, Y2, . . . , Yn

accounted for by the independent variables. Some regression software (including R) calculate an ad-

justed coefficient of variation by dividing the sums of squares by their associated degrees of freedom

R2
adj = 1− SSE/(n− p−1)

SST/(n−1)
.

Both values are reported in the call to the summary function with the Ames, Iowa housing data in

Example 3.10 as

R2 = 0.08339 and R2
adj = 0.06772.

3.5.5 Multicollinearity

In many settings, the values of the independent variables are correlated. In the housing data set from

Example 3.10, for example, the independent variables X1 (interior square footage) and X2 (lot size)

are probably positively correlated. Intuition suggests that larger homes are built on larger lots, on

average. In the extreme case, what if homes in Ames were required by some bizarre municipal code

to all be single story homes with the square footage of the lot always exactly four times the square

footage of the interior of the home? In this case, X2 = 4X1, so knowing the value of either X1 or

X2 allows you to know the value of the other. Intuitively, one of the two independent variables is

superfluous. When this is the case, the design matrix X has two columns which are multiples of one

another, so these columns are linearly dependent and the matrix does not have full rank. This implies

that the matrix X′X (which is used in computing the estimates of the regression coefficients) is

singular, so it does not have an inverse. In this case, the usual formula for the regression coefficients,

β̂ββ =
(

X′X
)−1

X′Y,

is undefined because the matrix X′X does not have an inverse. In the case in which X2 = 4X1, all

pairs of the independent variables fall on a line, so it is impossible to know the proper tilt of the

fitted regression plane in R 3. There are many planes that minimize the sum of squared errors.

Multicollinearity is the condition associated with independent variables that are highly corre-

lated among themselves in a multiple regression model. More specifically, multicollinearity occurs

when two or more of the independent variables have a high correlation. This can appear as an

approximately linear relationship between two of the independent variables. Multicollinearity is a

condition associated with the design matrix X rather than the values of the dependent variable Y or

the model Y = Xβββ+εεε. In cases in which multicollinearity exists, the matrix X′X has an inverse, but

it is ill-conditioned and subject to slight variations in the data or is unstable because of large differ-

ences in the magnitudes of the various values of the independent variables. One of the key practical

issues when multicollinearity is present is that an estimated regression coefficient for a particular
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independent variable depends on whether the other independent variables are included or left out of

the model.

So multicollinearity has been loosely defined as high correlation among the independent vari-

ables. There is redundancy to the information contained in the independent variables. The next

paragraphs describe how to detect multicollinearity, its consequences, and some remedies.

Although the hypothetical perfect correlation between the interior space and the lot size of a

home from Ames, Iowa described previously occurs seldom in practice, highly correlated indepen-

dent variables can result in some unusual behavior of regression coefficients as a regression model

is constructed. Some signs that multicollinearity might be present in a multiple linear regression

model include the following.

• Large values of the estimated standard deviations of the regression coefficients.

• Including or not including an independent variable in the model results in large changes to the

estimated regression coefficients.

• An estimated regression coefficient that is statistically significant when the associated inde-

pendent variable is considered alone, but becomes insignificant when one or more other inde-

pendent variables are added to the model.

• An estimated regression coefficient with a sign that is inconsistent with expected sign or in-

consistent with previous similar data sets.

• The pairwise sample correlation among the independent variables is high. The cor function

in R can be used to assess the correlation among independent variables. The R statement

cor(swiss)

for example, calculates the correlation matrix for the columns of the built-in data frame named

swiss. The off-diagonal elements of this matrix range from −0.69 to 0.70, indicating that

multicollinearity is present.

All of the criteria listed above are informal. A more formal way to determine whether multicollinear-

ity is present is to introduce a statistic which reflects multicollinearity. The estimate of the variance

of β̂ j can be written as

V̂
[

β̂ j

]

=
1

1−R2
j

[

MSE

∑n
i=1(Xi j − X̄ j)2

]

,

where X̄ j = ∑n
i=1 Xi j, MSE = SSE/(n− p− 1) for the full multiple regression model, and R2

j is

the coefficient of determination obtained by conducting a multiple linear regression with X j as the

dependent variable and the other p− 1 X-values as the independent variables, for j = 1, 2, . . . , p.

The coefficient on the right-hand side of this equation,

V IFj =
1

1−R2
j

,

is known as a variance inflation factor for independent variable j, for j = 1, 2, . . . , p. In the extreme

case when R2
j = 0, the associated variance inflation factor is V IFj = 1. This corresponds to the case

in which X j is not linearly related to the other independent variables. As R2
j increases, V IFj also in-

creases, corresponding to increased correlation between the independent variables. When the largest
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of the V IFj values exceeds the threshold value of 10, one can conclude that the multicollinearity is

present among the independent variables.

The R code below calculates the variance inflation factors for the data values in the swiss data

frame, where the independent variables

• X1, the percentage of males involved in agriculture as an occupation,

• X2, the percentage of draftees receiving the highest make on an army examination,

• X3, the percentage of draftees with education beyond the primary school,

• X4, the percentage of Catholics, and

• X5, the percentage of live births who live less than one year,

are used to predict Y , a common standardized fertility measure, from the n = 47 French-speaking

provinces of Switzerland in about the year 1888. The R code below computes the variance inflation

factors for the p = 5 independent variables.

swiss = as.matrix(swiss)
p = 5
y = swiss[ , 1]
n = length(y)
x = cbind(1, swiss[ , 2:(p + 1)])
for (i in 2:(p + 1)) {
yy = x[ , i]
xx = x[ , -i]
beta = solve(t(xx) %*% xx) %*% t(xx) %*% yy
fitted = xx %*% beta
resid = yy - fitted
sse = sum(resid ^ 2)
m = mean(yy)
sst = sum((yy - m) ^ 2)
r2 = 1 - sse / sst
vif = 1 / (1 - r2)
print(vif)

}

The variance inflation factors for the p = 5 independent variables are

V IF1 = 2.28,V IF2 = 3.68,V IF3 = 2.77,V IF4 = 1.94,V IF5 = 1.11.

Since none of these five values exceeds 10, we can conclude that the multicollinearity that exists in

the independent variables is not strong enough to cause concern. (Some regression analysts use 5 as

a threshold rather than 10.) Some keystrokes can be saved by using the vif function from the car
package on a multiple linear regression model fitted by the lm function.

library(car)
fit = lm(Fertility ~ Agriculture + Examination + Education +

Catholic + Infant.Mortality, data = swiss)
summary(fit)
vif(fit)
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One popular remedy for multicollinearity is known as ridge regression, which is a parameter

estimation technique that abandons the requirement of unbiased parameter estimates. The approach

taken with ridge regression is to choose estimates for the regression parameters that are biased, but

have a smaller variance than the ordinary least squares estimates. The goal is to generate param-

eter estimates with tolerable bias but smaller variance. The typical approach used in statistics to

overcome this bias/variability trade-off is to use the estimates that minimize the mean square errors.

Assuming that the X and Y values have been centered, we can dispense with the need for an intercept

term in the multiple regression model. Rather than minimizing the usual sum of squared errors

S =
n

∑
i=1

(Yi −β1Xi1 −β2Xi2 −·· ·−βpXip)
2 ,

ridge regression minimizes

SR =
n

∑
i=1

(Yi −β1Xi1 −β2Xi2 −·· ·−βpXip)
2 +λ

p

∑
j=1

β2
j .

There are now two terms in the modified sum of squares. The second term in SR is known as the

penalty term. The new parameter λ is known as the penalty parameter. When λ = 0, SR reduces to

the ordinary least squares case and achieves a value SSE at the ordinary least squares estimators. As

λ increases, the estimators converge to β̂1 = β̂2 = · · ·= βp = 0. We desire a λ value that introduces

some bias into the parameter estimates, but also have a reduced variance.

The geometry associated with ridge regression for p = 2 independent variables X1 and X2 in a

multiple linear regression model is illustrated in Figure 3.19. The ellipses are level surfaces of the

first term in SR. The center of the ellipses is the ordinary least squares estimators of (β1, β2) =
(

β̂1, β̂2

)

, which are the values that minimize the first term of SR. The circles centered at the origin

are level surfaces of the second term in SR. The ridge regression estimators for β1 and β2 will occur

at the intersection of one of elliptical and circular contours. In Figure 3.19 the two outermost level

surfaces intersect at a point, which is a value of the ridge regression estimates of β1 and β2 which

correspond to one particular value of the penalty parameter λ. The point at which this intersection

β0

β1

β̂0

β̂1

0

0

Figure 3.19: Ridge regression geometry for p = 2 independent variables.
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occurs is a function of the penalty parameter λ. In higher dimensions, the circles become spheres

and the ellipses become ellipsoids.

Determining the value of the penalty parameter is critical in ridge regression, but its choice de-

pends on the regression model and associated data set. A common technique for determining an

optimal value for λ is known as k-fold cross-validation. There are several functions in R which can

perform ridge regression: the lm.ridge function from the MASS package, the linearRidge func-

tion from the ridge package, and the glmnet function from the glmnet package. Ridge regression

is related to the lasso (least absolute shrinkage and selection operator) estimator and elastic net regu-

larization, two other popular parameter estimation techniques that are often applied for large values

of p.

Is there a way to completely avoid multicollinearity? In some settings, the answer is yes. When

the values of the independent variables are chosen so that they are uncorrelated, the regression

coefficients associated with a simple linear regression model of each independent variable separately

match the regression coefficients of any model involving more independent variables. This fact

provides a strong argument for a designed experiment which can result in uncorrelated independent

variables whenever the setting of the regression problem make this possible.

3.5.6 Model Selection

It is common in regression modeling to have a large number of potential independent variables that

might adequately predict the dependent variable Y that need to be sifted through in order to decide

whether each should be included or excluded from the regression model. If there are p potential

independent variables in the multiple linear regression model

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε

then there are 2p possible regression models (always including an intercept term and not considering

interaction terms or nonlinear terms) because each independent variable will either be included or not

included in the regression model. Since the number of regression models to fit can be daunting, even

for moderate values of p, we desire an algorithm for selecting the appropriate independent variables

to include in the model. Forward stepwise regression is one such automatic search procedure used

to select the independent variables to include in a multiple linear regression model. The procedure

begins with the null model Y = β0 + ε and progressively adds independent variables to the model

that are deemed to be statistically significant. In the initial step, p simple linear regression models

are fit for each potential independent variable. The independent variable with the smallest p-value

falling below a prescribed threshold (commonly, α = 0.05) associated with the t-test described in

Section 2.3.2 is added to the model. In the second step, p−1 multiple linear regression models with

two independent variables are fitted using the previously selected independent variable and each of

the other potential independent variables. The independent variable with the smallest p-value is

added to the model. This process continues until no more independent variables meet the criteria.

This is the multiple linear regression model selected by forward stepwise regression. Several other

variants of forward stepwise regression and other model selection algorithms are outlined below.

• Foreward stepwise regression often includes a test to determine whether independent variables

that have previously been added to the model have p-values that exceed the threshold and

should consequently be removed from the model.

• Backward stepwise regression starts by including all p independent variables in the regres-

sion model and eliminates the independent variable with the largest p-value on each step.
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Unfortunately, there is no guarantee that forward stepwise regression and backward stepwise

regression will result in the same final regression model.

• Once this statistically significant independent variables have been identified, a similar step-

wise procedure can be executed to test for statistically significant interaction terms.

• A similar stepwise procedure can be executed to test for the significance of nonlinear terms in

the regression model.

• With increased computer speeds and a moderate value of p, the number of independent vari-

ables, it is possible to fit all 2p possible regression models and compare them to determine an

appropriate final regression model.

• Comparing potential regression models using p-values is not universal. The Akaike Informa-

tion Criterion (AIC) is a measure which extracts a penalty for each additional parameter in a

model in an effort to avoid overfitting.

In summary, selecting a multiple linear regression model is not easy. The skills required to

select a model include the ability to (a) detect and remedy multicollinearity, (b) assess ev-

idence of interaction effects between independent variables and include them in the model

when appropriate, (c) assess evidence of nonlinear relationships between some or all of the

independent variables and the dependent variable and include appropriate terms in the model,

(d) execute the appropriate multidimensional diagnostic procedures (outlined in the simple

linear regression case in Section 3.2) and execute the appropriate remedial procedures (out-

lined in the simple linear regression case in Section 3.3) when model assumptions are violated,

and (e) assess the normality of the residuals.

3.6 Weighted Least Squares

The three approaches to estimating the parameters in a simple linear regression model that we have

encountered thus far,

• the algebraic approach,

• the matrix approach,

• using the R lm (linear model) function,

all have the same assumptions regarding the independent variable, the dependent variable, and the

model Y = β0 +β1X + ε. In all three approaches, the error terms are assumed to be mutually inde-

pendent random variables, each with population mean 0 and population variance–covariance matrix

V [ε] = σ2
ZI, where I is the n× n identity matrix. This means that V [εi] = σ2

Z , for i = 1, 2, . . . , n.

There is also an implicit assumption that each of the data pairs (Xi, Yi) are each given equal weight

in the regression.

Settings occasionally arise in which some data values should be given different weights. There

might be evidence that some of the Yi values have more precision than others. Weights can be placed

on each of the data pairs to account for this difference in precision. This leads to a weighted least

squares approach to estimating the coefficients in a regression model.

In the standard simple linear regression model, the assumption

V [εi] = σ2
Z ,
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for i = 1, 2, . . . , n, means that the variance of the dependent variable from the regression line is

equal for all of the n data pairs, regardless of the value of the independent variable. In weighted least

squares modeling, the positive weights w1, w2, . . . , wn are determined so that

V [εi] = σ2
Z/wi

for i = 1, 2, . . . , n, which means that certain data pairs have more precision than other data pairs.

The weights are fixed constants. There is no requirement that the weights sum to one. Data pairs

with larger weights are assumed to have a lower variability to their error terms. This allows for a

population variance that changes from one data pair to another.

As an illustration, the values of the dependent variable Y might be sample means at the various

values of the independent variable X . Furthermore, if the sample sizes associated with the sample

means are known and unequal, then we would like to assign higher weights to the data pairs asso-

ciated with larger sample sizes. If ni is the sample size for data pair i, for i = 1, 2, . . . , n, then the

appropriate weight for data pair i is wi = ni so that

V [εi] = σ2
Z/ni

for i = 1, 2, . . . , n.

So rather than minimizing the sum of squares

S =
n

∑
i=1

(Yi −β0 −β1Xi)
2

as was the case in the standard simple linear regression model, weighted least squares minimizes the

weighted sum of squares

S =
n

∑
i=1

wi(Yi −β0 −β1Xi)
2.

Notice that this reduces to the ordinary sum of squares when w1 = w2 = · · · = wn = 1. As before,

calculus can be used to minimize S with respect to β0 and β1 to arrive at the least squares estimators

β̂0 and β̂1. The partial derivatives of S with respect to β0 and β1 are

∂S

∂β0
=−2

n

∑
i=1

wi(Yi −β0 −β1Xi) = 0

and
∂S

∂β1
=−2

n

∑
i=1

wiXi(Yi −β0 −β1Xi) = 0.

These can be simplified to give the normal equations

β0

n

∑
i=1

wi +β1

n

∑
i=1

wiXi =
n

∑
i=1

wiYi

and

β0

n

∑
i=1

wiXi +β1wiX
2
i =

n

∑
i=1

wiXiYi.

The normal equations are a system of two linear equations in the two unknowns β0 and β1, given

the data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and the weights w1, w2, . . . , wn. The normal equations
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can be solved to yield the weighted least squares estimators. This derivation constitutes a proof of

the following theorem.

Theorem 3.3 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs with at least two distinct Xi val-

ues. Let w1, w2, . . . , wn be the weights associated with the data pairs. The weighted least squares

estimators of β0 and β1 in the simple linear regression model are the solution to the simultaneous

normal equations

β0

n

∑
i=1

wi +β1

n

∑
i=1

wiXi =
n

∑
i=1

wiYi

β0

n

∑
i=1

wiXi +β1wiX
2
i =

n

∑
i=1

wiXiYi.

and are given by

β̂1 =
∑n

i=1 wi(Xi − X̄w)(Yi − Ȳw)

∑n
i=1 wi(Xi − X̄w)2

and

β̂0 = Ȳw − β̂1X̄w,

where X̄w and Ȳw are the weighted sample means

X̄w =
∑n

i=1 wiXi

∑n
i=1 wi

and Ȳw =
∑n

i=1 wiYi

∑n
i=1 wi

.

The matrix approach can also be applied to weighted least squares. Define the X, Y, βββ and εεε
matrices as in Section 3.4:

X =











1 X1

1 X2

...
...

1 Xn











, Y =











Y1

Y2

...

Yn











, βββ =

[

β0

β1

]

, and εεε =











ε1

ε2

...

εn











.

In addition, assume that the matrix W is a diagonal matrix with the weights w1, w2, . . . , wn on the

diagonal:

W =











w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wn











.

In this case, the normal equations can be written in matrix form as

X′WXβββ = X′WY.

Pre-multiplying both sides of this equation by (X′WX)−1
gives the least squares estimators for the

regression parameters in matrix form as

β̂ββ =
(

X′WX
)−1

X′WY.
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As before, the fitted values can also be written in matrix form as

Ŷ= Xβ̂ββ

or

Ŷ= X
(

X′WX
)−1

X′WY.

The residuals ei = Yi − Ŷi for i = 1, 2, . . . , n, can also be written in matrix form as

e = Y− Ŷ

= Y−Xβ̂ββ

= Y−X
(

X′WX
)−1

X′WY

=
(

I−X
(

X′WX
)−1

X′W
)

Y,

where e is the column vector of residuals e = (e1, e2, . . . , en)
′. These matrix results are summarized

in the following theorem.

Theorem 3.4 Let X, Y, βββ, and εεε be the matrices associated with a simple linear regression model

with weights w1, w2, . . . , wn associated with the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). Let W

be an n×n diagonal matrix with the weights on the diagonal elements. The least squares estimators

of β0 and β1 are

β̂ββ =
(

X′WX
)−1

X′WY.

The fitted values are

Ŷ= Xβ̂ββ = X
(

X′WX
)−1

X′WY.

The residuals are

e =
(

I−X
(

X′WX
)−1

X′W
)

Y.

The algebraic approach, matrix approach, and R approach to weighted least squares problem

will be illustrated in the next example. Establishing the weights w1, w2, . . . , wn can be a nontrivial

problem, and differs depending on the setting in which the weighted regression model is employed.

Example 3.11 In reliability, current status data is generated by testing a randomly se-

lected group of items with varying ages from a population at a particular fixed time

in order to determine whether or not each item has failed or is operating at its partic-

ular age. Items were selected at ages 100, 200, 300, and 400 hours to see if they are

operating. In this case, the independent variable X is the age, measured in hours, at

which an item is tested. Each item tested is deemed to be either operating or failed.

Table 3.7 contains the results of the test. Notice that 100 items were tested at ages

X1 = 100 and X2 = 200, but only 10 items were tested at ages X3 = 300 and X4 = 400.

The dependent variable in this setting is the fraction of items that survive to a particular

age. The sample size at each testing age is denoted by ni, i = 1, 2, 3, 4. So a total of

n1 + n2 + n3 + n4 = 220 items were tested. The number of items that are operating at

each testing age is denoted by Si, i = 1, 2, 3, 4. The fraction of items that are operating

at each testing age, which is the dependent variable in the regression, is denoted by

Yi, i = 1, 2, 3, 4. Notice that the fraction surviving is not necessarily decreasing from

one time to the next because of random sampling variability. The small sample sizes at
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Time (hours) X1 = 100 X2 = 200 X3 = 300 X4 = 400

Sample size n1 = 100 n2 = 100 n3 = 10 n4 = 10

Number surviving S1 = 50 S2 = 25 S3 = 4 S4 = 3

Fraction surviving Y1 = 0.5 Y2 = 0.25 Y3 = 0.4 Y4 = 0.3

Table 3.7: Current status data test results.

times X3 = 300 and X4 = 400 magnify this problem with the data set. The goal here is

to establish a regression function that will adequately smooth the data values in order to

estimate the survivor function for the items at any time.

Assume for now that the standard (non-weighted) least squares approach using the n= 4

data pairs

(100, 0.5), (200, 0.25), (300, 0.4), and (400, 0.3)

is taken to this problem. The R code below fits the simple linear regression model to

the data.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
fit = lm(y ~ x)
fit$coefficients

The regression line in this case has intercept β̂0 = 0.475 and slope β̂1 = −0.00045.

The survival probability of a brand-new item is estimated to be 0.475, and the survival

probability decreases by 0.00045 for every hour that passes. The unimpressive survival

probability of 0.475 for a new item is outside of the scope of the simple linear regression

model, so its interpretation is not meaningful.

But using the standard simple linear regression approach is not appropriate here. The

first two data pairs, both of which involved testing 100 items, should be weighted more

heavily that the last two data pairs, which only involved testing 10 items. Determining

the appropriate weights, however, is nontrivial.

Assume that the test results for each item are mutually independent Bernoulli trials. The

number of items that survive a test at one particular time (that is, Si using the notation

from Table 3.7) is a binomial random variable with parameters ni and pi, where pi is

the population probability that item i is operating at time Xi. The population variance

of the dependent variable Yi = Si/ni is

V [ p̂i] =V [Yi] =V

[

Si

ni

]

=
1

n2
i

V [Si] =
ni pi(1− pi)

n2
i

=
pi(1− pi)

ni

,

for i= 1, 2, 3, 4. Using the point estimate for pi on the right-hand side of this expression

results in the following estimated variances for the four dependent variables:

V̂ [Y1] =
50

100

(

1− 50
100

)

100
=

1

400
, V̂ [Y2] =

25
100

(

1− 25
100

)

100
=

3

1600
,
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V̂ [Y3] =
4
10

(

1− 4
10

)

10
=

24

1000
, V̂ [Y4] =

3
10

(

1− 3
10

)

10
=

21

1000
.

Not surprisingly, the first two variance estimates are about an order of magnitude smaller

than the second two variance estimates because of the differences in the sample sizes.

This approach will have problems if one of the testing times has all successes (Si = ni)

or all failures (Si = 0).

Since the weights wi appear in the denominator of the expression V [εi] = σ2
Z/wi, the

reciprocals of these variance estimates will be used as the weights in the weighted least

squares regression:

w1 =
400

1
, w2 =

1600

3
, w3 =

1000

24
, w4 =

1000

21
.

The regression coefficients will be calculated in three ways, all of which yield identical

results: the algebraic approach, the matrix approach, and using the lm function.

First, the algebraic approach for calculating the slope and intercept of the regression

line using weighted least squares uses the following R statements. These are an imple-

mentation of Theorem 3.3.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
w = n / (y * (1 - y))
meanx = sum(w * x) / sum(w)
meany = sum(w * y) / sum(w)
slope = sum(w * (x - meanx) * (y - meany)) / (sum(w * (x - meanx) ^ 2))
inter = meany - slope * meanx
print(c(inter, slope))

The weighted mean of the X values is

X̄w =
∑n

i=1 wiXi

∑n
i=1 wi

= 174.2725.

Notice that this is slightly lower than the unweighted mean of the x values, which is

(100+200+300+400)/4 = 250 hours. This is due to the larger sample sizes at testing

times 100 and 200, resulting in larger weights for these values. The weighted mean of

the Y values is

Ȳw =
∑n

i=1 wiYi

∑n
i=1 wi

= 0.3562.

The estimates for the slope and intercept of the regression line for weighted least squares

is

β̂1 =
∑n

i=1 wi(Xi − X̄w)(Yi − Ȳw)

∑n
i=1 wi(Xi − X̄w)2

=−0.001081

and

β̂0 = Ȳw − β̂1X̄w = 0.5447.
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The interpretation of these estimates is that the estimated probability of survival at time

0 is 0.5447 and the probability of survival decreases by 0.001081 with every hour that

passes.

Second, using the matrix approach, the X, Y, and W matrices associated with this data

set are

X =









1 100

1 200

1 300

1 400









, Y =









0.50

0.25

0.40

0.30









, and W =









400
1 0 0 0

0 1600
3 0 0

0 0 1000
24 0

0 0 0 1000
21









.

The R code below uses the matrix approach to simple linear regression with weights to

calculate the estimated slope β̂0 and intercept β̂1, the fitted values Ŷ, and the residuals

e for the current status data set using Theorem 3.4. The R solve function is used to

compute the inverse of X′X.

options(digits = 4)
x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
w = n / (y * (1 - y))
w = diag(w)
x = cbind(1, x)
beta = solve(t(x) %*% w %*% x) %*% t(x) %*% w %*% y
fitted = x %*% beta
e = y - fitted

The results of these calculations are given below. The point estimators of the slope and

intercept are

β̂ββ =
(

X′WX
)−1

X′WY =

[

0.5447

−0.001081

]

.

The fitted values are

Ŷ= Xβ̂ββ =









0.4365

0.3284

0.2203

0.1121









.

The residuals are

e = Y− Ŷ=









0.0635

−0.0784

0.1797

0.1879









.

Third, the built-in function lm can be used for weighted least squares by using the

weights argument. The R code below calculates the estimates of the regression coeffi-

cients, the fitted values, and the residuals.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
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s = c( 50, 25, 4, 3)
y = s / n
w = n / (y * (1 - y))
fitw = lm(y ~ x, weights = w)
print(fitw$coefficients)
print(fitw$fitted.values)
print(fitw$residuals)
print(weighted.residuals(fitw))

The three approaches all yield the same results. The regression line associated with

ordinary least squares and weighted least squares can be compared graphically. The

R code below plots the four data pairs and the associated ordinary least squares and

weighted least squares regression lines.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
fit = lm(y ~ x)
w = n / (y * (1 - y))
fitw = lm(y ~ x, weights = w)
plot(x, y)
abline(fit$coefficients)
abline(fitw$coefficients)

Figure 3.20 contains the resulting plot, which shows the ordinary least squares line with

equal weighting to the four data values and the weighted least squares line with much

more weight to the first two data pairs and much less weight to the last two data pairs.

Extra circles have been added to the two data pairs associated with the larger sample

sizes with larger weights in Figure 3.20. The effect of the larger weights on the first

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

X

Y

ordinary least squares

weighted least squares

Figure 3.20: Current status data ordinary and weighted least squares fits.
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two data pairs is apparent in the weighted least squares regression line. The rightmost

two data pairs exert significantly less tug on the weighted least squares regression line

because of their smaller weights.

Using simple linear regression in the previous example, either weighted or unweighted, might

not be the best approach. The dependent variable Y is the probability that an item of age X is func-

tioning. This dependent variable must lie between 0 and 1, but the regression line could potentially

fall outside of that range within the scope of the model. Two potential remedies are given in the next

two sections: using a regression model with nonlinear terms such as X2 or X3, or a survivor function

of a lifetime model rather than a line, or a nonlinear model known as a logistic regression model,

whose dependent variable necessarily lies between 0 and 1.

3.7 Regression Models with Nonlinear Terms

Regression models with nonlinear terms arise frequently in regression modeling. One simple exam-

ple is polynomial regression. A quadratic regression model, for example, is

Y = β0 +β1X +β2X2 + ε,

where β0, β1, and β2 are the regression coefficients, and ε is a white noise term. This model is still

linear in β0, β1, and β2. One way to think about this model is to consider X and X2 to be the p = 2

independent variables in a multiple regression model. The next example fits a quadratic model to

the data pairs in which the independent variable X is the speed of an automobile and the dependent

variable Y is its stopping distance.

Example 3.12 Consider the n = 50 data pairs from Example 2.8 which give the speed

(in miles per hour) as X and the stopping distance (in feet) as Y . These data pairs are

built into the base R language in the data frame named cars, where the speed column

contains the values of X and the dist column contains the values of Y . Fit a quadratic

regression model forced through the origin to the data pairs.

Since the quadratic regression model is being forced through the origin in order to

account for the fact that stationary cars (X = 0) do not require any distance (Y = 0) to

stop, the quadratic regression model is

Y = β1X +β2X2 + ε,

where ε ∼WN
(

0, σ2
Z

)

. R is capable of fitting nonlinear models to data. The I (inhibit

interpretation) function allows the modeling of some function of a particular indepen-

dent variable. For the data pairs in the cars data frame, a quadratic regression model

that is forced through the origin can be fit with lm function.

fit = lm(dist ~ speed + I(speed ^ 2) - 1, data = cars)

The -1 part of the formula forces the regression function to pass through the origin.

The output generated by the summary(fit) statement is given below.

Call:
lm(formula = dist ~ speed + I(speed^2) - 1, data = cars)
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Residuals:
Min 1Q Median 3Q Max

-28.836 -9.071 -3.152 4.570 44.986

Coefficients:
Estimate Std. Error t value Pr(>|t|)

speed 1.23903 0.55997 2.213 0.03171 *
I(speed^2) 0.09014 0.02939 3.067 0.00355 **
---
Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 15.02 on 48 degrees of freedom
Multiple R-squared: 0.9133, Adjusted R-squared: 0.9097
F-statistic: 252.8 on 2 and 48 DF, p-value: < 2.2e-16

The fitted quadratic regression model that is forced to pass through the origin is

Y = 1.24X +0.0901X2,

where X is speed and Y is stopping distance. Notice that β̂2 = 0.0901 > 0, which

means that a graph of the fitted regression function—a parabola that passes through the

origin—is concave up. Since the p-value associated with the linear term is p = 0.032

and the p-value associated with the quadratic term is p = 0.0036, both of the regression

coefficients are statistically significant. The R commands

plot(cars, xlim = c(0, 25), pch = 16, las = 1)
fit = lm(dist ~ speed + I(speed ^ 2) - 1, data = cars)
x = 0:25
y = fit$coefficients[1] * x + fit$coefficients[2] * x ^ 2
lines(x, y)

plot the fitted model over the scatterplot. This graph appears in Figure 3.21.

How do we compare the simple linear regression model to the quadratic regression

model forced through the origin? Both have two parameters, but which one of the

models is a better approximation to the data pairs? One way to compare the two models

is with the sum of squared residuals for each of the models, which are computed with

the R commands

sum(lm(dist ~ speed, data = cars)$residuals ^ 2)
sum(lm(dist ~ speed + I(speed ^ 2) - 1, data = cars)$residuals ^ 2)

The simple linear regression model has a sum of squared residuals of S = 11,353.52,

and the quadratic regression model forced through the origin has a sum of squared

residuals of S = 10,831.12. Using the quadratic regression model forced through the

origin reduces the sum of squared residuals by 522.4. Higher-order polynomials can be

fit using the lm function in a similar manner. As was the case in multiple regression,

adding more terms generally results in a reduction in the sum of squared residuals.
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Figure 3.21: Scatterplot and quadratic fit of speed X and stopping distance Y .

Nonlinear regression modeling is not limited to just polynomial regression models. The next

two examples fit the same data set concerning the national debt in the United States between 1970

and 2020 to a nonlinear regression model using two fundamentally different approaches. The first

approach is to transform the nonlinear regression model to a linear regression model and then apply

the standard techniques for parameter estimation to the transformed model. The second approach is

to use numerical methods to minimize the sum of squares in the usual least squares fashion described

previously.

Example 3.13 The national debt of the United States, in trillions of dollars, between

1970 and 2020 is given in Table 3.8. These values are not adjusted for inflation. Fit

an exponential regression model to the national debt of the United States, where X is

the year and Y is the debt, by transforming an exponential regression model to a linear

model.

Year Debt

1970 0.37

1975 0.53

1980 0.91

1985 1.82

1990 3.23

1995 4.97

2000 5.67

2005 7.93

2010 13.56

2015 18.15

2020 27.75

Table 3.8: United States national debt, 1970–2020.

The scatterplot in Figure 3.22 shows that a simple linear regression model is not appro-
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Figure 3.22: Scatterplot of the year X and the national debt Y .

priate for these data pairs. A regression model that reflects the exponential growth rate

in the debt is warranted. Both savings and debt tend to grow exponentially, so an ex-

ponential regression model is a reasonable initial model to investigate. Consider fitting

the regression model

Y = eβ0+β1X+ε

to the data set, where X is the year, Y is the debt, ε is an error term, and β0 and β1 are

unknown regression parameters to be estimated from the data pairs. This model can

be transformed to a linear model by taking the natural logarithm of both sides of the

model:

ln Y = β0 +β1X + ε.

This model is now in the form of a simple linear regression with independent variable
X and dependent variable ln Y . The intercept of the fitted model is β0 and the slope
of the fitted model is β1. So a graph that contains X on the horizontal axis and ln Y
on the vertical axis should be approximately linear if this transformation approach is
appropriate. Such a graph is given in Figure 3.23, which is much closer to linear than
the raw data points. It is apparent that some work on debt reduction occurred in the
late 1990s, resulting in a slight bit of nonlinearity. We will proceed with fitting the
transformed model. The R code below follows a similar pattern to the earlier examples,
but this time the formula used in the call to the lm function is log(debt) ~ year.
The curve function is used to add the fitted regression function to the scatterplot.

year = seq(1970, 2020, by = 5)

debt = c(.37, .53, .91, 1.82, 3.23, 4.97, 5.67, 7.93, 13.56, 18.15, 27.75)

fit = lm(log(debt) ~ year) # fit an exponential model

b0 = coef(fit)[1] # estimated beta0 value

b1 = coef(fit)[2] # estimated beta1 value

plot(year, debt, las = 1, pch = 16) # scatterplot of data pairs

curve(exp(b0 + b1 * x), add = TRUE) # plot fitted model

The fitted model is displayed in Figure 3.24. The values of the estimated parameters

are β̂0 =−170.4 and β̂1 = 0.08606.
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Figure 3.23: Scatterplot of the year X and the logarithm of the national debt Y .
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Figure 3.24: Scatterplot and exponential fit of year X and debt Y .

There is a second approach to fitting an exponential regression model to the national debt data

pairs that follows the standard approach to least squares estimation, which is given next.

Example 3.14 Fit an additive exponential regression model to the United States na-

tional debt data pairs from Example 3.13.

The second approach to fitting an exponential regression model to the debt data pairs is

to use the additive model

Y = eβ0+β1X + ε.

Using the traditional least squares approach, the sum of squares

S =
n

∑
i=1

(

Yi − eβ0+β1Xi

)2
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is minimized with respect to β0 and β1, yielding the associated least squares estimators

β̂0 and β̂1. The estimators cannot be expressed in closed form, so numerical methods
must be used to estimate β0 and β1. A nonlinear least squares R function named nls
can be used to estimate the parameters. Here is a first attempt at fitting the model.

year = seq(1970, 2020, by = 5)

debt = c(.37, .53, .91, 1.82, 3.23, 4.97, 5.67, 7.93, 13.56, 18.15, 27.75)

fit = nls(debt ~ exp(b0 + b1 * year)) # fit exponential model

This code returns an error message indicating that the nls function was unable to esti-
mate the parameters. What went wrong? The way that the model has been formulated,

the parameter eβ0 represents the United States national debt in the year 0. This is why

we had the parameter estimate eβ̂0 = e−170.4 = 10−74 from the transformation approach
in Example 3.13. The nls function attempts to do a search over all values of β0 and

β1 to minimize the sum of squares. Finding the value of β̂0 is like finding a needle in a
haystack. We need to give the nls function some help. We will give nls some starting
values in a list named start to make the internal search performed by the nls function

easier. The initial values for β̂0 and β̂1 will be the estimates for β0 and β1 from the
transformation approach from the previous example.

year = seq(1970, 2020, by = 5)

debt = c(.37, .53, .91, 1.82, 3.23, 4.97, 5.67, 7.93, 13.56, 18.15, 27.75)

fit = nls(debt ~ exp(b0 + b1 * year), start = list(b0 = -170, b1 = 0.09))

b0 = coef(fit)[1] # fitted beta0 value

b1 = coef(fit)[2] # fitted beta1 value

plot(year, debt, pch = 16) # scatterplot of data pairs

curve(exp(b0 + b1 * x), add = TRUE) # plot fitted model

The estimated parameters are β̂0 =−151.7 and β̂1 = 0.07676. Thus, the fitted nonlinear

regression model is

E[Y ] = eβ̂0+β̂1X .

The fitted exponential regression model is displayed in Figure 3.25. The two different
exponential regression models can be compared by computing the sums of squares for
the two models, which can be computed by the additional R command

sum((debt - exp(b0 + b1 * year)) ^ 2) # calculate sum of squares

The sum of squares for fitting the exponential regression model using the transformation

technique is 22.7 and the sum of squares for the nonlinear least squares is 3.1. So

consistent with Figures 3.24 and 3.25, the nonlinear least squares approach provides a

better fit to the data pairs.

One drawback that emerged from the survival function estimation example from the previous

section (involving current status data) is that fitting a regression line results in a survival probability

that can be negative or greater than one when extrapolated outside of the range of the independent

variable in the data pairs. In addition, the estimated probability of survival at time zero for both the

ordinary simple linear regression model and the weighted simple linear regression model seemed

low. Typically, a brand-new item is not defective. A nonlinear regression function is an attractive

alternative model in this particular setting. The next example combines a nonlinear regression model

and weighted least squares estimators to provide an improved regression model.
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Figure 3.25: Scatterplot and exponential fit of year X and debt Y .

Example 3.15 Consider again the estimate of the probability of survival from the cur-

rent status data given in Example 3.11. A simple nonlinear model that might be ap-

propriate for the current status data set is to assume that the lifetime of the item under

consideration follows the exponential(λ) distribution. The survivor function for an ex-

ponential random variable T with positive failure rate λ is

S(t) = P(T ≥ t) = e−λt t > 0,

where t is the failure time in hours.

(a) Fit this nonlinear regression model using ordinary least squares.

(b) Fit this nonlinear regression model using weighted least squares.

(c) Compare the two fitted regression models.

(a) There are two ways to proceed with this regression problem. The first is to mini-

mize the squared deviations

S =
n

∑
i=1

(

Yi − e−λXi

)2

with respect to λ to arrive at an appropriate regression parameter estimator. Equiv-

alently, the least squares estimator of λ is

λ̂ = argmin
λ

n

∑
i=1

(

Yi − e−λXi

)2
.

This is the usual least squares approach. The second is to perform algebraic ma-

nipulations to the model in order to “linearize” the model so that the theory asso-

ciated with the simple linear regression model can be implemented. The second

approach is considered here. Treating this as a regression problem with X as time
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and Y as the survival probability results in the multiplicative nonlinear regression

model

Y = e−λX ε.

Taking the natural logarithm of both sides of this model results in

ln Y =−λX + ε

or

− ln Y = λX + ε.

(Notice that when the error distribution is symmetric, which is often the case, the

last step is justified.) This can be thought of as a linear regression problem with

X as the independent variable and − ln Y as the dependent variable. There is no

intercept in this model, so it can be treated as forcing the regression line through

the origin and the single regression parameter λ corresponds to the slope of the

regression line.

The R code below uses unweighted least squares to estimate the slope λ using

the algebraic approach that forces the regression line through the origin using the

techniques from Section 3.1.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
logy = -log(y)
lamhat = sum(x * logy) / sum(x * x)

The R code using the matrix approach is identical to the algebraic approach in this

case. Likewise, the regression parameter λ can be estimated using the lm function

with the - 1 parameter to force the regression through the origin via the code

below.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
logy = -log(y)
lm(logy ~ x - 1)$coefficients

Using any of these approaches to estimating λ, the estimate for the failure rate is

λ̂ = 0.003677

failures per hour.

(b) For the current status data set, it is sensible to incorporate the weights that are

based on the various sample sizes into the regression model.

The algebraic and the matrix approach to the nonlinear weighted least squares

model, which will be a regression model forced through the origin, have identical

R code, which is given below.
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x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
w = n / (y * (1 - y))
logy = -log(y)
sum(x * w * logy) / sum(x * w * x)

The R code using the lm function to estimate the parameter λ is given below.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
w = n / (y * (1 - y))
logy = -log(y)
lamhat = lm(logy ~ x - 1, weights = w)$coefficients

Regardless of which approach is taken, the least squares estimate for the failure

rate is

λ̂ = 0.005721

failures per hour, which is slightly higher than the estimated failure rate in the

ordinary least squares approach.

(c) The two approaches (ordinary least squares and weighted least squares) for the

nonlinear regression model can be compared graphically by plotting the two esti-

mated survivor functions associated with the two fitted models. The R code below

generates that plot. The estimated failure rate in the case of ordinary nonlinear

least squares is stored in lambda.ols. The estimated failure rate in the case of

weighted nonlinear least squares is stored in lambda.wls.

x = c(100, 200, 300, 400)
n = c(100, 100, 10, 10)
s = c( 50, 25, 4, 3)
y = s / n
logy = -log(y)
lambda.ols = lm(logy ~ x - 1)$coefficients
w = n / (y * (1 - y))
lambda.wls = lm(logy ~ x - 1, weights = w)$coefficients
xx = 0:400
plot(x, y, xlim = c(0, 400), ylim = c(0, 1))
lines(xx, exp(-lambda.ols * xx))
lines(xx, exp(-lambda.wls * xx))

Figure 3.26 contains the graph. The ordinary least squares fit with λ̂ = 0.003677

gives equal weight to the four data pairs; the weighted least squares fit with

λ̂ = 0.005721 gives significantly more weight to the first two data pairs. The

two data pairs with the larger sample sizes are again circled in the figure. The

weighted least squares model indicates that there is a higher estimated failure rate

when increased weight is placed on the first two data pairs.
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Figure 3.26: Current status data ordinary and weighted least squares fits for the exponential model.

3.8 Logistic Regression

Logistic regression is appropriate when the dependent variable Y can assume one of two values: zero

and one. This is sometimes known as a binary or dichotomous response variable. For now, to keep

the mathematics and interpretations simple, assume that there is a single predictor X . This is known

as a simple logistic regression model, and is a special type of nonlinear regression model. Including

multiple independent variables in a logistic regression model is a straightforward extension. For

dichotomous data, instead of predicting 0 or 1, we predict the probability of getting a 1 [that is,

P(Y = 1)]. So we need a regression model that predicts values of the interval [0, 1].
The following example will be used throughout this section to motivate the need for a special

model to accommodate a binary dependent variable, and to illustrate the techniques for the estima-

tion of the model parameters.

Example 3.16 As an example to motivate the application of simple logistic regression,

consider the n = 948 field goal attempts in the National Football League during the 2003

season. Let the independent variable X be the length of the field goal attempt (in yards)

and the dependent variable Y be the outcome (0 for failure and 1 for success). The

scatterplot (without jittering for ties) of the data values is shown in Figure 3.27, along

with the associated least squares regression line with estimated intercept β̂0 = 1.35 and

slope β̂1 = −0.015. The regression line is heading in the correct direction because

longer field goals are less likely to be successful. Simple linear regression is clearly not

an appropriate statistical model in this setting because it predicts probabilities outside of

the interval [0, 1]. Even if predictions greater than 1 are set to 1 and negative predictions

are set to zero, the model predicts that all 20-yard field goal attempts will be successful,

and, at the other extreme, it predicts that the probability of kicking an 85-yard field goal

is 0.06. This is inconsistent with the fact that the longest field goal ever in the NFL was

a 66-yard field goal by Justin Tucker of the Baltimore Ravens on September 26, 2021.

Obviously we can build a better regression model.

One of the initial considerations in developing a statistical model for the outcome of a field goal

as a function of the length of the field goal attempt is to find a function that will only assume values
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Figure 3.27: Scatterplot of field goal outcomes vs. yards with regression line.

between 0 and 1. A diagram that gives some guidance with regard to this function is to batch the data

into 5-year increments. So the bins are all field goals that fall in the ranges 20±2, 25±2, . . . , 60±2.

This window is long enough so that the random sampling variability associated with nearby attempts

is damped considerably, and yet short enough so that outcome patterns as a function of yardage are

still apparent. The R code below batches the independent variable into the 5-yard increments and

plots the estimated probability of success for attempts in each batch at its midpoint. This estimated

probability is just the fraction of successful field goals within a particular range. Furthermore, the

area of each point plotted is proportional to the number of attempts in that particular bin. For

example, there were 79 attempts in the first bin (18–22 yards) and only 4 attempts in the last bin

(58–62 yards). The R code below reads a data set off of the web that contains the results of n = 948

NFL field goal attempts during 2003. The data consists of columns that give the length of the field

goal attempt and the outcome, failure (Y = 0) or success (Y = 1). The R code rounds each length

to the nearest 5 yards, and plots the midpoint of the rounded field goal lengths versus the estimated

probability of success.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")
yards = df[, 1]
outcome = df[, 2]
plot(NA, xlim = c(15, 65), ylim = c(0, 1))
yards = floor((yards + 2) / 5) * 5
for (i in 1:9) points(5 * i + 15, mean(outcome[yards / 5 - 3 == i]),

pch = 16, cex = 0.12 * sqrt(table(yards / 5 - 3)[i]))

While the performance of NFL field goal kickers varies from one kicker to the next, these points

give us an idea of what we would like for a smooth regression function in this setting.

The results are shown in Figure 3.28. It is clear that the estimated probability of making a field

goal decreases as the length of the field goal attempt increases, as one would expect. There is a

strong relationship between the length of the field goal attempt and the probability of success. Our

goal is to fit a nonlinear regression function to the raw data values that smooths the random sampling

variability and can be used for the purpose of prediction.
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Figure 3.28: Field goal outcomes vs. yards in 5-yard increments.

When the dependent variable only takes on the values zero and one, the usual mean response

function for the simple linear regression model

Y = β0 +β1X + ε

is

E[Y ] = β0 +β1X ,

where E[Y ] denotes the conditional expected value of Y given a particular setting of the independent

variable X . This mean response function does not limit the values of Y to just zero and one. With

normally distributed error terms, this model would allow for Y values which could be less than 0 or

greater than 1.

In logistic regression, this type of curve, regardless of whether it begins near one and ends near

zero or it begins near zero and ends near one, is known as a sigmoidal response function. A natural

choice for the sigmoidal response function is a cumulative distribution function associated with a

random variable, or its complement (the survivor function). Three popular probability distributions

whose cumulative distribution functions are used in logistic regression are the standard logistic dis-

tribution (also commonly called the logit model), the standard normal distribution (also commonly

called the probit model), and the standard extreme value distribution (also commonly called the

complimentary log-log model). These are described in the next paragraph.

The standard logistic distribution has probability density function

f (x) =
ex

(1+ ex)2
−∞ < x < ∞

and cumulative distribution function

F(x) =
ex

1+ ex
−∞ < x < ∞.

The probability density function is symmetric about the population mean E[X ] = 0 and has popula-

tion variance V [X ] = π2/3. The standard normal distribution has probability density function

f (x) =
1√
2π

e−x2/2 −∞ < x < ∞
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and cumulative distribution function

F(x) =
∫ x

−∞
f (w)dw −∞ < x < ∞.

The probability density function is also symmetric about the population mean E[X ] = 0 and has

population variance V [X ] = 1. The probability density function for the standard logistic distribution

is similar in shape (that is, bell-shape) to that for the standard normal distribution, but has heavier

tails. The symmetry of the probability density functions for the standard logistic distribution and

the standard normal distribution limits the shape of the associated cumulative distribution function.

A nonsymmetric distribution often provides a better fit. This leads to a search for a probability

distribution with a nonsymmetric probability density function. One such probability distribution

is the extreme value distribution. The standard extreme value distribution has probability density

function

f (x) = ex−ex −∞ < x < ∞

and cumulative distribution function

F(x) = 1− e−ex −∞ < x < ∞.

The population mean and the population variance are not mathematically tractable, but the numeric

values, to ten digits, are

E[X ] =−0.5772156649 and V [X ] = 1.644934067.

The probability density function is not symmetric about the mean.

The R code below plots these three probability density functions on the same set of axes. The

standard normal probability density function is taken directly from the formulas in the previous

paragraph. The probability density functions for the standard logistic distribution and the standard

extreme value distribution have been standardized (by subtracting their population mean and divid-

ing by the population standard deviation) so that all three probability density functions can be viewed

on an equal footing. The plot emphasizes the shape of the various probability density functions.

x = seq(-3, 3, by = 0.01)
k = pi / sqrt(3)
y = k * exp(k * x) / (1 + exp(k * x)) ^ 2
plot(x, y, type = "l", xlim = c(-3, 3), ylim = c(0, 0.5))
lines(x, dnorm(x))
mu = -0.5772156649
sig = sqrt(1.644934067)
y = sig * exp(mu + sig * x - exp(mu + sig * x))
lines(x, y)

The results are displayed in Figure 3.29. All three probability distributions have support on the en-

tire real number line −∞ < x < ∞, although the graph only includes the values within three standard

deviation units from the population mean. As expected, the probability density functions for the

standard normal distribution and the standardized version of the standard logistic distribution are

symmetric and bell-shaped. The probability density function of the standardized version of the stan-

dard extreme value distribution is nonsymmetric. The R code below plots the cumulative distribution

function associated with the standardized version of the standard logistic distribution.
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Figure 3.29: Standardized logistic, normal, and extreme value probability density functions.

x = seq(-3, 3, by = 0.01)
k = pi / sqrt(3)
y = exp(k * x) / (1 + exp(k * x))
plot(x, y, type = "l", xlim = c(-3, 3), ylim = c(0, 1))

The cumulative distribution function F(x) = P(X ≤ x) is graphed in Figure 3.30. This cumulative

distribution function is monotone increasing and satisfies limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

Notice that a plot of F(−x) gives the complement of the cumulative distribution function. In

other words, S(x) = 1 − F(x) = P(X ≥ x). This function is monotone decreasing and satisfies

limx→−∞ S(x) = 1 and limx→∞ S(x) = 0. This function is known in survival analysis as the sur-

vivor function.
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Figure 3.30: Standardized version of the standard logistic cumulative distribution function.
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Now that cumulative distribution functions and their complements have been identified as a rea-

sonable way to estimate the probability of success for the field goal data, we would like to establish

a mechanism for incorporating the value of the predictor X into the probability model. The empha-

sis here will be on using the cumulative distribution function for the logistic distribution, since that

seems to be the most commonly used in logistic regression.

The usual form of the mean response function for simple linear regression is

E[Y ] = β0 +β1X .

But in the case of a binary outcome, the constraint

0 ≤ E[Y ]≤ 1

must be imposed. This is done naturally using the cumulative distribution functions and their com-

plements for the various probability distributions described earlier. Let π(X) be the mean response

function for a regression model with a binary response. Using the cumulative distribution function

for the logistic distribution, the mean response function is

π(X) = E[Y ] =
eβ0+β1X

1+ eβ0+β1X
.

Since the random variable Y can only assume the values 0 and 1 for a particular value of X , it

is a Bernoulli random variable with probability of success π(X). Since the expected value and

the probability that a Bernoulli random variable assumes the value 1 are equal, the mean response

function can also be expressed as

π(X) = P(Y = 1) =
eβ0+β1X

1+ eβ0+β1X
,

where P(Y = 1) is the probability that the dependent variable Y equals 1 for a particular fixed setting

of the independent variable X . The parameters β0 and β1 assume the following roles.

• The sign of β1 controls whether the mean response function is monotone increasing or de-

creasing. Table 3.9 shows the direction of the relationship associated with the sign of β1. The

statistical significance of the point estimator of β1 depends on its magnitude.

• The magnitude of β1 controls the steepness of the mean response function, with larger mag-

nitudes corresponding to steeper mean response functions.

• The value of β0 controls the location of the mean response function on the X-axis.

A graph that illustrates the effect of varying values of β1 for the fixed value of β0 = 0 on the

mean response function π(X) is given in Figure 3.31. As expected, the mean response function π(X)

Condition lim
X →−∞

π(X) lim
X →∞

π(X)

β1 < 0 1 0

β1 > 0 0 1

β1 = 0 eβ0/
(

1+ eβ0
)

eβ0/
(

1+ eβ0
)

Table 3.9: Direction of monotonicity of π(X).
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Figure 3.31: Mean response functions for β0 = 0 and various β1 values.

is monotone decreasing for β1 < 1 and monotone increasing for β1 > 1. The mean response function

is steeper as the magnitude of β1 increases.

A graph that illustrates the effect of varying values of β0 for the fixed value of β1 = 1 on the

mean response function π(X) is given in Figure 3.32. As expected, the mean response function π(X)
is monotone increasing in all cases because β1 > 1. The effect of varying β0 is to shift the mean

response functions horizontally. The rationale behind the horizontal shift can be seen by writing the

mean response function with β1 = 1 as

π(X) =
eβ0+X

1+ eβ0+X
.

So the effect of increasing β0 in this case is to shift the mean response function to the right (for
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β0
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Figure 3.32: Mean response functions for β1 = 1 and various β0 values.
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β1 < 1) or to the left (for β1 > 1) relative to the π(X) curve associated with β0 = 0.

To summarize, the sign of β1 controls the direction of the monotonicity of π(X), the magnitude

of β1 controls the steepness of π(X), and β0 controls the location of π(X) along the X-axis.

We now consider the estimation of the parameters β0 and β1 from a data set consisting of the n

data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn). The first components X1, X2, . . . , Xn are real numbers and

the second components Y1, Y2, . . . , Yn assume only the values 0 and 1. Since

P(Y = 1) = π(X) and P(Y = 0) = 1−π(X)

the contribution to the likelihood function of the data pair (Xi, Yi) is

π(Xi)
Yi [1−π(Xi)]

1−Yi

for i = 1, 2, . . . , n. When Yi = 0, the contribution to the likelihood function is 1−π(Xi), which is

P(Yi = 0), where P(Yi = 0) is the probability that Yi = 0 for the particular setting of the independent

variable at Xi. When Yi = 1, the contribution to the likelihood function is π(Xi), which is P(Yi = 1).
Since Xi is assumed to be observed without error, Yi is a random binary response, and the responses

are assumed to be mutually independent random variables, the likelihood function is

L(β0, β1) =
n

∏
i=1

π(Xi)
Yi [1−π(Xi)]

1−Yi .

The log likelihood function is

ln L(β0, β1) =
n

∑
i=1

Yi ln
[

π(Xi)
]

+(1−Yi) ln
[

1−π(Xi)
]

.

This can be written in terms of β0 and β1 as

ln L(β0, β1) =
n

∑
i=1

Yi

[

β0 +β1Xi − ln(1+ eβ0+β1Xi)
]

− (1−Yi) ln(1+ eβ0+β1Xi)

or

ln L(β0, β1) =
n

∑
i=1

Yi (β0 +β1Xi)− ln(1+ eβ0+β1Xi).

The likelihood function and the log likelihood function are maximized at the same values of β0 and

β1 because the natural logarithm is a monotonic transformation. The score vector is comprised of

the partial derivatives of the log likelihood function with respect to β0 and β1:

∂ ln L(β0, β1)

∂β0
=

n

∑
i=1

(

Yi −
eβ0+β1Xi

1+ eβ0+β1Xi

)

and

∂ ln L(β0, β1)

∂β1
=

n

∑
i=1

(

XiYi −
Xie

β0+β1Xi

1+ eβ0+β1Xi

)

.

When these two equations are equated to zero, there is no closed form solution for β̂0 and β̂1, so

numerical methods must be relied on to calculate these point estimates. The second derivatives of

the log likelihood function after simplification are

∂2 ln L(β0, β1)

∂β2
0

=−
n

∑
i=1

eβ0+β1Xi

(

1+ eβ0+β1Xi
)2
,
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∂2 ln L(β0, β1)

∂β0∂β1
=−

n

∑
i=1

Xie
β0+β1Xi

(

1+ eβ0+β1Xi
)2
,

and
∂2 ln L(β0, β1)

∂β2
1

=−
n

∑
i=1

X2
i eβ0+β1Xi

(

1+ eβ0+β1Xi
)2
.

The Fisher information matrix is the matrix of expected values of these partial derivatives:

I (β0, β1) =









E

[−∂2 lnL(β0, β1)

∂β2
0

]

E

[−∂2 lnL(β0, β1)

∂β0β1

]

E

[−∂2 lnL(β0, β1)

∂β1β0

]

E

[−∂2 lnL(β0, β1)

∂β2
1

]









.

The expected values in this matrix can be determined because they do not contain any random

variables. Their values cannot be calculated, however, because the values of the parameters β0 and

β1 are unknown. The observed information matrix

O
(

β̂0, β̂1

)

=









−∂2 lnL(β0, β1)

∂β2
0

−∂2 lnL(β0, β1)

∂β0β1

−∂2 lnL(β0, β1)

∂β1β0

−∂2 lnL(β0, β1)

∂β2
1









β0 = β̂0, β1 = β̂1

can be estimated from data values once the maximum likelihood estimators are computed. This ma-

trix is the variance–covariance matrix of the score vector and its inverse is the asymptotic variance–

covariance matrix of the maximum likelihood estimators. The square roots of the diagonal elements

of this inverse matrix provide estimates of the standard errors of the maximum likelihood estimates.

The NFL field goal data set has a large sample size (n = 948) and a strong statistical relationship

between the length of the field goal attempt and the probability of success. The R code below

again uses the optim function to calculate the parameter estimates. The first argument to optim
are initial parameter estimates. The second argument to optim is the function to be minimized, so

the negative of the log likelihood function is given as the second argument. Once the maximum

likelihood estimates are calculated, the observed information matrix, standard errors, z-statistics,

and associated p-values are calculated.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")
yards = df[, 1]
outcome = df[, 2]
logl = function(parameters) {
beta0 = parameters[1]
beta1 = parameters[2]
sum(-outcome * (beta0 + beta1 * yards) + log(1 + exp(beta0 + beta1 * yards)))

}
fit = optim(c(0, -1), logl)
beta0hat = fit$par[1]
beta1hat = fit$par[2]
oim = matrix(0, 2, 2)
oim[1, 1] = sum(exp(beta0hat + beta1hat * yards) /

(1 + exp(beta0hat + beta1hat * yards)) ^ 2)
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oim[1, 2] = sum(yards * exp(beta0hat + beta1hat * yards) /
(1 + exp(beta0hat + beta1hat * yards)) ^ 2)

oim[2, 1] = oim[1, 2]
oim[2, 2] = sum(yards * yards * exp(beta0hat + beta1hat * yards) /

(1 + exp(beta0hat + beta1hat * yards)) ^ 2)
print(oim)
se.beta0hat = sqrt(solve(oim)[1, 1])
se.beta1hat = sqrt(solve(oim)[2, 2])
z0 = beta0hat / se.beta0hat
z1 = beta1hat / se.beta1hat
p0 = 2 * (1 - pnorm(abs(z0)))
p1 = 2 * (1 - pnorm(abs(z1)))
print(c(beta0hat, se.beta0hat, z0, p0))
print(c(beta1hat, se.beta1hat, z1, p1))

The results of the code are summarized in Table 3.10. The values of β̂0 and β̂1 are both statistically

significant with p-values near zero. The observed information matrix for the NFL field goal data set

i β̂i σ̂
β̂i

z p

0 5.69 0.451 12.6 0.00

1 −0.110 0.0106 −10.4 0.00

Table 3.10: Summary statistics for NFL field goal data.

is

O(β̂0, β̂1)=
(

130.83 5470.26

5470.26 237,653.57

)

.

These values can be compared to the values obtained using the glm (generalized linear model)

function:

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")
yards = df[, 1]
outcome = df[, 2]
fit = glm(outcome ~ yards, family = binomial(link = logit))
summary(fit)

The results match those given in Table 3.10. When the link parameter within the binomial family

is set to logit, the cumulative distribution function (or its complement) for the standard logistic

distribution is employed. When the link parameter is set to probit, the cumulative distribution

function (or its complement) for the standard normal distribution is employed. The logit and probit

choices force the sigmoidal function to be symmetric, so that it approaches 0 and 1 at the same rate.

When the link parameter is set to cloglog, the cumulative distribution function (or its comple-

ment) for the standard extreme value distribution is employed. It approaches 0 and 1 at the different

rates.

When the following R statements are added to the code that generated Figure 3.28, the fitted

mean response function π̂(X) is added to the graph.

x = seq(15, 65, by = 0.1)
beta0hat = 5.6942693
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beta1hat = -0.1098488
y = exp(beta0hat + beta1hat * x) / (1 + exp(beta0hat + beta1hat * x))
lines(x, y)

The graph is shown in Figure 3.33. The estimated mean response function is monotone decreasing

because β̂1 < 0. Furthermore, the mean response curve does an adequate job of modeling the proba-

bility of success as the points lie very close to the estimated mean response function. The estimated

15 20 25 30 35 40 45 50 55 60 65

0.0

0.2

0.4

0.6

0.8

1.0

yards

P̂(success)

Figure 3.33: Field goal outcomes and estimated mean response function.

mean response function can be used for prediction. The estimated probability that a 38-yard field

goal attempt is successful is

π̂(38) =
e5.6942693−0.1098488(38)

1+ e5.6942693−0.1098488(38)
= 0.82.

This value can be generated with the predict function in R with the additional statements

linear = predict(fit, newdata = data.frame(yards = 38))
exp(linear) / (1 + exp(linear))

Some keystrokes can be saved by using the type = "response" argument in the call to predict.

predict(fit, newdata = data.frame(yards = 38), type = "response")

The limitations of a symmetric mean response function also become apparent in this case. The

estimated probability that a 71-yard field goal attempt is successful is

π̂(71) =
e5.6942693−0.1098488(71)

1+ e5.6942693−0.1098488(71)
= 0.11,

even though the NFL field goal record from 2021 is 66 yards. This is clearly a case of extrapolating

beyond the range of the data, which is discouraged. The meaningful range of π̂(X) is over the scope

of the model 18 ≤ X ≤ 62, whose endpoints are the shortest and longest field goal attempt during

the 2003 season. The symmetric nature of the logistic distribution makes the π̂(X) values associated

with X-values greater than 62 yards higher than are meaningful.
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Confidence intervals for the parameters in a logistic regression model can be calculated with

the confint and confint.default functions. These confidence intervals give a measure of the

precision of the point estimates. The R code below calculates the 95% confidence intervals for the

parameters using the confint and confint.default functions for the NFL field goal data.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")
yards = df[, 1]
outcome = df[, 2]
fit = glm(outcome ~ yards, family = binomial(link = logit))
confint(fit)
confint.default(fit)

The first set of confidence intervals that are returned via confint use the profiled log likelihood

function to return the confidence intervals given in the output below. The default is a 95% confidence

interval.

2.5 % 97.5 %
(Intercept) 4.8435441 6.61425072
yards -0.1312492 -0.08970744

To three significant digits, these 95% confidence intervals are

4.84 < β0 < 6.61 and −0.131 < β1 <−0.0897.

The second set of confidence intervals that are returned via confint.default are based on the

asymptotic normality of the maximum likelihood estimators. The call to confint.default returns

the confidence intervals given in the output below.

2.5 % 97.5 %
(Intercept) 4.8137433 6.58201706
yards -0.1306527 -0.08916745

To three significant digits, these 95% confidence intervals are

4.82 < β0 < 6.58 and −0.131 < β1 <−0.0892.

Alternatively, the 95% confidence interval for β1 can be calculated by using the qnorm function to

calculate the appropriate quantile from the standard normal distribution.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")
yards = df[, 1]
outcome = df[, 2]
fit = glm(outcome ~ yards, family = binomial(logit))
coef(fit)[2] + c(-1, 1) * qnorm(0.975) * summary(fit)$coefficients[2, 2]

The 95% confidence interval for β1 that is returned matches that returned by confint.default.
The confidence intervals based on the asymptotic normality of the maximum likelihood estimator

from confint.default will be symmetric about the maximum likelihood estimators, but the con-

fidence interval based on the profiled log likelihood function from confint will not be symmetric

about the maximum likelihood estimators. The confidence intervals given here are somewhat narrow

because of the large sample size of n = 948 for the NFL field goal data.
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The last topic is the interpretation of the point estimators for the coefficients. This interpretation

is much more difficult than the interpretation of the coefficients in a standard simple linear regression

model. The next paragraph defines the odds and the log odds. The subsequent paragraph relates the

log odds to the logistic regression model.

Consider an event which occurs with probability 0.9. The probability that the event will not

occur is 0.1. The odds are defined as the ratio of the probability that the event will occur to the

probability that the event will not occur. In this case that ratio is 9, so the odds are often referred

to as 9 to 1. Table 3.11 gives several probability values and associated odds for several probability

values.

Probability Odds

0.2 0.25

0.5 1

0.6 1.5

0.75 3

0.8 4

0.9 9

0.99 99

Table 3.11: Probability and odds.

The R code below generates a graph of the odds on the vertical axis versus the probability on the

horizontal axis.

prob = seq(0, 0.9, by = 0.01)
odds = prob / (1 - prob)
plot(prob, odds, type = "l", xlim = c(0, 1), ylim = c(0, 9))

Figure 3.34 shows the transformation from probability to odds, which reveals a monotone increasing

function. Probabilities fall on the interval [0, 1]; odds fall on the interval [0, ∞). The natural loga-
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Figure 3.34: Odds versus probability.
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rithm of the odds is the function, known as the log odds, which is a transformation of the probability

p in the following fashion:

ln

(

p

1− p

)

.

This is a transformation from [0, 1] to (−∞, ∞). Table 3.12 extends the previous table by including

a column for the log odds. Notice that a probability of 1/2 corresponds to a log odds of 0 and the

symmetry of the log odds associated with the probabilities 0.2 and 0.8. The R code below graphs

Probability Odds Log Odds

0.2 0.25 −1.3863

0.5 1 0

0.6 1.5 0.4055

0.75 3 1.0986

0.8 4 1.3863

0.9 9 2.1972

0.99 99 4.5951

Table 3.12: Probability, odds, and log odds.

the log odds versus the probability.

prob = seq(0.045, 0.955, by = 0.001)
odds = prob / (1 - prob)
logodds = log(odds)
plot(prob, logodds, type = "l", xlim = c(0, 1), ylim = c(-3, 3))

The associated graph is shown in Figure 3.35. The shape of the log odds is a transformed version

of the mean response functions seen earlier. The purpose of defining the log odds is to convert from

probability, which has a restricted range between 0 and 1, and the log odds, which has an unrestricted

range.
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Figure 3.35: Log odds versus probability.
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Now back to logistic regression and the interpretation of the estimated coefficients. Recall that

for a simple logistic regression problem, the mean response function is

π(x) = E [Y |X = x] = P(Y = 1 |X = x) =
eβ0+β1x

1+ eβ0+β1x
,

where x is the independent variable and Y is the response variable. The logit transformation of π(x)
is

ln

[

π(x)

1−π(x)

]

= ln
[

eβ0+β1x
]

= β0 +β1x.

Since π(x) is a probability, the expression on the left-hand side of this equation is a log odds.

Now consider the NFL data. From the earlier work, the estimated intercept provided by the R

glm function is β̂0 = 5.6979 and the estimated coefficient associated with the length of the field goal

attempt in yards is β̂1 =−0.1099. The estimated intercept is the log odds of a kicker making a field

goal from a (theoretical) zero yards, which has no meaningful interpretation in this setting. The

value of β̂1 =−0.1099 is the change in the log odds for a one-yard change in the length of the field

goal attempt. Additionally, the quantity

eβ̂1 = e−0.1099 = 0.8959

is the multiplier that gives the change in the odds for a one-unit change in the independent variable.

We expect to see a 10.4% decrease in the odds associated with the probability of success for a field

goal attempt for every additional yard added to the field goal attempt. This value and an associated

95% confidence interval can be generated with the additional R statement

exp(cbind(oddsratio = coef(fit), confint(fit)))

The analysis of the NFL data given here is a composite of all kickers in the NFL during 2003.

Individual kickers within the NFL will have their own logistic regression curve.

With this background concerning simple logistic regression in place, it is straightforward to ex-

tend this to more complicated modeling situations. Additional topics in logistic regression include

constructing a confidence interval for a predicted value, the calculation of deviance residuals, includ-

ing multiple independent variables in a logistic regression model, model assessment, and interpreting

estimated coefficients for interaction terms.

3.9 Exercises

3.1 Write a paragraph that describes why the sum of squares for error associated with the simple

linear regression model Y = β0 + β1X + ε will always be less than or equal to the sum of

squares for error associated with the simple linear regression model forced through the origin

Y = β1X + ε for the same data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn).

3.2 Under what condition(s) does the regression line forced through the origin have the same

sum of squares for error as the simple linear regression for the full model Y = β0 +β1X + ε
for the same data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn).

3.3 Consider the simple linear regression model forced through the origin

Y = β1X + ε.

Show that the least squares estimator β̂1 is an unbiased estimator of β1.
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3.4 Consider the simple linear regression model forced through the origin

Y = β1X + ε.

Find V [β̂1].

3.5 Consider the simple linear regression model forced through the origin with normal error

terms,

Y = β1X + ε,

where ε ∼ N
(

0, σ2
)

.

(a) Find the maximum likelihood estimators of β1 and σ2.

(b) Show that the maximum likelihood estimators maximize the log likelihood function.

3.6 Give an example of n = 2 data pairs corresponding to the case in which a simple linear

regression line forced through the origin contains the point (X̄ , Ȳ ).

3.7 Give an example of n = 2 data pairs corresponding to the case in which a simple linear

regression line forced through the origin does not contain the point (X̄ , Ȳ ).

3.8 Consider the simple linear regression model forced through the origin with normal error

terms

Y = β1X + ε,

with known parameters β1 and σ2. Find an exact two-sided 100(1−α)% confidence interval

for β1 from n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn).

3.9 Consider the simple linear regression model forced through the origin with normal error

terms,

Y = β1X + ε,

with unknown parameters β1 and σ2. Show that the R statement

confint(lm(Formaldehyde$optden ~ Formaldehyde$carb - 1))

uses the formula

β̂1 − tn−1,α/2

√

SSE

(n−1)∑n
i=1 X2

i

< β1 < β̂1 + tn−1,α/2

√

SSE

(n−1)∑n
i=1 X2

i

to calculate the 95% two-sided confidence interval for β1 for the data pairs in the built-in

R data frame Formaldehyde. Notice that the degrees of freedom are one more than the

associated degrees of freedom for the full simple linear regression model.

3.10 Consider the simple linear regression model forced through the origin with normal error

terms,

Y = β1X + ε,

with unknown parameters β1 and σ2. Conduct a Monte Carlo simulation experiment to

provide convincing numerical evidence that the two-sided 100(1−α)% confidence interval

β̂1 − tn−1,α/2

√

SSE

(n−1)∑n
i=1 X2

i

< β1 < β̂1 + tn−1,α/2

√

SSE

(n−1)∑n
i=1 X2

i

is an exact confidence interval for β1 for the following parameter settings: n = 3, α = 0.05,

β1 = 2, X1 = 1, X2 = 2, X3 = 3, and σ2 = 1.
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3.11 The Brown–Forsythe test can be used to determine whether the error terms have constant

variance. In particular, it tests for equality of the variances of the error terms in two subsets of

the data values. The test is analogous to a t-test. The test is robust with respect to departures

from normality of the error terms. The data pairs are partitioned by a threshold value of X

which is not one of the X1, X2, . . . , Xn values. Let n1 be the number of data pairs with X-

values less than the threshold value and n2 be the number of data pairs with X-values greater

than the threshold value so that n = n1 +n2. In addition, let

• ei1 be residual i for group 1,

• ei2 be residual i for group 2,

• ẽ1 be the sample median of the group 1 residuals,

• ẽ2 be the sample median of the group 2 residuals,

• di1 = |ei1 − ẽ1|,
• di2 = |ei2 − ẽ2|,
• d̄1 = (1/n1)∑

n1
i=1 di1, and

• d̄2 = (1/n2)∑
n2
i=1 di2.

The test statistic for the Brown–Forsythe test is

t =
d̄1 − d̄2

s
√

1/n1 +1/n2

,

where s2 is the pooled sample variance

s2 =
∑

n1
i=1

(

di1 − d̄1

)2
+∑

n2
i=1

(

di2 − d̄2

)2

n−2
.

The test statistic is approximately t(n−2) when the population variances of the error terms

in the two groups are equal n1 and n2 are large enough so that the dependency between the

residuals is not too large. Write R code to compute the p-value for the Brown–Forsythe test

for the cars data set using speed as the independent variable and dist as the dependent

variable with a threshold value of 13.5 miles per hour.

3.12 Find the leverages for n = 2 data pairs in a simple linear regression model.

3.13 For a simple linear regression model with Xi = i, for i = 1, 2, . . . , n, derive a formula for the

leverage of the ith data pair.

3.14 Write R functions named cooks.distance1, cooks.distance2, and cooks.distance3,
which calculate the Cook’s distances for each of the n data pairs associated with the simple

linear regression model

Y = β0 +β1X + ε

using the three formulas from Definition 3.3. The arguments for these three functions are the

vector x, which contains the n values of the independent variable, and the vector y, which

contains the n values of the dependent variable. Test your functions on the Formaldehyde
data set which is built into R, with carb as the independent variable and optden as the

dependent variable.
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3.15 Make a scatterplot (with associated regression line) of the n = 11 data pairs in the third data

set in Anscombe’s quartet with the R commands

x = anscombe[ , 3]
y = anscombe[ , 7]
plot(x, y, xlim = c(4, 19), ylim = c(3, 13), pch = 16)
abline(lm(y ~ x))

Without doing any calculations,

(a) circle the point(s) with the largest leverage, and

(b) circle the point(s) with the largest Cook’s distance.

3.16 What is the smallest and largest possible leverage?

3.17 Show that leverage is scale invariant. In other words, show that the leverages remain un-

changed when the scale of the independent variable changes (for example, from centimeters

to meters).

3.18 Use Monte Carlo simulation to estimate the probability that all of the Cook’s distances are

less than 1 for a simple linear regression model with normal error terms and the following

parameter settings: β0 = 1, β1 = 1/2, σ = 1, n = 10, and Xi = i for i = 1, 2, . . . , n. Is this

probability affected by changes is σ or n?

3.19 Use Monte Carlo simulation to draw empirical cumulative distribution functions of Cook’s

distances D1, D2, D3, D4, and D5 for a simple linear regression model with the following

parameter settings: β0 = 1, β1 = 1/2, σ = 1, n = 10, and Xi = i for i = 1, 2, . . . , n.

3.20 Consider a simple linear regression model with the independent variable X and the dependent

variable Y having the same units (for example, centimeters). If the same linear transforma-

tion is applied to both X and Y so as to change their units (for example, from centimeters to

meters), show that the Cook’s distances remain unchanged.

3.21 Show that the row sums of the hat matrix are all equal to 1 for data pairs (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) in a simple linear regression model.

3.22 Perform a Monte Carlo simulation to provide convincing numerical evidence that

(

β̂ββ−βββ
)′

X′X
(

β̂ββ−βββ
)

2 ·MSE
∼ F(2, n−2)

for a simple linear regression model with normal error terms of your choice. This result is

used to establish a 100(1−α)% confidence region for β0 and β1.

3.23 Show that the residuals ei = Yi − Ŷi for i = 1, 2, . . . , n, can be written in terms of the hat

matrix H as

e = (I−H)Y.

3.24 For the simple linear regression model with normal error terms, the variance–covariance

matrix of β̂ββ is

σ2
(

X′X
)−1

.

For data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), give an estimator for this matrix.
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3.25 For the simple linear regression model, show that

X′
h

(

X′X
)−1

Xh =
1

n
+

(Xh − X̄)
2

SXX

.

3.26 For a simple linear regression model, show that the matrix equation

X′Xβ̂ββ = X′Y,

where

X =











1 X1

1 X2

...
...

1 Xn











, Y =











Y1

Y2

...

Yn











, and β̂ββ =

[

β̂0

β̂1

]

,

corresponds to the normal equations given in Theorem 1.1 as

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi.

3.27 A multiple linear regression model is used to determine the relationship between the sales

price of a home Y as a function of the two predictor variables: X1, the number of square feet

in the home, and X2, the distance from downtown in miles. The fitted model is

Y = 170,024+133X1 −14,123X2.

One home sells for $314,159. Find the predicted sales price for a second home, which is the

same size as the first but is ten miles further away from downtown that the first home.

3.28 The R built-in data frame named swiss contains a standardized fertility measure and five

socio-economic indicators for 47 French-speaking provinces in Switzerland from about 1888.

(a) Using a forward stepwise regression with threshold α = 0.05, determine a multiple

linear regression model with a dependent variable Y , the standardized fertility measure,

and the five associated potential independent variables.

(b) Using a backward stepwise regression with threshold α = 0.05, determine a multiple

linear regression model with a dependent variable Y , the standardized fertility measure,

and the five associated potential independent variables.

(c) For one of the two final multiple linear regression models determined in parts (a) and

(b), test the statistical significance of all possible interaction terms.

3.29 Show that when the independent variables X1 and X2 in a multiple linear regression model

are uncorrelated, the estimator for β̂1 is the same for both the simple linear regression model

involving just X1 and Y and the multiple linear regression model involving X1, X2, and Y .

3.30 Consider a simple linear regression model that uses the weighted least squares estimation.

When all of the weights w1, w2, . . . , wn are equal, show that the weighted least squares nor-

mal equations reduce to the associated unweighted least squares normal equations.
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3.31 “I first believed I was dreaming . . . but it is absolutely certain and exact that the ratio which

exists between the period times of any two planets is precisely the ratio of the 3/2th power

of the mean distance” was the reaction of Johannes Kepler upon discovering the relationship

y = βx3/2

as translated from Harmonies of the World by Kepler in 1619, where x is the distance between

a planet and the sun and y is the period. Using the data from the Wikipedia webpage titled

Kepler’s Laws of Planetary Motion, the data values for the n = 8 planets are given below.

Semi-major Period

Planet axis (AU) (days)

x y

Mercury 0.38710 87.9693

Venus 0.72333 224.7008

Earth 1 365.2564

Mars 1.52366 686.9796

Jupiter 5.20336 4332.8201

Saturn 9.53707 10,775.599

Uranus 19.1913 30,687.153

Neptune 30.0690 60,190.03

The semi-major axes values are measured in Astronomical Units (AU).

(a) Make an appropriate scatterplot to visually assess whether a regression model is appro-

priate.

(b) Find the least squares point estimate for β.

(c) Perhaps fit a least squares model in another fashion.

(d) Interpret the value for β̂.

(e) Find a 95% confidence interval for β.

3.32 Fit the quadratic regression function forced through the origin

Y = β1X2 + ε,

to the data pairs in the cars data frame in R, where X is the speed of the car in miles per

hour and Y is the stopping distance in feet.

3.33 Using an extreme value distribution as a link function, fit a regression function to the 2003

NFL field goal data from Section 3.8 and use the fitted model to predict that probability of

success on a 38-yard field goal attempt.


