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Preface

This book provides a brief introduction to three statistical modeling techniques: regression, survival

analysis, and time series analysis. My motivation for writing this book came from a recent article

in Nature that indicated that the paper introducing the product–limit estimator by American statis-

ticians Edward Kaplan and Paul Meier in 1958 and the paper introducing the proportional hazards

model written by British statistician David Cox in 1972 were the two most cited papers in the sta-

tistical literature. Yet most undergraduates majoring in applied mathematics, statistics, data science,

systems engineering, and management science do not encounter the statistical models developed

in either of these two pivotal papers. This book provides an elementary introduction to these two

statistical procedures, and many others.

This book is designed as a one-semester introduction to regression, survival analysis, and time

series analysis for advanced undergraduates or first-year graduate students. The pre-requisites for

this book are (a) a course in linear algebra, (b) a calculus-based introduction to probability, and (c) a

course in mathematical statistics that covers point estimation, interval estimation, and hypothesis

testing. The book is not comprehensive and is not a replacement for a full-semester class on each of

the topics. It contains only brief introductions to the three topics.

Three chapters are devoted to each of the three topics. The initial two chapters move at about

the pace one would expect in a full-semester course. The third chapter on each of the topics is like

a “further reading” section which briefly introduces some topics that would be covered in depth in a

full-semester course. An instructor might choose to skip or expand on these topics.

The material in the book can be covered at the ambitious pace of one chapter per week. An

instructor could also choose to move more slowly if some of this material is part of a course covering

another topic.

Most of the data sets that are used for examples in the book are given as clear text on the website

www.math.wm.edu/∼leemis/data/topics.
The text is organized into chapters, sections, and subsections. When there are several topics

within a subsection, they are set off by boldface headings. Definitions and theorems are boxed;

examples are indented; proofs are terminated with a box, like this: �. Proofs are included when

they are instructive to the material being presented. Exercises are numbered sequentially at the end

of each chapter. Computer code is set in monospace font, and is not punctuated. Indentation is used

to indicate nesting in code and pseudocode. An index is included. Italicized page numbers in the

index correspond to the primary source of information on a topic.

The term estimator is used to describe a point estimator in the abstract or as a random variable;

the term estimate is used to describe a point estimator that assumes a specific value estimated from

a realization of data values. In some instances the case is altered to highlight this distinction. The

sample mean X̄ , for example, is a point estimator for the population mean µ. A numerical value of

the sample mean calculated from data values is sometimes denoted by the point estimate x̄.
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The R language is used throughout the text for graphics, computation, and Monte Carlo simula-

tion. In many of the examples involving computations, the results are computed arithmetically, then

confirmed in R, and then computed a third time using an R built-in function (such as lm for com-

puting the coefficients in a regression model, coxph from the survival package for computing the

regression coefficients in a Cox proportional hazards model, survfit from the survival package

to calculate the step heights in the Kaplan–Meier product–limit estimator, or arima to fit a univari-

ate time series). This three-step process is used to avoid treating R functions as black boxes without

considering what goes on underneath the hood. R can be downloaded for free at r-project.org.

There are no references cited in the text for readability. The sources of materials in the various

chapters are cited in the paragraphs below.

Chapter 1 notes: The quote by George Box is from page 202 of the book chapter: Box, G.E.P.

(1979), “Robustness in the Strategy of Scientific Model Building,” from Robustness in Statistics,

edited by R.L. Launer and G.N. Wilkinson, New York: Academic Press, pages 201–236. The data

pairs associated with the boiling points and barometric pressures in Example 1.11 are from Forbes,

J. (1857), “Further Experiments and Remarks on the Measurement of Heights and Boiling Point of

Water,” Transactions of the Royal Society of Edinburgh, Volume 21, Issue 2, pages 235–243.

Chapter 2 notes: The four sets of data pairs known as Anscombe’s quartet are from Anscombe,

F.J. (1973), “Graphs in Statistical Analysis,” The American Statistician, Volume 27, Number 1,

pages 17–21. The housing data set in Example 2.9 is from De Cock, D. (2011), “Ames, Iowa: Alter-

native to the Boston Housing Data as an End of Semester Regression Project,” Journal of Statistics

Education, Volume 19, Number 3, pages 1–15. The Shapiro–Wilk test for normality (and related

tests) are overviewed in Razali, N., and Wah, Y.B. (2011), “Power Comparisons of Shapiro–Wilk,

Kolmogorov–Smirnov, Lilliefors and Anderson–Darling Tests,” Journal of Statistical Modeling and

Analytics, Volume 2, Number 1, pages 21–33.

Chapter 3 notes: The chemical data from Example 3.1 is from Bennett, N.A., and Franklin,

N.L. (1954), Statistical Analysis in Chemistry and the Chemical Industry, New York: Wiley. Cook’s

distances are derived in Cook, R.D. (1977), “Detection of Influential Observations in Linear Regres-

sion,” Technometrics, Volume 19, Number 1, pages 15–18. The U.S. National debt over time is from

https://www.thebalance.com/national-debt-by-year-compared-to-gdp-and-major-events-3306287. The

original paper introducing ridge regression is Hoerl, A.E., and Kennard, R.W. (1970), “Ridge Re-

gression: Biased Estimation for Nonorthogonal Problems,” Technometrics, Volume 12, Number 1,

pages 55–67.

Chapter 4 notes: Early references on the Weibull distribution include Fisher, R.A., and Tippett,

L.H.C. (1928), “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member

of a Sample,” Proceedings of the Cambridge Philosophical Society, Volume 24, Issue 2, pages 180–

190, Weibull, W. (1939), “A Statistical Theory of the Strength of Materials,” Ingeniors Vetenskaps

Akademien Handlingar, Number 153, and Weibull, W. (1951), “A Statistical Distribution Function

of Wide Applicability,” Journal of Applied Mechanics, Volume 18, pages 293–297. The moment

ratio diagrams given in Section 4.5 are adapted from those given in Vargo, E., Pasupathy, R., and

Leemis, L. (2010), “Moment-Ratio Diagrams for Univariate Distributions,” Journal of Quality Tech-

nology, Volume 42, Number 3, pages 1–11. The Cox proportional hazards model was formulated

in Cox, D.R. (1972), “Regression Models and Life-Tables” (with discussion), Journal of the Royal

Statistical Society B, Volume 34, Number 2, pages 187–220.

Chapter 5 notes: The ball bearing failure times from Example 5.5 are from Lieblein, J., and

Zelen, M. (1956), “Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings,”

Journal of Research of the National Bureau of Standards, Volume 57, Number 5, pages 273–316.

The 48.48 data value in the ball bearing data set is given as 48.40 on page 99 of Lawless, J.F.

(2003), Statistical Models and Methods for Lifetime Data, Second Edition, Hoboken, NJ: John
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Wiley & Sons, Inc., and page 4 of Meeker, W.Q., and Escobar, L.A. (2022), Statistical Methods
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Chapter 1

Simple Linear Regression

Regression is a statistical technique that involves describing the relationship between one or more

independent variables and a single dependent variable. For simplicity, assume for now that there is

just a single independent variable. To establish some notation, let

• X be an independent variable, also called an explanatory variable, predictor variable, or re-

gressor, which is typically assumed to take on fixed values (that is, X is not a random variable)

which can be observed without error, and

• Y be a dependent variable, also called a response variable, which is typically a continuous

random variable.

The relationship between the independent variable X and the dependent variable Y is often estab-

lished by collecting n data pairs denoted by (X1, Y1), (X2, Y2), . . . , (Xn, Yn), plotting these pairs on a

pair of axes, and looking for a pattern that can be translated to a mathematical form. This process es-

tablishes an empirical mathematical model for the underlying relationship between the independent

variable X and the dependent variable Y .

1.1 Deterministic Models

Regression analysis establishes a functional relationship between X and Y . The simplest type of

relationship between X and Y is a deterministic relationship Y = f (X). In this rare case, the value

of Y can be determined without error once the value of X is known, so Y is not a random variable

when the relationship between X and Y is deterministic. The deterministic model is described by

Y = f (X). Deterministic relationships are uncommon in real-world applications because there is

typically uncertainty in the dependent variable. If data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are

collected and the deterministic relationship Y = f (X) establishes the correct functional relationship

between X and Y , then all of the data pairs will fall on the graph of the function Y = f (X).

Example 1.1 Bob is a salesman. The independent variable X is the number of sales

that he makes per week. Bob receives a $50 commission for each sale, regardless of the

amount of each sale. The dependent random variable Y is the total weekly commission

that Bob receives. Find the deterministic relationship between X and Y .
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In this setting, the independent variable X is a fixed constant which is measured without

error, and the deterministic relationship between X and Y is

Y = f (X) = 50X .

This deterministic relationship expresses Y as a linear function of X . If the next three

weeks of Bob’s sales activity result in the three data pairs

(X1, Y1) = (6, 300), (X2, Y2) = (8, 400), and (X3, Y3) = (2, 100),

then all three of these data pairs will fall on the graph of the deterministic relationship

Y = f (X) = 50X . The Xi values are distinct for these data pairs, but this need not

necessarily be the case. Bob could have had weeks in which he made the same number

of sales multiple times. Figure 1.1 shows the deterministic relationship and the three

data values that fall on the line. Notice that the graph of Y = f (X) = 50X passes through

the origin, (0, 0), because zero weekly sales results in no weekly commissions. In this

particular example, a line is plotted even though X can only take on integer values.
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Figure 1.1: A deterministic linear relationship between X and Y .

Determining the relationship between the number of sales per week X and the commissions

paid per week Y did not require the collection of any data to determine the function Y = f (X).
That linear relationship was implicit in the problem statement. Other cases can arise, such as (a) the

relationship is deterministic but requires data to determine its functional form, or (b) the relationship

is deterministic, but unlike the relationship in the previous example, it is not linear. The following

example illustrates a nonlinear deterministic relationship between the independent variable X and

the dependent variable Y .

Example 1.2 Alice purchases a five-year certificate of deposit paying 8% annually with

an initial deposit of $1000. Let the independent variable X be the number of months

that the certificate of deposit has been held at a bank. Let the dependent variable Y be

the associated balance. Find the deterministic relationship between X and Y assuming

that the interest on the certificate of deposit is compounded monthly.
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Under these assumptions, the balance on Alice’s certificate of deposit at month X is

Y = f (X) = 1000

(

1+
0.08

12

)X

.

(This relationship between X and Y makes three somewhat minor simplifying assump-

tions: (1) Y = f (X) gives the instantaneous value of the CD after X months have passed

even though interest is paid monthly, making this a continuous function rather than a

step function, (2) all 12 months are assumed to have the same number of days, and

(3) all years have the same number of days, which is not the case because of leap years.

The violation of these assumptions are minor, and the relationship given here is very

close to the balance Y after X months have passed.)

The curve in Figure 1.2 associated with the deterministic relationship is concave upward

because of compounding. The three points plotted on the curve are

(X1, Y1) = (0, 1000), (X2, Y2) = (12, 1083.00), and (X3, Y3) = (60, 1489.85).

The first data pair corresponds to the initial $1000 deposit into the certificate of deposit

at X = 0. The second data pair corresponds to the account balance after one year, or

X = 12 months. The balance after 12 months is slightly more than the annual simple

interest balance $1000 · (1+0.08) = $1080 because of the monthly compounding. The

third data pair corresponds to the final balance of $1489.85 after 60 months. As was the

case with the sales commissions in the previous example, the three data pairs were not

necessary to establish the deterministic relationship between the independent variable

X and the dependent variable Y . Their relationship is implicit in the problem statement.

In both examples, the three data pairs fall on the graph of the deterministic relationship.
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Figure 1.2: A deterministic nonlinear relationship between X and Y .

In most applications, the relationship between the independent variable X and the dependent

variable Y is not deterministic because Y is typically a random variable. The next section introduces

some of the thinking behind the development of a statistical model that describes the relationship

between X and Y .
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1.2 Statistical Models

The goal in constructing a statistical model is to write a formula that adequately captures the govern-

ing probabilistic relationship between an independent variable X and a dependent variable Y . This

formula might be used subsequently for prediction or some other form of statistical inference. In this

section, we assume that the dependent variable Y is a continuous random variable that can assume a

range of values associated with a particular setting of the independent variable X . The relationship

Y = f (X)

that was used in the previous section is no longer adequate because X is assumed to be observed

without error, and this formula results in a value of Y which is deterministic rather than random.

One way of overcoming this problem is to replace the left-hand side of this equation by the expected

value of Y , which is a constant, resulting in

E[Y ] = f (X).

To be a little more careful about what is meant by this statistical relationship, the left-hand side is

actually a conditional expectation, namely

E[Y |X = x] = f (x).

In words, given that the independent variable X assumes the value x, the transformation f (x) gives

the conditional expected value of the dependent variable Y . Notice that this statistical model does

not specify the distribution of the random variable Y for a particular value of X ; it only tells us

the expected value of Y for a particular value of X . This statistical regression model defines a

hypothesized relationship between the observed value of X on the right-hand side of the model and

the conditional expected value of Y on the left-hand side of the model. The hypothesized relationship

might be adequate for modeling or it might need some refining. There is typically no model that

perfectly captures the relationship between X and Y . This was recognized by George Box, who

wrote:

All models are wrong; some models are useful.

In a statistical model that involves parameters, the estimation of the model parameters will be fol-

lowed by assessments to determine whether the model holds in an empirical sense. If the model

needs refining, the new set of parameters are estimated and new assessments are made to see if

the refined model is an improvement over the previous model. Regression modeling is an iterative

process.

There is a second way to write a statistical model that is equivalent to the statistical model

described in the previous paragraph. The model can be written as

Y = f (X)+ ε,

where the error term ε (also known as the “noise” or “disturbance” term) is a random variable

that accounts for the fact that the independent variable cannot predict the dependent variable with

certainty. This term makes the relationship between X and Y a random (or statistical or stochastic)

relationship rather than a deterministic relationship. If the probability distribution of the error term

is specified, then not only is the expected value of Y conditioned on the value of X determined, but

also the entire probability distribution of Y conditioned on the value of X is specified. It is common

practice to assume that the expected value of ε is zero. The probability distribution of ε establishes
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the nature and magnitude of the scatter of the data values about the regression function. When the

population variance of ε is small, the values of Y are tightly clustered about the regression function

f (X); when the population variance of ε is large, the values of Y stray further from the regression

function f (X).
Regression modeling involves determining the functional form of f (X) from a data set of n

data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The statistical model for X and Y in a general sense also

applies to each of the data points, so

Yi = f (Xi)+ εi

for i= 1, 2, . . . , n. The sign of εi indicates whether the observed data pair (Xi, Yi) falls above (εi > 0)

or below (εi < 0) the conditional expected value of Yi, for i = 1, 2, . . . , n.

The function f (X) is called the regression function, and was first referred to in print as such by

Sir Francis Galton (1822–1911), a British anthropologist and meteorologist, in his 1885 paper titled

“Regression Toward Mediocrity in Hereditary Stature” published in the Journal of the Anthropolog-

ical Institute. He established a regression function relating the adult height of an offspring, Y , as a

function of an average of the parent’s heights, X , which had been adjusted for gender.

The regression function Y = f (X) can be either linear or nonlinear. The next section focuses

on the easier case, a linear regression function. In this case, the model is typically referred to as a

simple linear regression model, which is often abbreviated as an SLR model. The model is simple

because there is only one independent variable X that is used to predict the dependent variable Y .

The model is linear because the regression function f (X) = β0 + β1X is assumed to be linear in

the parameters β0 and β1. The more complicated cases of multiple linear regression, which involve

more than one independent variable, and nonlinear regression, in which f (X) is not a linear function,

will be introduced later.

1.3 Simple Linear Regression Model

A simple linear regression model assumes a linear relationship between an independent variable X

and a dependent variable Y . In this section, the more general regression model

Y = f (X)+ ε

is reduced to the simple linear regression model given in the definition below.

Definition 1.1 A simple linear regression model is given by

Y = β0 +β1X + ε,

where

• X is the independent variable, assumed to be a fixed value observed without error,

• Y is the dependent variable, which is a continuous random variable,

• β0 is the population intercept of the regression line, which is an unknown constant,

• β1 is the population slope of the regression line, which is an unknown constant, and

• ε is the error term, a continuous random variable with population mean zero and positive,

finite population variance σ2 that accounts for the randomness in the relationship between

X and Y .
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Stating the simple linear regression model in this fashion will not seem natural from probability

theory. As a non-regression illustration from probability theory, W ∼ N
(

µ, σ2
)

indicates that W

has a normal distribution with population mean µ and population variance σ2. Although much less

compact, the probability distribution of W can also be written as W = µ+ ε, where ε ∼ N
(

0, σ2
)

.

This illustration reflects the essence behind writing the simple linear regression model in the form

Y = β0 +β1X + ε in Definition 1.1.

The formulation of the simple linear model from Definition 1.1 involves a random variable ε on

the right-hand side of the model. In some settings, this model might be viewed as a transformation

of a random variable, but this is not the correct interpretation of the model in this setting. The simple

linear regression model defines a hypothesized relationship between the random variable on the left-

hand side of the model and terms on the right-hand side of the model. This probability model is

hypothesized to govern the relationship between X and Y . The goal in constructing a simple linear

regression model is to determine if it adequately captures the probabilistic relationship between X

and Y . Estimation of the model parameters will be followed by assessment to see if the model holds

in an empirical sense.

The assumption that the random variable ε has population mean zero and population variance σ2

in the most basic simple linear regression model in Definition 1.1 allows for mathematically tractable

statistical inference. In models that allow for confidence intervals and hypothesis testing concerning

the estimated slope and intercept, the error term is assumed to have a specific distribution, which is

typically the normal distribution. The error term models all sources of variation, both known and

unknown, other than the variation in Y associated with the particular level of X . Notice that σ2 is

constant over all values of X .

The assumption that the independent variable X is not subject to random variability is not always

satisfied in practice. The fitting procedure becomes more complicated when X is considered to be a

random variable. For this reason, we assume that the observed value of X is either exact or that the

variation of X is small enough so that its observed value can be assumed to be exact.

The assumption of a linear relationship between X and Y might also be flawed. In some cases

it might not be a perfectly linear relationship, but a linear relationship provides a close enough

approximation between X and Y to be useful for associated statistical inference. In other cases, a

linear relationship might be appropriate for some range of values of X , known as the scope of the

model, but not others. One important step in establishing a simple linear regression model is to

specify the values of X for which the simple linear regression model is valid.

The procedure for establishing a simple linear regression model that relates the dependent vari-

able Y to the independent variable X is given below.

1. Collect the data pairs. The data pairs are denoted by (X1, Y1), (X2, Y2), . . . , (Xn, Yn). In some

settings, it is possible to exert some control over the Xi values. As will be seen later, there are

advantages to having the Xi values spread out as much as possible in terms of the precision of

the fitted regression model.

2. Make a scatterplot of data pairs. A scatterplot is just a plot of the points (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) on a set of axes. The purpose of the scatterplot is to see if the linear relationship

between X and Y is appropriate and to visually assess the spread of the data values about the

regression function. With modern statistical software, scatterplots are easy to generate.

3. Inspect the scatterplot. Although this step is subjective, it is important to visually assess

(a) whether the relationship between X and Y appears to be linear or nonlinear, (b) whether

the spread of the data pairs about the regression function is small or large, and (c) whether the
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variability of the data pairs about the regression function remains constant over the range of

X values that have been collected.

4. State the regression model. In this chapter, the regression model is assumed to be the simple

linear regression model Y = β0+β1X +ε. Nonlinear regression models, such as the quadratic

model Y = β0+β1X +β2X2+ε, and multiple regression models with more than one indepen-

dent variable, such as Y = β0 +β1X1 +β2X2 + ε, will be considered later.

5. Fit the regression model to the data pairs. The method of least squares, which will be

described in the next section, is commonly used to estimate the parameters in the regression

model. The least squares criterion is to choose the regression model that minimizes the sum

of the squares of the vertical differences between data points and the fitted regression model.

6. Assess the adequacy of the fitted regression model. Visual assessment techniques for as-

sessing the fitted regression model include superimposing the fitted regression model onto the

scatterplot of the data pairs and examining a plot of the residuals. A residual is the signed

vertical distance between a data pair and its associated value on the regression function. In

addition, there are statistical methods that can be applied to the fitted regression model to see

if it adequately describes the relationship between X and Y .

7. Perform statistical inference. Once the fitted regression model is deemed an acceptable

approximation to the relationship between X and Y , it can be used for statistical inference.

One simple example of statistical inference that occurs often in practice is the prediction of a

future value of Y for a particular level of X .

The seven steps for establishing a regression model are not necessarily performed in the order given

here. Many times the fitted regression model is rejected in Step 6, and it is necessary to return to

Step 4 in order to formulate an alternative model. Steps 4 through 6 might need to be repeated

several times before arriving at an acceptable model for statistical inference.

The simple linear regression model given in Definition 1.1 implies that all of the (Xi, Yi) pairs

also follow the simple linear regression model:

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n, where

• (Xi,Yi) are the data pairs, for i = 1, 2, . . . , n,

• Xi is the value of the independent variable for observation i, which is observed without error,

for i = 1, 2, . . . , n,

• Yi is the value of the dependent variable for observation i, which is a continuous random

variable, for i = 1, 2, . . . , n,

• β0 is the population intercept of the regression line,

• β1 is the population slope of the regression line, and

• εi is the random error term for observation i which satisfies

– E[εi] = 0 for i = 1, 2, . . . , n,

– V [εi] = σ2 for i = 1, 2, . . . , n,
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– the random εi values are mutually independent random variables, which implies that

their variance–covariance matrix is diagonal.

When the simple linear regression model is stated in this fashion, four properties become apparent.

First, Yi is a random variable that can be broken into two components: a deterministic component

β0 +β1Xi, and a random component εi, for i = 1, 2, . . . , n. Second, Yi has population mean

E[Yi] = E [β0 +β1Xi + εi] = β0 +β1Xi

for i = 1, 2, . . . , n and population variance

V [Yi] =V [β0 +β1Xi + εi] =V [εi] = σ2

for i = 1, 2, . . . , n. Using slightly different notation, it would be reasonable to write the population

mean and variance as the conditional expectations

E[Yi |Xi] = β0 +β1Xi and V [Yi |Xi] = σ2

for i = 1, 2, . . . , n. The property that the variance does not change with Xi is known as homoscedas-

ticity. Temporarily dropping the subscripts, the line

E [Y ] = β0 +β1X ,

with β0 and β1 replaced by the associated estimated values β̂0 and β̂1, is oftentimes superimposed

onto the scatterplot to visualize the fitted regression model. Third, each data pair (Xi, Yi) has a Yi

value that misses the regression function by the error term εi, for i = 1, 2, . . . , n. Fourth, the values

of the observed dependent variables Y1, Y2, . . . , Yn must be mutually independent random variables

because the error terms ε1, ε2, . . . , εn are mutually independent random variables.

1.4 Least Squares Estimators

We now turn to the question of estimating the intercept β0 and the slope β1 by the method of

least squares. German mathematician Carl Friedrich Gauss (1777–1855) invented the least squares

method and French mathematician Adrien–Marie Legendre (1752–1833) first published the method

in 1805. The least squares method determines the values of β0 and β1 that minimize the sum of

the squares of the errors, where the error is the vertical distance between the Yi value and the fitted

regression line. The term estimator will be used here to refer to a generic formula for β̂0 or β̂1; the

term estimate will be used to refer to a specific numeric value for β̂0 or β̂1.

One bit of notation that will make the expressions of the point estimators more compact is

SXY =
n

∑
i=1

(

Xi − X̄
)(

Yi − Ȳ
)

=
n

∑
i=1

(

XiYi −XiȲ − X̄Yi + X̄Ȳ
)

=
n

∑
i=1

XiYi −nX̄Ȳ −nX̄Ȳ +nX̄Ȳ

=
n

∑
i=1

XiYi −nX̄Ȳ .
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Similarly,

SXX =
n

∑
i=1

(

Xi − X̄
)2

=
n

∑
i=1

X2
i −nX̄2

and

SYY =
n

∑
i=1

(

Yi − Ȳ
)2

=
n

∑
i=1

Y 2
i −nȲ 2.

This new notation allow us to express nSXY , nSXX , and nSYY as

nSXY = n
n

∑
i=1

XiYi −
n

∑
i=1

Xi

n

∑
i=1

Yi,

nSXX = n
n

∑
i=1

X2
i −

(

n

∑
i=1

Xi

)2

,

and

nSYY = n
n

∑
i=1

Y 2
i −

(

n

∑
i=1

Yi

)2

.

Using this notation, the least squares estimators for the slope and intercept of the model, denoted by

β̂1 and β̂0, are given in the following theorem. Notice that the term normal equations in the theorem

is not related to the normal distribution.

Theorem 1.1 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs with at least two distinct Xi val-

ues. The least squares estimators of β0 and β1 minimize the sum of the squared deviations between

Yi and the associated fitted value β̂0+ β̂1Xi in the simple linear regression model. The least squares

estimators are the solution to the simultaneous normal equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi

and are given by

β̂1 =
SXY

SXX

and

β̂0 = Ȳ − β̂1X̄ ,

where X̄ and Ȳ are the sample means

X̄ =
X1 +X2 + · · ·+Xn

n
and Ȳ =

Y1 +Y2 + · · ·+Yn

n
.

Proof The deviation of Yi from the associated value on the population regression line

is

Yi − (β0 +β1Xi) ,
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for i = 1, 2, . . . , n. The sum of the squared deviations is

S =
n

∑
i=1

(Yi −β0 −β1Xi)
2.

The least squares estimators are those that minimize S respect to β0 and β1; that is,

(

β̂0, β̂1

)

= argmin
β0,β1

n

∑
i=1

(Yi −β0 −β1Xi)
2.

Using calculus to minimize S with respect to β0 and β1 requires taking the partial deriva-

tives of S with respect to β0 and β1:

∂S

∂β0
=−2

n

∑
i=1

(Yi −β0 −β1Xi) = 0

∂S

∂β1
=−2

n

∑
i=1

Xi(Yi −β0 −β1Xi) = 0.

Simplifying and using the hat notation to denote the estimators results in the simultane-

ous normal equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi.

The normal equations are a system of two linear equations in the two unknowns β̂0 and

β̂1. Solving these equations simultaneously yields the point estimator for the slope

β̂1 =
∑n

i=1(Xi − X̄)(Yi − Ȳ )

∑n
i=1(Xi − X̄)2

=
SXY

SXX

.

Dividing the first normal equation by the sample size n yields the point estimator for

the intercept

β̂0 = Ȳ − β̂1X̄ .

The next step is to show that the least squares estimators β̂1 and β̂0 minimize S. This

will be done by showing that the Hessian matrix is positive definite. The Hessian matrix

H is the matrix of second partial derivatives of S with respect to β0 and β1:

H =











∂2S

∂β2
0

∂2S

∂β0 ∂β1

∂2S

∂β1 ∂β0

∂2S

∂β2
1











=











2n 2
n

∑
i=1

Xi

2
n

∑
i=1

Xi 2
n

∑
i=1

X2
i











.

The H matrix is unchanged when evaluated at the least squares estimators β̂0 and β̂1. To

show that this matrix is positive definite at the least squares estimators, it is sufficient to

show that the upper-left-hand element and the determinant of H are both positive. The
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upper-left-hand element is positive for all values of the sample size n. The determinant

of H is

|H|=

∣

∣

∣

∣

∣

∣

∣

∣

2n 2
n

∑
i=1

Xi

2
n

∑
i=1

Xi 2
n

∑
i=1

X2
i

∣

∣

∣

∣

∣

∣

∣

∣

= 4n
n

∑
i=1

X2
i −4

(

n

∑
i=1

Xi

)2

.

This expression is positive when there are at least two distinct Xi values by the Cauchy–

Schwartz inequality. The Cauchy–Schwartz inequality (a special case of the triangle

inequality) states that for real numbers a1, a2, . . . , an and b1, b2, . . . , bn,

(

a2
1 +a2

2 + · · ·+a2
n

)

·
(

b2
1 +b2

2 + · · ·+b2
n

)

≥ (a1b1 +a2b2 + · · ·+anbn)
2 ,

where equality is satisfied if and only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn.

Letting ai = 1 and bi = xi in the Cauchy–Schwartz inequality indicates that the determi-

nant of H is positive when there are at least two distinct Xi values. Hence, the Hessian

matrix H is positive definite and the least squares estimators β̂0 and β̂1 minimize S. �

The requirement that there are at least two distinct Xi values in Theorem 1.1 is consistent with

intuition. Figure 1.3 shows n = 5 data pairs in which the independent variable assumes the same

value for each pair: X1 = X2 = X3 = X4 = X5 = 3. It is not possible to estimate the slope of the

regression line in this particular setting. This is the geometric reason for the requirement that there

are at least two distinct Xi values. In addition, the denominator in β̂1 = SXY/SXX is zero when all Xi

values are equal, which gives the associated algebraic reason for the requirement. From this point

forward, whenever the simple linear regression model is used, it is assumed that the associated data

pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) have at least two distinct Xi values.

Figure 1.4 shows the geometric interpretation associated with the estimated intercept β̂0 and

estimated slope β̂1. The n = 9 data pairs (X1, Y1) , (X2, Y2) , . . . , (X9, Y9) are plotted as points, along

with the associated estimated regression line Y = β̂0 + β̂1X . The y-intercept of the graph β̂0 is the

height of the estimated regression line at X = 0. The “rise over run” interpretation of the slope is

illustrated by the right triangle with legs consisting of dotted lines.

0 1 2 3 4 5 6 7 8

0

10

20

30

40

(X1, Y1)

(X2, Y2)

(X3, Y3)

(X4, Y4)

(X5, Y5)

X

Y

Figure 1.3: Identical independent variable values for all n = 5 data pairs.
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Y = β̂0 + β̂1X

β̂0

β̂1

1

0

0

X

Y

Figure 1.4: Geometry associated with β̂0 and β̂1.

The next example illustrates the mechanics associated with calculating the least squares esti-

mates β̂0 and β̂1. In order to focus on the calculations performed by hand, a small sample size of

n = 3 data pairs is used. The numbers have been handpicked in order to make the resulting parame-

ter estimates come out to whole numbers. A sample size of n = 2 is too simplistic in that two points

determine a line, and the estimated regression line will always pass through those two points.

Example 1.3 Cheryl sells farm equipment and supplies. Let X be the number of sales

she completes in a week, which will serve as the independent variable in this example.

Each sale that she completes results in an associated random amount of revenue to

the company that can be attributed to Cheryl’s sales prowess. The dependent random

variable Y is the associated total revenue to the company from Cheryl’s sales for that

week, in thousands of dollars. The data pairs for the past n = 3 weeks are

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), and (X3, Y3) = (2, 2).

Find the least squares estimates of the population intercept β0 and population slope β1

for the simple linear regression model from these data pairs and plot the fitted regression

line and the data pairs on a single plot.

A scatterplot for this data set is generated using the plot function in the R commands

x = c(6, 8, 2)

y = c(2, 9, 2)

plot(x, y, xlim = c(0, 8), ylim = c(0, 9))

and is displayed in Figure 1.5. Your immediate reaction to the scatterplot might be

to conclude that this is certainly not a linear relationship between X and Y . But this

conclusion might not be warranted because of the small number of data pairs collected.

One thing that is unusual about this data set is that Cheryl generated six sales in the

first week, resulting in just $2000 in revenue, and then two sales in the third week, also

resulting in $2000 in revenue. Clearly the sales transacted during the first week were
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Figure 1.5: A scatterplot of the sales data pairs.

much smaller in size, on average, than those in the third week. Since the purpose of this

example is to illustrate the calculations for computing β̂0 and β̂1, we will proceed as

if the linear model were appropriate. Assessing a simple linear regression model with

only n = 3 data pairs is nearly impossible.

The least squares estimates for β0 and β1 will be calculated in three different fashions.

First, they will be calculated by hand, with all of the calculations displayed here. Sec-

ond, they will be calculated in R using an approach that mirrors the hand calculations.

Third, they will be calculated in R using the lm (for linear model) function, which

automates the process of estimating β0 and β1.

Table 1.1 contains the data pairs and calculations necessary to compute the estimated

slope and intercept of the regression line. The sample means of the independent and

dependent variables are

X̄ =
16

3
and Ȳ =

13

3
.

Although X̄ and Ȳ are set in upper case, it is important to remember that the Xi values

are observed without error and the Yi values are the associated random responses. The

Observation Number of Total

number i sales Xi revenue Yi

(

Xi − X̄
)2 (

Xi − X̄
)(

Yi − Ȳ
)

1 6 2 (6−16/3)2 (6−16/3)(2−13/3)

2 8 9 (8−16/3)2 (8−16/3)(9−13/3)

3 2 2 (2−16/3)2 (2−16/3)(2−13/3)
Sum 16 13 168/9 168/9

Table 1.1: Data pairs and calculated values for estimating β0 and β1.
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sums in the bottom row of Table 1.1 give the sums of squares

SXX =
3

∑
i=1

(Xi − X̄)
2
=

168

9
and SXY =

3

∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
168

9
.

The fact that SXX = SXY is coincidental, and is typically not the case in practice. Using

Theorem 1.1, the least squares estimates of β1 and β0 are

β̂1 =
SXY

SXX

=
168/9

168/9
= 1 and β̂0 = Ȳ − β̂1X̄ =

13

3
−1 · 16

3
=−1.

A second way to calculate the least squares estimates β̂1 and β̂0 uses the R code below

to implement the formulas given in Theorem 1.1. The code is generic in the sense that

once the two vectors x and y are defined using the first two commands, the last four

commands will calculate the point estimates β̂1 and β̂0 for any number of (Xi, Yi) pairs.

x = c(6, 8, 2)

y = c(2, 9, 2)

sxx = sum((x - mean(x)) ^ 2)

sxy = sum((x - mean(x)) * (y - mean(y)))

beta1hat = sxy / sxx

beta0hat = mean(y) - beta1hat * mean(x)

This code also returns the point estimates

β̂1 = 1 and β̂0 =−1.

As you might imagine, these calculations are performed so often by statisticians that R

has a built-in function to estimate β1 and β0.

A third way to calculate the least squares estimates of β1 and β0 via use of the R lm

function.

x = c(6, 8, 2)

y = c(2, 9, 2)

lm(y ~ x)$coefficients

The lm function takes a formula for an argument, in this case y∼x, and returns a list.

One component of the list returned by lm is named coefficients, and it contains the

estimated regression coefficients β̂1 = 1 and β̂0 =−1.

The fitted regression line is added to the scatterplot in Figure 1.6 using the R code

below. The plot function plots the data pairs, the lm function estimates the intercept

and slope of the regression line via least squares, and the abline function plots the

fitted regression line. The labels on the data pairs can be added with the text function.

The regression line plotted in Figure 1.6 is the line which minimizes the sum of the

squares of the vertical distances between the points associated with the data pairs and

the fitted regression line.

x = c(6, 8, 2)

y = c(2, 9, 2)

plot(x, y, xlim = c(0, 8), ylim = c(-1, 9))

fit = lm(y ~ x)

abline(fit$coefficients)
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Figure 1.6: A scatterplot of the sales data pairs with the fitted regression line.

The fitted regression line has intercept β̂0 = −1 and slope β̂1 = 1. The fact that the

intercept is β̂0 =−1 rather than β̂0 = 0 (because X = 0 sales in a week should result in

Y = 0 revenue in that week) is due to random sampling variability. Section 3.1 investi-

gates how to force a regression line through the origin, which would be appropriate in

this setting. The interpretation of the estimated slope β̂1 = 1 is that the average amount

of revenue generated from each sale that Cheryl completes is $1000.

Figure 1.7 makes two embellishments to Figure 1.6. First, the axes have been adjusted

so that the length of one unit on the vertical axis is the same as the length of one unit

on the horizontal axis. Second, three shaded squares have been added to the plot. Each

square has one vertex at a data pair, and a second vertex at the associated point on the

fitted regression line. The numbers in each square give the area of the square. For these

data pairs, the total area is the sum of squares

S = (Y1 − β̂0 − β̂1X1)
2 +(Y2 − β̂0 − β̂1X2)

2 +(Y3 − β̂0 − β̂1X3)
2

= (2+1−6)2 +(9+1−8)2 +(2+1−2)2

= 9+4+1

= 14.

The fitted least squares line is unique in the following sense. The squares illustrated in

Figure 1.7 for any line having an intercept and/or slope that differ from β̂0 =−1 and

β̂1 = 1 will have a total area that exceeds S = 14. The fitted least squares line is that line

which minimizes S. If a different line were selected and plotted, some of the squares

might become smaller, but at least one of the squares would become larger, and the total

area of the squares would exceed 14.

Another way to view the minimization of S is to consider contours, or level surfaces, of

the sum of squares as a function of the intercept β0 and the slope β1. The point

(β̂0, β̂1)= (−1, 1)

in Figure 1.8 corresponds to the fitted least squares line with a sum of squares S = 14 for

the three data pairs. The concentric contours corresponding to S = 15, S = 18, S = 23,
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Figure 1.7: A scatterplot of the sales data pairs with the fitted regression line.
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Figure 1.8: Level surfaces of the sum of squares.

and S = 30 show how the sum of squares increases as the intercept and slope stray from

the least squares estimates.
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1.5 Properties of Least Squares Estimators

The least squares estimators of β0 and β1 possess several properties which are important for statis-

tical inference. The four properties established in this section are:

• the least squares estimators β̂0 and β̂1 are unbiased estimators of β0 and β1,

• the least squares estimators β̂0 and β̂1 can be written as linear combinations of the dependent

variables Y1, Y2, . . . , Yn,

• the variance–covariance matrix of β̂0 and β̂1 can be written in closed form, and

• the least squares estimators β̂0 and β̂1 have the smallest population variance among all unbi-

ased estimators that can be expressed as linear combinations of the dependent variables.

Proofs of the associated results are included in each of the following subsections.

1.5.1 β̂0 and β̂1 are Unbiased Estimators of β0 and β1

A key property associated with the least squares estimators β̂0 and β̂1 is that their expected values

equal the associated population values β0 and β1. The next result establishes the unbiasedness of the

two point estimators.

Theorem 1.2 The least squares estimators β̂0 and β̂1 in the simple linear regression model are

unbiased estimators of β0 and β1, respectively.

Proof To show that β̂1 and β̂0 are unbiased estimators of β1 and β0, it is sufficient to

show that

E[β̂1]= β1 and E[β̂0]= β0.

The denominator of the expression for β̂1, which is SXX , is a constant because the values

of the independent variables X1, X2, . . . , Xn are assumed to be observed without error in

the simple linear regression model. Thus, the expected value of β̂1 is

E[β̂1]= E

[

SXY

SXX

]

= E

[

∑n
i=1 XiYi −nX̄Ȳ

∑n
i=1 X2

i −nX̄2

]

=
∑n

i=1 XiE [Yi]−nX̄E [Ȳ ]

∑n
i=1 X2

i −nX̄2

=
∑n

i=1 Xi (β0 +β1Xi)−nX̄ (β0 +β1X̄)

∑n
i=1 X2

i −nX̄2

=
β0 ∑n

i=1 Xi +β1 ∑n
i=1 X2

i −β0 ∑n
i=1 Xi −nβ1X̄2

∑n
i=1 X2

i −nX̄2

= β1.

The expected value of β̂0 is

E[β̂0]= E[Ȳ − β̂1X̄]= β0 +β1X̄ −β1X̄ = β0.
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Therefore, β̂1 and β̂0 are unbiased estimators of β1 and β0. �

The fact that the least squares estimators of the slope and intercept of the regression line are

unbiased will be supported by a Monte Carlo simulation experiment in the next example. Unlike the

typical simple linear regression setting in which data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are used

to estimate the unknown parameters β0 and β1, the simulation will generate data pairs and associated

regression lines for known parameters β0 and β1.

Example 1.4 Consider the simple linear regression model

Y = β0 +β1X + ε,

where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

The population parameters have been chosen arbitrarily. The error term distribution has

population mean zero and finite population variance, so it satisfies the conditions of a

simple linear regression model from Definition 1.1. The uniform error term distribution

is not likely to occur in practice, however, because it cuts off at −1 and 1. Probability

distributions with tails, such as the normal distribution, are used more often in practice.

Conduct a Monte Carlo simulation with 5000 replications that analyzes the probability

distribution of the estimated intercept β̂0 and estimated slope β̂1 for n = 10 data pairs.

Assume that the Xi values are equally likely to be one of the integers 0, 1, 2, . . . , 9. The

independent variable X happens to assume discrete values in this example, but it would

pose no difficulty if it took on continuous values.

One problem that might arise in the Monte Carlo experiment is that the Xi values might

all be equal. This would violate the assumption in Theorem 1.1 that at least two Xi

values must be distinct. Even though this event occurs with the low probability

10 ·
(

1

10

)10

= 10−9,

an if statement will be included in the Monte Carlo simulation code to catch this prob-

lem if it occurs.

The R code below conducts 5000 replications of the Monte Carlo experiment. The com-

mands prior to the for loop set the number of replications to 5000, set the sample size

to n = 10, set the population intercept to β0 = 1, set the population slope to β1 = 1/2,

define the vectors beta0hat and beta1hat to hold the simulated estimated intercepts

and slopes, and establish the random number stream with the set.seed function with

arbitrary argument. Within the for loop, x contains the values of the independent vari-

ables, y contains the values of the associated dependent variables, and fit is the list

that stores the results of the regression analysis generated by the call to the lm function.

nrep = 5000

n = 10
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beta0 = 1

beta1 = 1 / 2

beta0hat = numeric(nrep)

beta1hat = numeric(nrep)

set.seed(100)

for (i in 1:nrep) {

x = sample(0:9, n, replace = TRUE)

if (min(x) == max(x)) stop("All x values are equal")

y = beta0 + beta1 * x + runif(n, -1, 1)

fit = lm(y ~ x)

beta0hat[i] = fit$coefficients[1]

beta1hat[i] = fit$coefficients[2]

}

Figure 1.9 shows the scatterplot and the fitted regression line for the first replication of

the simulation. Notice that having tied values for the independent variables poses no

difficulty for calculating the estimates of the intercept and slope of the fitted regression

line. This first fitted regression line has intercept β̂0 = 1.398 which exceeds the popula-

tion intercept β0 = 1; this first fitted regression line has slope β̂1 = 0.399 which is less

than the population slope β1 = 0.5. Each of the 5000 replications will yield unique val-

ues of β̂0 and β̂1. Since β̂0 and β̂1 are unbiased estimators of β0 and β1 by Theorem 1.2,

the 5000 simulated point estimates will hover around their population counterparts.

Figure 1.10 contains four lines. The thick, solid line is the population regression line

with intercept β0 = 1 and slope β1 = 1/2. The other three dashed lines correspond to

the fitted regression lines for the first three replications of the simulation. As expected,

the estimated intercepts and slopes differ from the associated population values from

one replication to the next.

When the simulation is run for all 5000 replications, there are 5000
(

β̂0, β̂1

)

pairs gen-

erated. The additional R commands below plot a histogram of the 5000 β̂0 values on
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Figure 1.9: Scatterplot of simulated data pairs and fitted regression line (replication 1).



Section 1.5. Properties of Least Squares Estimators 21

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

X

Y

Figure 1.10: Population and fitted regression lines (replications 1–3).

the left and a histogram of the 5000 β̂1 values on the right. The mfrow (multiple frame

by row) argument in par function sets up a 1×2 array of plots, and the hist function

plots the histograms. Figure 1.11 contains the two histograms. The vertical axes have

been suppressed because only the center and shape of the histogram is of interest.

par(mfrow = c(1, 2))

hist(beta0hat)

hist(beta1hat)

As predicted by Theorem 1.2, the histogram of the β̂0 values is centered around β0 = 1

and the histogram of the β̂1 values is centered around β1 = 1/2. Both histograms have

a bell shape, indicating that the extreme values for the intercepts and slopes are less

likely as you move further away from the population values. Although the error terms

in the model are mutually independent U(−1, 1) random variables, the summations

−1 0 1 2 3 0.2 0.5 0.8

β̂0 β̂1

Figure 1.11: Histograms of estimated intercepts (left) and estimated slopes (right).
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involved with the computation of β̂0 and β̂1 allow the central limit theorem to produce

a histogram shape that is quite close to that of a normal probability density function.

The two histograms in Figure 1.11 do not indicate whether β̂0 and β̂1 are independent

or dependent random variables. The additional R command

plot(beta0hat, beta1hat)

plots the 5000
(

β̂0, β̂1

)

pairs, which is displayed in Figure 1.12. The Monte Carlo

simulation indicates that the estimated intercepts and slopes are negatively correlated.

They tend to be on the opposite sides of their respective means. A larger-than-usual

slope is likely to be associated with a smaller-than-usual intercept, and vice versa.
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Figure 1.12: Estimated intercepts and slopes for 5000 Monte Carlo simulation replications.

The two key take-aways from this Monte Carlo experiment are:

• β̂0 and β̂1 being unbiased estimators of β0 and β1 via Theorem 1.2 is supported by

the histograms in Figure 1.11, and

• β̂0 and β̂1 appear to be negatively correlated for this particular simple linear re-

gression model by Figure 1.12.

1.5.2 β̂0 and β̂1 are Linear Combinations of Y1, Y2, . . . , Yn

Theorem 1.2, which states that E[β̂0] = β0 and E[β̂1] = β1, concerns the accuracy of the least

squares estimators β̂0 and β̂1. These estimators are “on target” in the sense that their expected values

equal their associated population values. The histograms in Figure 1.11 show that the estimators for

β0 and β1 do not systematically deviate above or below their population values.

The precision of the estimators β̂0 and β̂1 is also of interest. This requires that we also compute

their population variances. Before doing so, it is helpful to see that both of these point estimators

can be written as linear combinations of the values of the dependent variables Y1, Y2, . . . , Yn.
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It is not immediately apparent from the formula for the point estimator for the slope of the regres-

sion line β̂1 = SXY/SXX , but the estimator can be written as a linear combination of the dependent

variables:

β̂1 =
SXY

SXX

=
∑n

i=1

(

Xi − X̄
)(

Yi − Ȳ
)

∑n
i=1

(

Xi − X̄
)2

=
∑n

i=1

(

Xi − X̄
)

Yi

∑n
i=1

(

Xi − X̄
)2

because Ȳ ∑n
i=1

(

Xi − X̄
)

= Ȳ
(

nX̄ −nX̄
)

= 0. This formula indicates that the point estimator for the

slope of the regression line is the linear combination

β̂1 = a1Y1 +a2Y2 + · · ·+anYn,

where

ai =
Xi − X̄

∑n
i=1

(

Xi − X̄
)2

for i = 1, 2, . . . , n.

The coefficients a1, a2, . . . , an in the linear combination β̂1 = a1Y1 + a2Y2 + · · ·+ anYn satisfy

three properties. First, ∑n
i=1 ai = 0 because

n

∑
i=1

ai =
1

SXX

n

∑
i=1

(

Xi − X̄
)

=
nX̄ −nX̄

SXX

= 0.

Second, ∑n
i=1 aiXi = 1 because

n

∑
i=1

aiXi =
1

SXX

n

∑
i=1

(

Xi − X̄
)

Xi =
1

SXX

[

n

∑
i=1

X2
i −nX̄2

]

=
SXX

SXX

= 1.

Third, ∑n
i=1 a2

i = 1/SXX because

n

∑
i=1

a2
i =

1

S2
XX

n

∑
i=1

(

Xi − X̄
)2

=
SXX

S2
XX

=
1

SXX

.

These properties can be useful in deriving results associated with the simple linear regression model.

Likewise, the least squares point estimator for the intercept of the regression line is also a linear

combination of the Yi values:

β̂0 = Ȳ − β̂1X̄

=
1

n

n

∑
i=1

Yi − X̄
n

∑
i=1

Xi − X̄

∑n
i=1

(

Xi − X̄
)2

Yi

=
n

∑
i=1

(

1

n
− X̄ · Xi − X̄

∑n
i=1

(

Xi − X̄
)2

)

Yi.
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This formula indicates that the point estimator for the intercept of the regression line can also be

written as a linear combination:

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn,

where

ci =
1

n
− X̄ · Xi − X̄

∑n
i=1

(

Xi − X̄
)2

for i = 1, 2, . . . , n. This derivation constitutes a proof of the following result.

Theorem 1.3 The least squares estimators of the parameters β0 and β1 in the simple linear regres-

sion model can be written as linear combinations of the dependent variables:

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn

and

β̂1 = a1Y1 +a2Y2 + · · ·+anYn,

where

ci =
1

n
− X̄ · Xi − X̄

SXX

and ai =
Xi − X̄

SXX

for i = 1, 2, . . . , n, and

n

∑
i=1

ai = 0,
n

∑
i=1

aiXi = 1, and
n

∑
i=1

a2
i =

1

SXX

.

These formulas will be illustrated for the small data set consisting of n = 3 data pairs.

Example 1.5 Consider again the n = 3 data pairs

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), and (X3, Y3) = (2, 2)

from Example 1.3. Recall that the independent variable X is Cheryl’s number of sales

per week. Each sale results in a random amount of revenue to the company. The depen-

dent random variable Y is the associated total revenue from the sales that Cheryl com-

pletes for a particular week, in thousands of dollars. Find the least squares estimates of

the intercept β0 and slope β1 for the simple linear regression model using the formulas

that express the estimates as linear combinations of Y1, Y2, Y3 from Theorem 1.3.

The sample mean of the independent variables is

X̄ =
6+8+2

3
=

16

3
.

The value of SXX is

SXX =
3

∑
i=1

(

Xi− X̄
)2

=

(

6− 16

3

)2

+

(

8− 16

3

)2

+

(

2− 16

3

)2

=
4

9
+

64

9
+

100

9
=

56

3
.

The coefficients for the linear combination associated with β̂1 are

ai =
Xi − X̄

SXX
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for i = 1, 2, 3, or

a1 =
6−16/3

56/3
=

1

28
, a2 =

8−16/3

56/3
=

1

7
, a3 =

2−16/3

56/3
=− 5

28
.

You might want to check that the three properties associated with the coefficients a1,

a2, and a3 from Theorem 1.3, namely a1 +a2 +a3 = 0, a1X1 +a2X2 +a3X3 = 1, and

a2
1 +a2

2 +a2
3 = 1/SXX , are all satisfied as expected. The least squares estimate of the

slope of the regression line is

β̂1 = a1Y1 +a2Y2 +a3Y3 =
1

28
·2+ 1

7
·9− 5

28
·2 =

1

14
+

9

7
− 5

14
= 1.

The R code for performing these calculations is given below.

x = c(6, 8, 2)

y = c(2, 9, 2)

a = (x - mean(x)) / sum((x - mean(x)) ^ 2)

beta1hat = sum(a * y)

The coefficients for the linear combination associated with β̂0 are

ci =
1

n
− X̄ · Xi − X̄

SXX

=
1

n
− X̄ ·ai

for i = 1, 2, 3, or

c1 =
1

3
− 16

3
· 1

28
=

1

7
, c2 =

1

3
− 16

3
· 1

7
=−3

7
, c3 =

1

3
− 16

3
· −5

28
=

9

7
.

The least squares estimate of the intercept of the regression line is

β̂0 = c1Y1 + c2Y2 + c3Y3 =
1

7
·2− 3

7
·9+ 9

7
·2 =

2

7
− 27

7
+

18

7
=−1.

The R code for performing these calculations follows.

x = c(6, 8, 2)

y = c(2, 9, 2)

n = length(x)

c = 1 / n - mean(x) * (x - mean(x)) / sum((x - mean(x)) ^ 2)

beta0hat = sum(c * y)

In both cases the point estimates match the associated values calculated by the standard

formulas for β̂0 and β̂1 from Theorem 1.1 that were used in Example 1.3, as expected.

1.5.3 Variance–Covariance Matrix of β̂0 and β̂1

Theorem 1.2 states that β̂0 and β̂1 are unbiased estimators of β0 and β1 because E[β̂0] = β0 and

E[β̂1]= β1. This result concerns the accuracy of the least squares estimators, but does not address

the precision of the least squares estimators. We now return to the question of assessing the precision
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of the point estimators. Being able to express the point estimators of the least squares estimators as

linear combinations of the dependent variables as summarized in Theorem 1.3 will be very useful

as we proceed. In order to assess the precision of β̂0 and β̂1, it is necessary to compute V [β̂0]
and V [β̂1]. More generally, we will compute the variance–covariance matrix of β̂0 and β̂1 in this

subsection. Returning to the Monte Carlo simulation in Example 1.4, the magnitudes of the diagonal

elements of the variance–covariance matrix reflect the spread of the histograms in Figure 1.11, and

the off-diagonal elements of the variance–covariance matrix give the population covariance between

β̂0 and β̂1 which is apparent in the simulation results displayed in Figure 1.12. The general form for

the population covariance between β̂0 and β̂1 will indicate whether the negative sample covariance

between β̂0 and β̂1 that was encountered in the Monte Carlo simulation was due to the particular

values of the parameters in the simple linear regression model or whether the negative covariance is

generally the case.

We begin with the lower-right-hand element of the variance–covariance matrix of β̂0 and β̂1. In

the simple linear regression model

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n, the error terms ε1, ε2, . . . , εn are assumed to be mutually independent random

variables. This implies that the dependent variables Y1, Y2, . . . , Yn are also mutually independent

random variables. Using the fact that β̂1 can be written as a linear combination of the dependent

variables from Theorem 1.3, the population variance of β̂1 is

V [β̂1]=V
[

a1Y1 +a2Y2 + · · ·+anYn

]

=
n

∑
i=1

V
[

aiYi

]

=
n

∑
i=1

a2
i V
[

Yi

]

=

(

n

∑
i=1

a2
i

)

σ2

=
σ2

SXX

because ∑n
i=1 a2

i = 1/SXX by Theorem 1.3. Although the experimenter typically has no control over

σ2, the experimenter may have control over selecting the values of X1, X2, . . . , Xn in some appli-

cations of simple linear regression. In order to make V [β̂1] as small as possible, the experimenter

should make SXX as large as possible. Spreading the Xi values as much as possible gives the most

stability to the estimated slope of the regression line. Simple linear regression modeling can still

be performed when the Xi values are tightly clustered together, but the estimated slope will be less

stable, and the scope of the model will be limited. As an extreme example of spreading the Xi values,

consider clustering all of the Xi values at a left-most and a right-most extreme possible values for

the independent variable. The good news is that this will give you the largest possible SXX and the

associated smallest possible V [β̂1]. The bad news is that you will not be able to assess linearity in

this case because you have observed the dependent variable at only two values of the independent

variable. A multitude of functions can model the average of the dependent variables at these two

extreme values of the independent variable. So the usual practice is to select the Xi values in an

approximately uniform fashion over as wide a range as possible. This gives the experimenter the

opportunity to assess linearity and also achieves a large SXX , resulting in an associated small V
[

β̂1

]

.
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The next step is to calculate the upper-left-hand element of the variance–covariance matrix of β̂0

and β̂1. Before calculating the population variance of β̂0, it is necessary to establish that Ȳ and β̂1 are

uncorrelated. Since Y1, Y2, . . . , Yn are mutually independent random variables, each with population

variance V [Yi] = σ2, the population covariance between Ȳ and β̂1 is

Cov(Ȳ , β̂1)= Cov

(

Y1

n
+

Y2

n
+ · · ·+ Yn

n
, a1Y1 +a2Y2 + · · ·+anYn

)

=
n

∑
i=1

n

∑
j=1

Cov

(

Yi

n
, a jYj

)

=
n

∑
i=1

Cov

(

Yi

n
, aiYi

)

=
n

∑
i=1

ai

n
V [Yi]

=
σ2

n

n

∑
i=1

ai

= 0

because ∑n
i=1 ai = 0 by Theorem 1.3. So Ȳ and β̂1 are uncorrelated.

Based on the fact that the population covariance between Ȳ and β̂1 is zero, the population vari-

ance of β̂0 is

V [β̂0]=V [Ȳ − β̂1X̄]
=V [Ȳ ]+ X̄2V [β̂1]

=
σ2

n
+

X̄2σ2

SXX

=

[

1

n
+

X̄2

SXX

]

σ2

=

[

∑n
i=1

(

Xi − X̄
)2

+nX̄2

n ∑n
i=1

(

Xi − X̄
)2

]

σ2

=
∑n

i=1 X2
i

nSXX

σ2.

The last step is to calculate the off-diagonal elements of the variance–covariance matrix of β̂0

and β̂1. Since Cov
(

Ȳ , β̂1

)

= 0, the population covariance between β̂0 and β̂1 is

Cov(β̂0, β̂1)= Cov(Ȳ − β̂1X̄ , β̂1)
= Cov(Ȳ , β̂1)−Cov(β̂1X̄ , β̂1)
=−Cov(β̂1X̄ , β̂1)
=−X̄Cov(β̂1, β̂1)
=−X̄V [β̂1]

=− X̄σ2

SXX

.
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All of the elements of the variance–covariance matrix have now been established, which constitutes

a proof of the following theorem.

Theorem 1.4 The least squares estimators of the parameters β0 and β1 in the simple linear regres-

sion model have variance–covariance matrix

[

V [β̂0] Cov(β̂0, β̂1)

Cov(β̂1, β̂0) V [β̂1]

]

=

[

∑n
i=1 X2

i /(nSXX ) −X̄/SXX

−X̄/SXX 1/SXX

]

σ2.

There are two important observations that can be made from Theorem 1.4. First, the elements

of the variance–covariance matrix of β̂0 and β̂1 are a function of only the Xi values and the typically

unknown population error variance σ2; the values of Y1, Y2, . . . , Yn do not play a role. Recall from

Definition 1.1 that the independent variable observations X1, X2, . . . , Xn are assumed to be observed

without error. Second, since SXX > 0 because at least two of the Xi values are distinct, the population

covariance between β̂0 and β̂1 takes the opposite sign of X̄ . This provides an explanation of why β̂0

and β̂1 appeared to have negative covariance in the results of the 5000 simulated estimates plotted

in Figure 1.12.

Example 1.6 Consider again the simple linear regression model

Y = β0 +β1X + ε

from Example 1.4 in which

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

The error term distribution has population mean zero, so this model satisfies the condi-

tions of a simple linear regression model. Find the variance–covariance matrix for the

least squares estimators β̂0 and β̂1 associated with a single Monte Carlo replication of

n = 10 data pairs. Assume that the Xi values are equally likely to be one of the integers

0, 1, 2, . . . , 9.

The R code that follows conducts a single replication of the Monte Carlo experiment.

The results of this single replication were illustrated by the fitted regression line in

Figure 1.9. Since the error terms are mutually independent U(−1, 1) random variables

and the population variance of a U(a, b) random variable is (b−a)2/12, the population

variance of the error terms is σ2 =(1+1)2/12= 1/3. Although the dependent variables

are generated and stored in the vector y, they are not used in the calculation of the

variance–covariance matrix.

n = 10

beta0 = 1

beta1 = 1 / 2

sigma2 = 1 / 3

set.seed(100)

x = sample(0:9, n, replace = TRUE)
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if (min(x) == max(x)) stop("All x values are equal")

y = beta0 + beta1 * x + runif(n, -1, 1)

sxx = sum((x - mean(x)) ^ 2)

vcm = matrix(nrow = 2, ncol = 2)

vcm[1, 1] = sum(x ^ 2) / (n * sxx)

vcm[1, 2] = vcm[2, 1] = - mean(x) / sxx

vcm[2, 2] = 1 / sxx

vcm = vcm * sigma2

print(vcm)

The variance–covariance matrix for this single replication of the Monte Carlo simula-

tion experiment, reported to four digits, is

[

V [β̂0] Cov(β̂0, β̂1)

Cov(β̂1, β̂0) V [β̂1]

]

=

[

0.1211 −0.02509

−0.02509 0.007168

]

.

If additional Monte Carlo simulation replications were made, this matrix would vary

from one replication to the next because the Xi values vary from one replication to the

next. Taking the square roots of the diagonal elements yields

√

V [β̂0]= 0.3481 and

√

V [β̂1]= 0.0847,

which are estimates of the standard deviation of the intercept and slope of the regression

line, often referred to as the standard errors of the estimated parameters. These two

standard deviations are roughly in line with the spread of the histograms generated

from the 5000 simulation replications depicted in Figure 1.11. The negative values of

the off-diagonal elements of the variance–covariance matrix are consistent with the plot

of 5000 simulated (β̂0, β̂1) values given in Figure 1.12.

So far we have found the expected values and the variance–covariance matrix of the least squares

estimators β̂0 and β̂1. But there is a lingering doubt as to whether better point estimators for β0 and

β1 exist. An example of such a better point estimator would be an unbiased estimator of β0 with

a smaller population variance than the least squares estimator of β0. This lingering doubt will be

addressed in the next subsection.

1.5.4 Gauss–Markov Theorem

Recall from Theorem 1.3 that the least squares estimators for the slope and intercept of the regression

line were expressed as linear combinations of the dependent variables:

β̂1 = a1Y1 +a2Y2 + · · ·+anYn

and

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn.

But are these linear combinations the best possible linear combinations for estimating β1 and β0?

The Gauss–Markov theorem is used to show that these estimators have the minimum variance of

all possible unbiased estimators which are linear combinations of the dependent variables. These
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estimators are known as Best Linear Unbiased Estimators, typically abbreviated with the colorful

acronym BLUE. The Venn diagram in Figure 1.13 might be helpful in categorizing the various

types of estimators. The set L consists of all point estimators for the regression parameters β0 and

β1 which can be expressed as linear combinations of the dependent variables Y1, Y2, . . . , Yn. The

set U consists of all point estimators for the regression parameters β0 and β1 which are unbiased

estimators of β0 and β1. The shaded intersection of L and U (that is, L∩U) is all estimators which

are both linear combinations of Y1, Y2, . . . , Yn and unbiased. An example of an estimator of β1 which

is neither in L nor in U is Y 2
1 . The Gauss–Markov theorem states that the least squares estimators

have the smallest possible variance among all estimators in L∩U .

L U

Figure 1.13: Venn diagram of sets L (linear combinations) and U (unbiased estimators).

Theorem 1.5 (Gauss–Markov theorem) The least squares estimators of β0 and β1 associated with

a simple linear regression model have the smallest population variance among all unbiased esti-

mators that can be expressed as a linear combination of the dependent variables.

Proof (partial proof) This proof will show that β̂1 has the smallest population variance

among the class of all linear unbiased estimators for β1. The proof for β̂0 is similar but

left as an exercise for the reader. Let

β̂1 = a1Y1 +a2Y2 + · · ·+anYn

be the unbiased least squares estimator of the population slope β1 from Theorem 1.3,

where ai =
(

Xi − X̄
)

/SXX for i = 1, 2, . . . , n. Consider another linear combination of

the dependent variables which is also an unbiased estimator of β1 that can be written as

β̂′
1 = k1Y1 + k2Y2 + · · ·+ knYn

for some real-valued constants k1, k2, . . . , kn. Since E[Yi] = β0 + β1Xi, the expected

value of β̂′
1 is

E[β̂′
1]= E

[

n

∑
i=1

kiYi

]

=
n

∑
i=1

kiE [Yi]

=
n

∑
i=1

ki (β0 +β1Xi)

= β0

n

∑
i=1

ki +β1

n

∑
i=1

kiXi.
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Since β̂′
1 is an unbiased estimator of β1, E[β̂′

1]= β1. In order for this to be the case, the

following conditions must hold:

n

∑
i=1

ki = 0 and
n

∑
i=1

kiXi = 1.

These two conditions will be used in the last step of the derivation that follows. Now

let ki = ai + di, for i = 1, 2, . . . , n. We want to find the di values that meet the two

conditions given above and minimize V [β̂′
1], which is

V [β̂′
1]=V

[

n

∑
i=1

kiYi

]

=
n

∑
i=1

k2
i V [Yi]

=
n

∑
i=1

k2
i σ2

= σ2
n

∑
i=1

(ai +di)
2

= σ2

[

n

∑
i=1

a2
i +

n

∑
i=1

d2
i +2

n

∑
i=1

aidi

]

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

n

∑
i=1

aidi

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

n

∑
i=1

ai(ki −ai)

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

(

n

∑
i=1

aiki −
n

∑
i=1

a2
i

)

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

(

n

∑
i=1

ki ·
Xi − X̄

SXX

− 1

SXX

)

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

(

∑n
i=1 kiXi − X̄ ∑n

i=1 ki −1

SXX

)

=V [β̂1]+σ2
n

∑
i=1

d2
i .

In order to minimize V [β̂′
1] the di values should be selected to minimize ∑n

i=1 d2
i .

This sum of squares is minimized when d1 = d2 = · · · = dn = 0. Therefore, the least

squares estimator β̂1, with coefficients ki = ai for i = 1, 2, . . . , n, has the smallest

variance among all unbiased estimators that can be written as linear combinations of

Y1, Y2, . . . , Yn and is therefore a best linear unbiased estimator. �

The Gauss–Markov theorem indicates that the least squares estimators for β0 and β1 have min-

imal variance among all linear estimators. It does not indicate whether the least squares estimators

for β0 and β1 have minimal variance among all estimators. The Gauss–Markov theorem extends to
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the case of multiple linear regression in which there are several independent variables. The least

squares estimators are also the best linear unbiased estimators in this case.

To review the results that have been introduced so far, the simple linear regression model

Y = β0 +β1X + ε

defines a linear statistical relationship between an independent variable X , observed without error,

and a random dependent variable Y as given in Definition 1.1. The point estimators for β1 and β0

from n data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) using the least squares criterion are

β̂1 =
SXY

SXX

and β̂0 = Ȳ − β̂1X̄

as given in Theorem 1.1. The least squares estimators are unbiased estimators of their associated

parameters because

E[β̂1]= β1 and E[β̂0]= β0

as given in Theorem 1.2. The least squares estimators of β0 and β1 can be expressed as linear

combinations of Y1, Y2, . . . , Yn as

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn and β̂1 = a1Y1 +a2Y2 + · · ·+anYn,

with coefficients c1, c2, . . . , cn and a1, a2, . . . , an given in Theorem 1.3. The variance–covariance

matrix of β̂0 and β̂1 is

[

V [β̂0] Cov(β̂0, β̂1)
Cov(β̂1, β̂0) V [β̂1]

]

=

[

∑n
i=1 X2

i /(nSXX ) −X̄/SXX

−X̄/SXX 1/SXX

]

σ2

as given in Theorem 1.4. Finally, the Gauss–Markov theorem given in Theorem 1.5 states that the

least squares estimators of β0 and β1 have the smallest population variance among all unbiased

estimators that can be expressed as a linear combination of Y1, Y2, . . . , Yn.

The next section defines fitted values and residuals. Fitted values are the heights of the regression

line associated with the observed values of the independent variable X1, X2, . . . , Xn. The residuals

are the vertical signed distances between the observed values of the dependent variable Y1, Y2, . . . , Yn

and the associated fitted values that fall on the regression line. Residuals play an analogous role to

the error terms in the simple linear regression model.

1.6 Fitted Values and Residuals

The simple linear regression model

Y = β0 +β1X + ε

was introduced in the previous section as a linear statistical model for describing the relationship

between an independent variable X and a dependent variable Y . Taking the expected value of both

sides of this equation yields

E[Y ] = β0 +β1X

because E[ε] = 0 and X is a fixed value assumed to be observed without error, which are two key

assumptions in Definition 1.1. When the population intercept β0 and the population slope β1 are re-

placed by their associated least squares point estimators β̂0 and β̂1, the resulting estimated regression

line is

Ŷ= β̂0 + β̂1X .
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This estimated regression line is typically plotted on a scatterplot that contains the data pairs (X1, Y1),
(X2, Y2), . . . , (Xn, Yn). Seeing the data pairs and the least squares regression line on the same plot

often makes the visual assessment of linearity easier. For any value X in which the simple linear

regression model is valid, Ŷ is the point estimator for the value of the dependent variable based on the

data pairs and associated estimated regression line. This equation can be rewritten for the particular

values of the independent variable collected as

Ŷi = β̂0 + β̂1Xi

for i = 1, 2, . . . , n. The value Ŷi is known as the fitted value associated with data pair i, for i = 1, 2,

. . . , n. When Ŷi 6= Yi, which is almost always the case in applications, the fitted value does not fall

on the estimated regression line; when Ŷi = Yi, the fitted value falls on the estimated regression line.

The next example illustrates the notion of fitted values for the sales data set.

Example 1.7 Consider the sales data set from Example 1.3 with just n = 3 data pairs:

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), (X3, Y3) = (2, 2).

Find the fitted values Ŷ1, Ŷ2, and Ŷ3 associated with the least squares regression line.

From Examples 1.3 and 1.5, the point estimates for the population intercept and popu-

lation slope are

β̂0 =−1 and β̂1 = 1.

Hence, the estimated regression line is Ŷ= β̂0 + β̂1X , or

Ŷ=−1+X ,

which is plotted along with the scatterplot of the data pairs in Figure 1.14. So calculating

the fitted values is just a matter of using the Xi values as arguments in the estimated

regression line:

Ŷ1 =−1+X1 =−1+6 = 5 ⇒ (X1, Ŷ1) = (6,5)

Ŷ2 =−1+X2 =−1+8 = 7 ⇒ (X2, Ŷ2) = (8,7)

Ŷ3 =−1+X3 =−1+2 = 1 ⇒ (X3, Ŷ3) = (2,1).

The fitted values are also plotted as points that lie on the estimated regression line in

Figure 1.14. Recall from the previous section that the fitted least squares line is the line

which minimizes the sum of the squares of the lengths of the vertical dashed lines which

connect the data pair with its associated fitted value. The fitted values are calculated and

stored in a component named fitted in the list returned by the R lm function. The R

code below confirms the fitted values calculated above by hand.

x = c(6, 8, 2)

y = c(2, 9, 2)

lm(y ~ x)$fitted

The spread of the data pair (Xi, Yi) from the fitted regression line Ŷ= β̂0+ β̂1X is reflected in the

vertical signed distance between the data pair (Xi, Yi) and the associated fitted value
(

Xi, Ŷi

)

, These

signed distances are known as the residuals, and are defined by

ei = Yi − Ŷi
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)

X

Y

Figure 1.14: A scatterplot of the sales data pairs with the fitted values.

for i= 1, 2, . . . , n. Data pairs that fall above the regression line correspond to positive residuals; data

pairs that fall below the regression line correspond to negative residuals. The least squares approach

used so far in estimating the intercept and slope of the regression line is a matter of finding the values

of β̂0 and β̂1 which minimize the sum of the squares of the residuals. In other words, minimize

S =
n

∑
i=1

e2
i .

The fitted values and residuals are formally defined next.

Definition 1.2 Let β̂0 and β̂1 denote the least squares estimators of the parameters β0 and β1

in the simple linear regression model with data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The fitted

value associated with the ith data pair (Xi, Yi) is Ŷi = β̂0 + β̂1Xi, for i = 1, 2, . . . , n. The residual

associated with ith data pair (Xi, Yi) is ei = Yi − Ŷi, for i = 1, 2, . . . , n.

Choosing to use the vertical distance between the observed value of the dependent variable

and the regression line in the definition of the residual was based on the fact that the values of

the independent variable X1, X2, . . . , Xn are assumed to be observed without error in Definition 1.1.

The mathematics associated with simple linear regression changes substantially if both X and Y are

considered to be random variables.

A subtle but important distinction should be drawn between the model error term εi for data pair

i and the residual ei for data pair i. The model error terms are defined by

εi = Yi − (β0 +β1Xi)

for i = 1, 2, . . . , n, and represent the vertical distances between the observed dependent variable Yi

and the true (population) regression line Y = β0+β1X . The simple linear regression model assumes

that ε1, ε2, . . . , εn are mutually independent random variables. In nearly all applications, however,

β0 and β1 are unknown. This means that for a particular data set, these model error terms are also

unknown. On the other hand, the residuals are defined by

ei = Yi − Ŷi = Yi −(β̂0 + β̂1Xi)
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for i = 1, 2, . . . , n, and represent the error for data pair i when compared to the estimated regression

line Ŷ= β̂0 + β̂1X , which is calculated from the n data pairs. Thus, ε̂i = ei, for i = 1, 2, . . . , n. The

e1, e2, . . . , en values are not mutually independent random variables because they must sum to zero.

(This will be proven subsequently in Theorem 1.6.) For a particular data set, these residuals are

known. The residuals are calculated for the sales data next.

Example 1.8 Consider again the sales data set from Example 1.3 with n = 3 data pairs:

(X1, Y1) = (6, 2) (X2, Y2) = (8, 9) (X3, Y3) = (2, 2).

Calculate the residuals e1, e2, and e3 associated with the least squares regression line

and display them on a scatterplot that includes the regression line.

Table 1.2 contains the calculations required to calculate the residuals and their squares.

The sum of the squared residuals for these data pairs is

S =
3

∑
i=1

e2
i = (−3)2 +22 +12 = 9+4+1 = 14.

This total is consistent with the sum of the areas of the squares from Figure 1.7. The

data pairs were handpicked in this example to make the residuals all integers. This will

not be the case in nearly all applications of simple linear regression. This value for S

which is associated with the estimated regression line is the smallest possible value for

the sum of squared residuals. Any other line will be associated with a larger sum of

squared residuals.

Figure 1.15 shows the residuals e1, e2, and e3 along with the data pairs and the estimated

regression line. Unless all of the data pairs fall in a line (which would correspond to

S = 0), there will always be one or more data values falling above the line and one or

more data values falling below the line.

The values of the residuals are stored in a component named residuals in the list

returned by the R lm function. The R code below calculates and displays the residuals

that were calculated by hand and displayed in Table 1.2.
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Figure 1.15: A scatterplot of the sales data pairs with the fitted values and residuals.
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Observation Number of Total Fitted Residual Squared

number i sales Xi revenue Yi value Ŷi ei = Yi − Ŷi residual e2
i

1 6 2 5 −3 9

2 8 9 7 2 4

3 2 2 1 1 1

Sum 16 13 13 0 14

Table 1.2: Data pairs, fitted values, residuals, and squared residuals.

x = c(6, 8, 2)

y = c(2, 9, 2)

lm(y ~ x)$residuals

A close inspection of the entries in Table 1.2 reveals that there are some curious outcomes that

occur, such as
n

∑
i=1

ei = 0 and
n

∑
i=1

Yi =
n

∑
i=1

Ŷi.

In other words, (a) the sum of the residuals is zero, and (b) the sum of the observed values of the

dependent variable equals the sum of the fitted values. These were not just a matter of coincidence.

The following theorem confirms that these relationships, along with a few other relationships, are

true in general.

Theorem 1.6 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs associated with the simple linear

regression model

Y = β0 +β1X + ε.

Using the notation from Definition 1.2, the fitted values are Ŷ1, Ŷ2, . . . , Ŷn and the residuals are

e1, e2, . . . , en. Then

•
n

∑
i=1

ei = 0,

•
n

∑
i=1

Yi =
n

∑
i=1

Ŷi,

•
n

∑
i=1

Xiei = 0,

•
n

∑
i=1

Ŷiei = 0,

• (X̄ , Ȳ) is a point that lies on the estimated regression line.

Proof Each of the five results will be proven individually.
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• Since β̂0 = Ȳ − β̂1X̄ from Theorem 1.1, the sum of the residuals is

n

∑
i=1

ei =
n

∑
i=1

(Yi − Ŷi)

=
n

∑
i=1

(Yi − β̂0 − β̂1Xi)

=
n

∑
i=1

Yi −nβ̂0 − β̂1

n

∑
i=1

Xi

=
n

∑
i=1

Yi −
n

∑
i=1

Yi + β̂1

n

∑
i=1

Xi − β̂1

n

∑
i=1

Xi

= 0.

• Since β̂0 = Ȳ − β̂1X̄ from Theorem 1.1, the sum of the fitted values is

n

∑
i=1

Ŷi =
n

∑
i=1

(β̂0 + β̂1Xi)

= nβ̂0 + β̂1

n

∑
i=1

Xi

= n(Ȳ − β̂1X̄)+ β̂1

n

∑
i=1

Xi

=
n

∑
i=1

Yi.

Thus, the sum of the values of the dependent variable always equals the sum of

the fitted values.

• The sum of the products of the independent variables and residuals is

n

∑
i=1

Xiei =
n

∑
i=1

Xi(Yi − Ŷi)

=
n

∑
i=1

XiYi −
n

∑
i=1

XiŶi

=
n

∑
i=1

XiYi −
n

∑
i=1

Xi(β̂0 + β̂1Xi)

=
n

∑
i=1

XiYi − β̂0

n

∑
i=1

Xi − β̂1

n

∑
i=1

X2
i

= 0.

The final step uses the second normal equation from Theorem 1.1.

• Using the first and third result in this theorem, the sum of the products of the fitted

values and residuals is

n

∑
i=1

Ŷiei =
n

∑
i=1

(β̂0 + β̂1Xi)ei = β̂0

n

∑
i=1

ei + β̂1

n

∑
i=1

Xiei = β̂0 ·0+ β̂1 ·0 = 0.
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• The first normal equation from Theorem 1.1 is

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi.

Dividing both sides by n,

β̂0 + β̂1X̄ = Ȳ ,

which indicates that the point (X̄ , Ȳ ) lies on the estimated regression line. �

These five results from Theorem 1.6 will be illustrated for the sales data in the example that

follows.

Example 1.9 Calculate the quantities given in Theorem 1.6 for the n = 3 data pairs

from the sales data set from Example 1.3:

(X1, Y1) = (6, 2) (X2, Y2) = (8, 9) (X3, Y3) = (2, 2).

From Examples 1.3 and 1.5, the point estimate for the intercept is β̂0 = −1 and the

point estimate for the slope is β̂1 = 1. Table 1.3 contains the calculations necessary to

illustrate the results given in Theorem 1.6. More specifically,

•
3

∑
i=1

ei = 0,

•
3

∑
i=1

Yi =
3

∑
i=1

Ŷi = 13,

•
3

∑
i=1

Xiei = 0,

•
3

∑
i=1

Ŷiei = 0.

Finally, the point
(

X̄ , Ȳ
)

=(16/3, 13/3) lies on the estimated regression line Ŷ=−1+X ,

as illustrated in Figure 1.16.

i Xi Yi Ŷi ei e2
i Xiei Ŷiei

1 6 2 5 −3 9 −18 −15

2 8 9 7 2 4 16 14

3 2 2 1 1 1 2 1

Sum 16 13 13 0 14 0 0

Table 1.3: Calculation of quantities from Theorem 1.6.
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Figure 1.16: The point (X̄ , Ȳ ) falls on the estimated regression line.

1.7 Estimating the Variance of the Error Terms

The emphasis so far has been focused on the estimation of the intercept and slope of the regression

line. While β̂0 and β̂1 are the most critical parameters in most applications of a simple linear regres-

sion model, there is another parameter, the population variance of the error terms σ2, which should

also be estimated from the data pairs.

To establish a foundation for the estimation of σ2, assume for this paragraph only that there is

a univariate, rather than a bivariate, sample of values denoted by X1, X2, . . . , Xn. These will not be

fixed values observed without error as they were in regression modeling. It is assumed that these

values constitute a random sample from a population that has finite population mean µ and finite

population variance σ2. The goal in this paragraph is to estimate σ2 as a function of the data values.

If the population mean µ is known (which is rare in practice), then an unbiased estimator of σ2 is

1

n

n

∑
i=1

(Xi −µ)2 .

If the first n−1 deviations between the sample values and the population mean X1 −µ, X2 −µ, . . . ,

Xn−1 − µ were known, the final deviation, Xn − µ, would be free to take on any value. It is in this

sense that the sum of squares
n

∑
i=1

(Xi −µ)2

is said to have n “degrees of freedom.” It is common practice in statistics to divide a sum of squares

by its degrees of freedom to arrive at a point estimator. In this particular instance, dividing by

n makes the point estimator an unbiased estimator of σ2. The problem that arises more often in

practice is to estimate σ2 when µ is unknown. An unbiased estimator of σ2 in this case is the sample

variance
1

n−1

n

∑
i=1

(

Xi − X̄
)2
,

which is typically denoted by S2 by statisticians. There are three reasons why the term outside of

the summation has n− 1 in the denominator. The first reason is that this is the appropriate term so
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that this estimator is an unbiased estimator of σ2. This can be stated as E
[

S2
]

= σ2. The second

reason is that one can’t estimate the dispersion of a distribution from a single data value, so the

sample variance is undefined when n = 1. The third reason is that the sum of squares has n− 1

degrees of freedom. One degree of freedom is lost because the sample mean X̄ is used to estimate

the population mean µ. If the first n−1 deviations between the sample values and the sample mean

X1 − X̄ , X2 − X̄ , . . . , Xn−1 − X̄ were known, the final deviation, Xn − X̄ , could be calculated from the

other n−1 values because
n

∑
i=1

(

Xi − X̄
)

=
n

∑
i=1

Xi −nX̄ = 0.

It is in this sense that the sum of squares

n

∑
i=1

(

Xi − X̄
)2

is said to have n− 1 degrees of freedom. This ends the discussion of degrees of freedom for a

univariate data set.

We now return to the problem of estimating σ2 in simple linear regression. The independent

variables X1, X2, . . . , Xn are once again assumed to be fixed values observed without error as they

have been throughout this chapter. Based on the fact that the error terms ε1, ε2, . . . , εn in the simple

linear regression model are assumed to be mutually independent and identically distributed random

variables, each with population mean 0 and finite population variance σ2, the population variance

of the error terms can be estimated with the unbiased estimator

1

n

n

∑
i=1

ε2
i =

1

n

n

∑
i=1

(Yi −β0 −β1Xi)
2

if β0 and β1 were known. But in practice, the two parameters β0 and β1 are estimated from the data

pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), so two degrees of freedom are lost and an appropriate point

estimator for the population variance σ2 is given by

σ̂2 =
1

n−2

n

∑
i=1

e2
i =

1

n−2

n

∑
i=1

(Yi − β̂0 − β̂1Xi)
2
.

It is important that the population variance of the error terms σ2 remain constant over the range of

X values in which the simple linear regression model is appropriate. One tool for visually assessing

this assumption is a scatterplot of the data pairs with the estimated regression line superimposed.

The point estimator for σ2 when β0 and β1 are estimated from the data pairs involves the sum of

squares of the residuals, and this is often abbreviated as SSE, for sum of squares for error:

SSE =
n

∑
i=1

e2
i ,

which is also known as the error sum of squares, residual sum of squares, and sum of squares due

to error. When this quantity is divided by its degrees of freedom, it is known as the mean square

error, which is abbreviated by MSE:

σ̂2 = MSE =
SSE

n−2
=

1

n−2

n

∑
i=1

e2
i .
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Some good news is provided by the next result, which states that MSE = σ̂2 is an unbiased estimator

of σ2.

Theorem 1.7 If e1, e2, . . . , en are the residuals in a simple linear regression model, then the point

estimator

σ̂2 =
1

n−2

n

∑
i=1

e2
i

is an unbiased estimator of σ2.

Proof The simple linear regression model is

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n. Summing both sides of this equation and dividing by n yields

Ȳ = β0 +β1X̄ + ε̄.

Taking the difference between the previous two equations results in

Yi − Ȳ = β1 (Xi − X̄)+ εi − ε̄ (1)

for i = 1, 2, . . . , n. The definition of the residual associated with data pair i is

ei = Yi − β̂0 − β̂1Xi

for i = 1, 2, . . . , n. Recognizing that the residuals sum to zero via Theorem 1.6, sum-

ming both sides of this equation, and dividing by n yields

0 = Ȳ − β̂0 − β̂1X̄ .

Taking the difference between the previous two equations results in

ei = Yi − Ȳ − β̂1 (Xi − X̄) (2)

for i = 1, 2, . . . , n. Substituting the right-hand side of equation (1) for Yi−Ȳ in equation

(2) gives

ei = β1(Xi − X̄)+ εi − ε̄− β̂1(Xi − X̄)

= (β1 − β̂1)(Xi − X̄
)

+(εi − ε̄)

for i = 1, 2, . . . , n. Squaring both sides of this equation and summing gives

n

∑
i=1

e2
i = (β̂1 −β1)

2
n

∑
i=1

(Xi − X̄)
2 −2(β̂1 −β1)

n

∑
i=1

(Xi − X̄)(εi − ε̄)+
n

∑
i=1

(εi − ε̄)2 .

Taking into account that the Xi values are assumed to be fixed constants in a simple

linear regression model, the expected value of both sides of this equation is

E

[

n

∑
i=1

e2
i

]

= E
[

(β̂1 −β1)
2
] n

∑
i=1

(Xi − X̄)
2 −2E

[

(β̂1 −β1)
n

∑
i=1

(Xi − X̄)(εi − ε̄)

]
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+ E

[

n

∑
i=1

(εi − ε̄)2

]

. (3)

There are three terms on the right-hand side of equation (3). Each term will be con-

sidered separately. The first term contains E
[(

β̂1 − β1

)2]
, which is an expression for

the population variance of β̂1 because β̂1 is an unbiased estimator for β1 via Theo-

rem 1.2. This population variance is the lower-right entry of the variance–covariance

matrix given in Theorem 1.4. So the first term on the right-hand side of equation (3)

reduces to

E
[

(β̂1 −β1)
2
] n

∑
i=1

(Xi − X̄)
2
=V [β̂1] ·SXX =

σ2

SXX

·SXX = σ2.

Before considering the second term on the right-hand side of equation (3), recall

from Theorem 1.3 that β̂1 can be written as a linear combination of the observa-

tions of the dependent variable Y1, Y2, . . . , Yn as β̂1 = a1Y1 + a2Y2 + · · ·+ anYn, where

ai = (Xi − X̄)/SXX for i = 1, 2, . . . , n. So an expression for the least squares point esti-

mator of β1 can be written as

β̂1 =
n

∑
i=1

aiYi

=
n

∑
i=1

ai (β0 +β1Xi + εi)

= β0

n

∑
i=1

ai +β1

n

∑
i=1

aiXi +
n

∑
i=1

aiεi

= β1 +
n

∑
i=1

aiεi

via Theorem 1.3. Temporarily ignoring the −2 coefficient on the second term in equa-

tion (3) and using the fact that ε1, ε2, . . . , εn are mutually independent random variables

with population mean zero and population variance σ2, the expected value in the second

term on the right-hand side of equation (3) is

E

[

(β̂1 −β1)
n

∑
i=1

(Xi − X̄)
(

εi − ε̄
)

]

= E

[(

β1 +
n

∑
i=1

aiεi −β1

)

n

∑
i=1

(Xi − X̄)
(

εi − ε̄
)

]

= E

[(

n

∑
i=1

aiεi

)(

n

∑
i=1

(Xi − X̄)εi − ε̄
n

∑
i=1

(Xi − X̄)

)]

= E

[

1

SXX

(

n

∑
i=1

(Xi − X̄)εi

)(

n

∑
i=1

(Xi − X̄)εi

)]

=
1

SXX

E

[

n

∑
i=1

(Xi − X̄)
2
ε2

i +∑∑
i 6= j

(Xi − X̄)(X j − X̄)εiε j

]

=
1

SXX

n

∑
i=1

(Xi − X̄)
2
E
[

ε2
i

]

= σ2.
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Finally, consider the third term on the right-hand side of equation (3). Using (i) the

shortcut formula for the population variance, (ii) the fact that the expected value oper-

ator E is a linear operator, (iii) the fact that the population variance of a sample mean

comprised of mutually independent and identically distributed random variables is the

ratio of the population variance to the sample size, and (iv) the fact that E[εi] = 0 for

i = 1, 2, . . . , n and therefore E[ε̄] = 0, the third term on the right-hand side of equation

(3) is

E

[

n

∑
i=1

(

εi − ε̄
)2

]

= E

[

n

∑
i=1

ε2
i −2ε̄

n

∑
i=1

εi +nε̄2

]

= E

[

n

∑
i=1

ε2
i −2nε̄2 +nε̄2

]

= E

[

n

∑
i=1

ε2
i −nε̄2

]

=
n

∑
i=1

E[ε2
i ]−nE[ε̄2]

=
n

∑
i=1

(

V
[

εi

]

+E
[

εi

]2
)

−n
(

V
[

ε̄
]

+E
[

ε̄
]2
)

=
n

∑
i=1

σ2 −n · σ2

n

= nσ2 −σ2

= (n−1)σ2.

Combining the three terms together, equation (3) becomes

E

[

n

∑
i=1

e2
i

]

= σ2 −2σ2 +(n−1)σ2 = (n−2)σ2.

Dividing both sides of this equation by n− 2 indicates that the MSE is an unbiased

estimator of σ2:

E

[

1

n−2

n

∑
i=1

e2
i

]

= σ2. �

To summarize, there are three parameters in a simple linear regression model: the population

intercept β0, the population slope β1, and the population variance of the error terms σ2. These

parameters can be estimated from n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) by the least squares

method. Theorem 1.2 indicates that the least squares point estimator β̂0 is an unbiased estimator of

β0 and the least squares point estimator β̂1 is an unbiased estimator of β1. Theorem 1.7 indicates

that the MSE is an unbiased estimator of σ2. All three parameter estimators are on target on average.

The next three examples illustrate the estimation of σ2.

Example 1.10 Estimate the variance of the error terms σ2 for the n = 3 data pairs from

the sales data set in Example 1.3:

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), (X3, Y3) = (2, 2).
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Using the calculations in Example 1.9, the estimated variance of the error terms is

σ̂2 =
1

n−2

n

∑
i=1

e2
i =

1

3−2
(9+4+1) = 14.

The R code to compute the value of the point estimate for σ2 is given below.

x = c(6, 8, 2)

y = c(2, 9, 2)

n = length(x)

fit = lm(y ~ x)

sum(fit$residuals ^ 2) / (n - 2)

The magnitude of the point estimate of σ2 is a reflection of whether the data points are tightly

clustered about the estimated regression line (for small values of σ̂2) or whether the data points stray

significantly from the estimated regression line (for large values of σ̂2). In the previous example

involving the sales data pairs, there is significant vertical deviation between the data points and the

associated fitted values, as seen in Figure 1.15. The next example illustrates the case in which the

data pairs are tightly clustered about the regression line.

Example 1.11 Scottish physicist James Forbes wanted to devise a technique to esti-

mate the altitude above sea level without transporting a fragile mercury barometer to

the location of interest. He knew that the altitude could be computed from the baro-

metric pressure, with lower barometric pressures corresponding to higher altitudes.

He wanted to see if the boiling point of water could be used as a surrogate to de-

termine the barometric pressure. In the 1840’s and 1850’s, he gathered n = 17 data

pairs (X1, Y1) , (X2, Y2) , . . . , (X17, Y17) from various locations at different altitudes in

the Alps, where

Xi: the boiling point of water in degrees Fahrenheit at location i, and

Yi: the adjusted barometric pressure in inches of mercury at location i,

for i = 1, 2, . . . , 17. The data was published in an 1857 article in the Transactions of

the Royal Society of Edinburgh titled “Further Experiments and Remarks on the Mea-

surement of Heights and Boiling Point of Water.” The n = 17 data pairs in Forbes’ data

set are shown in Table 1.4. Make a scatterplot of the data values to determine whether

a simple linear regression model is appropriate. If it is an appropriate model, estimate

the model parameters β0, β1, and σ2.

A scatterplot of the data is plotted with the R commands given below.

x = c(194.5, 194.3, 197.9, 198.4, 199.4, 199.9, 200.9, 201.1, 201.4,

201.3, 203.6, 204.6, 209.5, 208.6, 210.7, 211.9, 212.2)

y = c(20.79, 20.79, 22.40, 22.67, 23.15, 23.35, 23.89, 23.99, 24.02,

24.01, 25.14, 26.57, 28.49, 27.76, 29.04, 29.88, 30.06)

plot(x, y)

The scatterplot is given in Figure 1.17. On the range of the independent variable X

that was collected by Forbes, which is 194.3 ≤ X ≤ 212.2, there appears to be a linear

relationship between the boiling temperature X and the barometric pressure Y , so it
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Boiling Barometric

point pressure

194.5 20.79

194.3 20.79

197.9 22.40

198.4 22.67

199.4 23.15

199.9 23.35

200.9 23.89

201.1 23.99

201.4 24.02

201.3 24.01

203.6 25.14

204.6 26.57

209.5 28.49

208.6 27.76

210.7 29.04

211.9 29.88

212.2 30.06

Table 1.4: Data pairs for Forbes’ experiment.
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Figure 1.17: Scatterplot of the Forbes data.

is reasonable to proceed with fitting a simple linear regression model. The point that

seems to stray slightly from the linear relationship, namely (X12, Y12) = (204.6, 26.57),
could be due to (i) random sampling variability, (ii) measurement error associated with

the barometric pressure Y12 = 26.57, or (iii) measurement error associated with the

boiling point X12 = 204.6 even though the simple linear regression model assumes that

the boiling points are measured without error.

The R code below plots the fitted regression line on the scatterplot, which is shown in
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Figure 1.18. Forbes’ data pairs are in a built-in data frame named forbes that resides

in the MASS package. The first column in forbes is named bp (for boiling point) and

the second column is named pres (for barometric pressure).

library(MASS)

x = forbes$bp

y = forbes$pres

plot(x, y)

fit = lm(y ~ x)

abline(fit$coefficients)

Figure 1.18 confirms our conclusion about the linear relationship between X and Y from

the scatterplot on the range of X values collected by Forbes. A simple linear regression

model seems appropriate in this setting. The additional R commands that follow print

the estimates for β0, β1, and σ2 for Forbes’ n = 14 data pairs.

n = length(x)

print(fit$coefficients)

print(sum(fit$residuals ^ 2) / (n - 2))

These yield the three unbiased point estimates for the simple linear regression model as

β̂0 =−81.0637 β̂1 = 0.5229 σ̂2 = 0.05421.

So the estimated regression line is

Ŷ=−81.0637+0.5229X .

Using the usual interpretation of the estimated intercept, when the boiling point of water

is 0◦ Fahrenheit, the barometric pressure is estimated to be −81 inches of mercury. This

is obviously an inappropriate conclusion and highlights the fact that this simple linear
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Figure 1.18: Scatterplot of the Forbes data with the estimated regression line.
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regression model is only appropriate for a limited range of X values. The interpreta-

tion of β̂1, however, is meaningful. The barometric pressure increases by an estimated

0.5229 inches of mercury for every degree increase in the boiling point of water over the

range of X values collected by Forbes. Finally, the estimated variance of the error terms,

σ̂2 = 0.05421, is small (particularly relative to the estimated variance of the dependent

variable observations, SYY/(n− 1) = 9.12, calculated with the additional R command

var(forbes$pres)). This small estimated variance indicates that the data values are

tightly clustered about the regression line. This is clearly the case in Figure 1.18.

The additional R command plot(fit$residuals) generates a plot of the residuals.

Figure 1.19 shows the n = 17 residuals, along with a dashed horizontal line at a residual

value of zero to show which observations fall above and below the regression line.

(Notice that some of the Xi values are not in increasing order.) Six of the residuals are

positive and 11 are negative. The reason that more residuals are negative is that the

12th data pair (X12, Y12) = (204.6, 26.57) exerts a strong upwards “tug” on the fitted

regression line, which is reflected in the plot of the residuals in Figure 1.19.

The non-symmetry in the values of e1, e2, . . . , e17 will also be reflected in a histogram

of the residuals. Although n = 17 is a relatively small sample size for drawing a his-

togram and having a meaningful interpretation, one is displayed in Figure 1.20. This

histogram can be generated with the additional R command hist(fit$residuals).

The histogram reveals a bell-shaped distribution for the residuals, with a single extreme

value in the right-hand tail associated with the residual e12 = 0.65. This is consistent

with the plot of the residuals in Figure 1.19.

In conclusion, the regression analysis seems to indicate that Forbes’ experiment was

a success. The barometric pressure does appear to be a function of the boiling point

of water, and furthermore, the relationship between the two variables appears to be

reasonably linear on the range of data pairs collected by Forbes. For a particular boiling

point X that falls within that range of X values, the barometric pressure can be estimated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Figure 1.19: Residuals for the Forbes data.
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Figure 1.20: Histogram of the residuals for the Forbes data.

by

Ŷ= β̂0 + β̂1X =−81.0637+0.5229X .

The altitude can, in turn, be estimated from the estimate of the barometric pressure

provided by the regression analysis.

In the two previous examples, point estimates of the population variance of the error terms σ2

were calculated. In the sales data example, the estimated error term variance σ̂2 = 14 indicated that

the data pairs strayed a large distance from the estimated regression line, as illustrated in Figure 1.6.

In the Forbes data set, the estimated error term variance σ̂2 = 0.05421 reflects data pairs that cluster

closely to the estimated regression line, as illustrated in Figure 1.18. But these two examples in-

volving individual data sets do not indicate anything about the distribution of σ̂2. The next example

addresses this topic by extending the Monte Carlo simulation experiment from Example 1.4.

Example 1.12 Consider again the simple linear regression model

Y = β0 +β1X + ε

from Example 1.4, where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

The focus in this example will be on the estimation of the probability distribution of σ̂2.

Recall that the error term distribution has population mean zero and finite population

variance, so it satisfies the conditions of a simple linear regression model from Defini-

tion 1.1. Conduct a Monte Carlo simulation with 5000 replications that estimates the

probability distribution of the estimated variance of the error terms σ̂2 for n = 10 data

pairs. Assume that the Xi values are equally likely to be one of the integers 0, 1, 2, . . . , 9.

The R code below conducts 5000 replications of the Monte Carlo experiment. The

simulated regression model is fit by the lm function and the results are stored in the list
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named fit. The component of the list named fit$residuals contains the residuals

e1, e2, . . . , e10 for a particular simulation replication. The estimator of the variance of

the error term in the simple linear regression model is given by the MSE:

σ̂2 =
1

n−2

n

∑
i=1

e2
i ,

which is an unbiased estimator estimator of σ2 by Theorem 1.7. The code generates a

histogram of the 5000 estimates of the variance of the error terms.

nrep = 5000

n = 10

beta0 = 1

beta1 = 1 / 2

sig2hat = numeric(nrep)

set.seed(100)

for (i in 1:nrep) {

x = sample(0:9, n, replace = TRUE)

if (min(x) == max(x)) stop("All x values are equal")

y = beta0 + beta1 * x + runif(n, -1, 1)

fit = lm(y ~ x)

sig2hat[i] = sum(fit$residuals ^ 2) / (n - 2)

}

hist(sig2hat)

The histogram that is produced by this Monte Carlo simulation is given in Figure 1.21.

The histogram is centered around the population variance of the error terms

σ2 =
(1+1)2

12
=

4

12
=

1

3

because the population variance of the U(a, b) distribution is

σ2 =
(b−a)2

12
,

where a =−1 and b = 1. So the Monte Carlo simulation supports the fact that σ̂2 is an

unbiased estimator of σ2 via Theorem 1.7. Although the distribution of the probability

density function is bell-shaped, a careful examination of the histogram indicates that

the right-hand tail of the distribution appears to be slightly heavier than the left-hand

tail of the distribution. The probability density function of σ̂2 is not symmetric. This

nonsymmetry is a universal result which extends beyond this particular simple linear

regression model. This should not be surprising because the support of σ̂2 is the positive

real numbers, unlike the support of β̂0 and β̂1 whose support is the entire real number

line.

So the conclusions of the Monte Carlo simulation experiment are that (a) Theorem 1.7

is supported because the histogram in Figure 1.21 is centered around σ2, and (b) the

probability density function of σ̂2 is nearly bell-shaped with a slight bit of nonsymme-

try.
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σ̂2

0 1/3 2/3 1

Figure 1.21: Histogram of the error term estimates for the Monte Carlo simulation.

Before leaving the topic of the estimation of σ2 behind, consider the case of collecting just n = 2

data pairs (X1, Y1) and (X2, Y2), as illustrated in Figure 1.22. One of the assumptions associated with

the observations in a simple linear regression model is that there are at least two distinct values of

the independent variable observed. So when n = 2, it must be the case that X1 6= X2. In this case, the

least squares regression line will pass through the points (X1, Y1) and (X2, Y2). This means that the

fitted values are identical to the data pairs, and hence, both residuals are zero. So the sum of squares

for error is SSE = e2
1 + e2

2 = 0. But is an SSE of zero an appropriate estimate for the population

variance of the spread of the values about the regression line? Can one conclude that this is really

a deterministic relationship and any additional data pairs collected will fall on the fitted regression

line? Certainly not, because it is not possible to draw that conclusion based on just two data pairs. A

third data pair might fall on the regression line or fall significantly off of the regression line, as was

the case with the sales data from Example 1.3. The unbiased estimator of σ2 is undefined because

of the n− 2 in the denominator of the formula for σ̂2, as it should be. Two data pairs are adequate

(X1, Y1)

(X2, Y2)

X

Y

Figure 1.22: Scatterplot and estimated regression line for n = 2 data pairs.
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for estimating the population slope and population intercept of the regression line, but they are not

adequate for estimating σ2. The mathematics and intuition are consistent in this setting.

1.8 Sums of Squares

Certain sums of squares play a key role in simple linear regression. This section considers three

topics related to these sums of squares: (a) partitioning the total sum of squares, (b) defining and

interpreting the coefficient of determination and the coefficient of correlation, and (c) displaying the

sums of squares in an ANOVA table.

1.8.1 Partitioning the Total Sum of Squares

A topic that is closely related to fitted values and residuals is the partitioning of the total sum of

squares. Figure 1.23 provides the geometric framework for the mathematical derivation provided

next. There are only three points plotted in Figure 1.23. The first point plotted is (Xi, Yi), which is a

generic data pair. The other n− 1 data pairs are not plotted in order to keep the figure uncluttered.

The estimated regression line associated with the n data pairs, which happens to have a negative

slope, is also plotted. The second point plotted is the fitted value
(

Xi, Ŷi

)

associated with the ith data

pair, which is located directly below data pair i and falls on the estimated regression line. The third

point plotted is (X̄ , Ȳ ), which, by Theorem 1.6, will always fall on the regression line.

Figure 1.23 provides a geometric proof of the relationship

Yi − Ȳ = Ŷi − Ȳ +Yi − Ŷi

for i = 1, 2, . . . , n. The relationship can also be established algebraically by recognizing that the

right-hand side of this equation can be determined by just adding and subtracting Ŷi to the left-hand

side of the equation. As will be stated and proved subsequently, squaring both sides of this equation

and summing results in

n

∑
i=1

(Yi − Ȳ)
2
=

n

∑
i=1

(Ŷi − Ȳ)
2
+

n

∑
i=1

(Yi − Ŷi)
2
.

(Xi, Yi)

(

Xi, Ŷi

)

(X̄ , Ȳ )

Yi − Ŷi

Ŷi − Ȳ

Yi − Ȳ

estimated
regression

line

X

Y

Figure 1.23: Partitioning the total sum of squares.
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This equation involves three sums of squares that occur so often in regression analysis that they are

given the abbreviations

SST = SSR+SSE,

where SST stands for total sum of squares, SSR stands for sum of squares for regression, and SSE

stands for sum of squares for error. (The sum of squares for error has already been encountered in

Theorem 1.7.) This equation expresses the total variation of the observed values of the dependent

variable Y1, Y2, . . . , Yn about their sample mean Ȳ in SST as the sum of two sums of squares. The first

term on the right-hand side, SSR, reflects the variation of the fitted values Ŷ1, Ŷ2, . . . , Ŷn about the

sample mean Ȳ . The second term on the right-hand side, SSE, reflects the variation of the observed

values Y1, Y2, . . . , Yn about their associated fitted values Ŷ1, Ŷ2, . . . , Ŷn. Since all three terms in this

equation are sums of squares, all three terms are nonnegative. Notice that SST/(n−1) is the sample

variance of Y1, Y2, . . . , Yn.

The equation

SST = SSR+SSE

partitions SST into two pieces: SSR, which accounts for the total variability in Y1, Y2, . . . , Yn that

is accounted for by the regression line (that is, the linear relationship between X and Y ), and SSE,

which accounts for the remaining variability that is not associated with the regression line. This

is why SSR measures the total variability in Y1, Y2, . . . , Yn “explained” by the relationship between

X and Y , whereas SSE measures the total variability in Y1, Y2, . . . , Yn left “unexplained” by the

relationship between X and Y . It is reasonable to think of SSR as measuring the “signal” associated

with the linear relationship and SSE as measuring the “noise” associated with the linear relationship.

The result is stated formally and proven next.

Theorem 1.8 Let β̂0 and β̂1 denote the least squares estimators of the parameters β0 and β1 in

the simple linear regression model fitted to the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). Let

Ŷi = β̂0 + β̂1Xi be the fitted value associated with data pair i, for i = 1, 2, . . . , n. Let Ȳ be the

sample mean of Y1, Y2, . . . , Yn. Then

n

∑
i=1

(Yi − Ȳ)
2
=

n

∑
i=1

(Ŷi − Ȳ)
2
+

n

∑
i=1

(Yi − Ŷi)
2
,

or, equivalently,

SST = SSR+SSE.

Proof Beginning with Yi − Ȳ , adding and subtracting Ŷi gives

Yi − Ȳ = Ŷi − Ȳ +Yi − Ŷi

for i = 1, 2, . . . , n. Grouping the two terms on the right-hand side of this equation as
(

Ŷi − Ȳ
)

and
(

Yi − Ŷi

)

, squaring both sides of the equation, and summing gives

n

∑
i=1

(Yi − Ȳ)
2
=

n

∑
i=1

(Ŷi − Ȳ)
2
+2

n

∑
i=1

(Ŷi − Ȳ)(Yi − Ŷi)+
n

∑
i=1

(Yi − Ŷi)
2
.

The middle summation on the right-hand side of this equation is zero because

2
n

∑
i=1

(Ŷi −Ȳ)(Yi − Ŷi)= 2
n

∑
i=1

Ŷi(Yi − Ŷi)−2Ȳ
n

∑
i=1

(Yi − Ŷi)= 2
n

∑
i=1

Ŷiei −2Ȳ
n

∑
i=1

ei = 0

by Theorem 1.6, which proves the result. �
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1.8.2 Coefficients of Determination and Correlation

There are two measures that are helpful in assessing the degree of the linear relationship between

X and Y in a simple linear regression model. The coefficient of determination and the coefficient

of correlation are defined next. The thinking behind the way that the coefficient of determination

R2 = SSR/SST is defined is as follows. The value of SST reflects the variability in Y1, Y2, . . . , Yn

when the values of the associated independent variables X1, X2, . . . , Xn are ignored. The value of

SSE reflects the variability in Y1, Y2, . . . , Yn when a fitted regression model uses X1, X2, . . . , Xn as

predictors. Their difference, SSR = SST −SSE, reflects the reduction in variability associated with

using the regression model. The ratio SSR/SST captures the fraction of that reduction in variability.

Definition 1.3 Let SST , SSR, and SSE for a simple linear regression model be defined as in The-

orem 1.8. The coefficient of determination is

R2 =
SSR

SST
=

SST −SSE

SST
= 1− SSE

SST

when SST 6= 0. The coefficient of correlation (a.k.a. the sample correlation coefficient) is

r =±
√

R2,

where the sign associated with r is positive (negative) when the slope of the estimated regression

line is positive (negative).

The coefficient of determination R2 is the fraction of the variation in Y1, Y2, . . . , Yn about Ȳ that

is accounted for by the linear relationship between X and Y . Based on the result from Theorem 1.8,

SST = SSR+SSE, the coefficient of determination must satisfy 0≤R2 ≤ 1. Likewise, the coefficient

of correlation must satisfy −1 ≤ r ≤ 1, which is true for all population and sample correlations.

Values of R2 that are near 1 indicate that nearly all of the variation in Y1, Y2, . . . , Yn about Ȳ

can be explained by the linear relationship between X and Y . This in turn implies that X is a useful

predictor for Y . On the other hand, values of R2 that are near 0 indicate that very little of the variation

in Y1, Y2, . . . , Yn about Ȳ can be explained by the linear relationship between X and Y . This in turn

implies that X is not a useful predictor for Y . It is in this sense that R2 is a measure of the strength

of the linear relationship between X and Y .

There are some important limitations associated with R2 and r. First, it is important to remember

that the linear relationship between X and Y might only be appropriate on a limited range of X values.

Second, even a relatively large value of R2 might not provide the precision necessary for a particular

application. Third, regardless of the value of R2, the scatterplot of the data pairs must always be

inspected to see if a simple linear regression model is warranted. Both high and low values of

R2 can be associated with a strong nonlinear relationship between X and Y . Fourth, in the case in

which the experimenter can control the values of X1, X2, . . . , Xn, the magnitude of R2 depends on the

choices of the independent variables, which clouds its interpretation. Fifth, the usual interpretation

of the coefficient of correlation r as an estimator of ρ = Cov(X , Y )/(σX σY ) is only appropriate

when X and Y are random variables, which is not the case in simple linear regression because X is

assumed to be observed without error.

It is a useful thought experiment to consider the scatterplots associated with the values of SST ,

SSR, and SSE at their extremes. These three extreme cases will be described in the next three

paragraphs.
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The first of these extreme cases is illustrated for n = 7 in Figure 1.24 in which

SSE =
n

∑
i=1

(Yi − Ŷi)
2
=

n

∑
i=1

e2
i = 0.

The only way to achieve a sum of squares for error of zero is to have the data pairs (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) all fall on a line, which is the regression line. Using the result from Theorem 1.8 that

SST = SSR+SSE, in this case SST = SSR, which implies that R2 = 1. Therefore, all of the variation

in Y1, Y2, . . . , Yn is explained by the linear relationship between X and Y . In addition, r =−1 if the

slope of the regression line is negative and r = 1 if the slope of the regression line is positive.

X

Y

Figure 1.24: Data pairs with SSE = 0 and β̂1 6= 0 (which implies that SST = SSR and R2 = 1).

The second of these extreme cases is illustrated for n = 7 in Figure 1.25 in which

SSR =
n

∑
i=1

(Ŷi − Ȳ)
2
= 0.

The only way to achieve a sum of squares for regression of zero is to have an estimated regres-

sion line with slope zero. Using the result from Theorem 1.8 that SST = SSR+ SSE, in this case

SST = SSE, which implies that R2 = 0. This means that none of the variation in Y1, Y2, . . . , Yn is

explained by the linear relationship between X and Y . In addition, r = 0.

The third of these extreme cases is illustrated for n = 7 in Figure 1.26 in which

SST =
n

∑
i=1

(Yi − Ȳ)
2
= 0.

X

Y

Figure 1.25: Data pairs with SSR = 0 (which implies that SST = SSE and R2 = 0).
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X

Y

Figure 1.26: Data pairs with SST = 0 (which implies that SSR = SSE = 0 and R2 is undefined).

The only way to achieve a total sum of squares of zero is to have an estimated regression line with

slope zero and all points lying on the estimated regression line. Using the result from Theorem 1.8

that SST = SSR+SSE, in this case SSR = SSE = 0, and the coefficient of determination and coeffi-

cient of correlation are undefined because the denominator is zero.

Each of the sums of squares has an associated degrees of freedom. The total sum of squares

SST =
n

∑
i=1

(Yi − Ȳ)
2

has n−1 degrees of freedom for either of two reasons: (1) one degree of freedom is lost because Ȳ

is used to estimate the population mean, and (2) the terms in the summation above are subject to the

one constraint—they must sum to zero. The sum of squares for regression

SSR =
n

∑
i=1

(Ŷi − Ȳ)
2

has 1 degree of freedom because each of the Ŷi values is calculated from the same regression line

which has two degrees of freedom, but is subject to the additional constraint ∑n
i=1(Ŷi − Ȳ) = 0 by

Theorem 1.6. The sum of squares for error

SSE =
n

∑
i=1

(Yi − Ŷi)
2

has n−2 degrees of freedom for the reasons outlined just before Theorem 1.7.

An alternative definition for computing the coefficient of correlation r can save on computation

time, as given in the following theorem.

Theorem 1.9 The coefficient of correlation r is

r = β̂1

√

SXX

SYY

.

Proof Recall from Definition 1.3 that the coefficient of correlation is

r =±
√

SSR

SST
,
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where the sign associated with r is the same as the sign of β̂1. Since ∑n
i=1 Ŷi = ∑n

i=1 Yi

by Theorem 1.6, this can be rewritten as

r =±
√

SSR

SST

=±

√

∑n
i=1

(

Ŷi − Ȳ
)2

SYY

=±

√

∑n
i=1 Ŷ2

i −2Ȳ ∑n
i=1 Ŷi +nȲ 2

SYY

=±

√

∑n
i=1 Ŷ2

i −2Ȳ ∑n
i=1 Yi +nȲ 2

SYY

=±

√

∑n
i=1 Ŷ2

i −nȲ 2

SYY

=±

√

∑n
i=1

(

β̂0 + β̂1Xi

)2 −nȲ 2

SYY

=±

√

∑n
i=1

(

Ȳ − β̂1X̄ + β̂1Xi

)2 −nȲ 2

SYY

=±

√

nȲ 2 +2Ȳ β̂1 ∑n
i=1(Xi − X̄)+ β̂2

1 ∑n
i=1(Xi − X̄)2 −nȲ 2

SYY

=±

√

β̂2
1 ∑n

i=1(Xi − X̄)2

SYY

= β̂1

√

SXX

SYY

,

which proves the theorem. �

1.8.3 The ANOVA Table

The three sums of squares for the simple linear regression model and their associated degrees of

freedom can be summarized in an analysis of variance (ANOVA) table. The four columns in the

generic ANOVA table shown in Table 1.5 are (a) the source of variation, (b) the sum of squares,

(c) the degrees of freedom, and (d) the mean square. The sums of squares and the degrees of

freedom add to the values in the row labeled “Total”. The mean square is the ratio of the sum of

Source SS df MS

Regression SSR 1 MSR

Error SSE n−2 MSE

Total SST n−1

Table 1.5: Partial ANOVA table for simple linear regression.
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squares to the associated degrees of freedom. The regression mean square is MSR = SSR/1 = SSR.

The mean square error is MSE = SSE/(n− 2). The mean square entries do not add. Tradition

dictates that the mean square associated with SST is not reported in an ANOVA table, but it does

have meaning as the sample variance of Y1, Y2, . . . , Yn. More information on how the ANOVA table

can be used for hypothesis testing concerning the population slope β0 by adding a fifth column to

the ANOVA table will be given in the next chapter.

Example 1.13 Consider the Forbes data set from Example 1.11 in which the indepen-

dent variable X is the boiling point of water in degrees Fahrenheit and the dependent

variable Y is the adjusted barometric pressure in inches of mercury. There are n = 17

data pairs collected from various locations. Calculate the three sums of squares (SST ,

SSR, and SSE), show that Theorem 1.8 is satisfied, calculate R2 and r, and present the

results in an ANOVA table.

The scatterplot with the estimated regression line superimposed from Example 1.11 is

reproduced in Figure 1.27. The R commands below calculate the three sums of squares.

library(MASS)

x = forbes$bp

y = forbes$pres

fit = lm(y ~ x)

sst = sum((y - mean(y)) ^ 2)

ssr = sum((fit$fitted - mean(y)) ^ 2)

sse = sum(fit$residuals ^ 2)

print(c(sst, ssr, sse))

These commands result in the following values for the three sums of squares:

SST = 145.9378 SSR = 145.1246 SSE = 0.8131.

Ignoring the roundoff error in the fourth digit after the decimal point, these values sat-
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Y

Figure 1.27: Scatterplot of the Forbes data with the estimated regression line.



58 Chapter 1. Simple Linear Regression

isfy the result in Theorem 1.8:

SST = SSR+SSE.

The fact that SSR is more than two orders of magnitude greater than SSE indicates

that there is much more of the total variation in Y1, Y2, . . . , Yn that is explained by the

relationship between X and Y than unexplained. This interpretation is consistent with

the scatterplot and estimated regression line given in Figure 1.27.

The value of the coefficient of determination and the coefficient of correlation for this

data set can be calculated by the additional R commands

R2 = ssr / sst

r = sign(fit$coefficients[2]) * sqrt(R2)

print(c(R2, r))

via Definition 1.3 or

sxx = sum((x - mean(x)) ^ 2)

syy = sum((y - mean(y)) ^ 2)

R2 = ssr / sst

r = fit$coefficients[2] * sqrt(sxx / syy)

print(c(R2, r))

via Theorem 1.9. Both code segments print the values

R2 = 0.9944 and r = 0.9972.

The proper interpretation of R2 is that 99.44% of the total variation in Y1, Y2, . . . , Yn

can be explained by the linear relationship between X and Y . This high percentage is

consistent with the scatterplot and estimated regression line in Figure 1.27, which shows

a nearly perfect linear relationship between boiling point of water and the barometric

pressure, and data values that lie very close to the estimated regression line. Table 1.6

contains the sums of squares, degrees of freedom, and mean squares for the n = 17 data

pairs collected by Forbes. This ANOVA table can be generated with the additional R

command

anova(fit)

The anova function returns a data frame, and values in that data frame can be extracted

using the $ extractor. The degrees of freedom for the sum of squares for error, for

example, can be extracted with the R command

Source SS df MS

Regression 145.1246 1 145.1246

Error 0.8131 15 0.0542

Total 145.9378 16

Table 1.6: Partial ANOVA table for the Forbes data.
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anova(fit)$Df[2]

The definitions and theorems that are associated with fitted values, residuals, estimating the pop-

ulation variance σ2, partitioning the sums of squares, the coefficient of determination, the coefficient

of correlation, and the ANOVA table are briefly reviewed here. The simple linear regression model

Y = β0 +β1X + ε

from Definition 1.1 establishes a linear statistical relationship between an independent variable X

and a dependent random variable Y . The error term ε has population mean 0 and finite population

variance σ2. The n data pairs collected are denoted by (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The fitted

values Ŷ1, Ŷ2, . . . , Ŷn are the values on the estimated regression line associated with the independent

variables X1, X2, . . . , Xn:

Ŷi = β̂0 + β̂1Xi

for i = 1, 2, . . . , n, as established in Definition 1.2. The associated residuals are defined by

ei = Yi − Ŷi

for i = 1, 2, . . . , n, as established in Definition 1.2. An unbiased estimator of the population variance

of the error terms is

σ̂2 =
1

n−2

n

∑
i=1

e2
i

as given in Theorem 1.7. The total sum of squares SST can be partitioned into the regression sum of

squares SSR and the sum of squares for error SSE as

SST = SSR+SSE

or
n

∑
i=1

(Yi − Ȳ)
2
=

n

∑
i=1

(Ŷi − Ȳ)
2
+

n

∑
i=1

(Yi − Ŷi)
2

as given in Theorem 1.8. Two quantities that measure the linear association between X and Y are

the coefficient of determination

R2 =
SSR

SST
,

which satisfies 0 ≤ R2 ≤ 1, and the coefficient of correlation

r =±
√

R2,

which satisfies −1 ≤ r ≤ 1 as defined in Definition 1.3. The coefficient of determination is the

fraction of variation in Y1, Y2, . . . , Yn that is explained by the linear relationship with X . The sums of

squares are often presented in an ANOVA table, which includes columns for the source of variation,

the sum of squares, the associated degrees of freedom, and the mean squares. An additional column

will be added to the ANOVA table in the next chapter, when statistical inference in simple linear

regression is introduced.

The point estimators for β0, β1, and σ2 in the simple linear regression model have now all been

established and many of their properties have been surveyed. But without additional assumptions,

it is not possible to easily obtain interval estimators or perform hypothesis testing concerning these

parameters. The next chapter addresses this issue.
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1.9 Exercises

1.1 Establish a linear deterministic relationship between the independent variable X , the tem-

perature in degrees Fahrenheit, and the dependent variable Y , the associated temperature in

degrees Celsius.

1.2 Establish a nonlinear deterministic relationship between the independent variable X , the dis-

tance between two objects with fixed masses m1 and m2, and the dependent variable Y , the

gravitational force acting between the two objects, using Newton’s Law of Universal Gravi-

tation.

1.3 For the following interpretations of the independent and dependent variables, predict whether

the estimated slope β̂1 in a simple linear regression model will be positive or negative.

(a) The independent variable X is a car’s speed and the dependent variable Y is the car’s

stopping distance.

(b) The independent variable X is a car’s weight and the dependent variable Y is the car’s

fuel efficiency measured in miles per gallon.

(c) The independent variable X is a husband’s height and the dependent variable Y is the

wife’s height for a married couple.

(d) The independent variable X is the average annual unemployment rate and the dependent

variable Y is the annual GDP for a particular country.

1.4 For the simple linear regression model, show that solving the 2 × 2 set of linear normal

equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi

for β̂0 and β̂1 gives the expressions for β̂0 and β̂1 given in Theorem 1.1.

1.5 Consider the simple linear regression model

Y = β0 +β1X + ε,

where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

Assume that n = 10 data pairs (X1, Y1) , (X2, Y2) , . . . , (X10, Y10) are collected. The values of

the independent variable X are equally likely to be one of the integers 0, 1, 2, . . . , 9, What

are the minimum and maximum values that the estimated parameters β̂0 and β̂1 can assume?

1.6 For the values of the independent variables X1, X2, . . . , Xn, show that

n

∑
i=1

(

Xi − X̄
)

= 0.
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1.7 Write R commands to plot contours of the sum of squares for the sales data pairs

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), (X3, Y3) = (2, 2)

in the (β0, β1) plane.

1.8 The least squares criterion applied to a simple linear regression model minimizes

S =
n

∑
i=1

(Yi −β0 −β1Xi)
2.

If instead the least absolute deviation criterion (also known as the minimum absolute devia-

tion or MAD criterion) were applied to a simple linear regression model to minimize

S =
n

∑
i=1

|Yi −β0 −β1Xi| ,

what are the values of β̂0 and β̂1 for the sales data pairs

(X1, Y1) = (6, 2) (X2, Y2) = (8, 9) (X3, Y3) = (2, 2)?

1.9 Write a Monte Carlo simulation experiment that uses the same parameters as those in Exam-

ple 1.4 (that is, β0 = 1, β1 = 1/2, ε ∼U(−1, 1), n = 10) for 5000 replications, but this time

selects the independent variable values to be equally likely integers from −5 and 5. Produce

analogous figures to those of Figure 1.11 and Figure 1.12. Comment on your figures and

how they relate to the variance–covariance matrix from Theorem 1.4.

1.10 For a simple linear regression model with X1 = 1, X2 = 2, . . . , Xn = n and σ2 = 1, find the

variance–covariance matrix of β̂0 and β̂1.

1.11 Use Theorems 1.2 and 1.4 to show that the least squares estimator of the intercept of the

regression line β0 in the simple linear regression model is a consistent estimator of β0.

1.12 Example 1.6 calculates the variance–covariance matrix for a single replication of a Monte

Carlo simulation experiment. Conduct this experiment for 5000 replications and report the

average of the values in the variance–covariance matrix.

1.13 Let L be the set of all linear estimators of the slope β1 in a simple linear regression model.

Let U be the set of all unbiased estimators of the slope β1 in a simple linear regression model.

Give an example of an estimator of β1 in L∩U ′.

1.14 Show that the fitted simple linear regression model

Ŷi = β̂0 + β̂1Xi

for i = 1, 2, . . . , n can be written as

Ŷi − Ȳ = β̂1 (Xi − X̄) ,

where β̂0 and β̂1 are the least squares estimators of β0 and β1 and X̄ and Ȳ are the sample

means of the observed values of the independent and dependent variables.
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1.15 Write a paragraph that argues why a fitted least squares regression line cannot pass through

all data pairs except for one of the data pairs.

1.16 One of the most common error distributions used in simple linear regression is the normal

distribution with population mean 0 and finite population variance σ2, which has probability

density function

f (x) =
1√
2πσ

e−x2/(2σ2) −∞ < x < ∞.

An alternative error distribution is the Laplace distribution with probability density function

f (x) =
1√
2σ

e−
√

2|x−µ|/σ −∞ < x < ∞.

Since the error distribution must have expected value zero by assumption, this reduces to

f (x) =
1√
2σ

e−
√

2|x|/σ −∞ < x < ∞.

As parameterized here, the Laplace distribution has population variance σ2. Both of these

distributions are symmetric and centered about zero.

(a) Plot the normal and Laplace error probability density functions on −3 < x < 3 and

comment on any differences between the two error distributions. Use σ = 1 for the

plots.

(b) Plot the normal and Laplace error probability density functions on 4 < x < 5 and com-

ment on any differences between the tails of the two error distributions.

(c) Fit both of these error distributions (that is, find σ̂2 for each distribution) for the forbes

data set from the MASS package in R using the simple linear regression model.

1.17 Let the independent variable X be a car’s speed and the dependent variable Y be the car’s

stopping distance, which are going to be modeled with a simple linear regression model. In

which of the following scenarios do you expect to have a larger population variance of the

error term?

(a) The data pairs (X1, Y1) , (X2, Y2) , . . . , (X20, Y20) are n = 20 new cars that are all of the

same make and model.

(b) The data pairs (X1, Y1) , (X2, Y2) , . . . , (X20, Y20) are n = 20 new cars from n = 20 dif-

ferent car manufacturers.

1.18 Show that the sum of squares for regression in a simple linear regression model can be written

as

SSR = β̂1SXY .

1.19 Show that the sum of squares for regression in a simple linear regression model can be written

as

SSR = β̂2
1SXX .

1.20 Consider the data pairs in the Formaldehyde data set built into the base R language. Use

the help function in R to determine the interpretation of the independent and dependent

variables. Fit a simple linear regression model to the data pairs and interpret the meaning of

β̂0, β̂1, and σ̂2. Also, calculate SST , SSR, and SSE for this data set.
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1.21 Consider the data pairs collected by James Forbes that are given in the data frame forbes

contained in the MASS package in R. The independent variable is the boiling point (in degrees

Fahrenheit) and the dependent variable is the barometric pressure (in inches of mercury). For

a simple linear regression model, calculate

• the fitted values,

• the residuals,

• the sum of squares for error, and

• the mean square error

without using the lm function. Then use the lm function to check the correctness of the

values that you calculate.

1.22 This exercise investigates the effect of controllable values of X1, X2, . . . , Xn on the coefficient

of determination R2 in simple linear regression. Consider the simple linear regression model

Y = β0 +β1X + ε,

where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a N(0, 1) distribution.

Conduct a Monte Carlo simulation with 40,000 replications that estimates the expected co-

efficient of determination for n = 10 data pairs under the following two ways of setting the

values of X1, X2, . . . , X10.

(a) Let Xi = i for 1, 2, . . . , 10.

(b) Let X1 = X2 = · · ·= X5 = 5 and X6 = X7 = · · ·= X10 = 6.

1.23 Let SX and SY be the sample standard deviations of the independent and dependent variables,

respectively. Show that the following four definitions of the coefficient of correlation are

equivalent.

(a) r =
1

n−1

n

∑
i=1

(

Xi − X̄

SX

)(

Yi − Ȳ

SY

)

(b) r =±
√

SSR

SSE

(c) r =
SXY√

SXX SYY

(d) r = β̂1

√

SXX

SYY


