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Preface

This book provides a brief introduction to three statistical modeling techniques: regression, survival

analysis, and time series analysis. My motivation for writing this book came from a recent article

in Nature that indicated that the paper introducing the product–limit estimator by American statis-

ticians Edward Kaplan and Paul Meier in 1958 and the paper introducing the proportional hazards

model written by British statistician David Cox in 1972 were the two most cited papers in the sta-

tistical literature. Yet most undergraduates majoring in applied mathematics, statistics, data science,

systems engineering, and management science do not encounter the statistical models developed

in either of these two pivotal papers. This book provides an elementary introduction to these two

statistical procedures, and many others.

This book is designed as a one-semester introduction to regression, survival analysis, and time

series analysis for advanced undergraduates or first-year graduate students. The pre-requisites for

this book are (a) a course in linear algebra, (b) a calculus-based introduction to probability, and (c) a

course in mathematical statistics that covers point estimation, interval estimation, and hypothesis

testing. The book is not comprehensive and is not a replacement for a full-semester class on each of

the topics. It contains only brief introductions to the three topics.

Three chapters are devoted to each of the three topics. The initial two chapters move at about

the pace one would expect in a full-semester course. The third chapter on each of the topics is like

a “further reading” section which briefly introduces some topics that would be covered in depth in a

full-semester course. An instructor might choose to skip or expand on these topics.

The material in the book can be covered at the ambitious pace of one chapter per week. An

instructor could also choose to move more slowly if some of this material is part of a course covering

another topic.

Most of the data sets that are used for examples in the book are given as clear text on the website

www.math.wm.edu/∼leemis/data/topics.
The text is organized into chapters, sections, and subsections. When there are several topics

within a subsection, they are set off by boldface headings. Definitions and theorems are boxed;

examples are indented; proofs are terminated with a box, like this: �. Proofs are included when

they are instructive to the material being presented. Exercises are numbered sequentially at the end

of each chapter. Computer code is set in monospace font, and is not punctuated. Indentation is used

to indicate nesting in code and pseudocode. An index is included. Italicized page numbers in the

index correspond to the primary source of information on a topic.

The term estimator is used to describe a point estimator in the abstract or as a random variable;

the term estimate is used to describe a point estimator that assumes a specific value estimated from

a realization of data values. In some instances the case is altered to highlight this distinction. The

sample mean X̄ , for example, is a point estimator for the population mean µ. A numerical value of

the sample mean calculated from data values is sometimes denoted by the point estimate x̄.



xii Preface

The R language is used throughout the text for graphics, computation, and Monte Carlo simula-

tion. In many of the examples involving computations, the results are computed arithmetically, then

confirmed in R, and then computed a third time using an R built-in function (such as lm for com-

puting the coefficients in a regression model, coxph from the survival package for computing the

regression coefficients in a Cox proportional hazards model, survfit from the survival package

to calculate the step heights in the Kaplan–Meier product–limit estimator, or arima to fit a univari-

ate time series). This three-step process is used to avoid treating R functions as black boxes without

considering what goes on underneath the hood. R can be downloaded for free at r-project.org.

There are no references cited in the text for readability. The sources of materials in the various

chapters are cited in the paragraphs below.

Chapter 1 notes: The quote by George Box is from page 202 of the book chapter: Box, G.E.P.

(1979), “Robustness in the Strategy of Scientific Model Building,” from Robustness in Statistics,

edited by R.L. Launer and G.N. Wilkinson, New York: Academic Press, pages 201–236. The data

pairs associated with the boiling points and barometric pressures in Example 1.11 are from Forbes,

J. (1857), “Further Experiments and Remarks on the Measurement of Heights and Boiling Point of

Water,” Transactions of the Royal Society of Edinburgh, Volume 21, Issue 2, pages 235–243.

Chapter 2 notes: The four sets of data pairs known as Anscombe’s quartet are from Anscombe,

F.J. (1973), “Graphs in Statistical Analysis,” The American Statistician, Volume 27, Number 1,

pages 17–21. The housing data set in Example 2.9 is from De Cock, D. (2011), “Ames, Iowa: Alter-

native to the Boston Housing Data as an End of Semester Regression Project,” Journal of Statistics

Education, Volume 19, Number 3, pages 1–15. The Shapiro–Wilk test for normality (and related

tests) are overviewed in Razali, N., and Wah, Y.B. (2011), “Power Comparisons of Shapiro–Wilk,

Kolmogorov–Smirnov, Lilliefors and Anderson–Darling Tests,” Journal of Statistical Modeling and

Analytics, Volume 2, Number 1, pages 21–33.

Chapter 3 notes: The chemical data from Example 3.1 is from Bennett, N.A., and Franklin,

N.L. (1954), Statistical Analysis in Chemistry and the Chemical Industry, New York: Wiley. Cook’s

distances are derived in Cook, R.D. (1977), “Detection of Influential Observations in Linear Regres-

sion,” Technometrics, Volume 19, Number 1, pages 15–18. The U.S. National debt over time is from

https://www.thebalance.com/national-debt-by-year-compared-to-gdp-and-major-events-3306287. The

original paper introducing ridge regression is Hoerl, A.E., and Kennard, R.W. (1970), “Ridge Re-

gression: Biased Estimation for Nonorthogonal Problems,” Technometrics, Volume 12, Number 1,

pages 55–67.

Chapter 4 notes: Early references on the Weibull distribution include Fisher, R.A., and Tippett,

L.H.C. (1928), “Limiting Forms of the Frequency Distribution of the Largest or Smallest Member

of a Sample,” Proceedings of the Cambridge Philosophical Society, Volume 24, Issue 2, pages 180–

190, Weibull, W. (1939), “A Statistical Theory of the Strength of Materials,” Ingeniors Vetenskaps

Akademien Handlingar, Number 153, and Weibull, W. (1951), “A Statistical Distribution Function

of Wide Applicability,” Journal of Applied Mechanics, Volume 18, pages 293–297. The moment

ratio diagrams given in Section 4.5 are adapted from those given in Vargo, E., Pasupathy, R., and

Leemis, L. (2010), “Moment-Ratio Diagrams for Univariate Distributions,” Journal of Quality Tech-

nology, Volume 42, Number 3, pages 1–11. The Cox proportional hazards model was formulated

in Cox, D.R. (1972), “Regression Models and Life-Tables” (with discussion), Journal of the Royal

Statistical Society B, Volume 34, Number 2, pages 187–220.

Chapter 5 notes: The ball bearing failure times from Example 5.5 are from Lieblein, J., and

Zelen, M. (1956), “Statistical Investigation of the Fatigue Life of Deep-Groove Ball Bearings,”

Journal of Research of the National Bureau of Standards, Volume 57, Number 5, pages 273–316.

The 48.48 data value in the ball bearing data set is given as 48.40 on page 99 of Lawless, J.F.

(2003), Statistical Models and Methods for Lifetime Data, Second Edition, Hoboken, NJ: John



Preface xiii

Wiley & Sons, Inc., and page 4 of Meeker, W.Q., and Escobar, L.A. (2022), Statistical Methods
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Chapter 1

Simple Linear Regression

Regression is a statistical technique that involves describing the relationship between one or more

independent variables and a single dependent variable. For simplicity, assume for now that there is

just a single independent variable. To establish some notation, let

• X be an independent variable, also called an explanatory variable, predictor variable, or re-

gressor, which is typically assumed to take on fixed values (that is, X is not a random variable)

which can be observed without error, and

• Y be a dependent variable, also called a response variable, which is typically a continuous

random variable.

The relationship between the independent variable X and the dependent variable Y is often estab-

lished by collecting n data pairs denoted by (X1, Y1), (X2, Y2), . . . , (Xn, Yn), plotting these pairs on a

pair of axes, and looking for a pattern that can be translated to a mathematical form. This process es-

tablishes an empirical mathematical model for the underlying relationship between the independent

variable X and the dependent variable Y .

1.1 Deterministic Models

Regression analysis establishes a functional relationship between X and Y . The simplest type of

relationship between X and Y is a deterministic relationship Y = f (X). In this rare case, the value

of Y can be determined without error once the value of X is known, so Y is not a random variable

when the relationship between X and Y is deterministic. The deterministic model is described by

Y = f (X). Deterministic relationships are uncommon in real-world applications because there is

typically uncertainty in the dependent variable. If data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are

collected and the deterministic relationship Y = f (X) establishes the correct functional relationship

between X and Y , then all of the data pairs will fall on the graph of the function Y = f (X).

Example 1.1 Bob is a salesman. The independent variable X is the number of sales

that he makes per week. Bob receives a $50 commission for each sale, regardless of the

amount of each sale. The dependent random variable Y is the total weekly commission

that Bob receives. Find the deterministic relationship between X and Y .
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In this setting, the independent variable X is a fixed constant which is measured without

error, and the deterministic relationship between X and Y is

Y = f (X) = 50X .

This deterministic relationship expresses Y as a linear function of X . If the next three

weeks of Bob’s sales activity result in the three data pairs

(X1, Y1) = (6, 300), (X2, Y2) = (8, 400), and (X3, Y3) = (2, 100),

then all three of these data pairs will fall on the graph of the deterministic relationship

Y = f (X) = 50X . The Xi values are distinct for these data pairs, but this need not

necessarily be the case. Bob could have had weeks in which he made the same number

of sales multiple times. Figure 1.1 shows the deterministic relationship and the three

data values that fall on the line. Notice that the graph of Y = f (X) = 50X passes through

the origin, (0, 0), because zero weekly sales results in no weekly commissions. In this

particular example, a line is plotted even though X can only take on integer values.

0 1 2 3 4 5 6 7 8

0

100

200

300

400

(X1, Y1)

(X2, Y2)

(X3, Y3)

X

Y

Figure 1.1: A deterministic linear relationship between X and Y .

Determining the relationship between the number of sales per week X and the commissions

paid per week Y did not require the collection of any data to determine the function Y = f (X).
That linear relationship was implicit in the problem statement. Other cases can arise, such as (a) the

relationship is deterministic but requires data to determine its functional form, or (b) the relationship

is deterministic, but unlike the relationship in the previous example, it is not linear. The following

example illustrates a nonlinear deterministic relationship between the independent variable X and

the dependent variable Y .

Example 1.2 Alice purchases a five-year certificate of deposit paying 8% annually with

an initial deposit of $1000. Let the independent variable X be the number of months

that the certificate of deposit has been held at a bank. Let the dependent variable Y be

the associated balance. Find the deterministic relationship between X and Y assuming

that the interest on the certificate of deposit is compounded monthly.
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Under these assumptions, the balance on Alice’s certificate of deposit at month X is

Y = f (X) = 1000

(
1+

0.08

12

)X

.

(This relationship between X and Y makes three somewhat minor simplifying assump-

tions: (1) Y = f (X) gives the instantaneous value of the CD after X months have passed

even though interest is paid monthly, making this a continuous function rather than a

step function, (2) all 12 months are assumed to have the same number of days, and

(3) all years have the same number of days, which is not the case because of leap years.

The violation of these assumptions are minor, and the relationship given here is very

close to the balance Y after X months have passed.)

The curve in Figure 1.2 associated with the deterministic relationship is concave upward

because of compounding. The three points plotted on the curve are

(X1, Y1) = (0, 1000), (X2, Y2) = (12, 1083.00), and (X3, Y3) = (60, 1489.85).

The first data pair corresponds to the initial $1000 deposit into the certificate of deposit

at X = 0. The second data pair corresponds to the account balance after one year, or

X = 12 months. The balance after 12 months is slightly more than the annual simple

interest balance $1000 · (1+0.08) = $1080 because of the monthly compounding. The

third data pair corresponds to the final balance of $1489.85 after 60 months. As was the

case with the sales commissions in the previous example, the three data pairs were not

necessary to establish the deterministic relationship between the independent variable

X and the dependent variable Y . Their relationship is implicit in the problem statement.

In both examples, the three data pairs fall on the graph of the deterministic relationship.
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Figure 1.2: A deterministic nonlinear relationship between X and Y .

In most applications, the relationship between the independent variable X and the dependent

variable Y is not deterministic because Y is typically a random variable. The next section introduces

some of the thinking behind the development of a statistical model that describes the relationship

between X and Y .
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1.2 Statistical Models

The goal in constructing a statistical model is to write a formula that adequately captures the govern-

ing probabilistic relationship between an independent variable X and a dependent variable Y . This

formula might be used subsequently for prediction or some other form of statistical inference. In this

section, we assume that the dependent variable Y is a continuous random variable that can assume a

range of values associated with a particular setting of the independent variable X . The relationship

Y = f (X)

that was used in the previous section is no longer adequate because X is assumed to be observed

without error, and this formula results in a value of Y which is deterministic rather than random.

One way of overcoming this problem is to replace the left-hand side of this equation by the expected

value of Y , which is a constant, resulting in

E[Y ] = f (X).

To be a little more careful about what is meant by this statistical relationship, the left-hand side is

actually a conditional expectation, namely

E[Y |X = x] = f (x).

In words, given that the independent variable X assumes the value x, the transformation f (x) gives

the conditional expected value of the dependent variable Y . Notice that this statistical model does

not specify the distribution of the random variable Y for a particular value of X ; it only tells us

the expected value of Y for a particular value of X . This statistical regression model defines a

hypothesized relationship between the observed value of X on the right-hand side of the model and

the conditional expected value of Y on the left-hand side of the model. The hypothesized relationship

might be adequate for modeling or it might need some refining. There is typically no model that

perfectly captures the relationship between X and Y . This was recognized by George Box, who

wrote:

All models are wrong; some models are useful.

In a statistical model that involves parameters, the estimation of the model parameters will be fol-

lowed by assessments to determine whether the model holds in an empirical sense. If the model

needs refining, the new set of parameters are estimated and new assessments are made to see if

the refined model is an improvement over the previous model. Regression modeling is an iterative

process.

There is a second way to write a statistical model that is equivalent to the statistical model

described in the previous paragraph. The model can be written as

Y = f (X)+ ε,

where the error term ε (also known as the “noise” or “disturbance” term) is a random variable

that accounts for the fact that the independent variable cannot predict the dependent variable with

certainty. This term makes the relationship between X and Y a random (or statistical or stochastic)

relationship rather than a deterministic relationship. If the probability distribution of the error term

is specified, then not only is the expected value of Y conditioned on the value of X determined, but

also the entire probability distribution of Y conditioned on the value of X is specified. It is common

practice to assume that the expected value of ε is zero. The probability distribution of ε establishes
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the nature and magnitude of the scatter of the data values about the regression function. When the

population variance of ε is small, the values of Y are tightly clustered about the regression function

f (X); when the population variance of ε is large, the values of Y stray further from the regression

function f (X).
Regression modeling involves determining the functional form of f (X) from a data set of n

data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The statistical model for X and Y in a general sense also

applies to each of the data points, so

Yi = f (Xi)+ εi

for i= 1, 2, . . . , n. The sign of εi indicates whether the observed data pair (Xi, Yi) falls above (εi > 0)

or below (εi < 0) the conditional expected value of Yi, for i = 1, 2, . . . , n.

The function f (X) is called the regression function, and was first referred to in print as such by

Sir Francis Galton (1822–1911), a British anthropologist and meteorologist, in his 1885 paper titled

“Regression Toward Mediocrity in Hereditary Stature” published in the Journal of the Anthropolog-

ical Institute. He established a regression function relating the adult height of an offspring, Y , as a

function of an average of the parent’s heights, X , which had been adjusted for gender.

The regression function Y = f (X) can be either linear or nonlinear. The next section focuses

on the easier case, a linear regression function. In this case, the model is typically referred to as a

simple linear regression model, which is often abbreviated as an SLR model. The model is simple

because there is only one independent variable X that is used to predict the dependent variable Y .

The model is linear because the regression function f (X) = β0 + β1X is assumed to be linear in

the parameters β0 and β1. The more complicated cases of multiple linear regression, which involve

more than one independent variable, and nonlinear regression, in which f (X) is not a linear function,

will be introduced later.

1.3 Simple Linear Regression Model

A simple linear regression model assumes a linear relationship between an independent variable X

and a dependent variable Y . In this section, the more general regression model

Y = f (X)+ ε

is reduced to the simple linear regression model given in the definition below.

Definition 1.1 A simple linear regression model is given by

Y = β0 +β1X + ε,

where

• X is the independent variable, assumed to be a fixed value observed without error,

• Y is the dependent variable, which is a continuous random variable,

• β0 is the population intercept of the regression line, which is an unknown constant,

• β1 is the population slope of the regression line, which is an unknown constant, and

• ε is the error term, a continuous random variable with population mean zero and positive,

finite population variance σ2 that accounts for the randomness in the relationship between

X and Y .



Section 1.3. Simple Linear Regression Model 7

Stating the simple linear regression model in this fashion will not seem natural from probability

theory. As a non-regression illustration from probability theory, W ∼ N
(
µ, σ2

)
indicates that W

has a normal distribution with population mean µ and population variance σ2. Although much less

compact, the probability distribution of W can also be written as W = µ+ ε, where ε ∼ N
(
0, σ2

)
.

This illustration reflects the essence behind writing the simple linear regression model in the form

Y = β0 +β1X + ε in Definition 1.1.

The formulation of the simple linear model from Definition 1.1 involves a random variable ε on

the right-hand side of the model. In some settings, this model might be viewed as a transformation

of a random variable, but this is not the correct interpretation of the model in this setting. The simple

linear regression model defines a hypothesized relationship between the random variable on the left-

hand side of the model and terms on the right-hand side of the model. This probability model is

hypothesized to govern the relationship between X and Y . The goal in constructing a simple linear

regression model is to determine if it adequately captures the probabilistic relationship between X

and Y . Estimation of the model parameters will be followed by assessment to see if the model holds

in an empirical sense.

The assumption that the random variable ε has population mean zero and population variance σ2

in the most basic simple linear regression model in Definition 1.1 allows for mathematically tractable

statistical inference. In models that allow for confidence intervals and hypothesis testing concerning

the estimated slope and intercept, the error term is assumed to have a specific distribution, which is

typically the normal distribution. The error term models all sources of variation, both known and

unknown, other than the variation in Y associated with the particular level of X . Notice that σ2 is

constant over all values of X .

The assumption that the independent variable X is not subject to random variability is not always

satisfied in practice. The fitting procedure becomes more complicated when X is considered to be a

random variable. For this reason, we assume that the observed value of X is either exact or that the

variation of X is small enough so that its observed value can be assumed to be exact.

The assumption of a linear relationship between X and Y might also be flawed. In some cases

it might not be a perfectly linear relationship, but a linear relationship provides a close enough

approximation between X and Y to be useful for associated statistical inference. In other cases, a

linear relationship might be appropriate for some range of values of X , known as the scope of the

model, but not others. One important step in establishing a simple linear regression model is to

specify the values of X for which the simple linear regression model is valid.

The procedure for establishing a simple linear regression model that relates the dependent vari-

able Y to the independent variable X is given below.

1. Collect the data pairs. The data pairs are denoted by (X1, Y1), (X2, Y2), . . . , (Xn, Yn). In some

settings, it is possible to exert some control over the Xi values. As will be seen later, there are

advantages to having the Xi values spread out as much as possible in terms of the precision of

the fitted regression model.

2. Make a scatterplot of data pairs. A scatterplot is just a plot of the points (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) on a set of axes. The purpose of the scatterplot is to see if the linear relationship

between X and Y is appropriate and to visually assess the spread of the data values about the

regression function. With modern statistical software, scatterplots are easy to generate.

3. Inspect the scatterplot. Although this step is subjective, it is important to visually assess

(a) whether the relationship between X and Y appears to be linear or nonlinear, (b) whether

the spread of the data pairs about the regression function is small or large, and (c) whether the
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variability of the data pairs about the regression function remains constant over the range of

X values that have been collected.

4. State the regression model. In this chapter, the regression model is assumed to be the simple

linear regression model Y = β0+β1X +ε. Nonlinear regression models, such as the quadratic

model Y = β0+β1X +β2X2+ε, and multiple regression models with more than one indepen-

dent variable, such as Y = β0 +β1X1 +β2X2 + ε, will be considered later.

5. Fit the regression model to the data pairs. The method of least squares, which will be

described in the next section, is commonly used to estimate the parameters in the regression

model. The least squares criterion is to choose the regression model that minimizes the sum

of the squares of the vertical differences between data points and the fitted regression model.

6. Assess the adequacy of the fitted regression model. Visual assessment techniques for as-

sessing the fitted regression model include superimposing the fitted regression model onto the

scatterplot of the data pairs and examining a plot of the residuals. A residual is the signed

vertical distance between a data pair and its associated value on the regression function. In

addition, there are statistical methods that can be applied to the fitted regression model to see

if it adequately describes the relationship between X and Y .

7. Perform statistical inference. Once the fitted regression model is deemed an acceptable

approximation to the relationship between X and Y , it can be used for statistical inference.

One simple example of statistical inference that occurs often in practice is the prediction of a

future value of Y for a particular level of X .

The seven steps for establishing a regression model are not necessarily performed in the order given

here. Many times the fitted regression model is rejected in Step 6, and it is necessary to return to

Step 4 in order to formulate an alternative model. Steps 4 through 6 might need to be repeated

several times before arriving at an acceptable model for statistical inference.

The simple linear regression model given in Definition 1.1 implies that all of the (Xi, Yi) pairs

also follow the simple linear regression model:

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n, where

• (Xi,Yi) are the data pairs, for i = 1, 2, . . . , n,

• Xi is the value of the independent variable for observation i, which is observed without error,

for i = 1, 2, . . . , n,

• Yi is the value of the dependent variable for observation i, which is a continuous random

variable, for i = 1, 2, . . . , n,

• β0 is the population intercept of the regression line,

• β1 is the population slope of the regression line, and

• εi is the random error term for observation i which satisfies

– E[εi] = 0 for i = 1, 2, . . . , n,

– V [εi] = σ2 for i = 1, 2, . . . , n,
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– the random εi values are mutually independent random variables, which implies that

their variance–covariance matrix is diagonal.

When the simple linear regression model is stated in this fashion, four properties become apparent.

First, Yi is a random variable that can be broken into two components: a deterministic component

β0 +β1Xi, and a random component εi, for i = 1, 2, . . . , n. Second, Yi has population mean

E[Yi] = E [β0 +β1Xi + εi] = β0 +β1Xi

for i = 1, 2, . . . , n and population variance

V [Yi] =V [β0 +β1Xi + εi] =V [εi] = σ2

for i = 1, 2, . . . , n. Using slightly different notation, it would be reasonable to write the population

mean and variance as the conditional expectations

E[Yi |Xi] = β0 +β1Xi and V [Yi |Xi] = σ2

for i = 1, 2, . . . , n. The property that the variance does not change with Xi is known as homoscedas-

ticity. Temporarily dropping the subscripts, the line

E [Y ] = β0 +β1X ,

with β0 and β1 replaced by the associated estimated values β̂0 and β̂1, is oftentimes superimposed

onto the scatterplot to visualize the fitted regression model. Third, each data pair (Xi, Yi) has a Yi

value that misses the regression function by the error term εi, for i = 1, 2, . . . , n. Fourth, the values

of the observed dependent variables Y1, Y2, . . . , Yn must be mutually independent random variables

because the error terms ε1, ε2, . . . , εn are mutually independent random variables.

1.4 Least Squares Estimators

We now turn to the question of estimating the intercept β0 and the slope β1 by the method of

least squares. German mathematician Carl Friedrich Gauss (1777–1855) invented the least squares

method and French mathematician Adrien–Marie Legendre (1752–1833) first published the method

in 1805. The least squares method determines the values of β0 and β1 that minimize the sum of

the squares of the errors, where the error is the vertical distance between the Yi value and the fitted

regression line. The term estimator will be used here to refer to a generic formula for β̂0 or β̂1; the

term estimate will be used to refer to a specific numeric value for β̂0 or β̂1.

One bit of notation that will make the expressions of the point estimators more compact is

SXY =
n

∑
i=1

(
Xi− X̄

)(
Yi− Ȳ

)

=
n

∑
i=1

(
XiYi−XiȲ − X̄Yi + X̄Ȳ

)

=
n

∑
i=1

XiYi−nX̄Ȳ −nX̄Ȳ +nX̄Ȳ

=
n

∑
i=1

XiYi−nX̄Ȳ .
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Similarly,

SXX =
n

∑
i=1

(
Xi− X̄

)2
=

n

∑
i=1

X2
i −nX̄2

and

SYY =
n

∑
i=1

(
Yi− Ȳ

)2
=

n

∑
i=1

Y 2
i −nȲ 2.

This new notation allow us to express nSXY , nSXX , and nSYY as

nSXY = n
n

∑
i=1

XiYi−
n

∑
i=1

Xi

n

∑
i=1

Yi,

nSXX = n
n

∑
i=1

X2
i −

(
n

∑
i=1

Xi

)2

,

and

nSYY = n
n

∑
i=1

Y 2
i −

(
n

∑
i=1

Yi

)2

.

Using this notation, the least squares estimators for the slope and intercept of the model, denoted by

β̂1 and β̂0, are given in the following theorem. Notice that the term normal equations in the theorem

is not related to the normal distribution.

Theorem 1.1 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs with at least two distinct Xi val-

ues. The least squares estimators of β0 and β1 minimize the sum of the squared deviations between

Yi and the associated fitted value β̂0+ β̂1Xi in the simple linear regression model. The least squares

estimators are the solution to the simultaneous normal equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi

and are given by

β̂1 =
SXY

SXX

and

β̂0 = Ȳ − β̂1X̄ ,

where X̄ and Ȳ are the sample means

X̄ =
X1 +X2 + · · ·+Xn

n
and Ȳ =

Y1 +Y2 + · · ·+Yn

n
.

Proof The deviation of Yi from the associated value on the population regression line

is

Yi− (β0 +β1Xi) ,
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for i = 1, 2, . . . , n. The sum of the squared deviations is

S =
n

∑
i=1

(Yi−β0−β1Xi)
2.

The least squares estimators are those that minimize S respect to β0 and β1; that is,

(
β̂0, β̂1

)
= argmin

β0,β1

n

∑
i=1

(Yi−β0−β1Xi)
2.

Using calculus to minimize S with respect to β0 and β1 requires taking the partial deriva-

tives of S with respect to β0 and β1:

∂S

∂β0
=−2

n

∑
i=1

(Yi−β0−β1Xi) = 0

∂S

∂β1
=−2

n

∑
i=1

Xi(Yi−β0−β1Xi) = 0.

Simplifying and using the hat notation to denote the estimators results in the simultane-

ous normal equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi.

The normal equations are a system of two linear equations in the two unknowns β̂0 and

β̂1. Solving these equations simultaneously yields the point estimator for the slope

β̂1 =
∑n

i=1(Xi− X̄)(Yi− Ȳ )

∑n
i=1(Xi− X̄)2

=
SXY

SXX

.

Dividing the first normal equation by the sample size n yields the point estimator for

the intercept

β̂0 = Ȳ − β̂1X̄ .

The next step is to show that the least squares estimators β̂1 and β̂0 minimize S. This

will be done by showing that the Hessian matrix is positive definite. The Hessian matrix

H is the matrix of second partial derivatives of S with respect to β0 and β1:

H =




∂2S

∂β2
0

∂2S

∂β0 ∂β1

∂2S

∂β1 ∂β0

∂2S

∂β2
1


=




2n 2
n

∑
i=1

Xi

2
n

∑
i=1

Xi 2
n

∑
i=1

X2
i


 .

The H matrix is unchanged when evaluated at the least squares estimators β̂0 and β̂1. To

show that this matrix is positive definite at the least squares estimators, it is sufficient to

show that the upper-left-hand element and the determinant of H are both positive. The
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upper-left-hand element is positive for all values of the sample size n. The determinant

of H is

|H|=

∣∣∣∣∣∣∣∣

2n 2
n

∑
i=1

Xi

2
n

∑
i=1

Xi 2
n

∑
i=1

X2
i

∣∣∣∣∣∣∣∣
= 4n

n

∑
i=1

X2
i −4

(
n

∑
i=1

Xi

)2

.

This expression is positive when there are at least two distinct Xi values by the Cauchy–

Schwartz inequality. The Cauchy–Schwartz inequality (a special case of the triangle

inequality) states that for real numbers a1, a2, . . . , an and b1, b2, . . . , bn,

(
a2

1 +a2
2 + · · ·+a2

n

)
·
(
b2

1 +b2
2 + · · ·+b2

n

)
≥ (a1b1 +a2b2 + · · ·+anbn)

2 ,

where equality is satisfied if and only if a1 = a2 = · · · = an and b1 = b2 = · · · = bn.

Letting ai = 1 and bi = xi in the Cauchy–Schwartz inequality indicates that the determi-

nant of H is positive when there are at least two distinct Xi values. Hence, the Hessian

matrix H is positive definite and the least squares estimators β̂0 and β̂1 minimize S. �

The requirement that there are at least two distinct Xi values in Theorem 1.1 is consistent with

intuition. Figure 1.3 shows n = 5 data pairs in which the independent variable assumes the same

value for each pair: X1 = X2 = X3 = X4 = X5 = 3. It is not possible to estimate the slope of the

regression line in this particular setting. This is the geometric reason for the requirement that there

are at least two distinct Xi values. In addition, the denominator in β̂1 = SXY/SXX is zero when all Xi

values are equal, which gives the associated algebraic reason for the requirement. From this point

forward, whenever the simple linear regression model is used, it is assumed that the associated data

pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) have at least two distinct Xi values.

Figure 1.4 shows the geometric interpretation associated with the estimated intercept β̂0 and

estimated slope β̂1. The n = 9 data pairs (X1, Y1) , (X2, Y2) , . . . , (X9, Y9) are plotted as points, along

with the associated estimated regression line Y = β̂0 + β̂1X . The y-intercept of the graph β̂0 is the

height of the estimated regression line at X = 0. The “rise over run” interpretation of the slope is

illustrated by the right triangle with legs consisting of dotted lines.

0 1 2 3 4 5 6 7 8

0

10

20

30

40

(X1, Y1)

(X2, Y2)

(X3, Y3)

(X4, Y4)

(X5, Y5)

X

Y

Figure 1.3: Identical independent variable values for all n = 5 data pairs.
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Y = β̂0 + β̂1X

β̂0

β̂1

1

0

0

X

Y

Figure 1.4: Geometry associated with β̂0 and β̂1.

The next example illustrates the mechanics associated with calculating the least squares esti-

mates β̂0 and β̂1. In order to focus on the calculations performed by hand, a small sample size of

n = 3 data pairs is used. The numbers have been handpicked in order to make the resulting parame-

ter estimates come out to whole numbers. A sample size of n = 2 is too simplistic in that two points

determine a line, and the estimated regression line will always pass through those two points.

Example 1.3 Cheryl sells farm equipment and supplies. Let X be the number of sales

she completes in a week, which will serve as the independent variable in this example.

Each sale that she completes results in an associated random amount of revenue to

the company that can be attributed to Cheryl’s sales prowess. The dependent random

variable Y is the associated total revenue to the company from Cheryl’s sales for that

week, in thousands of dollars. The data pairs for the past n = 3 weeks are

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), and (X3, Y3) = (2, 2).

Find the least squares estimates of the population intercept β0 and population slope β1

for the simple linear regression model from these data pairs and plot the fitted regression

line and the data pairs on a single plot.

A scatterplot for this data set is generated using the plot function in the R commands

x = c(6, 8, 2)

y = c(2, 9, 2)

plot(x, y, xlim = c(0, 8), ylim = c(0, 9))

and is displayed in Figure 1.5. Your immediate reaction to the scatterplot might be

to conclude that this is certainly not a linear relationship between X and Y . But this

conclusion might not be warranted because of the small number of data pairs collected.

One thing that is unusual about this data set is that Cheryl generated six sales in the

first week, resulting in just $2000 in revenue, and then two sales in the third week, also

resulting in $2000 in revenue. Clearly the sales transacted during the first week were
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Figure 1.5: A scatterplot of the sales data pairs.

much smaller in size, on average, than those in the third week. Since the purpose of this

example is to illustrate the calculations for computing β̂0 and β̂1, we will proceed as

if the linear model were appropriate. Assessing a simple linear regression model with

only n = 3 data pairs is nearly impossible.

The least squares estimates for β0 and β1 will be calculated in three different fashions.

First, they will be calculated by hand, with all of the calculations displayed here. Sec-

ond, they will be calculated in R using an approach that mirrors the hand calculations.

Third, they will be calculated in R using the lm (for linear model) function, which

automates the process of estimating β0 and β1.

Table 1.1 contains the data pairs and calculations necessary to compute the estimated

slope and intercept of the regression line. The sample means of the independent and

dependent variables are

X̄ =
16

3
and Ȳ =

13

3
.

Although X̄ and Ȳ are set in upper case, it is important to remember that the Xi values

are observed without error and the Yi values are the associated random responses. The

Observation Number of Total

number i sales Xi revenue Yi

(
Xi− X̄

)2 (
Xi− X̄

)(
Yi− Ȳ

)

1 6 2 (6−16/3)2 (6−16/3)(2−13/3)

2 8 9 (8−16/3)2 (8−16/3)(9−13/3)

3 2 2 (2−16/3)2 (2−16/3)(2−13/3)
Sum 16 13 168/9 168/9

Table 1.1: Data pairs and calculated values for estimating β0 and β1.
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sums in the bottom row of Table 1.1 give the sums of squares

SXX =
3

∑
i=1

(Xi− X̄)
2
=

168

9
and SXY =

3

∑
i=1

(Xi− X̄)(Yi− Ȳ ) =
168

9
.

The fact that SXX = SXY is coincidental, and is typically not the case in practice. Using

Theorem 1.1, the least squares estimates of β1 and β0 are

β̂1 =
SXY

SXX

=
168/9

168/9
= 1 and β̂0 = Ȳ − β̂1X̄ =

13

3
−1 · 16

3
=−1.

A second way to calculate the least squares estimates β̂1 and β̂0 uses the R code below

to implement the formulas given in Theorem 1.1. The code is generic in the sense that

once the two vectors x and y are defined using the first two commands, the last four

commands will calculate the point estimates β̂1 and β̂0 for any number of (Xi, Yi) pairs.

x = c(6, 8, 2)

y = c(2, 9, 2)

sxx = sum((x - mean(x)) ^ 2)

sxy = sum((x - mean(x)) * (y - mean(y)))

beta1hat = sxy / sxx

beta0hat = mean(y) - beta1hat * mean(x)

This code also returns the point estimates

β̂1 = 1 and β̂0 =−1.

As you might imagine, these calculations are performed so often by statisticians that R

has a built-in function to estimate β1 and β0.

A third way to calculate the least squares estimates of β1 and β0 via use of the R lm

function.

x = c(6, 8, 2)

y = c(2, 9, 2)

lm(y ~ x)$coefficients

The lm function takes a formula for an argument, in this case y∼x, and returns a list.

One component of the list returned by lm is named coefficients, and it contains the

estimated regression coefficients β̂1 = 1 and β̂0 =−1.

The fitted regression line is added to the scatterplot in Figure 1.6 using the R code

below. The plot function plots the data pairs, the lm function estimates the intercept

and slope of the regression line via least squares, and the abline function plots the

fitted regression line. The labels on the data pairs can be added with the text function.

The regression line plotted in Figure 1.6 is the line which minimizes the sum of the

squares of the vertical distances between the points associated with the data pairs and

the fitted regression line.

x = c(6, 8, 2)

y = c(2, 9, 2)

plot(x, y, xlim = c(0, 8), ylim = c(-1, 9))

fit = lm(y ~ x)

abline(fit$coefficients)
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Figure 1.6: A scatterplot of the sales data pairs with the fitted regression line.

The fitted regression line has intercept β̂0 = −1 and slope β̂1 = 1. The fact that the

intercept is β̂0 =−1 rather than β̂0 = 0 (because X = 0 sales in a week should result in

Y = 0 revenue in that week) is due to random sampling variability. Section 3.1 investi-

gates how to force a regression line through the origin, which would be appropriate in

this setting. The interpretation of the estimated slope β̂1 = 1 is that the average amount

of revenue generated from each sale that Cheryl completes is $1000.

Figure 1.7 makes two embellishments to Figure 1.6. First, the axes have been adjusted

so that the length of one unit on the vertical axis is the same as the length of one unit

on the horizontal axis. Second, three shaded squares have been added to the plot. Each

square has one vertex at a data pair, and a second vertex at the associated point on the

fitted regression line. The numbers in each square give the area of the square. For these

data pairs, the total area is the sum of squares

S = (Y1− β̂0− β̂1X1)
2 +(Y2− β̂0− β̂1X2)

2 +(Y3− β̂0− β̂1X3)
2

= (2+1−6)2 +(9+1−8)2 +(2+1−2)2

= 9+4+1

= 14.

The fitted least squares line is unique in the following sense. The squares illustrated in

Figure 1.7 for any line having an intercept and/or slope that differ from β̂0 =−1 and

β̂1 = 1 will have a total area that exceeds S = 14. The fitted least squares line is that line

which minimizes S. If a different line were selected and plotted, some of the squares

might become smaller, but at least one of the squares would become larger, and the total

area of the squares would exceed 14.

Another way to view the minimization of S is to consider contours, or level surfaces, of

the sum of squares as a function of the intercept β0 and the slope β1. The point

(β̂0, β̂1)= (−1, 1)

in Figure 1.8 corresponds to the fitted least squares line with a sum of squares S = 14 for

the three data pairs. The concentric contours corresponding to S = 15, S = 18, S = 23,
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Figure 1.7: A scatterplot of the sales data pairs with the fitted regression line.
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Figure 1.8: Level surfaces of the sum of squares.

and S = 30 show how the sum of squares increases as the intercept and slope stray from

the least squares estimates.
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1.5 Properties of Least Squares Estimators

The least squares estimators of β0 and β1 possess several properties which are important for statis-

tical inference. The four properties established in this section are:

• the least squares estimators β̂0 and β̂1 are unbiased estimators of β0 and β1,

• the least squares estimators β̂0 and β̂1 can be written as linear combinations of the dependent

variables Y1, Y2, . . . , Yn,

• the variance–covariance matrix of β̂0 and β̂1 can be written in closed form, and

• the least squares estimators β̂0 and β̂1 have the smallest population variance among all unbi-

ased estimators that can be expressed as linear combinations of the dependent variables.

Proofs of the associated results are included in each of the following subsections.

1.5.1 β̂0 and β̂1 are Unbiased Estimators of β0 and β1

A key property associated with the least squares estimators β̂0 and β̂1 is that their expected values

equal the associated population values β0 and β1. The next result establishes the unbiasedness of the

two point estimators.

Theorem 1.2 The least squares estimators β̂0 and β̂1 in the simple linear regression model are

unbiased estimators of β0 and β1, respectively.

Proof To show that β̂1 and β̂0 are unbiased estimators of β1 and β0, it is sufficient to

show that

E[β̂1]= β1 and E[β̂0]= β0.

The denominator of the expression for β̂1, which is SXX , is a constant because the values

of the independent variables X1, X2, . . . , Xn are assumed to be observed without error in

the simple linear regression model. Thus, the expected value of β̂1 is

E[β̂1]= E

[
SXY

SXX

]

= E

[
∑n

i=1 XiYi−nX̄Ȳ

∑n
i=1 X2

i −nX̄2

]

=
∑n

i=1 XiE [Yi]−nX̄E [Ȳ ]

∑n
i=1 X2

i −nX̄2

=
∑n

i=1 Xi (β0 +β1Xi)−nX̄ (β0 +β1X̄)

∑n
i=1 X2

i −nX̄2

=
β0 ∑n

i=1 Xi +β1 ∑n
i=1 X2

i −β0 ∑n
i=1 Xi−nβ1X̄2

∑n
i=1 X2

i −nX̄2

= β1.

The expected value of β̂0 is

E[β̂0]= E[Ȳ − β̂1X̄]= β0 +β1X̄−β1X̄ = β0.
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Therefore, β̂1 and β̂0 are unbiased estimators of β1 and β0. �

The fact that the least squares estimators of the slope and intercept of the regression line are

unbiased will be supported by a Monte Carlo simulation experiment in the next example. Unlike the

typical simple linear regression setting in which data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are used

to estimate the unknown parameters β0 and β1, the simulation will generate data pairs and associated

regression lines for known parameters β0 and β1.

Example 1.4 Consider the simple linear regression model

Y = β0 +β1X + ε,

where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

The population parameters have been chosen arbitrarily. The error term distribution has

population mean zero and finite population variance, so it satisfies the conditions of a

simple linear regression model from Definition 1.1. The uniform error term distribution

is not likely to occur in practice, however, because it cuts off at −1 and 1. Probability

distributions with tails, such as the normal distribution, are used more often in practice.

Conduct a Monte Carlo simulation with 5000 replications that analyzes the probability

distribution of the estimated intercept β̂0 and estimated slope β̂1 for n = 10 data pairs.

Assume that the Xi values are equally likely to be one of the integers 0, 1, 2, . . . , 9. The

independent variable X happens to assume discrete values in this example, but it would

pose no difficulty if it took on continuous values.

One problem that might arise in the Monte Carlo experiment is that the Xi values might

all be equal. This would violate the assumption in Theorem 1.1 that at least two Xi

values must be distinct. Even though this event occurs with the low probability

10 ·
(

1

10

)10

= 10−9,

an if statement will be included in the Monte Carlo simulation code to catch this prob-

lem if it occurs.

The R code below conducts 5000 replications of the Monte Carlo experiment. The com-

mands prior to the for loop set the number of replications to 5000, set the sample size

to n = 10, set the population intercept to β0 = 1, set the population slope to β1 = 1/2,

define the vectors beta0hat and beta1hat to hold the simulated estimated intercepts

and slopes, and establish the random number stream with the set.seed function with

arbitrary argument. Within the for loop, x contains the values of the independent vari-

ables, y contains the values of the associated dependent variables, and fit is the list

that stores the results of the regression analysis generated by the call to the lm function.

nrep = 5000

n = 10
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beta0 = 1

beta1 = 1 / 2

beta0hat = numeric(nrep)

beta1hat = numeric(nrep)

set.seed(100)

for (i in 1:nrep) {

x = sample(0:9, n, replace = TRUE)

if (min(x) == max(x)) stop("All x values are equal")

y = beta0 + beta1 * x + runif(n, -1, 1)

fit = lm(y ~ x)

beta0hat[i] = fit$coefficients[1]

beta1hat[i] = fit$coefficients[2]

}

Figure 1.9 shows the scatterplot and the fitted regression line for the first replication of

the simulation. Notice that having tied values for the independent variables poses no

difficulty for calculating the estimates of the intercept and slope of the fitted regression

line. This first fitted regression line has intercept β̂0 = 1.398 which exceeds the popula-

tion intercept β0 = 1; this first fitted regression line has slope β̂1 = 0.399 which is less

than the population slope β1 = 0.5. Each of the 5000 replications will yield unique val-

ues of β̂0 and β̂1. Since β̂0 and β̂1 are unbiased estimators of β0 and β1 by Theorem 1.2,

the 5000 simulated point estimates will hover around their population counterparts.

Figure 1.10 contains four lines. The thick, solid line is the population regression line

with intercept β0 = 1 and slope β1 = 1/2. The other three dashed lines correspond to

the fitted regression lines for the first three replications of the simulation. As expected,

the estimated intercepts and slopes differ from the associated population values from

one replication to the next.

When the simulation is run for all 5000 replications, there are 5000
(
β̂0, β̂1

)
pairs gen-

erated. The additional R commands below plot a histogram of the 5000 β̂0 values on
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Figure 1.9: Scatterplot of simulated data pairs and fitted regression line (replication 1).



Section 1.5. Properties of Least Squares Estimators 21

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

X

Y

Figure 1.10: Population and fitted regression lines (replications 1–3).

the left and a histogram of the 5000 β̂1 values on the right. The mfrow (multiple frame

by row) argument in par function sets up a 1×2 array of plots, and the hist function

plots the histograms. Figure 1.11 contains the two histograms. The vertical axes have

been suppressed because only the center and shape of the histogram is of interest.

par(mfrow = c(1, 2))

hist(beta0hat)

hist(beta1hat)

As predicted by Theorem 1.2, the histogram of the β̂0 values is centered around β0 = 1

and the histogram of the β̂1 values is centered around β1 = 1/2. Both histograms have

a bell shape, indicating that the extreme values for the intercepts and slopes are less

likely as you move further away from the population values. Although the error terms

in the model are mutually independent U(−1, 1) random variables, the summations

−1 0 1 2 3 0.2 0.5 0.8

β̂0 β̂1

Figure 1.11: Histograms of estimated intercepts (left) and estimated slopes (right).
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involved with the computation of β̂0 and β̂1 allow the central limit theorem to produce

a histogram shape that is quite close to that of a normal probability density function.

The two histograms in Figure 1.11 do not indicate whether β̂0 and β̂1 are independent

or dependent random variables. The additional R command

plot(beta0hat, beta1hat)

plots the 5000
(
β̂0, β̂1

)
pairs, which is displayed in Figure 1.12. The Monte Carlo

simulation indicates that the estimated intercepts and slopes are negatively correlated.

They tend to be on the opposite sides of their respective means. A larger-than-usual

slope is likely to be associated with a smaller-than-usual intercept, and vice versa.
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Figure 1.12: Estimated intercepts and slopes for 5000 Monte Carlo simulation replications.

The two key take-aways from this Monte Carlo experiment are:

• β̂0 and β̂1 being unbiased estimators of β0 and β1 via Theorem 1.2 is supported by

the histograms in Figure 1.11, and

• β̂0 and β̂1 appear to be negatively correlated for this particular simple linear re-

gression model by Figure 1.12.

1.5.2 β̂0 and β̂1 are Linear Combinations of Y1, Y2, . . . , Yn

Theorem 1.2, which states that E[β̂0] = β0 and E[β̂1] = β1, concerns the accuracy of the least

squares estimators β̂0 and β̂1. These estimators are “on target” in the sense that their expected values

equal their associated population values. The histograms in Figure 1.11 show that the estimators for

β0 and β1 do not systematically deviate above or below their population values.

The precision of the estimators β̂0 and β̂1 is also of interest. This requires that we also compute

their population variances. Before doing so, it is helpful to see that both of these point estimators

can be written as linear combinations of the values of the dependent variables Y1, Y2, . . . , Yn.
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It is not immediately apparent from the formula for the point estimator for the slope of the regres-

sion line β̂1 = SXY/SXX , but the estimator can be written as a linear combination of the dependent

variables:

β̂1 =
SXY

SXX

=
∑n

i=1

(
Xi− X̄

)(
Yi− Ȳ

)

∑n
i=1

(
Xi− X̄

)2

=
∑n

i=1

(
Xi− X̄

)
Yi

∑n
i=1

(
Xi− X̄

)2

because Ȳ ∑n
i=1

(
Xi− X̄

)
= Ȳ

(
nX̄−nX̄

)
= 0. This formula indicates that the point estimator for the

slope of the regression line is the linear combination

β̂1 = a1Y1 +a2Y2 + · · ·+anYn,

where

ai =
Xi− X̄

∑n
i=1

(
Xi− X̄

)2

for i = 1, 2, . . . , n.

The coefficients a1, a2, . . . , an in the linear combination β̂1 = a1Y1 + a2Y2 + · · ·+ anYn satisfy

three properties. First, ∑n
i=1 ai = 0 because

n

∑
i=1

ai =
1

SXX

n

∑
i=1

(
Xi− X̄

)
=

nX̄ −nX̄

SXX

= 0.

Second, ∑n
i=1 aiXi = 1 because

n

∑
i=1

aiXi =
1

SXX

n

∑
i=1

(
Xi− X̄

)
Xi =

1

SXX

[
n

∑
i=1

X2
i −nX̄2

]
=

SXX

SXX

= 1.

Third, ∑n
i=1 a2

i = 1/SXX because

n

∑
i=1

a2
i =

1

S2
XX

n

∑
i=1

(
Xi− X̄

)2
=

SXX

S2
XX

=
1

SXX

.

These properties can be useful in deriving results associated with the simple linear regression model.

Likewise, the least squares point estimator for the intercept of the regression line is also a linear

combination of the Yi values:

β̂0 = Ȳ − β̂1X̄

=
1

n

n

∑
i=1

Yi− X̄
n

∑
i=1

Xi− X̄

∑n
i=1

(
Xi− X̄

)2
Yi

=
n

∑
i=1

(
1

n
− X̄ · Xi− X̄

∑n
i=1

(
Xi− X̄

)2

)
Yi.
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This formula indicates that the point estimator for the intercept of the regression line can also be

written as a linear combination:

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn,

where

ci =
1

n
− X̄ · Xi− X̄

∑n
i=1

(
Xi− X̄

)2

for i = 1, 2, . . . , n. This derivation constitutes a proof of the following result.

Theorem 1.3 The least squares estimators of the parameters β0 and β1 in the simple linear regres-

sion model can be written as linear combinations of the dependent variables:

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn

and

β̂1 = a1Y1 +a2Y2 + · · ·+anYn,

where

ci =
1

n
− X̄ · Xi− X̄

SXX

and ai =
Xi− X̄

SXX

for i = 1, 2, . . . , n, and

n

∑
i=1

ai = 0,
n

∑
i=1

aiXi = 1, and
n

∑
i=1

a2
i =

1

SXX

.

These formulas will be illustrated for the small data set consisting of n = 3 data pairs.

Example 1.5 Consider again the n = 3 data pairs

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), and (X3, Y3) = (2, 2)

from Example 1.3. Recall that the independent variable X is Cheryl’s number of sales

per week. Each sale results in a random amount of revenue to the company. The depen-

dent random variable Y is the associated total revenue from the sales that Cheryl com-

pletes for a particular week, in thousands of dollars. Find the least squares estimates of

the intercept β0 and slope β1 for the simple linear regression model using the formulas

that express the estimates as linear combinations of Y1, Y2, Y3 from Theorem 1.3.

The sample mean of the independent variables is

X̄ =
6+8+2

3
=

16

3
.

The value of SXX is

SXX =
3

∑
i=1

(
Xi− X̄

)2
=

(
6− 16

3

)2

+

(
8− 16

3

)2

+

(
2− 16

3

)2

=
4

9
+

64

9
+

100

9
=

56

3
.

The coefficients for the linear combination associated with β̂1 are

ai =
Xi− X̄

SXX
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for i = 1, 2, 3, or

a1 =
6−16/3

56/3
=

1

28
, a2 =

8−16/3

56/3
=

1

7
, a3 =

2−16/3

56/3
=− 5

28
.

You might want to check that the three properties associated with the coefficients a1,

a2, and a3 from Theorem 1.3, namely a1 +a2 +a3 = 0, a1X1 +a2X2 +a3X3 = 1, and

a2
1 +a2

2 +a2
3 = 1/SXX , are all satisfied as expected. The least squares estimate of the

slope of the regression line is

β̂1 = a1Y1 +a2Y2 +a3Y3 =
1

28
·2+ 1

7
·9− 5

28
·2 =

1

14
+

9

7
− 5

14
= 1.

The R code for performing these calculations is given below.

x = c(6, 8, 2)

y = c(2, 9, 2)

a = (x - mean(x)) / sum((x - mean(x)) ^ 2)

beta1hat = sum(a * y)

The coefficients for the linear combination associated with β̂0 are

ci =
1

n
− X̄ · Xi− X̄

SXX

=
1

n
− X̄ ·ai

for i = 1, 2, 3, or

c1 =
1

3
− 16

3
· 1

28
=

1

7
, c2 =

1

3
− 16

3
· 1
7
=−3

7
, c3 =

1

3
− 16

3
· −5

28
=

9

7
.

The least squares estimate of the intercept of the regression line is

β̂0 = c1Y1 + c2Y2 + c3Y3 =
1

7
·2− 3

7
·9+ 9

7
·2 =

2

7
− 27

7
+

18

7
=−1.

The R code for performing these calculations follows.

x = c(6, 8, 2)

y = c(2, 9, 2)

n = length(x)

c = 1 / n - mean(x) * (x - mean(x)) / sum((x - mean(x)) ^ 2)

beta0hat = sum(c * y)

In both cases the point estimates match the associated values calculated by the standard

formulas for β̂0 and β̂1 from Theorem 1.1 that were used in Example 1.3, as expected.

1.5.3 Variance–Covariance Matrix of β̂0 and β̂1

Theorem 1.2 states that β̂0 and β̂1 are unbiased estimators of β0 and β1 because E[β̂0] = β0 and

E[β̂1]= β1. This result concerns the accuracy of the least squares estimators, but does not address

the precision of the least squares estimators. We now return to the question of assessing the precision
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of the point estimators. Being able to express the point estimators of the least squares estimators as

linear combinations of the dependent variables as summarized in Theorem 1.3 will be very useful

as we proceed. In order to assess the precision of β̂0 and β̂1, it is necessary to compute V [β̂0]
and V [β̂1]. More generally, we will compute the variance–covariance matrix of β̂0 and β̂1 in this

subsection. Returning to the Monte Carlo simulation in Example 1.4, the magnitudes of the diagonal

elements of the variance–covariance matrix reflect the spread of the histograms in Figure 1.11, and

the off-diagonal elements of the variance–covariance matrix give the population covariance between

β̂0 and β̂1 which is apparent in the simulation results displayed in Figure 1.12. The general form for

the population covariance between β̂0 and β̂1 will indicate whether the negative sample covariance

between β̂0 and β̂1 that was encountered in the Monte Carlo simulation was due to the particular

values of the parameters in the simple linear regression model or whether the negative covariance is

generally the case.

We begin with the lower-right-hand element of the variance–covariance matrix of β̂0 and β̂1. In

the simple linear regression model

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n, the error terms ε1, ε2, . . . , εn are assumed to be mutually independent random

variables. This implies that the dependent variables Y1, Y2, . . . , Yn are also mutually independent

random variables. Using the fact that β̂1 can be written as a linear combination of the dependent

variables from Theorem 1.3, the population variance of β̂1 is

V [β̂1]=V
[
a1Y1 +a2Y2 + · · ·+anYn

]

=
n

∑
i=1

V
[
aiYi

]

=
n

∑
i=1

a2
i V
[
Yi

]

=

(
n

∑
i=1

a2
i

)
σ2

=
σ2

SXX

because ∑n
i=1 a2

i = 1/SXX by Theorem 1.3. Although the experimenter typically has no control over

σ2, the experimenter may have control over selecting the values of X1, X2, . . . , Xn in some appli-

cations of simple linear regression. In order to make V [β̂1] as small as possible, the experimenter

should make SXX as large as possible. Spreading the Xi values as much as possible gives the most

stability to the estimated slope of the regression line. Simple linear regression modeling can still

be performed when the Xi values are tightly clustered together, but the estimated slope will be less

stable, and the scope of the model will be limited. As an extreme example of spreading the Xi values,

consider clustering all of the Xi values at a left-most and a right-most extreme possible values for

the independent variable. The good news is that this will give you the largest possible SXX and the

associated smallest possible V [β̂1]. The bad news is that you will not be able to assess linearity in

this case because you have observed the dependent variable at only two values of the independent

variable. A multitude of functions can model the average of the dependent variables at these two

extreme values of the independent variable. So the usual practice is to select the Xi values in an

approximately uniform fashion over as wide a range as possible. This gives the experimenter the

opportunity to assess linearity and also achieves a large SXX , resulting in an associated small V
[
β̂1

]
.
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The next step is to calculate the upper-left-hand element of the variance–covariance matrix of β̂0

and β̂1. Before calculating the population variance of β̂0, it is necessary to establish that Ȳ and β̂1 are

uncorrelated. Since Y1, Y2, . . . , Yn are mutually independent random variables, each with population

variance V [Yi] = σ2, the population covariance between Ȳ and β̂1 is

Cov(Ȳ , β̂1)= Cov

(
Y1

n
+

Y2

n
+ · · ·+ Yn

n
, a1Y1 +a2Y2 + · · ·+anYn

)

=
n

∑
i=1

n

∑
j=1

Cov

(
Yi

n
, a jYj

)

=
n

∑
i=1

Cov

(
Yi

n
, aiYi

)

=
n

∑
i=1

ai

n
V [Yi]

=
σ2

n

n

∑
i=1

ai

= 0

because ∑n
i=1 ai = 0 by Theorem 1.3. So Ȳ and β̂1 are uncorrelated.

Based on the fact that the population covariance between Ȳ and β̂1 is zero, the population vari-

ance of β̂0 is

V [β̂0]=V [Ȳ − β̂1X̄]
=V [Ȳ ]+ X̄2V [β̂1]

=
σ2

n
+

X̄2σ2

SXX

=

[
1

n
+

X̄2

SXX

]
σ2

=

[
∑n

i=1

(
Xi− X̄

)2
+nX̄2

n ∑n
i=1

(
Xi− X̄

)2

]
σ2

=
∑n

i=1 X2
i

nSXX

σ2.

The last step is to calculate the off-diagonal elements of the variance–covariance matrix of β̂0

and β̂1. Since Cov
(
Ȳ , β̂1

)
= 0, the population covariance between β̂0 and β̂1 is

Cov(β̂0, β̂1)= Cov(Ȳ − β̂1X̄ , β̂1)
= Cov(Ȳ , β̂1)−Cov(β̂1X̄ , β̂1)
=−Cov(β̂1X̄ , β̂1)
=−X̄Cov(β̂1, β̂1)
=−X̄V [β̂1]

=− X̄σ2

SXX

.
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All of the elements of the variance–covariance matrix have now been established, which constitutes

a proof of the following theorem.

Theorem 1.4 The least squares estimators of the parameters β0 and β1 in the simple linear regres-

sion model have variance–covariance matrix

[
V [β̂0] Cov(β̂0, β̂1)

Cov(β̂1, β̂0) V [β̂1]

]
=

[
∑n

i=1 X2
i /(nSXX ) −X̄/SXX

−X̄/SXX 1/SXX

]
σ2.

There are two important observations that can be made from Theorem 1.4. First, the elements

of the variance–covariance matrix of β̂0 and β̂1 are a function of only the Xi values and the typically

unknown population error variance σ2; the values of Y1, Y2, . . . , Yn do not play a role. Recall from

Definition 1.1 that the independent variable observations X1, X2, . . . , Xn are assumed to be observed

without error. Second, since SXX > 0 because at least two of the Xi values are distinct, the population

covariance between β̂0 and β̂1 takes the opposite sign of X̄ . This provides an explanation of why β̂0

and β̂1 appeared to have negative covariance in the results of the 5000 simulated estimates plotted

in Figure 1.12.

Example 1.6 Consider again the simple linear regression model

Y = β0 +β1X + ε

from Example 1.4 in which

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

The error term distribution has population mean zero, so this model satisfies the condi-

tions of a simple linear regression model. Find the variance–covariance matrix for the

least squares estimators β̂0 and β̂1 associated with a single Monte Carlo replication of

n = 10 data pairs. Assume that the Xi values are equally likely to be one of the integers

0, 1, 2, . . . , 9.

The R code that follows conducts a single replication of the Monte Carlo experiment.

The results of this single replication were illustrated by the fitted regression line in

Figure 1.9. Since the error terms are mutually independent U(−1, 1) random variables

and the population variance of a U(a, b) random variable is (b−a)2/12, the population

variance of the error terms is σ2 =(1+1)2/12= 1/3. Although the dependent variables

are generated and stored in the vector y, they are not used in the calculation of the

variance–covariance matrix.

n = 10

beta0 = 1

beta1 = 1 / 2

sigma2 = 1 / 3

set.seed(100)

x = sample(0:9, n, replace = TRUE)



Section 1.5. Properties of Least Squares Estimators 29

if (min(x) == max(x)) stop("All x values are equal")

y = beta0 + beta1 * x + runif(n, -1, 1)

sxx = sum((x - mean(x)) ^ 2)

vcm = matrix(nrow = 2, ncol = 2)

vcm[1, 1] = sum(x ^ 2) / (n * sxx)

vcm[1, 2] = vcm[2, 1] = - mean(x) / sxx

vcm[2, 2] = 1 / sxx

vcm = vcm * sigma2

print(vcm)

The variance–covariance matrix for this single replication of the Monte Carlo simula-

tion experiment, reported to four digits, is

[
V [β̂0] Cov(β̂0, β̂1)

Cov(β̂1, β̂0) V [β̂1]

]
=

[
0.1211 −0.02509

−0.02509 0.007168

]
.

If additional Monte Carlo simulation replications were made, this matrix would vary

from one replication to the next because the Xi values vary from one replication to the

next. Taking the square roots of the diagonal elements yields

√
V [β̂0]= 0.3481 and

√
V [β̂1]= 0.0847,

which are estimates of the standard deviation of the intercept and slope of the regression

line, often referred to as the standard errors of the estimated parameters. These two

standard deviations are roughly in line with the spread of the histograms generated

from the 5000 simulation replications depicted in Figure 1.11. The negative values of

the off-diagonal elements of the variance–covariance matrix are consistent with the plot

of 5000 simulated (β̂0, β̂1) values given in Figure 1.12.

So far we have found the expected values and the variance–covariance matrix of the least squares

estimators β̂0 and β̂1. But there is a lingering doubt as to whether better point estimators for β0 and

β1 exist. An example of such a better point estimator would be an unbiased estimator of β0 with

a smaller population variance than the least squares estimator of β0. This lingering doubt will be

addressed in the next subsection.

1.5.4 Gauss–Markov Theorem

Recall from Theorem 1.3 that the least squares estimators for the slope and intercept of the regression

line were expressed as linear combinations of the dependent variables:

β̂1 = a1Y1 +a2Y2 + · · ·+anYn

and

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn.

But are these linear combinations the best possible linear combinations for estimating β1 and β0?

The Gauss–Markov theorem is used to show that these estimators have the minimum variance of

all possible unbiased estimators which are linear combinations of the dependent variables. These



30 Chapter 1. Simple Linear Regression

estimators are known as Best Linear Unbiased Estimators, typically abbreviated with the colorful

acronym BLUE. The Venn diagram in Figure 1.13 might be helpful in categorizing the various

types of estimators. The set L consists of all point estimators for the regression parameters β0 and

β1 which can be expressed as linear combinations of the dependent variables Y1, Y2, . . . , Yn. The

set U consists of all point estimators for the regression parameters β0 and β1 which are unbiased

estimators of β0 and β1. The shaded intersection of L and U (that is, L∩U) is all estimators which

are both linear combinations of Y1, Y2, . . . , Yn and unbiased. An example of an estimator of β1 which

is neither in L nor in U is Y 2
1 . The Gauss–Markov theorem states that the least squares estimators

have the smallest possible variance among all estimators in L∩U .

L U

Figure 1.13: Venn diagram of sets L (linear combinations) and U (unbiased estimators).

Theorem 1.5 (Gauss–Markov theorem) The least squares estimators of β0 and β1 associated with

a simple linear regression model have the smallest population variance among all unbiased esti-

mators that can be expressed as a linear combination of the dependent variables.

Proof (partial proof) This proof will show that β̂1 has the smallest population variance

among the class of all linear unbiased estimators for β1. The proof for β̂0 is similar but

left as an exercise for the reader. Let

β̂1 = a1Y1 +a2Y2 + · · ·+anYn

be the unbiased least squares estimator of the population slope β1 from Theorem 1.3,

where ai =
(
Xi− X̄

)
/SXX for i = 1, 2, . . . , n. Consider another linear combination of

the dependent variables which is also an unbiased estimator of β1 that can be written as

β̂′1 = k1Y1 + k2Y2 + · · ·+ knYn

for some real-valued constants k1, k2, . . . , kn. Since E[Yi] = β0 + β1Xi, the expected

value of β̂′1 is

E[β̂′1]= E

[
n

∑
i=1

kiYi

]

=
n

∑
i=1

kiE [Yi]

=
n

∑
i=1

ki (β0 +β1Xi)

= β0

n

∑
i=1

ki +β1

n

∑
i=1

kiXi.
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Since β̂′1 is an unbiased estimator of β1, E[β̂′1]= β1. In order for this to be the case, the

following conditions must hold:

n

∑
i=1

ki = 0 and
n

∑
i=1

kiXi = 1.

These two conditions will be used in the last step of the derivation that follows. Now

let ki = ai + di, for i = 1, 2, . . . , n. We want to find the di values that meet the two

conditions given above and minimize V [β̂′1], which is

V [β̂′1]=V

[
n

∑
i=1

kiYi

]

=
n

∑
i=1

k2
i V [Yi]

=
n

∑
i=1

k2
i σ2

= σ2
n

∑
i=1

(ai +di)
2

= σ2

[
n

∑
i=1

a2
i +

n

∑
i=1

d2
i +2

n

∑
i=1

aidi

]

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

n

∑
i=1

aidi

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

n

∑
i=1

ai(ki−ai)

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

(
n

∑
i=1

aiki−
n

∑
i=1

a2
i

)

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

(
n

∑
i=1

ki ·
Xi− X̄

SXX

− 1

SXX

)

=V [β̂1]+σ2
n

∑
i=1

d2
i +2σ2

(
∑n

i=1 kiXi− X̄ ∑n
i=1 ki−1

SXX

)

=V [β̂1]+σ2
n

∑
i=1

d2
i .

In order to minimize V [β̂′1] the di values should be selected to minimize ∑n
i=1 d2

i .

This sum of squares is minimized when d1 = d2 = · · · = dn = 0. Therefore, the least

squares estimator β̂1, with coefficients ki = ai for i = 1, 2, . . . , n, has the smallest

variance among all unbiased estimators that can be written as linear combinations of

Y1, Y2, . . . , Yn and is therefore a best linear unbiased estimator. �

The Gauss–Markov theorem indicates that the least squares estimators for β0 and β1 have min-

imal variance among all linear estimators. It does not indicate whether the least squares estimators

for β0 and β1 have minimal variance among all estimators. The Gauss–Markov theorem extends to
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the case of multiple linear regression in which there are several independent variables. The least

squares estimators are also the best linear unbiased estimators in this case.

To review the results that have been introduced so far, the simple linear regression model

Y = β0 +β1X + ε

defines a linear statistical relationship between an independent variable X , observed without error,

and a random dependent variable Y as given in Definition 1.1. The point estimators for β1 and β0

from n data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) using the least squares criterion are

β̂1 =
SXY

SXX

and β̂0 = Ȳ − β̂1X̄

as given in Theorem 1.1. The least squares estimators are unbiased estimators of their associated

parameters because

E[β̂1]= β1 and E[β̂0]= β0

as given in Theorem 1.2. The least squares estimators of β0 and β1 can be expressed as linear

combinations of Y1, Y2, . . . , Yn as

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn and β̂1 = a1Y1 +a2Y2 + · · ·+anYn,

with coefficients c1, c2, . . . , cn and a1, a2, . . . , an given in Theorem 1.3. The variance–covariance

matrix of β̂0 and β̂1 is

[
V [β̂0] Cov(β̂0, β̂1)

Cov(β̂1, β̂0) V [β̂1]

]
=

[
∑n

i=1 X2
i /(nSXX ) −X̄/SXX

−X̄/SXX 1/SXX

]
σ2

as given in Theorem 1.4. Finally, the Gauss–Markov theorem given in Theorem 1.5 states that the

least squares estimators of β0 and β1 have the smallest population variance among all unbiased

estimators that can be expressed as a linear combination of Y1, Y2, . . . , Yn.

The next section defines fitted values and residuals. Fitted values are the heights of the regression

line associated with the observed values of the independent variable X1, X2, . . . , Xn. The residuals

are the vertical signed distances between the observed values of the dependent variable Y1, Y2, . . . , Yn

and the associated fitted values that fall on the regression line. Residuals play an analogous role to

the error terms in the simple linear regression model.

1.6 Fitted Values and Residuals

The simple linear regression model

Y = β0 +β1X + ε

was introduced in the previous section as a linear statistical model for describing the relationship

between an independent variable X and a dependent variable Y . Taking the expected value of both

sides of this equation yields

E[Y ] = β0 +β1X

because E[ε] = 0 and X is a fixed value assumed to be observed without error, which are two key

assumptions in Definition 1.1. When the population intercept β0 and the population slope β1 are re-

placed by their associated least squares point estimators β̂0 and β̂1, the resulting estimated regression

line is

Ŷ= β̂0 + β̂1X .
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This estimated regression line is typically plotted on a scatterplot that contains the data pairs (X1, Y1),
(X2, Y2), . . . , (Xn, Yn). Seeing the data pairs and the least squares regression line on the same plot

often makes the visual assessment of linearity easier. For any value X in which the simple linear

regression model is valid, Ŷ is the point estimator for the value of the dependent variable based on the

data pairs and associated estimated regression line. This equation can be rewritten for the particular

values of the independent variable collected as

Ŷi = β̂0 + β̂1Xi

for i = 1, 2, . . . , n. The value Ŷi is known as the fitted value associated with data pair i, for i = 1, 2,

. . . , n. When Ŷi 6= Yi, which is almost always the case in applications, the fitted value does not fall

on the estimated regression line; when Ŷi = Yi, the fitted value falls on the estimated regression line.

The next example illustrates the notion of fitted values for the sales data set.

Example 1.7 Consider the sales data set from Example 1.3 with just n = 3 data pairs:

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), (X3, Y3) = (2, 2).

Find the fitted values Ŷ1, Ŷ2, and Ŷ3 associated with the least squares regression line.

From Examples 1.3 and 1.5, the point estimates for the population intercept and popu-

lation slope are

β̂0 =−1 and β̂1 = 1.

Hence, the estimated regression line is Ŷ= β̂0 + β̂1X , or

Ŷ=−1+X ,

which is plotted along with the scatterplot of the data pairs in Figure 1.14. So calculating

the fitted values is just a matter of using the Xi values as arguments in the estimated

regression line:

Ŷ1 =−1+X1 =−1+6 = 5 ⇒ (X1, Ŷ1) = (6,5)

Ŷ2 =−1+X2 =−1+8 = 7 ⇒ (X2, Ŷ2) = (8,7)

Ŷ3 =−1+X3 =−1+2 = 1 ⇒ (X3, Ŷ3) = (2,1).

The fitted values are also plotted as points that lie on the estimated regression line in

Figure 1.14. Recall from the previous section that the fitted least squares line is the line

which minimizes the sum of the squares of the lengths of the vertical dashed lines which

connect the data pair with its associated fitted value. The fitted values are calculated and

stored in a component named fitted in the list returned by the R lm function. The R

code below confirms the fitted values calculated above by hand.

x = c(6, 8, 2)

y = c(2, 9, 2)

lm(y ~ x)$fitted

The spread of the data pair (Xi, Yi) from the fitted regression line Ŷ= β̂0+ β̂1X is reflected in the

vertical signed distance between the data pair (Xi, Yi) and the associated fitted value
(
Xi, Ŷi

)
, These

signed distances are known as the residuals, and are defined by

ei = Yi− Ŷi
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Figure 1.14: A scatterplot of the sales data pairs with the fitted values.

for i= 1, 2, . . . , n. Data pairs that fall above the regression line correspond to positive residuals; data

pairs that fall below the regression line correspond to negative residuals. The least squares approach

used so far in estimating the intercept and slope of the regression line is a matter of finding the values

of β̂0 and β̂1 which minimize the sum of the squares of the residuals. In other words, minimize

S =
n

∑
i=1

e2
i .

The fitted values and residuals are formally defined next.

Definition 1.2 Let β̂0 and β̂1 denote the least squares estimators of the parameters β0 and β1

in the simple linear regression model with data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The fitted

value associated with the ith data pair (Xi, Yi) is Ŷi = β̂0 + β̂1Xi, for i = 1, 2, . . . , n. The residual

associated with ith data pair (Xi, Yi) is ei = Yi− Ŷi, for i = 1, 2, . . . , n.

Choosing to use the vertical distance between the observed value of the dependent variable

and the regression line in the definition of the residual was based on the fact that the values of

the independent variable X1, X2, . . . , Xn are assumed to be observed without error in Definition 1.1.

The mathematics associated with simple linear regression changes substantially if both X and Y are

considered to be random variables.

A subtle but important distinction should be drawn between the model error term εi for data pair

i and the residual ei for data pair i. The model error terms are defined by

εi = Yi− (β0 +β1Xi)

for i = 1, 2, . . . , n, and represent the vertical distances between the observed dependent variable Yi

and the true (population) regression line Y = β0+β1X . The simple linear regression model assumes

that ε1, ε2, . . . , εn are mutually independent random variables. In nearly all applications, however,

β0 and β1 are unknown. This means that for a particular data set, these model error terms are also

unknown. On the other hand, the residuals are defined by

ei = Yi− Ŷi = Yi−(β̂0 + β̂1Xi)
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for i = 1, 2, . . . , n, and represent the error for data pair i when compared to the estimated regression

line Ŷ= β̂0 + β̂1X , which is calculated from the n data pairs. Thus, ε̂i = ei, for i = 1, 2, . . . , n. The

e1, e2, . . . , en values are not mutually independent random variables because they must sum to zero.

(This will be proven subsequently in Theorem 1.6.) For a particular data set, these residuals are

known. The residuals are calculated for the sales data next.

Example 1.8 Consider again the sales data set from Example 1.3 with n = 3 data pairs:

(X1, Y1) = (6, 2) (X2, Y2) = (8, 9) (X3, Y3) = (2, 2).

Calculate the residuals e1, e2, and e3 associated with the least squares regression line

and display them on a scatterplot that includes the regression line.

Table 1.2 contains the calculations required to calculate the residuals and their squares.

The sum of the squared residuals for these data pairs is

S =
3

∑
i=1

e2
i = (−3)2 +22 +12 = 9+4+1 = 14.

This total is consistent with the sum of the areas of the squares from Figure 1.7. The

data pairs were handpicked in this example to make the residuals all integers. This will

not be the case in nearly all applications of simple linear regression. This value for S

which is associated with the estimated regression line is the smallest possible value for

the sum of squared residuals. Any other line will be associated with a larger sum of

squared residuals.

Figure 1.15 shows the residuals e1, e2, and e3 along with the data pairs and the estimated

regression line. Unless all of the data pairs fall in a line (which would correspond to

S = 0), there will always be one or more data values falling above the line and one or

more data values falling below the line.

The values of the residuals are stored in a component named residuals in the list

returned by the R lm function. The R code below calculates and displays the residuals

that were calculated by hand and displayed in Table 1.2.
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Figure 1.15: A scatterplot of the sales data pairs with the fitted values and residuals.
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Observation Number of Total Fitted Residual Squared

number i sales Xi revenue Yi value Ŷi ei = Yi− Ŷi residual e2
i

1 6 2 5 −3 9

2 8 9 7 2 4

3 2 2 1 1 1

Sum 16 13 13 0 14

Table 1.2: Data pairs, fitted values, residuals, and squared residuals.

x = c(6, 8, 2)

y = c(2, 9, 2)

lm(y ~ x)$residuals

A close inspection of the entries in Table 1.2 reveals that there are some curious outcomes that

occur, such as
n

∑
i=1

ei = 0 and
n

∑
i=1

Yi =
n

∑
i=1

Ŷi.

In other words, (a) the sum of the residuals is zero, and (b) the sum of the observed values of the

dependent variable equals the sum of the fitted values. These were not just a matter of coincidence.

The following theorem confirms that these relationships, along with a few other relationships, are

true in general.

Theorem 1.6 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs associated with the simple linear

regression model

Y = β0 +β1X + ε.

Using the notation from Definition 1.2, the fitted values are Ŷ1, Ŷ2, . . . , Ŷn and the residuals are

e1, e2, . . . , en. Then

•
n

∑
i=1

ei = 0,

•
n

∑
i=1

Yi =
n

∑
i=1

Ŷi,

•
n

∑
i=1

Xiei = 0,

•
n

∑
i=1

Ŷiei = 0,

• (X̄ , Ȳ) is a point that lies on the estimated regression line.

Proof Each of the five results will be proven individually.
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• Since β̂0 = Ȳ − β̂1X̄ from Theorem 1.1, the sum of the residuals is

n

∑
i=1

ei =
n

∑
i=1

(Yi− Ŷi)

=
n

∑
i=1

(Yi− β̂0− β̂1Xi)

=
n

∑
i=1

Yi−nβ̂0− β̂1

n

∑
i=1

Xi

=
n

∑
i=1

Yi−
n

∑
i=1

Yi + β̂1

n

∑
i=1

Xi− β̂1

n

∑
i=1

Xi

= 0.

• Since β̂0 = Ȳ − β̂1X̄ from Theorem 1.1, the sum of the fitted values is

n

∑
i=1

Ŷi =
n

∑
i=1

(β̂0 + β̂1Xi)

= nβ̂0 + β̂1

n

∑
i=1

Xi

= n(Ȳ − β̂1X̄)+ β̂1

n

∑
i=1

Xi

=
n

∑
i=1

Yi.

Thus, the sum of the values of the dependent variable always equals the sum of

the fitted values.

• The sum of the products of the independent variables and residuals is

n

∑
i=1

Xiei =
n

∑
i=1

Xi(Yi− Ŷi)

=
n

∑
i=1

XiYi−
n

∑
i=1

XiŶi

=
n

∑
i=1

XiYi−
n

∑
i=1

Xi(β̂0 + β̂1Xi)

=
n

∑
i=1

XiYi− β̂0

n

∑
i=1

Xi− β̂1

n

∑
i=1

X2
i

= 0.

The final step uses the second normal equation from Theorem 1.1.

• Using the first and third result in this theorem, the sum of the products of the fitted

values and residuals is

n

∑
i=1

Ŷiei =
n

∑
i=1

(β̂0 + β̂1Xi)ei = β̂0

n

∑
i=1

ei + β̂1

n

∑
i=1

Xiei = β̂0 ·0+ β̂1 ·0 = 0.
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• The first normal equation from Theorem 1.1 is

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi.

Dividing both sides by n,

β̂0 + β̂1X̄ = Ȳ ,

which indicates that the point (X̄ , Ȳ ) lies on the estimated regression line. �

These five results from Theorem 1.6 will be illustrated for the sales data in the example that

follows.

Example 1.9 Calculate the quantities given in Theorem 1.6 for the n = 3 data pairs

from the sales data set from Example 1.3:

(X1, Y1) = (6, 2) (X2, Y2) = (8, 9) (X3, Y3) = (2, 2).

From Examples 1.3 and 1.5, the point estimate for the intercept is β̂0 = −1 and the

point estimate for the slope is β̂1 = 1. Table 1.3 contains the calculations necessary to

illustrate the results given in Theorem 1.6. More specifically,

•
3

∑
i=1

ei = 0,

•
3

∑
i=1

Yi =
3

∑
i=1

Ŷi = 13,

•
3

∑
i=1

Xiei = 0,

•
3

∑
i=1

Ŷiei = 0.

Finally, the point
(
X̄ , Ȳ

)
=(16/3, 13/3) lies on the estimated regression line Ŷ=−1+X ,

as illustrated in Figure 1.16.

i Xi Yi Ŷi ei e2
i Xiei Ŷiei

1 6 2 5 −3 9 −18 −15

2 8 9 7 2 4 16 14

3 2 2 1 1 1 2 1

Sum 16 13 13 0 14 0 0

Table 1.3: Calculation of quantities from Theorem 1.6.
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Figure 1.16: The point (X̄ , Ȳ ) falls on the estimated regression line.

1.7 Estimating the Variance of the Error Terms

The emphasis so far has been focused on the estimation of the intercept and slope of the regression

line. While β̂0 and β̂1 are the most critical parameters in most applications of a simple linear regres-

sion model, there is another parameter, the population variance of the error terms σ2, which should

also be estimated from the data pairs.

To establish a foundation for the estimation of σ2, assume for this paragraph only that there is

a univariate, rather than a bivariate, sample of values denoted by X1, X2, . . . , Xn. These will not be

fixed values observed without error as they were in regression modeling. It is assumed that these

values constitute a random sample from a population that has finite population mean µ and finite

population variance σ2. The goal in this paragraph is to estimate σ2 as a function of the data values.

If the population mean µ is known (which is rare in practice), then an unbiased estimator of σ2 is

1

n

n

∑
i=1

(Xi−µ)2 .

If the first n−1 deviations between the sample values and the population mean X1−µ, X2−µ, . . . ,

Xn−1− µ were known, the final deviation, Xn− µ, would be free to take on any value. It is in this

sense that the sum of squares
n

∑
i=1

(Xi−µ)2

is said to have n “degrees of freedom.” It is common practice in statistics to divide a sum of squares

by its degrees of freedom to arrive at a point estimator. In this particular instance, dividing by

n makes the point estimator an unbiased estimator of σ2. The problem that arises more often in

practice is to estimate σ2 when µ is unknown. An unbiased estimator of σ2 in this case is the sample

variance
1

n−1

n

∑
i=1

(
Xi− X̄

)2
,

which is typically denoted by S2 by statisticians. There are three reasons why the term outside of

the summation has n− 1 in the denominator. The first reason is that this is the appropriate term so
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that this estimator is an unbiased estimator of σ2. This can be stated as E
[
S2
]
= σ2. The second

reason is that one can’t estimate the dispersion of a distribution from a single data value, so the

sample variance is undefined when n = 1. The third reason is that the sum of squares has n− 1

degrees of freedom. One degree of freedom is lost because the sample mean X̄ is used to estimate

the population mean µ. If the first n−1 deviations between the sample values and the sample mean

X1− X̄ , X2− X̄ , . . . , Xn−1− X̄ were known, the final deviation, Xn− X̄ , could be calculated from the

other n−1 values because
n

∑
i=1

(
Xi− X̄

)
=

n

∑
i=1

Xi−nX̄ = 0.

It is in this sense that the sum of squares

n

∑
i=1

(
Xi− X̄

)2

is said to have n− 1 degrees of freedom. This ends the discussion of degrees of freedom for a

univariate data set.

We now return to the problem of estimating σ2 in simple linear regression. The independent

variables X1, X2, . . . , Xn are once again assumed to be fixed values observed without error as they

have been throughout this chapter. Based on the fact that the error terms ε1, ε2, . . . , εn in the simple

linear regression model are assumed to be mutually independent and identically distributed random

variables, each with population mean 0 and finite population variance σ2, the population variance

of the error terms can be estimated with the unbiased estimator

1

n

n

∑
i=1

ε2
i =

1

n

n

∑
i=1

(Yi−β0−β1Xi)
2

if β0 and β1 were known. But in practice, the two parameters β0 and β1 are estimated from the data

pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), so two degrees of freedom are lost and an appropriate point

estimator for the population variance σ2 is given by

σ̂2 =
1

n−2

n

∑
i=1

e2
i =

1

n−2

n

∑
i=1

(Yi− β̂0− β̂1Xi)
2
.

It is important that the population variance of the error terms σ2 remain constant over the range of

X values in which the simple linear regression model is appropriate. One tool for visually assessing

this assumption is a scatterplot of the data pairs with the estimated regression line superimposed.

The point estimator for σ2 when β0 and β1 are estimated from the data pairs involves the sum of

squares of the residuals, and this is often abbreviated as SSE, for sum of squares for error:

SSE =
n

∑
i=1

e2
i ,

which is also known as the error sum of squares, residual sum of squares, and sum of squares due

to error. When this quantity is divided by its degrees of freedom, it is known as the mean square

error, which is abbreviated by MSE:

σ̂2 = MSE =
SSE

n−2
=

1

n−2

n

∑
i=1

e2
i .
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Some good news is provided by the next result, which states that MSE = σ̂2 is an unbiased estimator

of σ2.

Theorem 1.7 If e1, e2, . . . , en are the residuals in a simple linear regression model, then the point

estimator

σ̂2 =
1

n−2

n

∑
i=1

e2
i

is an unbiased estimator of σ2.

Proof The simple linear regression model is

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n. Summing both sides of this equation and dividing by n yields

Ȳ = β0 +β1X̄ + ε̄.

Taking the difference between the previous two equations results in

Yi− Ȳ = β1 (Xi− X̄)+ εi− ε̄ (1)

for i = 1, 2, . . . , n. The definition of the residual associated with data pair i is

ei = Yi− β̂0− β̂1Xi

for i = 1, 2, . . . , n. Recognizing that the residuals sum to zero via Theorem 1.6, sum-

ming both sides of this equation, and dividing by n yields

0 = Ȳ − β̂0− β̂1X̄ .

Taking the difference between the previous two equations results in

ei = Yi− Ȳ − β̂1 (Xi− X̄) (2)

for i = 1, 2, . . . , n. Substituting the right-hand side of equation (1) for Yi−Ȳ in equation

(2) gives

ei = β1(Xi− X̄)+ εi− ε̄− β̂1(Xi− X̄)

= (β1− β̂1)(Xi− X̄
)
+(εi− ε̄)

for i = 1, 2, . . . , n. Squaring both sides of this equation and summing gives

n

∑
i=1

e2
i = (β̂1−β1)

2
n

∑
i=1

(Xi− X̄)
2−2(β̂1−β1)

n

∑
i=1

(Xi− X̄)(εi− ε̄)+
n

∑
i=1

(εi− ε̄)2 .

Taking into account that the Xi values are assumed to be fixed constants in a simple

linear regression model, the expected value of both sides of this equation is

E

[
n

∑
i=1

e2
i

]
= E

[
(β̂1−β1)

2
] n

∑
i=1

(Xi− X̄)
2−2E

[
(β̂1−β1)

n

∑
i=1

(Xi− X̄)(εi− ε̄)

]
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+ E

[
n

∑
i=1

(εi− ε̄)2

]
. (3)

There are three terms on the right-hand side of equation (3). Each term will be con-

sidered separately. The first term contains E
[(

β̂1− β1

)2]
, which is an expression for

the population variance of β̂1 because β̂1 is an unbiased estimator for β1 via Theo-

rem 1.2. This population variance is the lower-right entry of the variance–covariance

matrix given in Theorem 1.4. So the first term on the right-hand side of equation (3)

reduces to

E
[
(β̂1−β1)

2
] n

∑
i=1

(Xi− X̄)
2
=V [β̂1] ·SXX =

σ2

SXX

·SXX = σ2.

Before considering the second term on the right-hand side of equation (3), recall

from Theorem 1.3 that β̂1 can be written as a linear combination of the observa-

tions of the dependent variable Y1, Y2, . . . , Yn as β̂1 = a1Y1 + a2Y2 + · · ·+ anYn, where

ai = (Xi− X̄)/SXX for i = 1, 2, . . . , n. So an expression for the least squares point esti-

mator of β1 can be written as

β̂1 =
n

∑
i=1

aiYi

=
n

∑
i=1

ai (β0 +β1Xi + εi)

= β0

n

∑
i=1

ai +β1

n

∑
i=1

aiXi +
n

∑
i=1

aiεi

= β1 +
n

∑
i=1

aiεi

via Theorem 1.3. Temporarily ignoring the −2 coefficient on the second term in equa-

tion (3) and using the fact that ε1, ε2, . . . , εn are mutually independent random variables

with population mean zero and population variance σ2, the expected value in the second

term on the right-hand side of equation (3) is

E

[
(β̂1−β1)

n

∑
i=1

(Xi− X̄)
(
εi− ε̄

)
]
= E

[(
β1 +

n

∑
i=1

aiεi−β1

)
n

∑
i=1

(Xi− X̄)
(
εi− ε̄

)
]

= E

[(
n

∑
i=1

aiεi

)(
n

∑
i=1

(Xi− X̄)εi− ε̄
n

∑
i=1

(Xi− X̄)

)]

= E

[
1

SXX

(
n

∑
i=1

(Xi− X̄)εi

)(
n

∑
i=1

(Xi− X̄)εi

)]

=
1

SXX

E

[
n

∑
i=1

(Xi− X̄)
2
ε2

i +∑∑
i 6= j

(Xi− X̄)(X j− X̄)εiε j

]

=
1

SXX

n

∑
i=1

(Xi− X̄)
2
E
[
ε2

i

]

= σ2.
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Finally, consider the third term on the right-hand side of equation (3). Using (i) the

shortcut formula for the population variance, (ii) the fact that the expected value oper-

ator E is a linear operator, (iii) the fact that the population variance of a sample mean

comprised of mutually independent and identically distributed random variables is the

ratio of the population variance to the sample size, and (iv) the fact that E[εi] = 0 for

i = 1, 2, . . . , n and therefore E[ε̄] = 0, the third term on the right-hand side of equation

(3) is

E

[
n

∑
i=1

(
εi− ε̄

)2

]
= E

[
n

∑
i=1

ε2
i −2ε̄

n

∑
i=1

εi +nε̄2

]

= E

[
n

∑
i=1

ε2
i −2nε̄2 +nε̄2

]

= E

[
n

∑
i=1

ε2
i −nε̄2

]

=
n

∑
i=1

E[ε2
i ]−nE[ε̄2]

=
n

∑
i=1

(
V
[
εi

]
+E

[
εi

]2)−n
(

V
[
ε̄
]
+E

[
ε̄
]2)

=
n

∑
i=1

σ2−n · σ
2

n

= nσ2−σ2

= (n−1)σ2.

Combining the three terms together, equation (3) becomes

E

[
n

∑
i=1

e2
i

]
= σ2−2σ2 +(n−1)σ2 = (n−2)σ2.

Dividing both sides of this equation by n− 2 indicates that the MSE is an unbiased

estimator of σ2:

E

[
1

n−2

n

∑
i=1

e2
i

]
= σ2. �

To summarize, there are three parameters in a simple linear regression model: the population

intercept β0, the population slope β1, and the population variance of the error terms σ2. These

parameters can be estimated from n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) by the least squares

method. Theorem 1.2 indicates that the least squares point estimator β̂0 is an unbiased estimator of

β0 and the least squares point estimator β̂1 is an unbiased estimator of β1. Theorem 1.7 indicates

that the MSE is an unbiased estimator of σ2. All three parameter estimators are on target on average.

The next three examples illustrate the estimation of σ2.

Example 1.10 Estimate the variance of the error terms σ2 for the n = 3 data pairs from

the sales data set in Example 1.3:

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), (X3, Y3) = (2, 2).
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Using the calculations in Example 1.9, the estimated variance of the error terms is

σ̂2 =
1

n−2

n

∑
i=1

e2
i =

1

3−2
(9+4+1) = 14.

The R code to compute the value of the point estimate for σ2 is given below.

x = c(6, 8, 2)

y = c(2, 9, 2)

n = length(x)

fit = lm(y ~ x)

sum(fit$residuals ^ 2) / (n - 2)

The magnitude of the point estimate of σ2 is a reflection of whether the data points are tightly

clustered about the estimated regression line (for small values of σ̂2) or whether the data points stray

significantly from the estimated regression line (for large values of σ̂2). In the previous example

involving the sales data pairs, there is significant vertical deviation between the data points and the

associated fitted values, as seen in Figure 1.15. The next example illustrates the case in which the

data pairs are tightly clustered about the regression line.

Example 1.11 Scottish physicist James Forbes wanted to devise a technique to esti-

mate the altitude above sea level without transporting a fragile mercury barometer to

the location of interest. He knew that the altitude could be computed from the baro-

metric pressure, with lower barometric pressures corresponding to higher altitudes.

He wanted to see if the boiling point of water could be used as a surrogate to de-

termine the barometric pressure. In the 1840’s and 1850’s, he gathered n = 17 data

pairs (X1, Y1) , (X2, Y2) , . . . , (X17, Y17) from various locations at different altitudes in

the Alps, where

Xi: the boiling point of water in degrees Fahrenheit at location i, and

Yi: the adjusted barometric pressure in inches of mercury at location i,

for i = 1, 2, . . . , 17. The data was published in an 1857 article in the Transactions of

the Royal Society of Edinburgh titled “Further Experiments and Remarks on the Mea-

surement of Heights and Boiling Point of Water.” The n = 17 data pairs in Forbes’ data

set are shown in Table 1.4. Make a scatterplot of the data values to determine whether

a simple linear regression model is appropriate. If it is an appropriate model, estimate

the model parameters β0, β1, and σ2.

A scatterplot of the data is plotted with the R commands given below.

x = c(194.5, 194.3, 197.9, 198.4, 199.4, 199.9, 200.9, 201.1, 201.4,

201.3, 203.6, 204.6, 209.5, 208.6, 210.7, 211.9, 212.2)

y = c(20.79, 20.79, 22.40, 22.67, 23.15, 23.35, 23.89, 23.99, 24.02,

24.01, 25.14, 26.57, 28.49, 27.76, 29.04, 29.88, 30.06)

plot(x, y)

The scatterplot is given in Figure 1.17. On the range of the independent variable X

that was collected by Forbes, which is 194.3 ≤ X ≤ 212.2, there appears to be a linear

relationship between the boiling temperature X and the barometric pressure Y , so it
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Boiling Barometric

point pressure

194.5 20.79

194.3 20.79

197.9 22.40

198.4 22.67

199.4 23.15

199.9 23.35

200.9 23.89

201.1 23.99

201.4 24.02

201.3 24.01

203.6 25.14

204.6 26.57

209.5 28.49

208.6 27.76

210.7 29.04

211.9 29.88

212.2 30.06

Table 1.4: Data pairs for Forbes’ experiment.
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Figure 1.17: Scatterplot of the Forbes data.

is reasonable to proceed with fitting a simple linear regression model. The point that

seems to stray slightly from the linear relationship, namely (X12, Y12) = (204.6, 26.57),
could be due to (i) random sampling variability, (ii) measurement error associated with

the barometric pressure Y12 = 26.57, or (iii) measurement error associated with the

boiling point X12 = 204.6 even though the simple linear regression model assumes that

the boiling points are measured without error.

The R code below plots the fitted regression line on the scatterplot, which is shown in
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Figure 1.18. Forbes’ data pairs are in a built-in data frame named forbes that resides

in the MASS package. The first column in forbes is named bp (for boiling point) and

the second column is named pres (for barometric pressure).

library(MASS)

x = forbes$bp

y = forbes$pres

plot(x, y)

fit = lm(y ~ x)

abline(fit$coefficients)

Figure 1.18 confirms our conclusion about the linear relationship between X and Y from

the scatterplot on the range of X values collected by Forbes. A simple linear regression

model seems appropriate in this setting. The additional R commands that follow print

the estimates for β0, β1, and σ2 for Forbes’ n = 14 data pairs.

n = length(x)

print(fit$coefficients)

print(sum(fit$residuals ^ 2) / (n - 2))

These yield the three unbiased point estimates for the simple linear regression model as

β̂0 =−81.0637 β̂1 = 0.5229 σ̂2 = 0.05421.

So the estimated regression line is

Ŷ=−81.0637+0.5229X .

Using the usual interpretation of the estimated intercept, when the boiling point of water

is 0◦ Fahrenheit, the barometric pressure is estimated to be−81 inches of mercury. This

is obviously an inappropriate conclusion and highlights the fact that this simple linear
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Figure 1.18: Scatterplot of the Forbes data with the estimated regression line.
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regression model is only appropriate for a limited range of X values. The interpreta-

tion of β̂1, however, is meaningful. The barometric pressure increases by an estimated

0.5229 inches of mercury for every degree increase in the boiling point of water over the

range of X values collected by Forbes. Finally, the estimated variance of the error terms,

σ̂2 = 0.05421, is small (particularly relative to the estimated variance of the dependent

variable observations, SYY/(n− 1) = 9.12, calculated with the additional R command

var(forbes$pres)). This small estimated variance indicates that the data values are

tightly clustered about the regression line. This is clearly the case in Figure 1.18.

The additional R command plot(fit$residuals) generates a plot of the residuals.

Figure 1.19 shows the n = 17 residuals, along with a dashed horizontal line at a residual

value of zero to show which observations fall above and below the regression line.

(Notice that some of the Xi values are not in increasing order.) Six of the residuals are

positive and 11 are negative. The reason that more residuals are negative is that the

12th data pair (X12, Y12) = (204.6, 26.57) exerts a strong upwards “tug” on the fitted

regression line, which is reflected in the plot of the residuals in Figure 1.19.

The non-symmetry in the values of e1, e2, . . . , e17 will also be reflected in a histogram

of the residuals. Although n = 17 is a relatively small sample size for drawing a his-

togram and having a meaningful interpretation, one is displayed in Figure 1.20. This

histogram can be generated with the additional R command hist(fit$residuals).

The histogram reveals a bell-shaped distribution for the residuals, with a single extreme

value in the right-hand tail associated with the residual e12 = 0.65. This is consistent

with the plot of the residuals in Figure 1.19.

In conclusion, the regression analysis seems to indicate that Forbes’ experiment was

a success. The barometric pressure does appear to be a function of the boiling point

of water, and furthermore, the relationship between the two variables appears to be

reasonably linear on the range of data pairs collected by Forbes. For a particular boiling

point X that falls within that range of X values, the barometric pressure can be estimated

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
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Figure 1.19: Residuals for the Forbes data.
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Figure 1.20: Histogram of the residuals for the Forbes data.

by

Ŷ= β̂0 + β̂1X =−81.0637+0.5229X .

The altitude can, in turn, be estimated from the estimate of the barometric pressure

provided by the regression analysis.

In the two previous examples, point estimates of the population variance of the error terms σ2

were calculated. In the sales data example, the estimated error term variance σ̂2 = 14 indicated that

the data pairs strayed a large distance from the estimated regression line, as illustrated in Figure 1.6.

In the Forbes data set, the estimated error term variance σ̂2 = 0.05421 reflects data pairs that cluster

closely to the estimated regression line, as illustrated in Figure 1.18. But these two examples in-

volving individual data sets do not indicate anything about the distribution of σ̂2. The next example

addresses this topic by extending the Monte Carlo simulation experiment from Example 1.4.

Example 1.12 Consider again the simple linear regression model

Y = β0 +β1X + ε

from Example 1.4, where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

The focus in this example will be on the estimation of the probability distribution of σ̂2.

Recall that the error term distribution has population mean zero and finite population

variance, so it satisfies the conditions of a simple linear regression model from Defini-

tion 1.1. Conduct a Monte Carlo simulation with 5000 replications that estimates the

probability distribution of the estimated variance of the error terms σ̂2 for n = 10 data

pairs. Assume that the Xi values are equally likely to be one of the integers 0, 1, 2, . . . , 9.

The R code below conducts 5000 replications of the Monte Carlo experiment. The

simulated regression model is fit by the lm function and the results are stored in the list
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named fit. The component of the list named fit$residuals contains the residuals

e1, e2, . . . , e10 for a particular simulation replication. The estimator of the variance of

the error term in the simple linear regression model is given by the MSE:

σ̂2 =
1

n−2

n

∑
i=1

e2
i ,

which is an unbiased estimator estimator of σ2 by Theorem 1.7. The code generates a

histogram of the 5000 estimates of the variance of the error terms.

nrep = 5000

n = 10

beta0 = 1

beta1 = 1 / 2

sig2hat = numeric(nrep)

set.seed(100)

for (i in 1:nrep) {

x = sample(0:9, n, replace = TRUE)

if (min(x) == max(x)) stop("All x values are equal")

y = beta0 + beta1 * x + runif(n, -1, 1)

fit = lm(y ~ x)

sig2hat[i] = sum(fit$residuals ^ 2) / (n - 2)

}

hist(sig2hat)

The histogram that is produced by this Monte Carlo simulation is given in Figure 1.21.

The histogram is centered around the population variance of the error terms

σ2 =
(1+1)2

12
=

4

12
=

1

3

because the population variance of the U(a, b) distribution is

σ2 =
(b−a)2

12
,

where a =−1 and b = 1. So the Monte Carlo simulation supports the fact that σ̂2 is an

unbiased estimator of σ2 via Theorem 1.7. Although the distribution of the probability

density function is bell-shaped, a careful examination of the histogram indicates that

the right-hand tail of the distribution appears to be slightly heavier than the left-hand

tail of the distribution. The probability density function of σ̂2 is not symmetric. This

nonsymmetry is a universal result which extends beyond this particular simple linear

regression model. This should not be surprising because the support of σ̂2 is the positive

real numbers, unlike the support of β̂0 and β̂1 whose support is the entire real number

line.

So the conclusions of the Monte Carlo simulation experiment are that (a) Theorem 1.7

is supported because the histogram in Figure 1.21 is centered around σ2, and (b) the

probability density function of σ̂2 is nearly bell-shaped with a slight bit of nonsymme-

try.
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σ̂2

0 1/3 2/3 1

Figure 1.21: Histogram of the error term estimates for the Monte Carlo simulation.

Before leaving the topic of the estimation of σ2 behind, consider the case of collecting just n = 2

data pairs (X1, Y1) and (X2, Y2), as illustrated in Figure 1.22. One of the assumptions associated with

the observations in a simple linear regression model is that there are at least two distinct values of

the independent variable observed. So when n = 2, it must be the case that X1 6= X2. In this case, the

least squares regression line will pass through the points (X1, Y1) and (X2, Y2). This means that the

fitted values are identical to the data pairs, and hence, both residuals are zero. So the sum of squares

for error is SSE = e2
1 + e2

2 = 0. But is an SSE of zero an appropriate estimate for the population

variance of the spread of the values about the regression line? Can one conclude that this is really

a deterministic relationship and any additional data pairs collected will fall on the fitted regression

line? Certainly not, because it is not possible to draw that conclusion based on just two data pairs. A

third data pair might fall on the regression line or fall significantly off of the regression line, as was

the case with the sales data from Example 1.3. The unbiased estimator of σ2 is undefined because

of the n− 2 in the denominator of the formula for σ̂2, as it should be. Two data pairs are adequate

(X1, Y1)

(X2, Y2)

X

Y

Figure 1.22: Scatterplot and estimated regression line for n = 2 data pairs.
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for estimating the population slope and population intercept of the regression line, but they are not

adequate for estimating σ2. The mathematics and intuition are consistent in this setting.

1.8 Sums of Squares

Certain sums of squares play a key role in simple linear regression. This section considers three

topics related to these sums of squares: (a) partitioning the total sum of squares, (b) defining and

interpreting the coefficient of determination and the coefficient of correlation, and (c) displaying the

sums of squares in an ANOVA table.

1.8.1 Partitioning the Total Sum of Squares

A topic that is closely related to fitted values and residuals is the partitioning of the total sum of

squares. Figure 1.23 provides the geometric framework for the mathematical derivation provided

next. There are only three points plotted in Figure 1.23. The first point plotted is (Xi, Yi), which is a

generic data pair. The other n− 1 data pairs are not plotted in order to keep the figure uncluttered.

The estimated regression line associated with the n data pairs, which happens to have a negative

slope, is also plotted. The second point plotted is the fitted value
(
Xi, Ŷi

)
associated with the ith data

pair, which is located directly below data pair i and falls on the estimated regression line. The third

point plotted is (X̄ , Ȳ ), which, by Theorem 1.6, will always fall on the regression line.

Figure 1.23 provides a geometric proof of the relationship

Yi− Ȳ = Ŷi− Ȳ +Yi− Ŷi

for i = 1, 2, . . . , n. The relationship can also be established algebraically by recognizing that the

right-hand side of this equation can be determined by just adding and subtracting Ŷi to the left-hand

side of the equation. As will be stated and proved subsequently, squaring both sides of this equation

and summing results in

n

∑
i=1

(Yi− Ȳ)
2
=

n

∑
i=1

(Ŷi− Ȳ)
2
+

n

∑
i=1

(Yi− Ŷi)
2
.

(Xi, Yi)

(
Xi, Ŷi

)

(X̄ , Ȳ )

Yi− Ŷi

Ŷi− Ȳ

Yi− Ȳ

estimated
regression

line

X

Y

Figure 1.23: Partitioning the total sum of squares.



52 Chapter 1. Simple Linear Regression

This equation involves three sums of squares that occur so often in regression analysis that they are

given the abbreviations

SST = SSR+SSE,

where SST stands for total sum of squares, SSR stands for sum of squares for regression, and SSE

stands for sum of squares for error. (The sum of squares for error has already been encountered in

Theorem 1.7.) This equation expresses the total variation of the observed values of the dependent

variable Y1, Y2, . . . , Yn about their sample mean Ȳ in SST as the sum of two sums of squares. The first

term on the right-hand side, SSR, reflects the variation of the fitted values Ŷ1, Ŷ2, . . . , Ŷn about the

sample mean Ȳ . The second term on the right-hand side, SSE, reflects the variation of the observed

values Y1, Y2, . . . , Yn about their associated fitted values Ŷ1, Ŷ2, . . . , Ŷn. Since all three terms in this

equation are sums of squares, all three terms are nonnegative. Notice that SST/(n−1) is the sample

variance of Y1, Y2, . . . , Yn.

The equation

SST = SSR+SSE

partitions SST into two pieces: SSR, which accounts for the total variability in Y1, Y2, . . . , Yn that

is accounted for by the regression line (that is, the linear relationship between X and Y ), and SSE,

which accounts for the remaining variability that is not associated with the regression line. This

is why SSR measures the total variability in Y1, Y2, . . . , Yn “explained” by the relationship between

X and Y , whereas SSE measures the total variability in Y1, Y2, . . . , Yn left “unexplained” by the

relationship between X and Y . It is reasonable to think of SSR as measuring the “signal” associated

with the linear relationship and SSE as measuring the “noise” associated with the linear relationship.

The result is stated formally and proven next.

Theorem 1.8 Let β̂0 and β̂1 denote the least squares estimators of the parameters β0 and β1 in

the simple linear regression model fitted to the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). Let

Ŷi = β̂0 + β̂1Xi be the fitted value associated with data pair i, for i = 1, 2, . . . , n. Let Ȳ be the

sample mean of Y1, Y2, . . . , Yn. Then

n

∑
i=1

(Yi− Ȳ)
2
=

n

∑
i=1

(Ŷi− Ȳ)
2
+

n

∑
i=1

(Yi− Ŷi)
2
,

or, equivalently,

SST = SSR+SSE.

Proof Beginning with Yi− Ȳ , adding and subtracting Ŷi gives

Yi− Ȳ = Ŷi− Ȳ +Yi− Ŷi

for i = 1, 2, . . . , n. Grouping the two terms on the right-hand side of this equation as(
Ŷi− Ȳ

)
and

(
Yi− Ŷi

)
, squaring both sides of the equation, and summing gives

n

∑
i=1

(Yi− Ȳ)
2
=

n

∑
i=1

(Ŷi− Ȳ)
2
+2

n

∑
i=1

(Ŷi− Ȳ)(Yi− Ŷi)+
n

∑
i=1

(Yi− Ŷi)
2
.

The middle summation on the right-hand side of this equation is zero because

2
n

∑
i=1

(Ŷi−Ȳ)(Yi− Ŷi)= 2
n

∑
i=1

Ŷi(Yi− Ŷi)−2Ȳ
n

∑
i=1

(Yi− Ŷi)= 2
n

∑
i=1

Ŷiei−2Ȳ
n

∑
i=1

ei = 0

by Theorem 1.6, which proves the result. �
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1.8.2 Coefficients of Determination and Correlation

There are two measures that are helpful in assessing the degree of the linear relationship between

X and Y in a simple linear regression model. The coefficient of determination and the coefficient

of correlation are defined next. The thinking behind the way that the coefficient of determination

R2 = SSR/SST is defined is as follows. The value of SST reflects the variability in Y1, Y2, . . . , Yn

when the values of the associated independent variables X1, X2, . . . , Xn are ignored. The value of

SSE reflects the variability in Y1, Y2, . . . , Yn when a fitted regression model uses X1, X2, . . . , Xn as

predictors. Their difference, SSR = SST −SSE, reflects the reduction in variability associated with

using the regression model. The ratio SSR/SST captures the fraction of that reduction in variability.

Definition 1.3 Let SST , SSR, and SSE for a simple linear regression model be defined as in The-

orem 1.8. The coefficient of determination is

R2 =
SSR

SST
=

SST −SSE

SST
= 1− SSE

SST

when SST 6= 0. The coefficient of correlation (a.k.a. the sample correlation coefficient) is

r =±
√

R2,

where the sign associated with r is positive (negative) when the slope of the estimated regression

line is positive (negative).

The coefficient of determination R2 is the fraction of the variation in Y1, Y2, . . . , Yn about Ȳ that

is accounted for by the linear relationship between X and Y . Based on the result from Theorem 1.8,

SST = SSR+SSE, the coefficient of determination must satisfy 0≤R2≤ 1. Likewise, the coefficient

of correlation must satisfy −1≤ r ≤ 1, which is true for all population and sample correlations.

Values of R2 that are near 1 indicate that nearly all of the variation in Y1, Y2, . . . , Yn about Ȳ

can be explained by the linear relationship between X and Y . This in turn implies that X is a useful

predictor for Y . On the other hand, values of R2 that are near 0 indicate that very little of the variation

in Y1, Y2, . . . , Yn about Ȳ can be explained by the linear relationship between X and Y . This in turn

implies that X is not a useful predictor for Y . It is in this sense that R2 is a measure of the strength

of the linear relationship between X and Y .

There are some important limitations associated with R2 and r. First, it is important to remember

that the linear relationship between X and Y might only be appropriate on a limited range of X values.

Second, even a relatively large value of R2 might not provide the precision necessary for a particular

application. Third, regardless of the value of R2, the scatterplot of the data pairs must always be

inspected to see if a simple linear regression model is warranted. Both high and low values of

R2 can be associated with a strong nonlinear relationship between X and Y . Fourth, in the case in

which the experimenter can control the values of X1, X2, . . . , Xn, the magnitude of R2 depends on the

choices of the independent variables, which clouds its interpretation. Fifth, the usual interpretation

of the coefficient of correlation r as an estimator of ρ = Cov(X , Y )/(σX σY ) is only appropriate

when X and Y are random variables, which is not the case in simple linear regression because X is

assumed to be observed without error.

It is a useful thought experiment to consider the scatterplots associated with the values of SST ,

SSR, and SSE at their extremes. These three extreme cases will be described in the next three

paragraphs.
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The first of these extreme cases is illustrated for n = 7 in Figure 1.24 in which

SSE =
n

∑
i=1

(Yi− Ŷi)
2
=

n

∑
i=1

e2
i = 0.

The only way to achieve a sum of squares for error of zero is to have the data pairs (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) all fall on a line, which is the regression line. Using the result from Theorem 1.8 that

SST = SSR+SSE, in this case SST = SSR, which implies that R2 = 1. Therefore, all of the variation

in Y1, Y2, . . . , Yn is explained by the linear relationship between X and Y . In addition, r =−1 if the

slope of the regression line is negative and r = 1 if the slope of the regression line is positive.

X

Y

Figure 1.24: Data pairs with SSE = 0 and β̂1 6= 0 (which implies that SST = SSR and R2 = 1).

The second of these extreme cases is illustrated for n = 7 in Figure 1.25 in which

SSR =
n

∑
i=1

(Ŷi− Ȳ)
2
= 0.

The only way to achieve a sum of squares for regression of zero is to have an estimated regres-

sion line with slope zero. Using the result from Theorem 1.8 that SST = SSR+ SSE, in this case

SST = SSE, which implies that R2 = 0. This means that none of the variation in Y1, Y2, . . . , Yn is

explained by the linear relationship between X and Y . In addition, r = 0.

The third of these extreme cases is illustrated for n = 7 in Figure 1.26 in which

SST =
n

∑
i=1

(Yi− Ȳ)
2
= 0.

X

Y

Figure 1.25: Data pairs with SSR = 0 (which implies that SST = SSE and R2 = 0).
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X

Y

Figure 1.26: Data pairs with SST = 0 (which implies that SSR = SSE = 0 and R2 is undefined).

The only way to achieve a total sum of squares of zero is to have an estimated regression line with

slope zero and all points lying on the estimated regression line. Using the result from Theorem 1.8

that SST = SSR+SSE, in this case SSR = SSE = 0, and the coefficient of determination and coeffi-

cient of correlation are undefined because the denominator is zero.

Each of the sums of squares has an associated degrees of freedom. The total sum of squares

SST =
n

∑
i=1

(Yi− Ȳ)
2

has n−1 degrees of freedom for either of two reasons: (1) one degree of freedom is lost because Ȳ

is used to estimate the population mean, and (2) the terms in the summation above are subject to the

one constraint—they must sum to zero. The sum of squares for regression

SSR =
n

∑
i=1

(Ŷi− Ȳ)
2

has 1 degree of freedom because each of the Ŷi values is calculated from the same regression line

which has two degrees of freedom, but is subject to the additional constraint ∑n
i=1(Ŷi− Ȳ) = 0 by

Theorem 1.6. The sum of squares for error

SSE =
n

∑
i=1

(Yi− Ŷi)
2

has n−2 degrees of freedom for the reasons outlined just before Theorem 1.7.

An alternative definition for computing the coefficient of correlation r can save on computation

time, as given in the following theorem.

Theorem 1.9 The coefficient of correlation r is

r = β̂1

√
SXX

SYY

.

Proof Recall from Definition 1.3 that the coefficient of correlation is

r =±
√

SSR

SST
,
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where the sign associated with r is the same as the sign of β̂1. Since ∑n
i=1 Ŷi = ∑n

i=1 Yi

by Theorem 1.6, this can be rewritten as

r =±
√

SSR

SST

=±

√
∑n

i=1

(
Ŷi− Ȳ

)2

SYY

=±

√
∑n

i=1 Ŷ2
i −2Ȳ ∑n

i=1 Ŷi +nȲ 2

SYY

=±

√
∑n

i=1 Ŷ2
i −2Ȳ ∑n

i=1 Yi +nȲ 2

SYY

=±

√
∑n

i=1 Ŷ2
i −nȲ 2

SYY

=±

√
∑n

i=1

(
β̂0 + β̂1Xi

)2−nȲ 2

SYY

=±

√
∑n

i=1

(
Ȳ − β̂1X̄ + β̂1Xi

)2−nȲ 2

SYY

=±

√
nȲ 2 +2Ȳ β̂1 ∑n

i=1(Xi− X̄)+ β̂2
1 ∑n

i=1(Xi− X̄)2−nȲ 2

SYY

=±

√
β̂2

1 ∑n
i=1(Xi− X̄)2

SYY

= β̂1

√
SXX

SYY

,

which proves the theorem. �

1.8.3 The ANOVA Table

The three sums of squares for the simple linear regression model and their associated degrees of

freedom can be summarized in an analysis of variance (ANOVA) table. The four columns in the

generic ANOVA table shown in Table 1.5 are (a) the source of variation, (b) the sum of squares,

(c) the degrees of freedom, and (d) the mean square. The sums of squares and the degrees of

freedom add to the values in the row labeled “Total”. The mean square is the ratio of the sum of

Source SS df MS

Regression SSR 1 MSR

Error SSE n−2 MSE

Total SST n−1

Table 1.5: Partial ANOVA table for simple linear regression.
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squares to the associated degrees of freedom. The regression mean square is MSR = SSR/1 = SSR.

The mean square error is MSE = SSE/(n− 2). The mean square entries do not add. Tradition

dictates that the mean square associated with SST is not reported in an ANOVA table, but it does

have meaning as the sample variance of Y1, Y2, . . . , Yn. More information on how the ANOVA table

can be used for hypothesis testing concerning the population slope β0 by adding a fifth column to

the ANOVA table will be given in the next chapter.

Example 1.13 Consider the Forbes data set from Example 1.11 in which the indepen-

dent variable X is the boiling point of water in degrees Fahrenheit and the dependent

variable Y is the adjusted barometric pressure in inches of mercury. There are n = 17

data pairs collected from various locations. Calculate the three sums of squares (SST ,

SSR, and SSE), show that Theorem 1.8 is satisfied, calculate R2 and r, and present the

results in an ANOVA table.

The scatterplot with the estimated regression line superimposed from Example 1.11 is

reproduced in Figure 1.27. The R commands below calculate the three sums of squares.

library(MASS)

x = forbes$bp

y = forbes$pres

fit = lm(y ~ x)

sst = sum((y - mean(y)) ^ 2)

ssr = sum((fit$fitted - mean(y)) ^ 2)

sse = sum(fit$residuals ^ 2)

print(c(sst, ssr, sse))

These commands result in the following values for the three sums of squares:

SST = 145.9378 SSR = 145.1246 SSE = 0.8131.

Ignoring the roundoff error in the fourth digit after the decimal point, these values sat-

190 195 200 205 210 215
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Y

Figure 1.27: Scatterplot of the Forbes data with the estimated regression line.
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isfy the result in Theorem 1.8:

SST = SSR+SSE.

The fact that SSR is more than two orders of magnitude greater than SSE indicates

that there is much more of the total variation in Y1, Y2, . . . , Yn that is explained by the

relationship between X and Y than unexplained. This interpretation is consistent with

the scatterplot and estimated regression line given in Figure 1.27.

The value of the coefficient of determination and the coefficient of correlation for this

data set can be calculated by the additional R commands

R2 = ssr / sst

r = sign(fit$coefficients[2]) * sqrt(R2)

print(c(R2, r))

via Definition 1.3 or

sxx = sum((x - mean(x)) ^ 2)

syy = sum((y - mean(y)) ^ 2)

R2 = ssr / sst

r = fit$coefficients[2] * sqrt(sxx / syy)

print(c(R2, r))

via Theorem 1.9. Both code segments print the values

R2 = 0.9944 and r = 0.9972.

The proper interpretation of R2 is that 99.44% of the total variation in Y1, Y2, . . . , Yn

can be explained by the linear relationship between X and Y . This high percentage is

consistent with the scatterplot and estimated regression line in Figure 1.27, which shows

a nearly perfect linear relationship between boiling point of water and the barometric

pressure, and data values that lie very close to the estimated regression line. Table 1.6

contains the sums of squares, degrees of freedom, and mean squares for the n = 17 data

pairs collected by Forbes. This ANOVA table can be generated with the additional R

command

anova(fit)

The anova function returns a data frame, and values in that data frame can be extracted

using the $ extractor. The degrees of freedom for the sum of squares for error, for

example, can be extracted with the R command

Source SS df MS

Regression 145.1246 1 145.1246

Error 0.8131 15 0.0542

Total 145.9378 16

Table 1.6: Partial ANOVA table for the Forbes data.
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anova(fit)$Df[2]

The definitions and theorems that are associated with fitted values, residuals, estimating the pop-

ulation variance σ2, partitioning the sums of squares, the coefficient of determination, the coefficient

of correlation, and the ANOVA table are briefly reviewed here. The simple linear regression model

Y = β0 +β1X + ε

from Definition 1.1 establishes a linear statistical relationship between an independent variable X

and a dependent random variable Y . The error term ε has population mean 0 and finite population

variance σ2. The n data pairs collected are denoted by (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The fitted

values Ŷ1, Ŷ2, . . . , Ŷn are the values on the estimated regression line associated with the independent

variables X1, X2, . . . , Xn:

Ŷi = β̂0 + β̂1Xi

for i = 1, 2, . . . , n, as established in Definition 1.2. The associated residuals are defined by

ei = Yi− Ŷi

for i = 1, 2, . . . , n, as established in Definition 1.2. An unbiased estimator of the population variance

of the error terms is

σ̂2 =
1

n−2

n

∑
i=1

e2
i

as given in Theorem 1.7. The total sum of squares SST can be partitioned into the regression sum of

squares SSR and the sum of squares for error SSE as

SST = SSR+SSE

or
n

∑
i=1

(Yi− Ȳ)
2
=

n

∑
i=1

(Ŷi− Ȳ)
2
+

n

∑
i=1

(Yi− Ŷi)
2

as given in Theorem 1.8. Two quantities that measure the linear association between X and Y are

the coefficient of determination

R2 =
SSR

SST
,

which satisfies 0≤ R2 ≤ 1, and the coefficient of correlation

r =±
√

R2,

which satisfies −1 ≤ r ≤ 1 as defined in Definition 1.3. The coefficient of determination is the

fraction of variation in Y1, Y2, . . . , Yn that is explained by the linear relationship with X . The sums of

squares are often presented in an ANOVA table, which includes columns for the source of variation,

the sum of squares, the associated degrees of freedom, and the mean squares. An additional column

will be added to the ANOVA table in the next chapter, when statistical inference in simple linear

regression is introduced.

The point estimators for β0, β1, and σ2 in the simple linear regression model have now all been

established and many of their properties have been surveyed. But without additional assumptions,

it is not possible to easily obtain interval estimators or perform hypothesis testing concerning these

parameters. The next chapter addresses this issue.
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1.9 Exercises

1.1 Establish a linear deterministic relationship between the independent variable X , the tem-

perature in degrees Fahrenheit, and the dependent variable Y , the associated temperature in

degrees Celsius.

1.2 Establish a nonlinear deterministic relationship between the independent variable X , the dis-

tance between two objects with fixed masses m1 and m2, and the dependent variable Y , the

gravitational force acting between the two objects, using Newton’s Law of Universal Gravi-

tation.

1.3 For the following interpretations of the independent and dependent variables, predict whether

the estimated slope β̂1 in a simple linear regression model will be positive or negative.

(a) The independent variable X is a car’s speed and the dependent variable Y is the car’s

stopping distance.

(b) The independent variable X is a car’s weight and the dependent variable Y is the car’s

fuel efficiency measured in miles per gallon.

(c) The independent variable X is a husband’s height and the dependent variable Y is the

wife’s height for a married couple.

(d) The independent variable X is the average annual unemployment rate and the dependent

variable Y is the annual GDP for a particular country.

1.4 For the simple linear regression model, show that solving the 2× 2 set of linear normal

equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi

for β̂0 and β̂1 gives the expressions for β̂0 and β̂1 given in Theorem 1.1.

1.5 Consider the simple linear regression model

Y = β0 +β1X + ε,

where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a U(−1, 1) distribution.

Assume that n = 10 data pairs (X1, Y1) , (X2, Y2) , . . . , (X10, Y10) are collected. The values of

the independent variable X are equally likely to be one of the integers 0, 1, 2, . . . , 9, What

are the minimum and maximum values that the estimated parameters β̂0 and β̂1 can assume?

1.6 For the values of the independent variables X1, X2, . . . , Xn, show that

n

∑
i=1

(
Xi− X̄

)
= 0.
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1.7 Write R commands to plot contours of the sum of squares for the sales data pairs

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), (X3, Y3) = (2, 2)

in the (β0, β1) plane.

1.8 The least squares criterion applied to a simple linear regression model minimizes

S =
n

∑
i=1

(Yi−β0−β1Xi)
2.

If instead the least absolute deviation criterion (also known as the minimum absolute devia-

tion or MAD criterion) were applied to a simple linear regression model to minimize

S =
n

∑
i=1

|Yi−β0−β1Xi| ,

what are the values of β̂0 and β̂1 for the sales data pairs

(X1, Y1) = (6, 2) (X2, Y2) = (8, 9) (X3, Y3) = (2, 2)?

1.9 Write a Monte Carlo simulation experiment that uses the same parameters as those in Exam-

ple 1.4 (that is, β0 = 1, β1 = 1/2, ε∼U(−1, 1), n = 10) for 5000 replications, but this time

selects the independent variable values to be equally likely integers from −5 and 5. Produce

analogous figures to those of Figure 1.11 and Figure 1.12. Comment on your figures and

how they relate to the variance–covariance matrix from Theorem 1.4.

1.10 For a simple linear regression model with X1 = 1, X2 = 2, . . . , Xn = n and σ2 = 1, find the

variance–covariance matrix of β̂0 and β̂1.

1.11 Use Theorems 1.2 and 1.4 to show that the least squares estimator of the intercept of the

regression line β0 in the simple linear regression model is a consistent estimator of β0.

1.12 Example 1.6 calculates the variance–covariance matrix for a single replication of a Monte

Carlo simulation experiment. Conduct this experiment for 5000 replications and report the

average of the values in the variance–covariance matrix.

1.13 Let L be the set of all linear estimators of the slope β1 in a simple linear regression model.

Let U be the set of all unbiased estimators of the slope β1 in a simple linear regression model.

Give an example of an estimator of β1 in L∩U ′.

1.14 Show that the fitted simple linear regression model

Ŷi = β̂0 + β̂1Xi

for i = 1, 2, . . . , n can be written as

Ŷi− Ȳ = β̂1 (Xi− X̄) ,

where β̂0 and β̂1 are the least squares estimators of β0 and β1 and X̄ and Ȳ are the sample

means of the observed values of the independent and dependent variables.
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1.15 Write a paragraph that argues why a fitted least squares regression line cannot pass through

all data pairs except for one of the data pairs.

1.16 One of the most common error distributions used in simple linear regression is the normal

distribution with population mean 0 and finite population variance σ2, which has probability

density function

f (x) =
1√
2πσ

e−x2/(2σ2) −∞ < x < ∞.

An alternative error distribution is the Laplace distribution with probability density function

f (x) =
1√
2σ

e−
√

2|x−µ|/σ −∞ < x < ∞.

Since the error distribution must have expected value zero by assumption, this reduces to

f (x) =
1√
2σ

e−
√

2|x|/σ −∞ < x < ∞.

As parameterized here, the Laplace distribution has population variance σ2. Both of these

distributions are symmetric and centered about zero.

(a) Plot the normal and Laplace error probability density functions on −3 < x < 3 and

comment on any differences between the two error distributions. Use σ = 1 for the

plots.

(b) Plot the normal and Laplace error probability density functions on 4 < x < 5 and com-

ment on any differences between the tails of the two error distributions.

(c) Fit both of these error distributions (that is, find σ̂2 for each distribution) for the forbes

data set from the MASS package in R using the simple linear regression model.

1.17 Let the independent variable X be a car’s speed and the dependent variable Y be the car’s

stopping distance, which are going to be modeled with a simple linear regression model. In

which of the following scenarios do you expect to have a larger population variance of the

error term?

(a) The data pairs (X1, Y1) , (X2, Y2) , . . . , (X20, Y20) are n = 20 new cars that are all of the

same make and model.

(b) The data pairs (X1, Y1) , (X2, Y2) , . . . , (X20, Y20) are n = 20 new cars from n = 20 dif-

ferent car manufacturers.

1.18 Show that the sum of squares for regression in a simple linear regression model can be written

as

SSR = β̂1SXY .

1.19 Show that the sum of squares for regression in a simple linear regression model can be written

as

SSR = β̂2
1SXX .

1.20 Consider the data pairs in the Formaldehyde data set built into the base R language. Use

the help function in R to determine the interpretation of the independent and dependent

variables. Fit a simple linear regression model to the data pairs and interpret the meaning of

β̂0, β̂1, and σ̂2. Also, calculate SST , SSR, and SSE for this data set.
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1.21 Consider the data pairs collected by James Forbes that are given in the data frame forbes

contained in the MASS package in R. The independent variable is the boiling point (in degrees

Fahrenheit) and the dependent variable is the barometric pressure (in inches of mercury). For

a simple linear regression model, calculate

• the fitted values,

• the residuals,

• the sum of squares for error, and

• the mean square error

without using the lm function. Then use the lm function to check the correctness of the

values that you calculate.

1.22 This exercise investigates the effect of controllable values of X1, X2, . . . , Xn on the coefficient

of determination R2 in simple linear regression. Consider the simple linear regression model

Y = β0 +β1X + ε,

where

• the population intercept is β0 = 1,

• the population slope is β1 = 1/2, and

• the error term ε has a N(0, 1) distribution.

Conduct a Monte Carlo simulation with 40,000 replications that estimates the expected co-

efficient of determination for n = 10 data pairs under the following two ways of setting the

values of X1, X2, . . . , X10.

(a) Let Xi = i for 1, 2, . . . , 10.

(b) Let X1 = X2 = · · ·= X5 = 5 and X6 = X7 = · · ·= X10 = 6.

1.23 Let SX and SY be the sample standard deviations of the independent and dependent variables,

respectively. Show that the following four definitions of the coefficient of correlation are

equivalent.

(a) r =
1

n−1

n

∑
i=1

(
Xi− X̄

SX

)(
Yi− Ȳ

SY

)

(b) r =±
√

SSR

SSE

(c) r =
SXY√

SXX SYY

(d) r = β̂1

√
SXX

SYY



Chapter 2

Inference in Simple Linear

Regression

The focus now shifts to statistical inference in the setting of a simple linear regression model applied

to a data set containing the n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). The statistical inference typ-

ically takes the form of confidence intervals and hypothesis tests concerning the various parameters

in the simple linear regression model. More specifically, the sections that follow concern statistical

inference concerning σ2, β1, β0, E[Yh], Y ⋆
h , and joint statistical inference concerning β0 and β1.

2.1 Simple Linear Regression with Normal Error Terms

Drawing mathematically tractable statistical inferences concerning the parameters in a simple linear

regression model is not possible with the current assumptions given in Definition 1.1. The problem

lies in the vagueness of the assumptions about the error term. The assumption in a simple linear

regression model is that the error term ε is a random variable with population mean 0 and finite

population variance σ2. The most common way of making this assumption more specific is to

assume that the error term is normally distributed with population mean 0 and finite population

variance σ2. This will be stated formally in the following definition.

Definition 2.1 A simple linear regression model with normal error terms is given by

Y = β0 +β1X + ε,

where X , Y , β0, and β1 are as in Definition 1.1 and ε∼ N
(
0, σ2

)
.

Instead of just any probability distribution with a population mean of zero, we now specify that

the error term should have a bell-shaped distribution centered about zero. Even though this is a

more limiting assumption, it will allow us to establish exact confidence intervals and perform the

associated hypothesis tests on the model parameters and other aspects of the model that might be of

interest. Under this more restricted model, it is important to assure that the residuals (which estimate

the error terms) do indeed have a bell-shaped distribution which has constant variance over the values

of the independent variable in which the model is valid. Another way of stating Definition 2.1 is

Y ∼ N
(
β0 +β1X , σ2

)
.
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Since this model is a special case of the simple linear regression model from Definition 1.1, all

of the results from the previous chapter still apply to the simple linear regression model with normal

error terms. As before, for the n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), the model becomes

Yi = β0 +β1Xi + εi

for i= 1, 2, . . . , n, where ε1, ε2, . . . , εn are mutually independent and identically distributed N
(
0, σ2

)

random variables. The geometry associated with this model is shown in Figure 2.1. The model re-

gression line (not the estimated regression line) E[Y ] = β0 + β1X is shown with a negative slope.

There are n = 4 data pairs collected from this simple linear regression model with normal error

terms. The probability density function of each of the Yi values, rotated clockwise by 90◦ highlights

the fact that the population error distribution is normal with a population variance that does not

change from one data pair to the next. The geometry illustrated here indicates how a simulation of

a simple linear regression model with normal error terms is conducted. Once an Xi value has been

established, a Yi value is generated as Yi ∼ N
(
β0 +β1Xi, σ2

)
, for i = 1, 2, . . . , n. A realization of

four data pairs (X1, Y1) , (X2, Y2) , (X3, Y3) , (X4, Y4) is given by the points plotted in Figure 2.1. The

estimated regression line Ŷ = β̂0 + β̂1X can be calculated from these four data pairs in the usual

fashion.

X

Y

X1X2 X3X4

E[Y ] = β0 +β1X

Y2 ∼ N
(
β0 +β1X2, σ2

)

Y1 ∼ N
(
β0 +β1X1, σ2

)

Y4 ∼ N
(
β0 +β1X4, σ2

)

Y3 ∼ N
(
β0 +β1X3, σ2

)
An observed
value of Y4

Figure 2.1: Simple linear regression model with normal error terms.

2.2 Maximum Likelihood Estimators

Since we have now specified a parametric distribution for the error terms, maximum likelihood

estimation can be used to determine parameter estimates for β0, β1, and σ2. As seen in the next

result, the news is good. The maximum likelihood estimators for β0 and β1 are identical to the least

squares estimators and the maximum likelihood estimator for σ2 differs from the associated least

squares estimator by a constant factor.
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Theorem 2.1 Under the simple linear regression model with normal error terms, the maximum

likelihood estimators for β1, β0, and σ2 are

β̂1 =
SXY

SXX

,

β̂0 = Ȳ − β̂1X̄ ,

and

σ̂2 =
1

n

n

∑
i=1

e2
i ,

where

SXY =
n

∑
i=1

(Xi− X̄)(Yi− Ȳ), SXX =
n

∑
i=1

(Xi− X̄)
2
, and ei = Yi− β̂0− β̂1Xi

for i = 1, 2, . . . , n, when ∑n
i=1 e2

i > 0.

Proof Since Yi∼N
(
β0 +β1Xi, σ2

)
for i= 1, 2, . . . , n under the assumption of normally

distributed errors, the likelihood function is

L
(
β0, β1, σ2

)
=

n

∏
i=1

1√
2πσ2

e−(Yi−β0−β1Xi)
2/(2σ2)

=
(
2πσ2

)−n/2
e−∑n

i=1(Yi−β0−β1Xi)
2/(2σ2).

The log likelihood function is

lnL
(
β0, β1, σ2

)
=−n

2
ln
(
2πσ2

)
− 1

2σ2

n

∑
i=1

(Yi−β0−β1Xi)
2 .

The score vector consists of the partial derivatives of the log likelihood function with

respect to the unknown parameters β0, β1, and σ2. Its components are

∂ lnL
(
β0, β1, σ2

)

∂β0
=

1

σ2

n

∑
i=1

(Yi−β0−β1Xi),

∂ lnL
(
β0, β1, σ2

)

∂β1
=

1

σ2

n

∑
i=1

(Yi−β0−β1Xi)Xi,

∂ lnL
(
β0, β1, σ2

)

∂σ2
=− n

2σ2
+

1

2σ4

n

∑
i=1

(Yi−β0−β1Xi)
2.

Equating the first two elements of the score vector to zero, simplifying, and using the hat

notation to denote the maximum likelihood estimators results in the normal equations

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi,
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which are identical to those in Theorem 1.1. So the maximum likelihood estimators

β̂0 and β̂1 are identical to the associated least squares estimators from Theorem 1.1.

Equating the third element of the score vector to zero and solving for σ̂2 results in

σ̂2 =
1

n

n

∑
i=1

(Yi− β̂0− β̂1Xi)
2
=

1

n

n

∑
i=1

e2
i .

Next, determine whether these maximum likelihood estimators maximize the log likeli-

hood function. The symmetric Hessian matrix H is the matrix of second partial deriva-

tives with respect to the parameters β0, β1, and σ2:

H =




∂2 lnL
(
β0, β1, σ2

)

∂β2
0

∂2 lnL
(
β0, β1, σ2

)

∂β0 ∂β1

∂2 lnL
(
β0, β1, σ2

)

∂β0 ∂σ2

∂2 lnL
(
β0, β1, σ2

)

∂β1 ∂β0

∂2 lnL
(
β0, β1, σ2

)

∂β2
1

∂2 lnL
(
β0, β1, σ2

)

∂β1 ∂σ2

∂2 lnL
(
β0, β1, σ2

)

∂σ2 ∂β0

∂2 lnL
(
β0, β1, σ2

)

∂σ2 ∂β1

∂2 lnL
(
β0, β1, σ2

)

∂(σ2)2




.

Taking the second partial derivatives results in the Hessian matrix

H=




− n

σ2
− 1

σ2

n

∑
i=1

Xi − 1

σ4

n

∑
i=1

(Yi−β0−β1Xi)

− 1

σ2

n

∑
i=1

Xi − 1

σ2

n

∑
i=1

X2
i − 1

σ4

n

∑
i=1

(Yi−β0−β1Xi)Xi

− 1

σ4

n

∑
i=1

(Yi−β0−β1Xi) − 1

σ4

n

∑
i=1

(Yi−β0−β1Xi)Xi
n

2σ4
− 1

σ6

n

∑
i=1

(Yi−β0−β1Xi)
2



.

After some simplification, the Hessian matrix evaluated at the maximum likelihood

estimators β̂0, β̂1, and σ̂2 is

H =




− n2

SSE
−n∑n

i=1 Xi

SSE
0

−n∑n
i=1 Xi

SSE
−n∑n

i=1 X2
i

SSE
0

0 0 − n3

2(SSE)2




using the value of the maximum likelihood estimator for σ2

σ̂2 =
SSE

n
=

1

n

n

∑
i=1

e2
i =

1

n

n

∑
i=1

(Yi− Ŷi)
2
=

1

n

n

∑
i=1

(Yi− β̂0− β̂1Xi)
2
,

two of the results from Theorem 1.6, and the definition of the sum of squares for error

as SSE = ∑n
i=1 e2

i from Theorem 1.8. If H is a negative definite matrix when evaluated

at the maximum likelihood estimators, then the maximum likelihood estimators maxi-

mize the likelihood function. In order to show that H is a negative definite matrix when

evaluated at the maximum likelihood estimators β̂0, β̂1, and σ̂2, it is sufficient to show
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that the leading principal minors of H alternate in sign in the following fashion: neg-

ative, positive, negative. The first leading principal minor is the upper-left hand entry,

which is negative when SSE > 0 by inspection. The second leading principal minor is

the determinant of the upper-left-hand 2×2 submatrix of H, which is

n3 ∑n
i=1 X2

i

(SSE)2
− n2 (∑n

i=1 Xi)
2

(SSE)2

and is positive by the Cauchy–Schwartz inequality when SSE > 0. (For details, see

the proof to Theorem 1.1.) The third leading principal minor is the determinant of H.

Taking advantage of the elements in H which are zero, the determinant of H is the

lower-right element of H (which is negative when SSE > 0) multiplied by the second

leading principal minor. Thus, the determinant of H is negative when evaluated at the

maximum likelihood estimators. Since the leading principal minors of H are negative,

positive, and negative when evaluated at the maximum likelihood estimators, H is a

negative definite matrix. Hence, the maximum likelihood estimators β̂0, β̂1, and σ̂2

maximize the likelihood function. �

The restriction that SSE > 0 in Theorem 2.1 is not a particularly restrictive assumption in prac-

tice. The only way to achieve a sum of squares for error of zero is to have all of the data pairs fall

on a line. If this is indeed the case, then it is possible that a deterministic, rather than a statistical

model, is appropriate.

The fact that the least squares estimators and maximum likelihood estimators for β0 and β1 are

identical is welcome news. Since both techniques give the same values for β̂0 and β̂1, there is no

lingering doubt as to which technique is appropriate for a particular modeling situation. But there

is a slight difference between the estimators for σ2. In the previous section, the sum of squares for

error was divided by the appropriate degrees of freedom to arrive at the following unbiased estimator

for σ2:

σ̂2 =
1

n−2

n

∑
i=1

e2
i ,

or σ̂2 = SSE/(n− 2). On the other hand, the maximum likelihood estimator for σ2 uses a similar

formula, but with an n rather than an n−2 in the denominator. For large n, the difference is slight.

But for small n, the difference can be significant. For the n = 3 sales data pairs first introduced in

Example 1.3 with the variance of the error terms estimated in Example 1.10, for instance, the unbi-

ased estimate of σ2 is σ̂2 = 14, whereas the maximum likelihood estimate of σ2 is σ̂2 = 14/3. The

standard practice in regression analysis is to use the unbiased estimator. In general, maximum like-

lihood estimators are not guaranteed to be unbiased, although they are consistent and asymptotically

efficient. For the simple linear regression model with normal error terms, the maximum likelihood

estimators for the slope and intercept are unbiased, but the maximum likelihood estimator for σ2 is

biased.

In a more advanced course on regression, you will prove that the maximum likelihood estimators

for the population intercept β0 and the population slope β1 (which are the same as the least squares

estimators) are consistent, sufficient, and efficient. The property of consistency indicates that the

estimators will converge to the associated population values as n→ ∞; symbolically,

lim
n→∞

P
(∣∣∣β̂0−β0

∣∣∣< δ
)
= 1

and

lim
n→∞

P
(∣∣∣β̂1−β1

∣∣∣< δ
)
= 1
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for any δ > 0. The property of sufficiency indicates that all of the information concerning the esti-

mation of β0 and β1 is encapsulated in β̂0 and β̂1, respectively. The property of efficiency indicates

that β̂0 and β̂1 have the smallest possible population variance among all unbiased estimators for β0

and β1, respectively.

2.3 Inference in Simple Linear Regression

Inference concerning the parameters in the simple linear regression model with normal error terms,

which usually is performed in terms of constructing confidence intervals and performing hypothesis

tests, is considered in this section. The following three subsections consider the sampling distribu-

tions of β̂0, β̂1, and σ̂2 under the simple linear regression model with normal error terms. We begin

with σ2.

2.3.1 Inference Concerning σ2

Even though statistical inference concerning σ2 typically has the least interest of the three parame-

ters in simple linear regression, there is an important result concerning the probability distribution

of SSE/σ2 that is critical to the derivation of other results, so it is taken up first.

Theorem 2.2 Under the simple linear regression model with normal error terms,

SSE

σ2
∼ χ2(n−2),

and is independent of β̂0 and β̂1.

Proof (outline only) The proof of Theorem 1.7 includes the results

Yi− Ȳ = β1 (Xi− X̄)+ εi− ε̄ (4)

for i = 1, 2, . . . , n and

n

∑
i=1

e2
i = (β̂1−β1)

2
n

∑
i=1

(Xi− X̄)
2−2(β̂1−β1)

n

∑
i=1

(Xi− X̄)(εi− ε̄)+
n

∑
i=1

(εi− ε̄)2 .

(5)

Using the fact that β̂1 = SXY/SXX and equation (4),

β̂1

n

∑
i=1

(Xi− X̄)
2
=

SXY

SXX

·SXX

= SXY

=
n

∑
i=1

(Xi− X̄)(Yi− Ȳ )

=
n

∑
i=1

(Xi− X̄)
(
β1 (Xi− X̄)+ εi− ε̄

)

= β1

n

∑
i=1

(Xi− X̄)
2
+

n

∑
i=1

(Xi− X̄)(εi− ε̄) .
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Solving for ∑n
i=1 (Xi− X̄)(εi− ε̄) gives

n

∑
i=1

(Xi− X̄)(εi− ε̄) = (β̂1−β1)
n

∑
i=1

(Xi− X̄)
2
.

Substituting this into equation (5) and rearranging gives

n

∑
i=1

e2
i =

n

∑
i=1

(εi− ε̄)2 +(β̂1−β1)
2

n

∑
i=1

(Xi− X̄)
2−2(β̂1−β1)

2
n

∑
i=1

(Xi− X̄)
2

or

SSE =
n

∑
i=1

ε2
i −nε̄2−(β̂1−β1)

2
n

∑
i=1

(Xi− X̄)
2
.

Dividing both sides of this equation by σ2 and rearranging gives

n

∑
i=1

(εi

σ

)2

=
SSE

σ2
+

(
ε̄

σ/
√

n

)2

+

(
β̂1−β1

σ/
√

SXX

)2

. (6)

Since ε1, ε2, . . . , εn are mutually independent and identically distributed error terms

under the simple linear regression model with normal error terms, εi ∼ N
(
0, σ2

)
for

i = 1, 2, . . . , n. A well-known result from probability theory concerning sample means

indicates that ε̄ ∼ N
(
0, σ2/n

)
. Furthermore, since β̂1 ∼ N

(
β1, σ2/SXX

)
via Theo-

rem 2.4, it can be seen that the three random quantities in parentheses in equation (6)

are normally distributed random variables which have been standardized by subtract-

ing their population means and dividing by their population standard deviations. Thus,

the three random quantities in parentheses are standard normal random variables. The

square of a standard normal random variable has the chi-square distribution with one

degree of freedom, so the last two terms on the right-hand side of equation (4) have

the chi-square distribution with one degree of freedom. Also, since the sum of n mutu-

ally independent chi-square random variables also has the chi-square distribution with

n degrees of freedom, the left-hand side of equation (6) is χ2(n). Since the sum of

mutually independent chi-square random variables also has the chi-square distribution

(with degrees of freedom summing),

SSE

σ2
∼ χ2(n−2).

The part of this proof that is incomplete is proving that the four terms in equation (6)

are mutually independent, which is left as an exercise. �

As an illustration of the use of Theorem 2.2, the derivation that follows develops an exact two-

sided 100(1−α)% confidence interval for σ2. Under the simple linear regression model with normal

error terms, Theorem 2.2 states that
SSE

σ2
∼ χ2(n−2).

For some α value between 0 and 1, placing an area of α/2 in each tail of the chi-square distribution

with n−2 degrees of freedom gives

P

(
χ2

n−2,1−α/2 <
SSE

σ2
< χ2

n−2,α/2

)
= 1−α,
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where the second value in the subscripts corresponds to right-hand tail probabilities. Rearranging

the inequality to isolate σ2 in the center of the inequality gives an exact two-sided 100(1−α)%
confidence interval for σ2 as

SSE

χ2
n−2,α/2

< σ2 <
SSE

χ2
n−2,1−α/2

.

This derivation is a proof of the following theorem.

Theorem 2.3 Under the simple linear regression model with normal error terms,

SSE

χ2
n−2,α/2

< σ2 <
SSE

χ2
n−2,1−α/2

is an exact two-sided 100(1−α)% confidence interval for σ2.

Example 2.1 Consider again the n = 17 data pairs in the Forbes data set that was intro-

duced in Example 1.11, where the independent variable X is the boiling point of water

in degrees Fahrenheit and the dependent variable Y is the adjusted barometric pressure

in inches of mercury. Give a point estimate and a 95% confidence interval for σ2.

Using the calculations in Example 1.13, the unbiased point estimate for σ2 is

σ̂2 = MSE =
SSE

n−2
=

0.8131

17−2
= 0.05421.

Since the scatterplot in Figure 1.18 showed that the data pairs fall very close to the

estimated regression line, we expect a narrow confidence interval for σ2. Using the

formula from Theorem 2.3, an exact two-sided 95% confidence interval for σ2 is

SSE

χ2
n−2,α/2

< σ2 <
SSE

χ2
n−2,1−α/2

or
0.8131

27.4884
< σ2 <

0.8131

6.2621

or

0.02958 < σ2 < 0.1299.

This confidence interval is nonsymmetric about the point estimate because the chi-

square distribution is not a symmetric probability distribution, and the quantiles appear

in the denominators of the confidence interval formula. The width of the confidence in-

terval is controlled by two factors: the sample size n and the vertical distances that the

data pairs stray from the estimated regression line. Larger values of n result in narrower

confidence intervals; data pairs that lie close to the regression line result in narrower

confidence intervals.

The R code to compute the point and interval estimates follows. It uses the lm function

to fit the simple linear regression model and the qchisq function to calculate the quan-

tiles of the chi-square distribution. Notice that qchisq uses left-hand-tail probabilities

whereas our formulas use right-hand-tail probabilities when computing quantiles.
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library(MASS)

x = forbes$bp

y = forbes$pres

n = length(x)

fit = lm(y ~ x)

sse = sum(fit$residuals ^ 2)

mse = sse / (n - 2)

alpha = 0.05

lo = sse / qchisq(1 - alpha / 2, n - 2)

hi = sse / qchisq(alpha / 2, n - 2)

print(c(lo, mse, hi))

2.3.2 Inference Concerning β1

In order to perform statistical inference concerning the population slope of the regression line β1, it

is first necessary to establish the sampling distribution of the estimator β̂1.

Since the error terms ε1, ε2, . . . , εn are mutually independent and identically distributed N
(
0, σ2

)

random variables under the simple linear regression model with normal error terms from Defini-

tion 2.1, the associated dependent variables Y1, Y2, . . . , Yn are also mutually independent normally

distributed random variables because Yi = β0+β1Xi+εi for i= 1, 2, . . . , n. Furthermore, recall from

Theorem 1.3 that β̂1 can be written as a linear combination of Y1, Y2, . . . , Yn as

β̂1 = a1Y1 +a2Y2 + · · ·+anYn.

Since a linear combination of mutually independent normally distributed random variables is itself

normally distributed, we can conclude that β̂1 is normally distributed.

Now that the normality of β̂1 has been established, the next step is to find the population mean

and population variance of the point estimator β̂1, which will completely determine the distribution

of β̂1. From Theorem 1.2 and Theorem 1.4, the population mean and the population variance of the

point estimator β̂1 are

E[β̂1]= β1 and V [β̂1]=
σ2

SXX

.

This establishes the result given in Theorem 2.4.

Theorem 2.4 Under the simple linear regression model with normal error terms,

β̂1 ∼ N

(
β1,

σ2

SXX

)
.

The usual method for conducting statistical inference on a test statistic that is normally dis-

tributed is to subtract the population mean and divide by the population standard deviation. A

problem that arises here is that the population variance of β̂1 in Theorem 2.4 is not known for a

particular set of n data pairs because σ2 is not known. The population variance of β̂1, however, can

be estimated by

V̂ [β̂1]=
σ̂2

SXX

,
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where σ̂2 = MSE = SSE/(n− 2), which is a quantity that can be estimated from n data pairs. We

can now use
β̂1−β1√

V̂ [β̂1]
as a pivotal quantity in the following result.

Theorem 2.5 Under the simple linear regression model with normal error terms,

β̂1−β1√
V̂ [β̂1]

∼ t(n−2).

Proof This proof is based on the fact that the ratio of a standard normal random variable

to the square root of an independent chi-square random variable divided by its degrees

of freedom is a t random variable with the same number of degrees of freedom. In the

particular setting here with n data pairs drawn from a simple linear regression model

with normal error terms, this is

N(0, 1)
√

χ2(n−2)/(n−2)
∼ t(n−2),

where N(0, 1) denotes a standard normal random variable, χ2(n− 2) denotes a chi-

square random variable with n−2 degrees of freedom, and t(n−2) denotes a t random

variable with n− 2 degrees of freedom. The normal and chi-square random variables

are assumed to be independent. Begin by dividing the numerator and the denominator

of the pivotal quantity by the square root of V [β̂1]= σ2/SXX :

β̂1−β1√
V̂ [β̂1]

=

β̂1−β1√
V [β̂1]

√√√√ V̂ [β̂1]
V [β̂1]

. (7)

Focus initially on the numerator of the right-hand side of equation (7). Because Theo-

rem 2.4 states that β̂1 has a normal distribution with population mean β1 and population

standard deviation
√

V [β̂1] =
√

σ2/SXX , the numerator is a normal random variable

minus its mean, divided by its standard deviation. Thus, the numerator of the right-

hand side of equation (7) is a N(0, 1) random variable. In other words,

β̂1−β1√
V [β̂1]

∼ N(0, 1).

The focus now shifts to the denominator of the right-hand side of equation (7). Since

V [β̂1]= σ2/SXX is estimated by

V̂ [β̂1]=
σ̂2

SXX

=
SSE

(n−2)SXX

,
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the denominator of the right-hand side of equation (7) can be written as

√√√√ V̂ [β̂1]
V [β̂1]

=

√√√√√√√

SSE

(n−2)SXX

σ2

SXX

=

√
SSE

(n−2)σ2
∼
√

χ2(n−2)/(n−2)

because SSE/σ2 ∼ χ2(n− 2) and is independent of β̂0 and β̂1 by Theorem 2.2. Since

the numerator of equation (7) is a standard normal random variable and the denominator

is the square root of an independent chi-square random variable with n− 2 degrees of

freedom divided by its degrees of freedom, the pivotal quantity

β̂1−β1√
V̂ [β̂1]

∼ t(n−2). �

Theorem 2.5 can be used to construct confidence intervals and perform hypothesis tests concern-

ing β1. In many applications, β1 is the key parameter in the regression analysis because statistical

evidence showing that it differs from zero indicates a linear relationship between X and Y if the

assumptions associated with a simple linear regression model with normal error terms are met.

As an illustration, an exact two-sided 100(1−α)% confidence interval for β1 is developed as

follows. Theorem 2.5 states that
β̂1−β1√

V̂ [β̂1]
∼ t(n−2).

For some α between 0 and 1, placing an area of α/2 in each tail of the t distribution with n− 2

degrees of freedom gives

P


−tn−2,α/2 <

β̂1−β1√
V̂ [β̂1]

< tn−2,α/2


= 1−α,

where the second value in the subscripts corresponds to right-hand tail probabilities. Rearranging

the inequality to isolate β1 in the center of the inequality gives an exact two-sided 100(1−α)%
confidence interval for β1 as

β̂1− tn−2,α/2

√
V̂ [β̂1

]
< β1 < β̂1 + tn−2,α/2

√
V̂ [β̂1

]
,

where

β̂1 =
SXY

SXX

and V̂ [β̂1]=
σ̂2

SXX

=
MSE

SXX

.

This constitutes a derivation of the following theorem.

Theorem 2.6 Under the simple linear regression model with normal error terms,

β̂1− tn−2,α/2

√
V̂ [β̂1]< β1 < β̂1 + tn−2,α/2

√
V̂ [β̂1]

is an exact two-sided 100(1−α)% confidence interval for β1.
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Example 2.2 Calculate a point estimate and an exact two-sided 95% confidence inter-

val for the population slope β1 for the Forbes data set from Example 1.11.

The unbiased point estimate for β1 is

β̂1 =
SXY

SXX

=
277.5

530.8
= 0.5229.

The barometric pressure increases by an estimated 0.5229 inches of mercury for ev-

ery degree increase in the boiling point of water over the range of values collected by

Forbes. This value is reported to four-digit accuracy because that was the number of

digits given in the data pairs. As was seen in the scatterplot in Figure 1.18, the n = 17

data pairs cluster tightly about the regression line, so we expect a fairly narrow confi-

dence interval for β1 even though the sample size is moderate. Using the formula from

Theorem 2.6, an exact two-sided confidence interval for β1 is

β̂1− tn−2,α/2

√
MSE

SXX

< β1 < β̂1 + tn−2,α/2

√
MSE

SXX

or

0.5229−2.131

√
0.05421

530.8
< β1 < 0.5229+2.131

√
0.05421

530.8

or

0.5014 < β1 < 0.5444.

Unlike the confidence interval for σ2, this confidence interval is symmetric about the

point estimate. The R code to compute the point and interval estimates is given below.

The lm function fits the simple linear regression model and the qt function calculates

the quantiles of the appropriate t distribution.

library(MASS)

x = forbes$bp

y = forbes$pres

n = length(x)

xbar = mean(x)

sxx = sum((x - xbar) ^ 2)

fit = lm(y ~ x)

beta1hat = fit$coefficients[2]

sse = sum(fit$residuals ^ 2)

mse = sse / (n - 2)

alpha = 0.05

lo = beta1hat - qt(1 - alpha / 2, n - 2) * sqrt(mse / sxx)

hi = beta1hat + qt(1 - alpha / 2, n - 2) * sqrt(mse / sxx)

print(c(lo, beta1hat, hi))

Statisticians perform these calculations so often that R has a built-in confint function

to calculate the bounds of the confidence interval, as illustrated below. The first argu-

ment is the name of the fitted regression model, the second argument is the name of

the parameter being estimated, and the third argument, which defaults to 0.95, is the

confidence level.
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library(MASS)

x = forbes$bp

y = forbes$pres

fit = lm(y ~ x)

confint(fit, "x", level = 0.95)

The hypothesis test concerning β1 with the null hypothesis

H0 : β1 = β⋆
1

is based on the test statistic
β̂1−β⋆

1√
V̂ [β̂1]

,

which has the t distribution with n−2 degrees of freedom under H0 and the simple linear regression

model with normal errors. The most common value for β⋆
1 in the null hypothesis is β⋆

1 = 0, which

tests whether the estimated slope of the regression line β̂1 differs significantly from zero. This type

of hypothesis test concerning β1 will be illustrated later in this chapter.

2.3.3 Inference Concerning β0

In order to perform statistical inference concerning the population intercept of the regression line

β0, it is first necessary to establish the sampling distribution of β̂0.

Since the error terms ε1, ε2, . . . , εn are mutually independent and identically distributed N
(
0, σ2

)

random variables under the simple linear regression model with normal error terms from Defini-

tion 2.1, the associated dependent variables Y1, Y2, . . . , Yn are also mutually independent normally

distributed random variables. Furthermore, recall from Theorem 1.3 that β̂0 can be written as a

linear combination of Y1, Y2, . . . , Yn as

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn.

Since a linear combination of mutually independent normally distributed random variables is itself

normally distributed, we can conclude that β̂0 is normally distributed.

Now that the normality of β̂0 has been established, the next step is to find the population mean

and population variance of the point estimator β̂0, which will completely determine the distribution

of β̂0. From Theorem 1.2 and Theorem 1.4, the population mean and the population variance of the

point estimator β̂0 are

E[β̂0]= β0 and V [β̂0]=
σ2 ∑n

i=1 X2
i

nSXX

.

This establishes the result given in Theorem 2.7.

Theorem 2.7 Under the simple linear regression model with normal error terms,

β̂0 ∼ N

(
β0,

σ2 ∑n
i=1 X2

i

nSXX

)
.

The usual method for conducting statistical inference on a test statistic that is normally dis-

tributed is to subtract the population mean and divide by the population standard deviation. A
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problem that arises here is that the population variance of β̂0 in Theorem 2.7 is not known for a

particular set of n data pairs because σ2 is not known. The population variance of β̂0, however, can

be estimated by

V̂ [β̂0]=
σ̂2 ∑n

i=1 X2
i

nSXX

,

where σ̂2 = MSE = SSE/(n− 2), which is a quantity that can be estimated from n data pairs. We

can now use
β̂0−β0√

V̂ [β̂0]
as a pivotal quantity in the following result.

Theorem 2.8 Under the simple linear regression model with normal error terms,

β̂0−β0√
V̂ [β̂0]

∼ t(n−2).

Proof This proof is based on the fact that the ratio of a standard normal random variable

to the square root of an independent chi-square random variable divided by its degrees

of freedom is a t random variable with the same number of degrees of freedom. In the

particular setting here with n data pairs drawn from a simple linear regression model

with normal error terms, this is

N(0, 1)
√

χ2(n−2)/(n−2)
∼ t(n−2),

where N(0, 1) denotes a standard normal random variable, χ2(n− 2) denotes a chi-

square random variable with n−2 degrees of freedom, and t(n−2) denotes a t random

variable with n− 2 degrees of freedom. Begin by dividing the numerator and the de-

nominator of the pivotal quantity by the square root of V [β̂0]= σ2 ∑n
i=1 X2

i /(nSXX ):

β̂0−β0√
V̂ [β̂0]

=

β̂0−β0√
V [β̂0]

√√√√ V̂ [β̂0]
V [β̂0]

. (8)

Focus initially on the numerator of the right-hand side of equation (8). Because Theo-

rem 2.7 states that β̂0 has a normal distribution with population mean β0 and population

standard deviation
√

V [β̂0]=
√

σ2 ∑n
i=1 X2

i /(nSXX ), the numerator is a normal random

variable minus its mean, divided by its standard deviation. Thus, the numerator of the

right-hand side of equation (8) is a N(0, 1) random variable. In other words,

β̂0−β0√
V [β̂0]

∼ N(0, 1).
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The focus now shifts to the denominator of the right-hand side of equation (8). Since

V [β̂0]= σ2 ∑n
i=1 X2

i /(nSXX ) is estimated by

V̂ [β̂0]=
σ̂2 ∑n

i=1 X2
i

nSXX

=
SSE ∑n

i=1 X2
i

n(n−2)SXX

,

the denominator of the right-hand side of equation (8) can be written as

√√√√ V̂ [β̂0]
V [β̂0]

=

√√√√√√√

SSE ∑n
i=1 X2

i

n(n−2)SXX

σ2 ∑n
i=1 X2

i

nSXX

=

√
SSE

(n−2)σ2
∼
√

χ2(n−2)/(n−2)

because SSE/σ2 ∼ χ2(n− 2) and is independent of β̂0 and β̂1 by Theorem 2.2. Since

the numerator of equation (8) is a standard normal random variable and the denominator

is the square root of an independent chi-square random variable with n− 2 degrees of

freedom divided by its degrees of freedom, the pivotal quantity

β̂0−β0√
V̂ [β̂0]

∼ t(n−2). �

Theorem 2.8 can be used to construct confidence intervals and perform hypothesis tests con-

cerning β0. In many applications, there is an interest in whether β0 is statistically different from 0.

The results of this hypothesis test and the particular setting for the simple linear regression model

indicate whether forcing a simple linear regression model through the origin is appropriate.

As an illustration, an exact two-sided 100(1−α)% confidence interval for β0 is developed as

follows. Theorem 2.8 states that
β̂0−β0√

V̂ [β̂0]
∼ t(n−2).

For some α between 0 and 1, placing an area of α/2 in each tail of the t distribution with n− 2

degrees of freedom gives

P


−tn−2,α/2 <

β̂0−β0√
V̂ [β̂0]

< tn−2,α/2


= 1−α,

where the second value in the subscripts corresponds to right-hand tail probabilities. Rearranging

the inequality to isolate β0 in the center of the inequality gives an exact two-sided 100(1−α)%
confidence interval for β0 as

β̂0− tn−2,α/2

√
V̂ [β̂0

]
< β0 < β̂0 + tn−2,α/2

√
V̂ [β̂0

]
,

where

β̂0 = Ȳ − β̂1X̄ and V̂ [β̂0]=
σ̂2 ∑n

i=1 X2
i

nSXX

=
MSE ∑n

i=1 X2
i

nSXX

.

This constitutes a derivation of the following theorem.
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Theorem 2.9 Under the simple linear regression model with normal error terms,

β̂0− tn−2,α/2

√
V̂ [β̂0]< β0 < β̂0 + tn−2,α/2

√
V̂ [β̂0]

is an exact two-sided 100(1−α)% confidence interval for β0.

Example 2.3 Calculate a point estimate and an exact two-sided 95% confidence inter-

val for β0 for the Forbes data set from Example 1.11.

In this particular application, there is little meaning associated with the parameter β0.

Since the independent variable X is the boiling point of water in degrees Fahrenheit

and the dependent variable Y is the associated barometric pressure, the intercept β0 is

interpreted as the barometric pressure when the boiling point is zero degrees Fahrenheit.

Since the Xi values range from a minimum of 194.3 to a maximum of 212.2, a boiling

point of zero degrees Fahrenheit is way outside of the scope of the model. Nevertheless,

to illustrate the mechanics associated with the R code to compute the point and interval

estimator, we proceed with the calculations. This also illustrates that just because we

can perform a calculation does not mean that we should. The R code below uses the

lm and confint functions to calculate the point and interval estimators for β0. The

first argument to confint is the fitted regression model and the second argument is the

name of the parameter being estimated.

library(MASS)

x = forbes$bp

y = forbes$pres

fit = lm(y ~ x)

print(fit$coefficients[1])

confint(fit, "(Intercept)")

The unbiased point estimator of β0 is displayed by R as

β̂0 =−81.06

and the exact two-sided 95% confidence interval for β0 is

−85.44 < β0 <−76.69.

The reason that the confidence intervals for σ2 and β1 are so narrow and this confidence

interval is much wider is that X = 0 is so far out of the scope of the simple linear re-

gression model with normal error terms. Typing just confint(fit) gives exact 95%

confidence intervals for both β0 and β1. More realistic applications of statistical infer-

ence on β0 are given later in this chapter.

The hypothesis test concerning β0 with the null hypothesis

H0 : β0 = β⋆
0

is based on the test statistic
β̂0−β⋆

0√
V̂ [β̂0]

,
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which has the t distribution with n−2 degrees of freedom under H0 and the simple linear regression

model with normal errors. The most common value for β⋆
0 in the null hypothesis is β⋆

0 = 0, which is

for testing whether the estimated intercept of the regression line β̂0 differs significantly from zero.

The p-value associated with this hypothesis test and the context associated with the meaning of X

and Y might influence a modeler whether or not to fit a simple linear regression model which is

forced through the origin.

2.3.4 Inference Concerning E[Yh]

Many applications of simple linear regression require not only point and interval estimates for the

regression parameters β0, β1, and σ2, but also a point and interval estimate for the expected value

of Y associated with a particular value of X . In this context, the simple linear regression model is

being used to forecast the conditional expected value of Y from the data pairs. Denote the X-value of

interest by Xh, which is a fixed constant that is observed without error within the scope of the simple

linear regression model. The associated random Y -value is denoted by Yh, which has conditional

expected value E[Yh]. This compact notation for the conditional expected value is adopted over the

more precise E[Yh |X = Xh]. If the parameters β0 and β1 are known, then the point estimator for

E[Yh] is

Ŷh = β0 +β1Xh,

which is simply the height of the population regression line at Xh. In nearly all applications, however,

we estimate the parameters β0, β1, and σ2 from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). In

this case, the point estimator for E[Yh] is

Ŷh = β̂0 + β̂1Xh,

which is simply the height of the estimated regression line at Xh. When the data pairs (X1, Y1),
(X2, Y2), . . . , (Xn, Yn) are tightly clustered about the regression line, we expect a fairly precise point

estimate for E[Yh]. A more explicit notation for Ŷh is Ê[Yh |X = Xh] or µ̂ Yh |X=Xh
. We opt for the

more compact Ŷh and leave it to the reader to mentally convert this to the more explicit meaning.

The value of Xh might correspond to one of X1, X2, . . . , Xn, or might correspond to another

value of X . It is critical that Xh fall in the scope of the simple linear regression model. If Xh

is less than min{X1, X2, . . . , Xn} or greater than max{X1, X2, . . . , Xn}, then there should be some

evidence, perhaps evidence based on data sets collected previously or evidence provided by experts

in the subject matter, that the relationship between X and Y remains linear outside of the scope of

the data pairs. Without evidence of this nature, one should not extrapolate beyond the scope of the

simple linear regression model.

With the point estimator for E[Yh] established, we now seek a pivotal quantity which can be

used to construct confidence intervals and perform hypothesis tests concerning E[Yh]. We continue

to assume that the simple linear regression model with normally distributed error terms is appro-

priate. Recall from Theorem 1.3 that β̂0 and β̂1 can be written as written as linear combinations of

Y1, Y2, . . . , Yn:

β̂0 = c1Y1 + c2Y2 + · · ·+ cnYn

and

β̂1 = a1Y1 +a2Y2 + · · ·+anYn

for constants c1, c2, . . . , cn and a1, a2, . . . , an. Furthermore, Y1, Y2, . . . , Yn are mutually independent

random variables because ε1, ε2, . . . , εn are mutually independent random variables in the simple
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linear regression model Yi = β0 +β1Xi + εi for i = 1, 2, . . . , n. This implies that Ŷh can be written as

Ŷh = β̂0 + β̂1Xh = (c1 +a1Xh)Y1 +(c2 +a2Xh)Y2 + · · ·+(cn +anXh)Yn.

Since a linear combination of mutually independent normally distributed random variables is itself

normally distributed, Ŷh is normally distributed under the simple linear regression model with normal

error terms.

Now that the normality of Ŷh has been established, we seek its population mean and population

variance, which will completely define its probability distribution. Since β̂0 and β̂1 are unbiased

estimators of β0 and β1, respectively, the population mean of Ŷh is

E[Ŷh]= E[β̂0 + β̂1Xh]= E[β̂0]+XhE[β̂1]= β0 +β1Xh

via Theorem 1.2. So the point estimator Ŷh = β̂0 + β̂1Xh is an unbiased estimator of Yh = β0 +β1Xh.

Next, we calculate the population variance of Ŷh. Since Ȳ and β̂1 are independent random variables

(this was shown in the derivation prior to the establishment of the variance–covariance matrix of β̂0

and β̂1 in Theorem 1.4),

V [Ŷh]=V [β̂0 + β̂1Xh]
=V [Ȳ − β̂1X̄ + β̂1Xh]
=V [Ȳ + β̂1

(
Xh− X̄

)
]

=V [Ȳ ]+
(
Xh− X̄

)2
V [β̂1]

=
σ2

n
+
(
Xh− X̄

)2 σ2

SXX

=

[
1

n
+

(
Xh− X̄

)2

SXX

]
σ2

using the lower-right hand entry in the variance–covariance matrix for β̂0 and β̂1 from Theorem 1.4.

This constitutes a derivation of the following result.

Theorem 2.10 Under the simple linear regression model with normal error terms,

Ŷh ∼ N

(
β0 +β1Xh,

[
1

n
+

(
Xh− X̄

)2

SXX

]
σ2

)
,

where Xh is a fixed value of the independent variable within the scope of the simple linear regres-

sion model and Ŷh = β̂0 + β̂1Xh.

The population variance of Ŷh in Theorem 2.10 is of particular interest. If the experimenter has

complete control over the choice of the values of the independent variables X1, X2, . . . , Xn in the

data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), the best choice is to (a) choose X1, X2, . . . , Xn so that SXX

is as large as possible (that is, spread the X1, X2, . . . , Xn out as much as possible), and (b) choose

X1, X2, . . . , Xn such that X̄ equals Xh. These choices for the values of the independent variables will

result in the smallest possible population variance for Ŷh.

The geometry associated with the choice of the X1, X2, . . . , Xn values is illustrated in Figure 2.2.

In each of the two scatterplots, there are n = 24 simulated data pairs drawn from simple linear re-

gression models with normal error terms having identical population parameters β0, β1, and σ2.
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XX

YY

Figure 2.2: The effect of spreading X1, X2, . . . , Xn.

Although they are not labeled, the axes on the two graphs have identical scales, and the two regres-

sion lines have nearly the same slope and intercept. The key difference between the two graphs

is that the values of the independent variable are less spread out in the left-hand graph and more

spread out in the right-hand graph. The spread of X1, X2, . . . , Xn results in three conclusions. First,

the scope of the regression model is narrower in the graph on the left. Second, the estimation of

β1 is less stable when X1, X2, . . . , Xn are tightly clustered as in the graph on the left. Third, infer-

ence on E[Yh] will be less precise in the graph on the left because the variance of Ŷh is larger via

Theorem 2.10.

The development of a pivotal quantity for statistical inference concerning E[Yh] follows along

the same line of reasoning as that for β1 and β0. We can’t calculate the population variance of Ŷh

from n data pairs because the value of σ2 is unknown, so it is estimated by

V̂ [Ŷh]=
[

1

n
+

(
Xh− X̄

)2

SXX

]
MSE,

where σ̂2 = MSE = SSE/(n− 2), which is a quantity that can be estimated from n data pairs. We

can now use
Ŷh−E[Yh]√

V̂ [Ŷh]

as a pivotal quantity in the following result.

Theorem 2.11 Under the simple linear regression model with normal error terms,

Ŷh−E[Yh]√
V̂ [Ŷh]

∼ t(n−2),

where Xh is a fixed value of the independent variable within the scope of the simple linear regres-

sion model and Ŷh = β̂0 + β̂1Xh.

The proof of this result is analogous to the associated proofs for the pivotal quantities for infer-
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ence concerning β0 and β1. This pivotal quantity can be used as a test statistic when conducting

a hypothesis test concerning E[Yh]. Proceeding in an analogous fashion to the development of the

confidence intervals for β1 and β0, an exact two-sided 100(1−α)% confidence interval for E[Yh] is

given next.

Theorem 2.12 Under the simple linear regression model with normal error terms,

Ŷh− tn−2,α/2

√
V̂ [Ŷh]< E[Yh]< Ŷh + tn−2,α/2

√
V̂ [Ŷh],

is an exact two-sided 100(1−α)% confidence interval for E[Yh], where

Ŷh = β̂0 + β̂1Xh and V̂ [Ŷh]=
[

1

n
+

(
Xh− X̄

)2

SXX

]
MSE

and Xh is a fixed value of the independent variable within the scope of the simple linear regression

model.

The calculation of an exact two-sided confidence interval for E[Yh] from a data set consisting

of n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) using Theorem 2.12 will be illustrated in the next

example.

Example 2.4 Calculate a point estimate and an exact two-sided 95% confidence in-

terval for the expected barometric pressure E[Yh] associated with a boiling point of

Xh = 206 degrees Fahrenheit for the Forbes data set from Example 1.11.

The R code below implements the formula in Theorem 2.12 for the Forbes data pairs.

The lm function is used to fit the simple linear regression model. The estimated re-

gression coefficients and the residuals are extracted from the fitted model in order to

complete the computations.

library(MASS)

x = forbes$bp

y = forbes$pres

n = length(x)

fit = lm(y ~ x)

xh = 206

yhat = fit$coefficients[1] + fit$coefficients[2] * xh

sse = sum(fit$residuals ^ 2)

mse = sse / (n - 2)

sxx = sum((x - mean(x)) ^ 2)

vhat = (1 / n + (xh - mean(x)) ^ 2 / sxx) * mse

alpha = 0.05

crit = qt(1 - alpha / 2, n - 2)

lo = yhat - crit * sqrt(vhat)

hi = yhat + crit * sqrt(vhat)

print(c(lo, yhat, hi))

This code returns the point estimator for the population mean barometric pressure

Ŷh = 26.65 inches of mercury corresponding to the boiling point Xh = 206 degrees
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Fahrenheit, which is associated with the exact two-sided 95% confidence interval

26.52 < E[Yh]< 26.79.

We are 95% confident that the population mean barometric pressure lies between 26.52

and 26.79 inches of mercury when the boiling point is 206◦ Fahrenheit based on the

n = 17 data pairs. Again, the confidence interval for E[Yh] is narrow because of the tight

clustering of the data pairs around the estimated regression line. These calculations are

also routinely performed by statisticians, so they can be performed with fewer lines of

code by using the R built-in generic predict function. After the predict function

recognizes the object fit, given as the first argument, as a fitted regression model, it

internally calls the predict.lm function to calculate the point estimate and the interval

estimate. The second argument to predict is a data frame that contains the value of

Xh, which is Xh = 206 in this example. The interval argument is set to the character

string "confidence" because a confidence interval is being requested. The default

value for α is 0.05, which yields a two-sided 95% confidence interval for E[Yh], and can

be altered with the level argument.

library(MASS)

x = forbes$bp

y = forbes$pres

fit = lm(y ~ x)

predict(fit, data.frame(x = 206), interval = "confidence")

The predict function displays the output given below.

fit lwr upr

1 26.65211 26.51501 26.7892

These values match the point estimator Ŷh = 26.65 inches of mercury and the associated

exact two-sided confidence interval 26.52 < E[Yh] < 26.79 generated by the previous

code segment. Figure 2.3 contains a scatterplot of the data, the fitted regression line,

and a (tiny) vertical line segment indicating the width of the confidence interval for

E[Yh]. This segment is symmetric about the fitted Y -value, which is the point estimator

Ŷh = 26.65.

The previous example illustrated the steps required to calculate a point and interval estimate of

E[Yh]. The width of the confidence interval for E[Yh] is a function of

• n (a narrower confidence interval for larger values of n),

• α (a narrower confidence interval for smaller values of α),

• the dispersion of the data pairs about the regression line as measured by SSE (a narrower

confidence interval for smaller values of SSE),

• the spread of the X values selected in the experiment as measured by SXX (a narrower confi-

dence interval for larger values of SXX ), and

• the proximity of Xh to X̄ (a narrower confidence interval for Xh closer to X̄).

Each of these conclusions concerning the width of the confidence interval is apparent in the formula

for the confidence interval for E[Yh] given in Theorem 2.12. The next section considers the closely-

related prediction interval associated with the introduction of a new data pair.
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Figure 2.3: Predicted barometric pressure at a boiling point of 206◦ Fahrenheit.

2.3.5 Inference Concerning Y ⋆
h

The previous section considered statistical inference on the mean response associated with a value

Xh for the independent variable associated with the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). This

section considers statistical inference associated with the introduction of a new data pair. The value

of the independent variable for this new data pair is, as before, Xh, which is a fixed constant observed

without error within the scope of the model. We would like to perform some type of statistical

inference on the associated value of the dependent variable Y ⋆
h . The star superscript is to denote that

this is an additional data pair that is not one of the original n data pairs used to fit the simple linear

regression model. There is a similar, but fundamentally different, analysis that must be used when

we would like to consider the introduction of an additional data pair

(Xn+1, Yn+1) = (Xh, Y ⋆
h ) .

Three examples in which this type of analysis is appropriate are given below.

• A sociologist collects the n = 50 data pairs (X1, Y1) , (X2, Y2) , . . . , (X50, Y50), where the inde-

pendent variable X is the wife’s height and the dependent variable Y is the husband’s height

for 50 married couples. These data pairs represent 50 couples surveyed by the sociologist.

If the sociologist knows the height of a married woman who is not in the group of 50, what

statistical inference can the sociologist make about her husband’s height?

• An economist collects the n = 50 data pairs (X1, Y1) , (X2, Y2) , . . . , (X50, Y50), where the inde-

pendent variable is the average annual unemployment rate and the dependent variable is the

annual gross domestic product (GDP) for a particular country. If these data pairs represent the

last 50 years of data, and the economist knows the average annual unemployment rate for next

year, what statistical inference can the economist perform on the random GDP for next year?

• An engineer collects the n = 50 data pairs (X1, Y1) , (X2, Y2) , . . . , (X50, Y50), where the inde-

pendent variable is the speed of a car and the dependent variable is the car’s stopping distance

for 50 different cars. If the engineer knows the speed of a 51st car to be tested, what statistical

inference can the engineer perform on its random stopping distance?
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The common thread that runs through the three examples is that there is a new data pair, (X51, Y51) =(
Xh, Y ⋆

h

)
, that is being introduced.

So we would like to predict the outcome for a new value of the dependent variable associated

with the new value of the independent variable, namely Xh. As before, the value of Xh need not

necessarily correspond to one of the X1, X2, . . . , Xn values, but needs to fall within the scope of the

model unless there is some prevailing evidence to make statistical inference outside of the scope

of the model. In order to help frame the issues associated with the case of a new data pair being

introduced, the next paragraph considers the very rare case in which all of the parameters in the

simple linear regression model are known.

Consider the simplest case in which all parameters are known in the simple linear regression

model. In the previous section, Theorem 2.12 gave a confidence interval for E [Yh], which is a fixed

constant. In this section, we desire a statistical interval for Y ⋆
h , which is a random variable. Because

of this fundamental difference in the nature of E [Yh] and Y ⋆
h , the interval derived here for Y ⋆

h is

a prediction interval. If all of the parameters in the regression model are known, Definition 2.1

indicates that

Y ⋆
h ∼ N

(
β0 +β1Xh, σ2

)
.

Standardizing this normally distributed random variable,

Y ⋆
h − (β0 +β1Xh)

σ
∼ N(0, 1).

The probability that this standard normal random variable lies between the α/2 and 1−α/2 fractiles

of the standard normal distribution is

P

(
−zα/2 <

Y ⋆
h − (β0 +β1Xh)

σ
< zα/2

)
= 1−α.

Some algebra on the inequality gives an exact two-sided 100(1−α)% prediction interval for Y ⋆
h as

β0 +β1Xh− zα/2σ < Y ⋆
h < β0 +β1Xh + zα/2σ.

Although this derivation is straightforward, the vast majority of regression applications do not have

parameters which are known a priori, and we now pivot to the more practical question.

In the case in which the parameters in the simple linear regression model are unknown, they must

be estimated from the n data pairs. The point estimator for Y ⋆
h is the same as the point estimator in

the previous section:

Ŷ⋆
h = β̂0 + β̂1Xh.

Handling the population variance of Y ⋆
h requires a little more finesse. In the case of the parameters

being estimated from n data pairs, the population variance of Y ⋆
h comes from two sources:

• the population variance associated with a new observation of the dependent variable, and

• the population variance induced by estimating the intercept and slope of the fitted regression

line from the n data pairs.

Since the new data pair is independent of the original n data pairs, the population variance of the

prediction error is

V
[
Y ⋆

h −(β̂0 + β̂1Xh)
]
=V

[
Y ⋆

h − Ŷh

]
=V [Y ⋆

h

]
+V

[
Ŷh]= σ2 +V [Ŷh].
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Since Ŷh is normally distributed via Theorem 2.10 and Y ⋆
h is independent of Ŷh and is also normally

distributed, we have the following result.

Theorem 2.13 Under the simple linear regression model with normal error terms,

Y ⋆
h ∼ N

(
β0 +β1Xh,

[
1+

1

n
+

(
Xh− X̄

)2

SXX

]
σ2

)
,

where Xh is a fixed value of the independent variable within the scope of the simple linear regres-

sion model and Ŷ⋆
h = β̂0 + β̂1Xh.

The population mean of the normal distribution in Theorem 2.13 is estimated by

Ŷ⋆
h = β̂0 + β̂1Xh

and the population variance of the normal distribution is estimated by

V̂ [Ŷ⋆
h ]=

[
1+

1

n
+

(
Xh− X̄

)2

SXX

]
σ̂2 =

[
1+

1

n
+

(
Xh− X̄

)2

SXX

]
MSE.

Using an analogous approach to the pivotal quantities in the previous sections, the following quantity

can be used for statistical inference concerning Ŷ⋆
h .

Theorem 2.14 Under the simple linear regression model with normal error terms,

Ŷ⋆
h −E[Ŷ⋆

h ]√
V̂ [Ŷ⋆

h ]
∼ t(n−2),

where Xh is a fixed value of the independent variable within the scope of the simple linear regres-

sion model and Ŷ⋆
h = β̂0 + β̂1Xh.

The proof of this result is analogous to the associated proofs for the pivotal quantities for infer-

ence concerning β0 and β1. This pivotal quantity can be used as a test statistic when conducting a

hypothesis test concerning Y ⋆
h . Proceeding in an analogous fashion to the development of the con-

fidence intervals for β1 and β0, an exact two-sided 100(1−α)% prediction interval for Y ⋆
h is given

next.

Theorem 2.15 Under the simple linear regression model with normal error terms and parameters

estimated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn),

Ŷ⋆
h − tn−2,α/2

√
V̂ [Ŷ⋆

h ]< Y ⋆
h < Ŷ⋆

h + tn−2,α/2

√
V̂ [Ŷ⋆

h ],

is an exact two-sided 100(1−α)% prediction interval for Y ⋆
h , where

Ŷ⋆
h = β̂0 + β̂1Xh and V̂ [Ŷ⋆

h ]=
[

1+
1

n
+

(
Xh− X̄

)2

SXX

]
MSE

and Xh is a fixed value of the independent variable within the scope of the simple linear regression

model.
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Adding a 1 inside of the expression for V̂ [Ŷ⋆
h ] ensures that the prediction interval for Ŷh will

be wider than the associated confidence interval for E[Yh] from Theorem 2.12. In both results, the

intervals are narrowest when Xh is near X̄ and the observations of the independent variable are spread

out so as to maximize SXX .

Example 2.5 Calculate a point estimate and an exact two-sided 95% prediction interval

for the barometric pressure Y ⋆
h associated with a new observation with a boiling point

of Xh = 206 degrees Fahrenheit for the Forbes data set from Example 1.11.

A point estimate and an exact two-sided 95% prediction interval for the barometric

pressure associated with a new data pair having boiling point Xh = 206 can be computed

with the R predict function as shown below.

library(MASS)

x = forbes$bp

y = forbes$pres

fit = lm(y ~ x)

predict(fit, data.frame(x = 206), interval = "prediction")

The output from these statements is given below.

fit lwr upr

1 26.65211 26.13726 27.16696

The point estimator for Y ⋆
h is Ŷ⋆

h = 26.65 (this value matches the point estimate from

Example 2.4) and the 95% two-sided prediction interval returned is

26.14 < Y ⋆
h < 27.17.

Figure 2.4 contains a scatterplot of the data, the fitted regression line, and a (not-as-

tiny-as-before) vertical line segment indicating the width of the exact two-sided 95%
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Figure 2.4: Prediction interval for a new data pair with boiling point of 206◦ F.
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prediction interval for Y ⋆
h . This segment is symmetric about the predicted Y -value,

which is the point estimator Ŷ⋆
h = 26.65. In this particular setting, the 1 inside the

expression for V̂ [Ŷ⋆
h ] resulted in a significantly wider 95% prediction interval than the

associated 95% confidence interval.

A thought experiment that helps clarify the difference between the confidence interval for E[Yh]

and the prediction interval for Ŷ⋆
h is to consider the two intervals associated with Xh = X̄ . A careful

inspection of the confidence interval given in Theorem 2.12 indicates that the width of the confidence

interval for E[Yh] approaches zero as n→ ∞. Increasing the number of data pairs without bound

results in perfect precision for the point estimator for the conditional expected value Ŷh = β̂0+ β̂1Xh.

On the other hand, a careful inspection of the prediction interval given in Theorem 2.15 indicates

that the width of the prediction interval for Ŷ⋆
h approaches a finite, nonzero value as n→ ∞. When

a new observation associated with independent variable Xh = X̄ , the associated point estimator for

the conditional expected value of the dependent variable Ŷ⋆
h = β̂0 + β̂1Xh has a population variance

that approaches the MSE (which, in turn, approaches σ2) as n→ ∞. It is not possible to predict the

random response to a new data pair with perfect precision.

This section and the previous four sections have introduced various techniques for statistical

inference in the setting of a simple linear regression model with normal error terms. Table 2.1

summarizes many of the key results from these sections. The first column gives the parameter of

interest. The second column gives the pivotal quantity and its distribution. This pivotal quantity

serves as the test statistic in a hypothesis test concerning the parameter of interest. The third column

gives an exact two-sided 100(1−α)% confidence interval for the parameter of interest for the first

four rows and an exact two-sided 100(1−α)% prediction interval for the parameter of interest for

the last row.

parameter pivotal quantity exact two-sided 100(1−α)% statistical interval

σ2 SSE

σ2
∼ χ2(n−2)

SSE

χ2
n−2,α/2

< σ2 <
SSE

χ2
n−2,1−α/2

β1
β̂1−β1√

V̂ [β̂1]
∼ t(n−2) β̂1± tn−2,α/2

√
MSE

SXX

β0
β̂0−β0√

V̂ [β̂0]
∼ t(n−2) β̂0± tn−2,α/2

√
MSE ∑n

i=1 X2
i

nSXX

E[Yh]
Ŷh−E[Yh]√

V̂ [Ŷh]
∼ t(n−2) β̂0 + β̂1Xh± tn−2,α/2

√√√√
(

1

n
+

(Xh− X̄)
2

SXX

)
MSE

Y ⋆
h

Ŷ⋆
h −E[Ŷ⋆

h ]√
V̂ [Ŷ⋆

h ]
∼ t(n−2) β̂0 + β̂1Xh± tn−2,α/2

√√√√
(

1+
1

n
+

(Xh− X̄)
2

SXX

)
MSE

Table 2.1: Pivotal quantities and exact statistical intervals for a simple linear regression model.
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2.3.6 Joint Inference Concerning β0 and β1

The exact two-sided 100(1−α)% confidence intervals for the intercept β0 and slope β1 in a simple

linear regression model with normal error terms developed in Sections 2.3.2 and 2.3.3 might be

combined to provide a joint confidence region on both parameters. Occasions arise in regression

modeling in which joint inference on both β0 and β1 simultaneously is required. As a particular

instance, recall from Examples 2.2 and 2.3 that the unbiased point estimators for β0 and β1 for the

Forbes data set were

β̂0 =−81.06 and β̂1 = 0.5229

and the associated exact two-sided 95% confidence intervals for β0 and β1 calculated separately

were

−85.44 < β0 <−76.69 and 0.5014 < β1 < 0.5444.

The union of these two confidence intervals is depicted by the rectangle in Figure 2.5. The point

estimates for β0 and β1 are depicted by the point at the center of the rectangle. Does the union of the

two confidence intervals depicted by the rectangle in Figure 2.5 constitute an exact 95% confidence

region for β0 and β1? It does not. The problems associated with this rectangular-shaped confidence

region are outlined in the next two paragraphs.

If the two confidence intervals were constructed independently, the actual coverage associated

with the confidence region would be (0.95)(0.95) = 0.9025. This would be a 90.25% confidence

region. If the confidence intervals were constructed independently, then we could simply adjust the

coverages of the individual confidence intervals for β0 and β1 to
√

0.95 ∼= 0.9747 in order to get

an exact 95% confidence region for β0 and β1. But the two confidence intervals are constructed

from the same data set, and, as seen by the off-diagonal elements in the variance–covariance matrix

in Theorem 1.4, the covariance between β̂0 and β̂1 is zero only when X̄ = 0. This is seldom the

case in practice. So while the rectangular region in Figure 2.5 is a confidence region, it is not one

that we can easily find the associated actual coverage. Some help is provided by the Bonferroni

inequality, which states that the actual coverage for the rectangular region is at least 1−2α, which

in this setting is 1− (2)(0.05) = 0.90. Both confidence intervals contain the true value of β0 and β1

−85.44 −81.06 −76.69

0.5014

0.5229

0.5444

β0

β1

(β̂0, β̂1)

Figure 2.5: Confidence region for β0 and β1.
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with at least 90% confidence, but this is all that can be stated concerning the actual coverage of the

rectangular-shaped confidence region.

Since we know that the point estimators for β0 and β1 are only independent in the rare case of

X̄ = 0 from Theorem 1.4, perhaps a rectangular-shaped confidence region is not appropriate. This

is certainly the impression that one gets from the Monte Carlo simulation experiment conducted in

Example 1.4. The problem here is that the point estimators β̂0 and β̂1 are typically dependent random

variables, which means that a non-rectangular confidence region is appropriate. In an advanced class

in regression, you will prove the following result, which is used to determine an exact 100(1−α)%
confidence region for β0 and β1.

Theorem 2.16 Under the simple linear regression model with normal errors and parameters esti-

mated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn),

n−2

2∑n
i=1 e2

i

[
n
(

β̂0−β0

)2
+2
(

β̂0−β0

)(
β̂1−β1

) n

∑
i=1

Xi +
(

β̂1−β1

)2 n

∑
i=1

X2
i

]
∼ F(2, n−2).

Let F2,n−2,α be the 1−α percentile of the F distribution with 2 and n− 2 degrees of freedom.

Theorem 2.16 implies that

P

(
n−2

2∑n
i=1 e2

i

[
n
(

β̂0−β0

)2
+2
(

β̂0−β0

)(
β̂1−β1

) n

∑
i=1

Xi +
(

β̂1−β1

)2 n

∑
i=1

X2
i

]
≤ F2,n−2,α

)
= 1−α.

This inequality can be used to construct an exact 100(1−α)% confidence region for β0 and β1.

Theorem 2.17 Under the simple linear regression model with normal error terms and parameters

estimated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), all β0 and β1 values satisfying

n−2

2∑n
i=1 e2

i

[
n
(

β̂0−β0

)2
+2
(

β̂0−β0

)(
β̂1−β1

) n

∑
i=1

Xi +
(

β̂1−β1

)2 n

∑
i=1

X2
i

]
≤ F2,n−2,α

are an exact joint 100(1−α)% confidence region for β0 and β1.

The boundary of the confidence region in the (β0, β1) plane is an ellipse centered at (β̂0, β̂1).

The boundary is found by replacing the inequality in Theorem 2.17 with an equality. The tilt of the

ellipse is a function of Cov(β̂0, β̂1), which is −X̄SXX/σ2 by Theorem 1.4. Notice that SXX > 0 and

σ2 > 0 under the simple linear regression model assumptions given in Definition 1.1. If X̄ > 0, then

the covariance between the parameter estimates is negative, which implies that the error associated

with the parameter estimates and their true values tends to be in the opposite direction. If β̂0 > β0,

for example, then it is more likely that β̂1 < β1. This is the more common situation in practice. Con-

versely, if X̄ < 0, then Cov(β̂0, β̂1)> 0, which implies that the error associated with the parameter

estimates and their true values tends to be in the same direction.

The confidence region given in Theorem 2.17 can be plotted for the data pairs (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) using numerical methods. Plotting the boundary of the confidence region in the (β0, β1)
plane can be performed using a two-dimensional search for points on the boundary. Alternatively,

a ray can be extended from (β̂0, β̂1) at a particular angle, and a one-dimensional search can be

conducted to find a point on the boundary. The details associated with plotting such a confidence

region will be given in one of the examples in the next section.
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2.4 The ANOVA Table

In most applications of simple linear regression, the slope of the regression line, β1, is the most

critical of the three parameters in the model. The most common statistical test that is performed in

a simple linear regression application is testing whether the population slope β1 is zero against the

two-tailed alternative:

H0 : β1 = 0

versus

H1 : β1 6= 0.

This choice of H0 and H1 is designed to determine whether the independent variable X is a statisti-

cally significant predictor of the dependent variable Y . Rejecting H0 indicates that the independent

variable is providing some predictive capability. Although this test can be conducted based on The-

orem 2.5, a second test based on the F distribution is introduced in this section and its equivalency

to the test based on the t distribution is established. Both tests are exact. In addition, the ANOVA

table which was introduced in Section 1.8 will be expanded in this section to include an additional

column.

Cochran’s theorem, named after American statistician William Cochran (1909–1980), concerns

writing sums of squares of independent and identically distributed N
(
0, σ2

)
random variables as

the sum of positive semi-definite quadratic forms of these random variables. Applying his theorem

to the simple linear regression model with normal error terms yields the following result.

Theorem 2.18 For the simple linear regression model with normal error terms,

• SSR/σ2 ∼ χ2(1), and

• SSE/σ2 ∼ χ2(n−2),

• SSR and SSE are independent

under H0.

The second of the three results has already been seen in Theorem 2.2. The first and third results

are necessary to derive the F test for the significance of the slope β1, which is given in the following

theorem.

Theorem 2.19 Under the simple linear regression model with normal error terms,

MSR

MSE
∼ F(1, n−2)

under H0.

Proof Since SSR/σ2 ∼ χ2(1), SSE/σ2 ∼ χ2(n−2), SSR and SSE are independent by

Theorem 2.18, and the ratio of two independent chi-square random variables divided by

their degrees of freedom has the F distribution, under H0,

SSR/σ2

1
SSE/σ2

n−2

=
MSR

MSE
∼ F(1, n−2). �
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The ANOVA table which was first introduced in Section 1.8 can be expanded to include an

additional column on the right as shown in Table 2.2. Some computer packages will add yet another

column on the right-hand side of the ANOVA table which contains the p-value associated with the

F test.

Source SS df MS F

Regression SSR 1 MSR MSR/MSE

Error SSE n−2 MSE

Total SST n−1

Table 2.2: Basic ANOVA table for simple linear regression.

So the F test for the statistical significance of the slope parameter in the regression model with

normal error terms begins by computing the test statistic F = MSR/MSE. If F < F1,n−2,1−α/2 or

F > F1,n−2,α/2, then H0 is rejected. The ANOVA table will be illustrated in one of the examples in

the next section.

To show that the F-test developed here is equivalent to the same test based on the t distribution

in Section 2.3.2,

F =
MSR

MSE
=

β̂2
1SXX

V̂
[
β̂1

]
SXX

=
β̂2

1

V̂
[
β̂1

] = t2,

because MSR = SSR = β̂2
1SXX (which is an exercise from Chapter 1), where t is the test statistic for

the hypothesis based on Theorem 2.5. Since the square of a t random variable has the F distribution

with the appropriate degrees of freedom, the two tests are equivalent.

We do not pursue the F test any further because the test of significance for the slope of the

regression line based on the F distribution is less flexible than that based on the t distribution from

Section 2.3.2. The test based on the t distribution is superior because (a) it can adapt to one-tailed

alternative hypotheses, and (b) it is capable of testing for slopes other than β⋆
1 = 0. The primary

purpose of introducing the F test here is to append the additional column to the right of the ANOVA

table and provide an insightful link between regression, which is presented here, and experimental

design, which relies heavily on ANOVA tables.

2.5 Examples

This section contains four examples that illustrate the implementation of the simple linear regression

modeling techniques that have been developed so far.

Example 2.6 This first example is more of a cautionary tale than a real-world exam-

ple. Francis Anscombe (1918–2001) was a British statistician who devised four sets,

each consisting of n = 11 data pairs. These four data sets have come to be known as

Anscombe’s quartet, which are given in Table 2.3. Make scatterplots of the four data

sets, along with the associated estimated regression lines.

Anscombe’s quartet is contained in a data frame in R named anscombe. The R code

below creates scatterplots of the four data sets in a 2× 2 set of graphs using common

horizontal and vertical scales. The four scatterplots and the associated regression lines

are given in Figure 2.6.
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Data set I Data set II Data set III Data set IV

Xi Yi Xi Yi Xi Yi Xi Yi

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89

Table 2.3: Anscombe’s quartet.

par(mfrow = c(2, 2))

for (i in 1:4) {

x = anscombe[ , i]

y = anscombe[ , i + 4]

plot(x, y, xlim = c(4, 19), ylim = c(3, 13), pch = 16)

abline(lm(y ~ x))

}

Reading the plots row-wise, the first plot shows n = 11 data pairs could have come from

a simple linear regression model with normal error terms. The residuals could possibly

have emanated from a normal population with population mean zero and finite popula-

tion variance σ2. The second plot show that there is clearly a relationship between X

and Y , but the relationship is nonlinear rather than linear. It appears that a quadratic

model, rather than a linear model, best describes the relationship between X and Y . The

third plot appears to contain an outlier, which might have been coded improperly. The

fourth plot highlights the leverage that the far-right data pair exerts on the estimated re-

gression line. Leverage points are those data pairs that exert more influence on the fitted

model than others, typically by having a value of its independent variable which is dis-

tant from the values of the independent variable for other data pairs. The far-right point

exerts that influence in the fourth plot. To summarize, only the first of the four data sets

would be appropriate for a simple linear regression model. What if we bypassed the

plotting of the scatterplots? If we did so and went directly to fitting the simple linear

regression models, we would find that

X̄ = 9.0, Ȳ = 7.5, SXX = 1001, SYY = 660, β̂0 = 3.0, β̂1 = 0.5, r = 0.67

for all four data sets! (Some of these values are exactly the same for all four data sets

and others match for two or three digits.) The estimated regression lines from Figure 2.6

are basically identical for all four data sets. Had we neglected to plot the data pairs in

a scatterplot and proceeded directly to the regression analysis, we would conclude that

the four data sets are basically identical. But the scatterplots show that this is clearly
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Figure 2.6: Scatterplots and estimated regression lines for Anscombe’s quartet.

not the case. Only the first of the four data sets supports the simple linear regression

model Y = β0 +β1X + ε, with N
(
0, σ2

)
error terms.

The moral to the cautionary tale is to never bypass the critical step of making a scatter-

plot of the data pairs and visually assessing whether or not a simple linear regression

model is appropriate. While it is easy to input your data into a statistical package and

quickly get numerical estimates for the parameters, this can lead to adopting a statisti-

cal model which is inappropriate. In addition, if the visual assessment of the scatterplot

leads you to believe that a simple linear regression model is feasible, this should be

followed by a residual plot to assess the normality of the error terms.

The second example illustrates the assessment of the simple linear regression model, point esti-

mation, and interval estimation for a large data set.

Example 2.7 A sociologist might be interested in the following question. Do taller-

than-average women tend to date and eventually marry taller-than-average men? This

question can be answered by collecting the heights of husband and wife pairs and ex-

amining the associated scatterplot to see if a regression model is appropriate. If it is

appropriate, then a hypothesis test can be conducted to answer the question. The R data

frame named heights contained in the R package PBImisc contains n = 96 pairs of

heights (measured in centimeters) which will be used to answer the question. The first

five and last five data pairs, ordered by the wife’s height, are given in Table 2.4. We will
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use these data pairs of heights to assess the hypothesis by executing the following steps.

Wife’s height Husband’s height

141 152

143 156

145 160

146 164

147 178
...

...

178 187

179 192

180 192

181 186

181 188

Table 2.4: Couple’s heights (n = 96).

(a) Make a scatterplot of the data values and make an initial visual assessment of

whether a simple linear regression model might be a reasonable approximation to

the relationship between the husband’s height and the wife’s height.

(b) Fit a simple linear regression model and interpret the estimated slope and intercept

of the regression line.

(c) Assess the adequacy of the model by making a plot of the residuals ordered by

the values of the independent variable, plotting a histogram of the residuals, con-

structing a QQ plot, and performing a goodness-of-fit test for the normality of the

residuals.

(d) Perform a hypothesis test with the null hypothesis

H0 : β1 = 0

versus the alternative hypothesis

H1 : β1 > 0

based on the data pairs, where β1 is the slope of the regression line.

(e) Give a point estimator and a 95% confidence interval for E[Yh] when Xh = 150

centimeters.

(f) Give a point estimator and a 95% prediction interval for Ŷ⋆
h when Xh = 150 cen-

timeters.

This is an unusual data set in that it is not clear whether the husband’s height or the

wife’s height should serve as the independent variable. Both spouses choose one an-

other, so the analysis could be performed with either height serving as the independent

variable. It could also be performed treating both heights as random variables. For the

analysis performed here, we assume that the wife’s height is a fixed value X and the

husband’s height is the random response Y .
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(a) The R code below installs and loads the PBImisc package in R and generates a

scatterplot using the plot function, which is displayed in Figure 2.7.

install.packages("PBImisc")

library(PBImisc)

x = heights$Wife

y = heights$Husband

plot(x, y)

140 150 160 170 180

150

160

170

180

190

X

Y

Figure 2.7: Scatterplot of wife’s height X and husband’s height Y for n = 96 data pairs.

Figure 2.7 appears to contain only 90 of the 96 points because there are six tied

data pairs, such as (165, 181), that occur in the data set. Some analysts prefer

to jitter the tied data values slightly in order to avoid obscuring tied pairs. The

paucity of points in the upper-left and lower-right corner of the scatterplot in-

dicates that the two heights are positively correlated. There does not appear to

be any systematic change in the variance of the data values moving from left to

right, so it is reasonable to move forward with a simple linear regression model.

Adding the line through the origin with slope 1 with the additional R command

abline(c(0, 1)) reveals that one of the points, (157, 157), has equal heights

for the husband and wife, three points have a taller wife than her husband, and 92

of the points have a taller husband than his wife.

(b) The R statements below use the lm function to fit a simple linear regression model

to the data pairs and the abline function to plot the associated regression line on

the scatterplot.

library(PBImisc)

x = heights$Wife

y = heights$Husband

plot(x, y)

fit = lm(y ~ x)

abline(fit$coefficients)
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The point estimates of the intercept and slope are

β̂0 = 37.8 and β̂1 = 0.833.

The interpretation of the slope is that the expected husband’s height is 0.833 cen-

timeter greater for each increase in the wife’s height by one centimeter. The re-

maining question is whether this positive slope differs significantly from zero.

The intercept, on the other hand, does not have a meaningful interpretation in

this setting (a woman who is zero centimeters tall marries a man who has an av-

erage height of 37.8 centimeters). The intercept is way outside of the scope of

the model and has no practical meaning here. Any conclusions drawn should be

made within the range of collected heights of the women, which range from 141

to 181 centimeters. The fitted regression line is superimposed over the scatterplot

in Figure 2.8.
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Figure 2.8: Fitted regression model for the n = 96 data pairs.

(c) Before conducting a hypothesis test concerning the slope, it is critical to assess the

validity of the simple linear regression model by examining the residuals. The R

code below orders the 96 data pairs by the wife’s height, and plots the index on the

horizontal axis and the associated residual on the vertical axis, which is displayed

in Figure 2.9. Normally distributed error terms seem plausible from this graph,

but there is some evidence that the early observations incur more variability on

the high side. The fifth ordered residual plotted corresponds to the spectacular

data pair (147, 178), with a 31-centimeter difference between the two heights.

Could these early extreme positive residuals correspond to shorter women having

a greater array of options than taller women?

library(PBImisc)

x = heights$Wife

y = heights$Husband

i = order(x)

x = x[i]

y = y[i]
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Figure 2.9: Residuals for the heights data.

n = length(x)

fit = lm(y ~ x)

plot(1:n, fit$residuals)

If the residuals are approximately normally distributed, we can move forward with

the statistical inference techniques associated with the simple linear regression

model with normal error terms. The R code below uses the hist function to draw

a histogram of the residuals, which is displayed in Figure 2.10. This reflects a

population bell-shaped probability distribution for the error terms in the model.

fit = lm(Husband ~ Wife, data = PBImisc::heights)

hist(fit$residuals)

qqnorm(fit$residuals)

shapiro.test(fit$residuals)

−20 −10 0 10 20

ei

Figure 2.10: Histogram of the residuals for the heights data.
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The histogram is useful for a preliminary visual assessment of the normality of

the residuals, but the partitioning of observations into cells can make conclusions

drawn from the histogram misleading. A second technique for visually assess-

ing the normality of the residuals is to inspect a QQ (quantile–quantile) plot of

the residuals. A QQ plot displays the theoretical quantiles of the residuals on

the horizontal axis and the associated sample quantiles on the vertical axis. The

second-to-last line of the R code given above uses the qqnorm function to draw a

QQ plot of the residuals, which is displayed in Figure 2.11. To provide some detail

on the two most extreme points on this plot, the smallest residual is −16.7 which

corresponds to a wife who is 162 centimeters tall who is married to a husband

who is 156 centimeters tall. The theoretical quantile corresponds to a left-hand

tail probability for the standard normal distribution of 0.5/96 (in general this left-

hand tail probability is (i−0.5)/n for i = 1, 2, . . . , n), which can be calculated in

R with qnorm(0.5 / 96), resulting in a theoretical quantile of−2.56. The point

(−2.56,−16.7) is plotted in the lower-left-hand corner of Figure 2.11. Similarly,

the largest residual is 17.8, which corresponds to a wife who is 147 centimeters

tall who is married to a husband who is 178 centimeters tall. The theoretical

quantile corresponds to a left-hand tail probability for the standard normal distri-

bution of 95.5/96, which is calculated with qnorm(95.5 / 96), which gives a

theoretical quantile of 2.56. The point (2.56, 17.8) is plotted in the upper-right-

hand corner of Figure 2.11. If the points on a QQ plot fall in an approximately

linear fashion, an analyst can conclude that the assumption of normality is rea-

sonable. Before deciding whether the points fall close enough to a line in this

case with n = 96 values, you should make a dozen or so runs of the command

qqnorm(rnorm(96)) so your eye can assess how much deviation from linearity

occurs when the 96 values are truly from a normal distribution. In the case of Fig-

ure 2.11, the appropriate conclusion is that these residuals could have been drawn

from a normal population. Any slight departures from linearity on the QQ plot

can be attributed to random sampling variability. This conclusion is consistent

with the conclusion that was drawn from the histogram in Figure 2.10.
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Figure 2.11: QQ normal plot of residuals for the n = 96 heights data pairs.
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The two visual assessments drawn by examining the histogram and the QQ plot

are subjective. A formal statistical goodness-of-fit test should be conducted to

confirm the visual assessments. The final statement in the R code invokes the

built-in shapiro.test function, which executes the Shapiro–Wilk test for nor-

mality. The Shapiro–Wilk test was chosen because it has been shown to have

superior power over the Anderson–Darling, Kolmogorov–Smirnov, and Lilliefors

goodness-of-fit tests. The details associated with the Shapiro–Wilk test can be

found in any applied statistics textbook. The p-value for the Shapiro–Wilk test

returned by the shapiro.test function is 0.953. The null hypothesis for the

Shapiro–Wilk is that the residuals have been drawn with a normal population, so

the high p-value indicates that we should fail to reject H0, and we can move for-

ward with using the simple linear regression model with normal error terms for the

purposes of statistical inference. Although we have some slight misgivings about

non-constant variability (shorter wives marrying husbands with possibly slightly

greater variability than their taller counterparts), we will move forward with us-

ing the fitted simple linear regression model with normal error terms. All other

aspects of the modeling assumptions are satisfied for these data pairs.

(d) Now that the simple linear regression with normal error terms has been estab-

lished, we can proceed to addressing questions that require statistical inference

techniques. Since the original question posed concerned whether the slope of the

regression line had a statistically significant positive slope, the appropriate hy-

pothesis test is

H0 : β1 = 0

versus the one-sided alternative hypothesis

H1 : β1 > 0.

The appropriate test statistic is based on Theorem 2.5 which states that

β̂1−β1√
MSE/SXX

∼ t(n−2).

under H0, where β1 = 0 in this setting. The R code below calculates the test

statistic and associated p-value for the hypothesis test with a one-sided alternative.

library(PBImisc)

x = heights$Wife

y = heights$Husband

n = length(x)

xbar = mean(x)

sxx = sum((x - xbar) ^ 2)

fit = lm(y ~ x)

beta1hat = fit$coefficients[2]

sse = sum(fit$residuals ^ 2)

mse = sse / (n - 2)

stderror = sqrt(mse / sxx)

teststat = beta1hat / stderror

p = 1 - pt(teststat, n - 2)
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The test statistic calculated by this code is t = 11.5, which corresponds to a p-

value of approximately 0 for the one-sided alternative hypothesis.

Some keystrokes can be saved by using R’s lm function to calculate the p-value

for this test. The three R statements

library(PBImisc)

fit = lm(Husband ~ Wife, data = heights)

summary(fit)

generate the regression summary given below.

Call:

lm(formula = Husband ~ Wife, data = heights)

Residuals:

Min 1Q Median 3Q Max

-16.7438 -4.2838 -0.1615 4.2562 17.7500

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 37.81005 11.93231 3.169 0.00207 **

heights$Wife 0.83292 0.07269 11.458 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 6.468 on 94 degrees of freedom

Multiple R-squared: 0.5828, Adjusted R-squared: 0.5783

F-statistic: 131.3 on 1 and 94 DF, p-value: < 2.2e-16

The first section of the output from the call to the summary function echos the

call that was made to the lm function. The second section gives the minimum,

maximum, and the quartiles of the residuals. The third section concerns the co-

efficients β0 (on the first line) and β1 (on the second line). Reading across the

second line, (a) the column labeled Estimate contains the least squares estimate

β̂1 = 0.8329, which was stored in beta1hat in the earlier R code, (b) the column

labeled Standard Error contains
√

MSE/SXX = 0.07269, which was stored in

stderror in the earlier R code, (c) the column labeled t value contains the

test statistic t = β̂1/
√

MSE/SXX = 11.46, which was stored in teststat in the

earlier R code, and (d) the column labeled Pr(>|t|) contains the p-value for

the test, which was stored in p in the earlier R code, which was calculated using

the pt function. The default for R is a two-sided alternative hypothesis, so the p-

value given here should be halved in order to obtain the p-value for the hypothesis

test with the one-sided alternative hypothesis. The three stars *** that follow the

p-value indicate that the p-value is less than 0.001.

So the null hypothesis is rejected. There is overwhelming statistical evidence in

these data pairs that the slope of the regression line is positive, which implies that

height is a statistically significant factor in the selection of a spouse.

(e) The point estimator for the expected height of a husband married to a wife who

is xh = 150 centimeters tall is simply the fitted value. An exact 95% confidence
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interval for E[Yh] is given by Theorem 2.12. Since the details associated with the

calculations are given in Example 2.4, we simply use the R predict function to

calculate the point and interval estimates.

library(PBImisc)

x = heights$Wife

y = heights$Husband

fit = lm(y ~ x)

predict(fit, data.frame(x = 150), interval = "confidence")

The point estimate for the expected husband’s height is Ŷh = 162.7 centimeters

and the associated exact 95% confidence interval is

160.4 < E[Yh]< 165.1.

We are 95% confident that the mean husband’s height associated with a wife

whose height is Xh = 150 is between 160.4 and 165.1 centimeters. This confi-

dence interval is illustrated in Figure 2.12.
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Figure 2.12: Point estimate and 95% confidence interval associated with Xh = 150.

(f) Now consider a 97th wife who is not part of the original n = 96 data pairs and is

xh = 150 centimeters tall. What conclusions can we draw concerning the height

of her husband? The point estimator for his expected height is again just the fitted

value. An exact 95% confidence interval for Y ⋆
h is given by Theorem 2.15. Since

the details associated with the calculations are given in Example 2.5, we use the

R predict function to calculate the point and interval estimates.

library(PBImisc)

x = heights$Wife

y = heights$Husband

fit = lm(y ~ x)

predict(fit, data.frame(x = 150), interval = "predict")
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The point estimate for the expected husband’s height is again Ŷh = 162.7 centime-

ters and the associated exact 95% prediction interval is

149.7 < Y ∗h < 175.8.

The probability that the husband’s height associated with a wife whose height is

Xh = 150 is between 149.7 and 175.8 centimeters is 0.95. This prediction inter-

val is illustrated in Figure 2.13. As expected, it is significantly wider than the

associated confidence interval.
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Figure 2.13: Point estimate and 95% prediction interval associated with Xh = 150.

The confidence interval and prediction interval associated with Xh = 150 could

have been calculated for any Xh within the scope of the model. Figure 2.14 shows

these confidence and prediction intervals for values of the independent variable

(the wife’s height) in the scope of the model 141 < X < 181. The darker gray

bands contain the confidence intervals; the lighter gray bands contain the predic-

tion intervals. As indicated in Theorems 2.12 and 2.15, these intervals are narrow-

est at X̄ = 163.9 centimeters. The R code for generating a plot similar to that in

Figure 2.14 is given below.

library(PBImisc)

x = heights$Wife

y = heights$Husband

n = length(x)

plot(NULL, xlim = c(140, 182), ylim = c(140, 202),

xlab = "Wife’s height (cm)", ylab = "Husband’s height (cm)",

axes = FALSE)

axis(side = 1, labels = TRUE, at = seq(140, 180, by = 10))

axis(side = 2, labels = TRUE, at = seq(140, 200, by = 10))

fit = lm(y ~ x)

x1 = 141:181

y1 = predict(fit, data.frame(x = x1), interval = "prediction")

polygon(c(x1, rev(x1)), c(y1[ , 2], rev(y1[ , 3])),
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col = "gray70", border = NA)

y2 = predict(fit, data.frame(x = x1), interval = "confidence")

polygon(c(x1, rev(x1)), c(y2[ , 2], rev(y2[ , 3])),

col = "gray40", border = NA)

abline(fit$coefficients)

points(x, y, pch = 16, cex = 0.75)

The confidence and prediction intervals are calculated with the predict function, the

confidence and prediction intervals are plotted with the polygon function, the regres-

sion line is plotted with the abline function, and finally the data pairs are plotted as

solid points with the points function.
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Figure 2.14: Scatterplot, regression line, and 95% confidence and prediction intervals.

The previous example might leave you wondering whether taller (and shorter) women marrying

taller (and shorter) men, and having taller (and shorter) children might eventually result in a planet

filled with people of more extreme heights. As first noticed by Sir Francis Galton in 1886 and usually

known as “regression to the mean,” this will probably not be the case. Consider the right-hand tail

of the height distribution. A taller-than-average woman will indeed typically date and marry a taller-

than-average man, but the husband’s height, on average, will not fall as far out into the right-hand-

tail of his height distribution as the wife’s percentile in her height distribution. Some mathematics

associated with the simple linear regression model backs this up. Recall from Definition 1.3 that the

coefficient of correlation is

r =±
√

SSR

SSE
,

where the sign associated with r is the same as the sign of β̂1. Theorem 1.9 gave the alternate
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formula

r = β̂1

√
SXX

SYY

.

This can be rewritten as β̂1SX = rSY , where SX is the sample standard deviation of X1, X2, . . . , Xn and

SY is the sample standard deviation of Y1, Y2, . . . , Yn. The left-hand side of this equation represents

the expected increase (or decrease) in the dependent variable for a one standard deviation increase

in the independent variable. But since |r|< 1 in nearly all applications (the only exception is when

all data pairs fall in a line), this standard deviation increase in X will result in less than a standard

deviation increase in Y . In the previous example, where r = 0.763 was the correlation coefficient

between the heights of the wives and their husbands, a standard deviation increase in the height of a

wife results in a increase of just 0.763SY increase in the height of her husband. Women do tend to

marry taller men on average, but the height of their husbands, on average, are at a lesser percentile

of the men’s height distribution than the wife’s height percentile.

The next example considers an automotive application of regression which uses speed as an

independent variable and stopping distance as a dependent variable.

Example 2.8 R contains a built-in data frame named cars, which consists of n = 50

data pairs of speeds (which will be the independent variable) and associated stopping

distances (which will be the dependent variable) for cars. The speed X is measured in

miles per hour and the stopping distance Y is measured in feet. The data pairs were

gathered in the 1920s, which accounts for the top speed of just 25 miles per hour. We

would like to establish the relationship between X and Y . Common sense indicates

that faster moving cars take a longer distance to stop, so we anticipate a positively

correlated set of data pairs. Draw a scatterplot of the data pairs to determine if a simple

linear regression model is appropriate, fit a simple linear regression model to the data

pairs and assess the adequacy of the model.

The R code

x = cars$speed

y = cars$dist

plot(x, y, xlim = c(0, 25), ylim = c(0, 120))

generates the scatterplot in Figure 2.15. The xlim and ylim arguments on the plot

function are used to include the origin in the scatterplot. The number of data pairs

plotted on the scatterplot appears to be only 49 because the data pair (13, 34) appears

twice. As expected, Y increases as X increases. The relationship between X and Y is

approximately linear, but some complicating factors cast doubt on a linear regression

model. First, the relationship between X and Y should pass through the origin (station-

ary cars require zero feet to stop), but a fitted regression line will miss the origin by

a significant margin. This might be evidence that a nonlinear relationship, such as a

quadratic relationship, might provide a better fit than a linear relationship. Second, the

population variance of the error terms, σ2, might be increasing as the speeds increase.

In spite of these misgivings, we will proceed forward and fit the simple linear regres-

sion model and assess whether it is an appropriate model. In the next chapter, other

regression models will prove to provide a better fit to this data set.

The scatterplot with the fitted regression line for a simple linear regression model can

be generated with the R commands below.
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Figure 2.15: Scatterplot of speed X and stopping distance Y for the cars data.

x = cars$speed

y = cars$dist

plot(NULL, xlim = c(0, 25), ylim = c(0, 120))

polygon(c(0, 0, 25, 25), c(0, 120, 120, 0), col = "gray")

abline(v = seq(0, 25, by = 5), col = "white")

abline(h = seq(0, 120, by = 20), col = "white")

fit = lm(y ~ x)

abline(fit$coefficients)

points(cars, pch = 16)

This plot is given in Figure 2.16. The regression is performed by the lm function.

Some extra features have been added to the plot to give it a slightly different look
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Figure 2.16: Fitted model of speed X and stopping distance Y for the cars data.
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than previous scatterplots. The polygon function colors the plotting region gray. The

abline function draws the vertical and horizontal white grid lines. Finally, a call to the

points function with the plotting character parameter pch set to 16 plots the points as

solid dots on top of the gray background. The intercept and slope of the least squares

regression line are

β̂0 =−17.6 and β̂1 = 3.9.

These correspond to a minimized sum of squares of SSE = 11,354. As anticipated,

the regression line falls below the origin. Having an estimated stopping distance of

β̂0 = −17.6 feet for a stationary car makes the simple linear regression model less

plausible. The slope of β̂1 = 3.9, indicates that there are about four extra feet of stopping

distance for each additional mile per hour of speed.

We now investigate whether the residuals appear to be independent and identically dis-

tributed observations from a normal population. For those programmers who like suc-

cinct coding, a plot of the residuals can be generated with the single R command

plot(lm(dist ~ speed, data = cars)$residuals)

because the data pairs in the cars data frame are sorted by the speeds. The plot of

the residuals is given in Figure 2.17. The misgivings that were identified from the

scatterplot are also evident in the plot of the residuals in Figure 2.17. The first 21 data

pairs (corresponding to the slower speeds and shorter stopping distances) seem to have

less dispersion about the regression line than the subsequent 29 data pairs.
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Figure 2.17: Residuals for the cars data.

Three tweaks applied to Figure 2.17 are commonly used in regression when analyz-

ing the residuals. First, the residuals can be standardized by subtracting their sample

mean and dividing by their estimated standard deviation: (ei− ē)/
√

MSE = ei/
√

MSE,

where
√

MSE is an approximation to the standard deviation of e1, e2, . . . , en. If the

standardized residuals are independent and identically distributed realizations from a

standard normal population, then approximately 95% of the standardized residuals will
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fall between −2 and 2. Second, the value of the independent variable is plotted on the

horizontal axis rather than using the index of the observation. This ties the plot of the

residuals more closely to the scatterplot. Third, the tied value at the data pair (13, 34)
has the associated standardized residuals jittered. Continuing with the theme of succinct

coding, the R commands

res = lm(dist ~ speed, data = cars)$residuals

plot(cars$speed, res / sqrt(sum(res ^ 2) / (length(cars$speed) - 2)))

give the appropriate plot (without the jittering). The associated plot of standardized

residuals that includes horizontal lines at 0 and±2 is given in Figure 2.18. The variance

of the deviations from the regression line appear to be increasing as the speed increases,

with a smaller spread for speeds between 4 and 13 miles per hour and a larger spread

for speeds between 14 and 25 miles per hour. This change in dispersion is inconsistent

with the assumption of constant variance of the error terms for a simple linear regression

model in Definition 1.1.
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Figure 2.18: Standardized residuals for the cars data.

A histogram of the standardized residuals is generated with the additional R command

hist(res / sqrt(sum(res ^ 2) / (length(cars$speed) - 2)))

The histogram of the standardized residuals is given in Figure 2.19. The longer stopping

distances in the right-hand tail of this histogram cast doubt on the assumption of normal

error terms.

A QQ plot to assess the normality of the residuals is generated with the R command

qqnorm(lm(dist ~ speed, data = cars)$residuals)

The QQ plot will assume the same shape regardless of whether the residuals or stan-

dardized residuals are examined; the only difference will be in the scale used on the
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Figure 2.19: Histogram of the standardized residuals for the cars data.

vertical axis. The QQ plot is displayed in Figure 2.20. The QQ plot shows some

significant departures from linearity. First, there is a large jump in the sequence of

observations between the 37th ordered residual e(37) = 4.27 and 38th ordered residual

e(38) = 10.86, which are the values plotted on the vertical axis. Second, the two largest

residuals, e(49) = 42.53 and e(50) = 43.20, might indicate that the right-hand tail of the

distribution of the error terms is not symmetric with the left-hand tail of the distribution.

The visual assessment that normally distributed error terms are not appropriate for these

data pairs can be confirmed by conducting the Shapiro–Wilk test for normality. The R

statement

shapiro.test(lm(dist ~ speed, data = cars)$residuals)

conducts the Shapiro–Wilk test on the residuals and returns a p-value of 0.0215. The

null hypothesis that the error terms are normally distributed is rejected in this case,

Theoretical Quantiles

S
a

m
p

le
 Q

u
a

n
ti
le

s

−3 −2 −1 0 1 2 3

−30
−20
−10

0
10
20
30
40
50

Figure 2.20: QQ normal plot of residuals for the n = 50 cars data pairs.
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which confirms our visual assessments via the plot of the residuals, the histogram of the

residuals, and the QQ plot for normality.

We have identified four misgivings with respect to using the simple linear regression

model with normal error terms to model the relationship between the speed of a car and

its stopping distance:

• the relationship between X and Y might be nonlinear,

• the variance of the error terms appears to be increasing in X (this is known to

regression modelers as heteroscadasticity),

• the regression line does not pass near the origin as one would expect it would from

the problem setting because a stationary vehicle does not require any distance to

stop, and

• the non-normality of the errors as indicated by the plot of the residuals, the his-

togram of the residuals, the QQ plot for normality, and the Shapiro–Wilk test.

So we abandon using the use of a simple linear regression model to describe the rela-

tionship between speed and stopping distance. Although simple linear regression can

be used to model the relationship between speed and stopping distance, it should not

be used here because the model is not valid. This data set will be reexamined in the

next chapter in an effort to establish a regression model that overcomes some of the

difficulties described here.

The fourth and final example concerns a large data set of home sale prices and associated predic-

tors. Real estate platforms, such as Zillow and Trulia, are able to assess home values using a variety

of predictors, and one key predictor is illustrated in the final example.

Example 2.9 The ames data frame in the modeldata package in R contains 2930 rows

and 74 columns of data concerning houses that sold in Ames, Iowa from 2006 to 2010.

Each row in the data frame contains data on one particular home. Each column in the

data frame contains data on one particular aspect of a home, such as the number of

bedrooms, the acreage of the lot, whether the home has a pool, or the area of the living

space measured in square feet. One of the primary factors that a real estate assessor

uses to determine the value of a home is the number of square feet in the home. This

example concerns the modeling of the selling price of a home in Ames as a function of

the number of square feet of living space.

The following R code installs the modeldata package, loads the modeldata package

into the current R session, extracts the living space column from the ames data frame

and places it in the vector x, extracts the sales price column and places it in the vector y,

and generates a scatterplot of the n = 2930 data pairs, which is displayed in Figure 2.21.

install.packages("modeldata")

library(modeldata)

x = ames$Gr_Liv_Area

y = ames$Sale_Price

plot(x, y)

As expected, larger homes sell for higher prices on average. The scatterplot clearly

shows that a simple linear regression model is not appropriate for this data set because
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Figure 2.21: Scatterplot of living area X and sale price Y for the ames data.

the variance of the error terms is not constant over the various values of X . The variance

of the error terms increases as the size of a home increases. In addition, the three large-

but-relatively-inexpensive homes will exert significant leverage over a regression line.

Although some remedial procedures to account for handling nonconstant variance of the

error terms are given in the next chapter, we take the approach of restricting the home

sizes to 2500 ft2 to 3500 ft2 in the hope that the simple linear regression assumptions

will be satisfied on the restricted scope. The R code below generates the scatterplot

and the associated regression line for the n = 120 homes satisfying 2500 ≤ X ≤ 3500

displayed in Figure 2.22.
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Figure 2.22: Scatterplot of living area X and sale price Y for the ames data, 2500≤ X ≤ 3500.
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library(modeldata)

i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

x = ames$Gr_Liv_Area[i]

y = ames$Sale_Price[i]

fit = lm(y ~ x)

plot(x, y)

abline(fit$coefficients)

As was the case with the larger data set, there is a positive correlation between the size

of the home and its sales price. Even though the observations are clustered more densely

on the left-hand side of the scatterplot, the variance of the error terms does not seem to

vary over this restricted scope of 2500≤ X ≤ 3500. The least squares estimators of the

intercept and slope of the regression line are

β̂0 = $21,233 and β̂1 = $112.

The price of a home increases by an average of $112 for every additional square foot in

the home and the estimated price of a home with zero square feet is $21,223. In other

words, the estimated value of the land is $21,223. The estimated value of the land will

not be very precise because we have eliminated homes with less than 2500 square feet

in the reduced data set, leaving the intercept way outside of the scope of the reduced

simple linear regression model. We anticipate a particularly wide confidence interval

for β0 if we determine that the simple linear regression model is valid.

The next step is to assess the residuals for the n = 120 homes with square footage

between 2500 and 3500 to determine whether a simple linear regression model with

normal error terms is appropriate. The R code below (a) generates a plot of the stan-

dardized residuals, (b) generates a histogram of the standardized residuals (c) generates

a QQ plot of the residuals, and (d) performs the Shapiro–Wilk test for normality of the

residuals.

library(modeldata)

i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

x = ames$Gr_Liv_Area[i]

y = ames$Sale_Price[i]

fit = lm(y ~ x)

plot(x, scale(fit$residuals))

hist(scale(fit$residuals))

qqnorm(fit$residuals)

shapiro.test(fit$residuals)

The plot of the standardized residuals is given in Figure 2.23. Although there are a

few more homes that sell significantly above their predicted value than significantly

below their predicted value (that is, outside of the dashed lines in Figure 2.23), normally

distributed error terms seems plausible.

The histogram of the standardized residuals is given in Figure 2.24. The histogram is

consistent with a bell-shaped distribution. The nonsymmetry between the heights of the

two most central bars in the histogram might possibly be due to the particular binning
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Figure 2.23: Standardized residuals for the ames data on 2500≤ X ≤ 3500.

that was performed internally in R. The QQ plot tends to be a better graphic than the

histogram to visually assess the normality of the residuals.

The QQ plot for the normality of the residuals is given in Figure 2.25. The graph of the

sample and theoretical quantiles appears to be fairly close to linear, so we expect that the

Shapiro–Wilk test will yield a fairly high p-value associated with normally distributed

error terms.

The Shapiro–Wilk test for normality of the residuals yields a p-value of p = 0.4339.

Since this p-value exceeds 0.05, we fail to reject the null hypothesis of normally dis-

tributed error terms. This analysis of the residuals is enough evidence for us to proceed

with the simple linear regression model with normal error terms.

An ANOVA table can be generated in R with the anova function using the code below.

This is an organized way to display the sum of squares and associated mean squares.
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Figure 2.24: Histogram of the standardized residuals for the ames data.
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Figure 2.25: QQ normal plot of residuals for the n = 120 ames data pairs.

library(modeldata)

i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

x = ames$Gr_Liv_Area[i]

y = ames$Sale_Price[i]

fit = lm(y ~ x)

anova(fit)

This code returns the output given below.

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

x 1 8.0882e+10 8.0882e+10 8.0016 0.005493 **

Residuals 118 1.1928e+12 1.0108e+10

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

This output corresponds to the ANOVA table given in Table 2.5.

Source SS df MS F p

Regression 8.0882 ·1010 1 8.0882 ·1010 8.0016 0.005493

Error 1.1928 ·1012 118 1.0108 ·1010

Total 1.2737 ·1012 120

Table 2.5: ANOVA table for the restricted ames housing data.
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The test statistic F = 8.002 and associated p-value p = 0.005 indicate that the null

hypothesis

H0 : β1 = 0

should be rejected in favor of

H1 : β1 6= 0

for the restricted data pairs. The statistically significant positive slope of the regression

line indicates that larger homes, on average, have higher selling prices on the range

2500 ≤ X ≤ 3500, which is consistent with intuition. Based on this F test, we expect

that a confidence interval for β1 will not include β1 = 0. The square root of the mean

square error, which is σ̂ = 100,540, provides an estimate of the standard deviation of

the error terms in the model. Using Theorem 2.3, an exact two-sided 100(1−α)%
confidence interval for σ is

√
SSE

χ2
n−2,α/2

< σ <

√
SSE

χ2
n−2,1−α/2

.

So an exact two-sided 95% confidence interval for σ for the restricted n = 120 ames

housing data pairs is

√
1,192,772,613,044

149.96
< σ <

√
1,192,772,613,044

89.83

or

89,186 < σ < 115,233.

The coefficient of determination and the coefficient of correlation can be calculated

using the values from the ANOVA table. Using Definition 1.3, the coefficient of deter-

mination is

R2 =
SSR

SST
=

80,881,836,066

1,273,654,449,110
= 0.0635

and the coefficient of correlation is

r =
√

R2 = 0.252.

So 6.35% of the variation in the selling price of a home is explained by the square

footage of the home over the range 2500≤ X ≤ 3500.

With the simple linear regression model with normal error terms established, we can

compute confidence intervals for β0 and β1. The R code below uses the confint

function to compute the lower and upper bounds of 95% confidence intervals for the

intercept and slope of the regression line.

library(modeldata)

i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

x = ames$Gr_Liv_Area[i]

y = ames$Sale_Price[i]

fit = lm(y ~ x)

confint(fit, "x", level = 0.95)

confint(fit, "(Intercept)", level = 0.95)
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The 95% confidence intervals are

−195,284 < β0 < 237,749 and 33.57 < β1 < 190.27.

The extraordinarily wide confidence interval for β0 is due to the significant vertical

distances between the data pairs and the regression line, and the large gap between

the smallest value of the independent variable (X = 2500 square feet) and the value of

the independent variable for an empty lot (X = 0 square feet). Including some of the

other predictors of the sale price of a home in a regression model would narrow this

confidence interval. Both confidence intervals would be narrowed with a larger number

of data pairs.

In addition to individual confidence intervals for β0 and β1, a joint confidence region

for both of the parameters can be generated. From Theorem 2.17, the boundary of the

exact joint 100(1−α)% confidence region for β0 and β1 consists all β0 and β1 values

satisfying

n−2

2∑n
i=1 e2

i

[
n
(

β̂0−β0

)2
+2
(

β̂0−β0

)(
β̂1−β1

) n

∑
i=1

Xi +
(

β̂1−β1

)2 n

∑
i=1

X2
i

]
=F2,n−2,α,

where F2,n−2,α is the 1−α fractile of an F distribution with 2 and n− 2 degrees of

freedom. The boundary of the confidence region is an ellipse in the β0 and β1 plane.

Plotting this ellipse requires the use of numerical methods and some significant coding,

so it is easiest to use an R package that provides this capability. The ellipse function

in the ellipse package is capable of plotting the ellipse. The R code below generates

the confidence region plotted in Figure 2.26. The point estimators β̂0 and β̂1 are plotted

as a point at the center of the ellipse. Dashed lines have been added at the confidence

interval bounds for the individual confidence intervals for β0 and β1.

library(modeldata)

library(ellipse)

−195,284 21,233 237,749

34

112

190

β0

β1

Figure 2.26: Exact 95% confidence region for β0 and β1 for the restricted ames data.
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i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

x = ames$Gr_Liv_Area[i]

y = ames$Sale_Price[i]

fit = lm(y ~ x)

plot(ellipse(fit))

Not surprisingly based on the off-diagonal elements of the variance–covariance matrix

of
(
β̂0, β̂1

)
from Theorem 1.4, there is a negative correlation between β̂0 and β̂1 which

accounts for the tilt in the ellipse.

2.6 Exercises

2.1 True or false: An alternative way to express the simple linear regression model with normal

error terms is

Y ∼ N
(
β0 +β1X , σ2

)

or

Yi ∼ N
(
β0 +β1Xi, σ2

)

for i = 1, 2, . . . , n.

2.2 Consider a simple linear regression model with normal error terms and population parame-

ters β0 = 5, β1 = 2, and σ= 2. The independent variable assumes the values x= 1, 2, . . . , 10,

and n = 10 data pairs are collected, one for each potential value of the independent variable.

(a) Conduct a Monte Carlo simulation experiment which determines the shape of the

marginal distribution of Y .

(b) How do you think the marginal distribution of Y will change as σ→ 0.

(c) How do you think the marginal distribution of Y will change as σ→ ∞.

2.3 Show that
SSE

σ2
∼ χ2(n−2).

2.4 For a simple linear regression model with normal error terms and known value of σ2, give

an exact two-sided 100(1−α)% confidence interval for β1.

2.5 Fit the data pairs from the first of the Anscombe’s quartet from Example 2.6 to the simple

linear regression model with normal error terms and give point and exact two-sided 95%

confidence intervals for the parameters β0, β1, and σ2.

2.6 For what value of the independent variable is the confidence interval for the expected value

of the associated dependent variable the narrowest?

2.7 For a simple linear regression model with normal error terms, known value of σ2, and a fixed

value Xh in the scope of the model, give an exact two-sided 100(1−α)% confidence interval

for E[Yh] = β0 +β1Xh.
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2.8 Conduct a Monte Carlo simulation that yields compelling numerical evidence that the confi-

dence interval for E[Yh] from Theorem 2.12 is an exact confidence interval for the following

parameter settings: n = 10, β0 = 1, β1 = 1/2, σ2 = 1, Xh = 3, α = 0.05, and Xi = i for

i = 1, 2, . . . , 10.

2.9 Prove Theorem 2.11.

2.10 True or false: The width of a 95% confidence interval for E[Yh] shrinks to zero in the limit

as n→ ∞.

2.11 True or false: The width of a 95% prediction interval for Y ∗h shrinks to zero in the limit as

n→ ∞.

2.12 The R data frame named longley contains seven macroeconomical variables from the

United States collected from 1947 to 1962. Use the number of people employed to pre-

dict the gross national product (GNP) measured in constant 1954 dollars. Assuming that the

simple linear regression model with normal error terms is appropriate,

(a) make a scatterplot of the n = 16 data pairs and superimpose the regression line,

(b) make a plot of the standardized residuals,

(c) make a QQ plot of the residuals,

(d) conduct the Shapiro–Wilk test for normality of the residuals,

(e) give a point estimate and an exact 95% confidence interval for the slope β1,

(f) give a point estimate and an exact 95% confidence interval for the intercept β0,

(g) give a point estimate and an exact 95% confidence interval for the mean value of the

GNP, E [Yh], when Xh = 65 million people are employed, and

(h) give a point estimate and an exact 95% prediction interval for the GNP, Y ⋆
h , associated

with a new data pair when Xh = 65 million people are employed.

2.13 Under the simple linear regression model with normal error terms and parameters estimated

from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), the exact two-sided 100(1−α)% pre-

diction interval for Y ∗h given in Theorem 2.15 is appropriate for a single new observation

associated with a fixed value of the independent variable Xh. What if there are m new ob-

servations? In this case, an exact two-sided 100(1−α)% prediction interval for the mean

response Y ∗h is

Ŷ⋆
h − tn−2,α/2

√
V̂ [Ŷ⋆

h ]< Y ⋆
h < Ŷ⋆

h + tn−2,α/2

√
V̂ [Ŷ⋆

h ],

for Y ⋆
h , where

Ŷ⋆
h = β̂0 + β̂1Xh and V̂ [Ŷ⋆

h ]=
[

1

m
+

1

n
+

(
Xh− X̄

)2

SXX

]
MSE

and Xh is a fixed value of the independent variable within the scope of the simple linear

regression model. Find a 95% prediction interval for the heights data pairs (using the

wife’s height as the independent variable) from the PBImisc package from Example 2.7

with m = 4 and Xh = 150.
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2.14 For the prediction interval for the population mean of the average of m new observations at

a single setting of the independent variable Xh given in the previous question, what does the

prediction interval collapse to in the limit as m→ ∞.

2.15 Consider the built-in data frame in R named trees, which contains data pairs of diameters

(which will be the independent variable and is erroneously labeled Girth in the data frame)

measured at 4 feet 6 inches above the ground and associated volumes (which will be the

dependent variable) for n = 31 felled black cherry trees. Assuming that the simple linear

regression model with normal error terms is appropriate, perform the following statistical

inference procedures.

(a) Plot the data pairs and the associated regression line.

(b) Find a point estimate and an exact 95% confidence interval for β1. Interpret the point

estimate and the confidence interval.

(c) Find a point estimate and an exact 95% confidence interval for the mean volume, E [Yh],
when the diameter is Xh = 20 inches.

(d) Find a point estimate and an exact 95% prediction interval for the volume, Y ⋆
h , associ-

ated with a new data pair with a diameter of Xh = 20 inches.

(e) Graph all values of the exact 95% confidence interval bounds for the expected volume

for all diameters in the scope of the simple linear regression model. Also, graph all

values of the exact 95% prediction interval bounds for the volume for a 32nd tree for

all diameters in the scope of the simple linear regression model.

2.16 Plot a 95% confidence region for the data pairs in the cars data set under a simple linear

regression model with normal error terms

(a) using numerical methods, and

(b) using the ellipse function from the ellipse package.

Include the maximum likelihood estimates for β̂0 and β̂1 and 95% confidence intervals for

β0 and β1 on your plot.

2.17 Conduct a Monte Carlo simulation that provides convincing numerical evidence that the

confidence region given in Theorem 2.17 is an exact confidence region for the following pa-

rameter settings: n = 10, β0 = 1, β1 = 1/2, σ2 = 1, α = 0.05, and Xi = i for i = 1, 2, . . . , 10.

2.18 Consider the simple linear regression model with normal error terms applied to the first set

of n = 11 data pairs from Anscombe’s quartet from Example 2.6. Show that the p-values are

identical for testing

H0 : β1 = 0

versus

H1 : β1 6= 0

using

(a) the F test based on using the test statistic which is the ratio of MSR to MSE, and

(b) the t test based on using the test statistic β̂1/
√

MSE/SXX .
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2.19 Figures 1.24, 1.25, and 1.26 depict three examples of extreme cases for SSE, SSR, and SST

for n = 7 data pairs. Assuming the simple linear regression model with normal error terms

is an appropriate model,

(a) plot and label the potential points associated with the extreme cases when SSR is plotted

on the horizontal axis and SSE is plotted on the vertical axis, and

(b) on this same graph, shade the area associated with rejecting H0 at level of significance

at α = 0.05 for the statistical test

H0 : β1 = 0

versus

H1 : β1 6= 0.

2.20 Plot a power function for the F test for testing

H0 : β1 = 0

versus

H0 : β1 6= 0

for n = 10, β0 = 1, σ2 = 1, α = 0.05, and Xi = i, for i = 1, 2, . . . , n. You may use Monte

Carlo simulation or the noncentral F distribution to generate the power function. Allow β1

to vary from −1 to 1 in the plot.

2.21 Make plots of the standardized residuals for the four data sets from Anscombe’s quartet given

in Example 2.6.

2.22 The confidence interval for E[Yh] given in Theorem 2.12 is meaningful for a fixed value of the

independent variable Xh. What if a confidence band that contains the entire regression line

with a prescribed probability is desired. The Working–Hotelling 100(1−α)% confidence

band for the regression line at any level Xh is given by

Ŷh− tn−2,α/2

√
V̂ [Ŷh]< E[Yh]< Ŷh + tn−2,α/2

√
V̂ [Ŷh],

under the simple linear regression model with normal error terms, where

Ŷh = β̂0 + β̂1Xh and V̂ [Ŷh]= 2F2,n−2,αMSE

[
1

n
+

(
Xh− X̄

)2

SXX

]
.

Plot a 95% confidence band for the heights data pairs from Example 2.7.



Chapter 3

Topics in Regression

The previous two chapters have provided a detailed introduction to the basic principles underlying

simple linear regression. This chapter will cover some additional topics in regression, but not with

the same detail as in the previous two chapters. Sometimes just a single example will illustrate

a regression topic that deserves an entire chapter in a full-semester regression course. The topics

considered in this chapter are forcing a regression line through the origin, diagnostics, remedial

procedures, the matrix approach to simple linear regression, multiple linear regression, weighted

least squares estimators, regression models with nonlinear terms, and logistic regression.

3.1 Regression Through the Origin

Applications occasionally arise in which it is of benefit to force a regression line to pass through the

origin. To illustrate such applications, return to Examples 1.1 and 1.3 in which Bob and Cheryl each

had the number of sales per week as an independent variable X . In both of the examples, X = 0

sales per week corresponds to Y = 0 commissions (for Bob) and Y = 0 revenue per week (from

Cheryl’s sales). In these settings it is sensible to force the regression line to pass through the origin;

estimating a population intercept does not make sense. The resulting regression model does not

contain the β0 parameter. The simple linear regression model forced through the origin, sometimes

abbreviated RTO for regression through the origin, is defined next.

Definition 3.1 A simple linear regression model forced through the origin is given by

Y = β1X + ε,

where

• X is the independent variable, assumed to be a fixed value observed without error,

• Y is the dependent variable, which is a continuous random variable,

• β1 is the population slope of the regression line, which is an unknown constant, and

• ε is the error term, a random variable that accounts for the randomness in the relationship

between X and Y , which has population mean zero and finite population variance σ2.
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The regression parameter β1 can be estimated using least squares from the data pairs (Xi, Yi) for

i = 1, 2, . . . , n.

Theorem 3.1 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs satisfying ∑n
i=1 X2

i > 0. The least

squares estimator of β1,

β̂1 =
∑n

i=1 XiYi

∑n
i=1 X2

i

,

minimizes the sum of the squared deviations between Yi and the associated fitted value β̂1Xi in the

simple linear regression model forced through the origin.

Proof The sum of squared deviations between the observed values of the dependent

variable and the associated fitted values is

S =
n

∑
i=1

(Yi−β1Xi)
2.

To minimize S with respect to β1, take the derivative of S with respect to β1:

dS

dβ1
=−2

n

∑
i=1

Xi(Yi−β1Xi) = 0

or
n

∑
i=1

XiYi−β1

n

∑
i=1

X2
i = 0.

This equation can be solved in closed-form for β̂1 as

β̂1 =
∑n

i=1 XiYi

∑n
i=1 X2

i

.

To show that the least squares estimator β̂1 minimizes S, take a second derivative of S:

d2S

dβ2
1

= 2
n

∑
i=1

X2
i .

Since ∑n
i=1 X2

i > 0, this second derivative, which is just twice a sum of squares, must

be positive. Hence, S is minimized at β̂1. �

The next example conducts a hypothesis test to determine whether it is appropriate to drop the

intercept term from the simple linear regression model based on the data pairs, and then proceeds to

fit the reduced model.

Example 3.1 The R built-in data set Formaldehyde consists of the n = 6 data pairs

given in Table 3.1. The independent variable carb is the carbohydrate level (ml) and

the dependent variable optden is the optical density in a chemical experiment. Fit a

simple linear regression to the model using the ordinary least squares estimates. If there

is no statistically significant difference between the estimated intercept and zero, then

fit a simple linear regression model forcing the regression line to pass through the origin

to the data pairs.
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carb optden

0.1 0.086

0.3 0.269

0.5 0.446

0.6 0.538

0.7 0.626

0.9 0.782

Table 3.1: Formaldehyde data set from R.

The scatterplot given in Figure 3.1 shows a strong linear relationship between carbohy-

drates (measured in ml) and optical density (measured by the reading of the resulting

purple color on a spectrophotometer) for the n = 6 data pairs. The nearly-perfect lin-

ear relationship provides overwhelming visual evidence that a simple linear regression

model is appropriate for approximating the relationship between X and Y .

The R commands below fit the standard simple linear regression model (including an

intercept) to the six data pairs.

fit = lm(optden ~ carb, data = Formaldehyde)

summary(fit)

The point estimates for the intercept and slope of the regression line are

β̂0 = 0.00509 and β̂1 = 0.876.

The call to summary(fit) indicates that there is no statistically significant difference

between the point estimate for the intercept and 0. The p-value associated with the

hypothesis test

H0 : β0 = 0

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

X

Y

Figure 3.1: A scatterplot of the Formaldehyde data pairs.
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versus

H0 : β0 6= 0

is 0.55, which is statistical evidence that the intercept does not differ significantly from

β0 = 0. This p-value, perhaps along with some information about the chemical experi-

ment itself, might cause the experimenter to consider the reduced model which is forced

through the origin. This hypothesis test requires normally distributed error terms. The

usual analysis of residuals to determine whether a simple linear regression model with

normal error terms is appropriate in this setting will be abandoned here because of the

small sample size. Histograms and statistical tests have diminished meaning with only

n = 6 data pairs. The best we can do to assess the normality of the error terms is to use

a graphical display such as a QQ plot.

Using Theorem 3.1, the least squares estimate for the slope of the regression line forced

through the origin is

β̂1 =
∑n

i=1 XiYi

∑n
i=1 X2

i

= 0.884,

which can be calculated with the R statements given below.

x = Formaldehyde$carb

y = Formaldehyde$optden

beta = sum(x * y) / sum(x * x)

print(beta)

Not surprisingly, the slope of the regression line forced through the origin is very close

to the slope of the regression line with the model that includes an intercept. The optical

density increases by 0.884 for every unit increase in the carbohydrates. Figure 3.2

contains a scatterplot of the data pairs and the associated regression line forced through

the origin. The model clearly provides an adequate approximation to the relationship

between the independent variable X and the dependent variable Y over the scope of the

model shown in Figure 3.2.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8
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Y

Figure 3.2: A scatterplot of the Formaldehyde data pairs with the fitted regression line.
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These calculations can be performed in R by adding -1 or +0 to the formula argument

in the lm function, which forces the regression line to pass through the origin.

fit2 = lm(optden ~ carb - 1, data = Formaldehyde)

fit2$coefficients

These R statements calculate the estimated slope of the regression line as β̂1 = 0.884.

Analogous theorems to those that were applied to simple linear regression with a pop-

ulation intercept parameter β0 and a population slope parameter β1 from Chapter 1 can

also be derived associated with the simple linear regression model forced through the

origin. In addition, the assumption of normal error terms from Chapter 2 can be added

to the simple linear regression model forced through the origin, which allows for sta-

tistical inference (that is, constructing confidence intervals and performing hypothesis

tests) concerning the population slope of the regression line β1. For example, the addi-

tional R command

confint(fit2)

gives a very narrow 95% confidence interval for β1 as

0.869 < β1 < 0.899.

The narrowness of the confidence interval is a reflection of how close the points fall to

the regression line in Figure 3.2.

The next example revisits the regression modeling of the stopping distance as a function of the

speed of a car in the built-in cars data frame.

Example 3.2 Recall from Example 2.8 that X , the speed of a car in miles per hour, was

used as an independent variable, and Y , the stopping distance in feet, was used as a de-

pendent variable in a simple linear regression model. There are n = 50 data pairs in the

cars data frame that is built into R. One critique of the simple linear regression model

that was constructed for the data pairs in the built-in cars data frame from Example 2.8

was that the regression function did not pass through the origin (stationary cars require

no stopping distance). Write R code to estimate the slope of the regression line through

the origin and comment on the acceptability of this model.

The physics of the experiment indicates that stationary cars require no distance to stop,

so forcing a regression line through the origin is appropriate in this setting. The R code

below estimates the slope of the regression line that is forced to pass through the origin.

x = cars$speed

y = cars$dist

fit = lm(y ~ x - 1)

Figure 3.3 is a scatterplot of the data pairs (not jittered for ties) with the regression line

superimposed. A car requires an additional distance of β̂1 = 2.91 feet to stop for every

additional mile per hour in speed.

The additional R statements
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Figure 3.3: Fitted model Y = β̂1X of speed X and stopping distance Y for the cars data.

table(sign(fit$residuals))

sum(fit$residuals ^ 2)

reveal that 32 data pairs fall below the regression line and only 18 data pairs fall above

the regression line. A plot of the standardized residuals can be generated with the R

statements

res = lm(dist ~ speed - 1, data = cars)$residuals

plot(cars$speed, res / sqrt(sum(res ^ 2) / (length(cars$speed) - 2)))

and is given in Figure 3.4. The sum of squares increases from SSE = 11,354 as cal-

culated in Example 2.8 for the full simple linear regression model to SSE = 12,954 by
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Figure 3.4: Standardized residuals for the cars data.
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forcing the regression line through the origin. It is universally the case that SSE stays

the same or increases by forcing the regression line to pass through the origin. Using

the model as a subscript, this can be written symbolically as

SSEY=β0+β1X+ε ≤ SSEY=β1X+ε.

The nonsymmetry of the residuals in Figure 3.4 suggests that the fitted linear regression

function might not be adequate. Perhaps a regression model with higher-order terms or

a nonlinear model is worth investigating.

This ends the discussion of forcing the regression line through the origin. Occasions arise in

regression modeling in which it is more appropriate to fit a statistical model with fewer parameters.

Some of the results from the full simple linear regression model generalize to simple linear regres-

sion forced through the origin. The point estimate for β1, for example, is unbiased. Three examples

of results that do not generalize are (a) the residuals do not necessarily sum to zero, (b) the re-

gression line does not necessarily pass through the point
(
X̄ , Ȳ

)
, and (c) it is possible that SSE can

exceed the total sum of squares SST , which can result in a negative value of R2.

3.2 Diagnostics

Diagnostic procedures are applied to fitted regression models to assess their conformity to the as-

sumptions (for example, constant variance of the error terms) implicit in the simple linear regression

model. We have already considered one such diagnostic procedure from the previous chapter, which

is the examination of the residuals to assess their independence, constant variance, and normality.

Two other diagnostic procedures will be examined here, which are the identification of data pairs

known as leverage points and the identification of data pairs known as influential points. The subse-

quent section considers remedial procedures, which can be applied to a regression model that fails

to satisfy one or more of the assumptions implicit in a regression model.

3.2.1 Leverage

Data pairs that have the ability to exert more influence on the regression line than other data pairs

due to their independent variable values are known as leverage points. These data pairs should be

given more scrutiny than the others because of the potential tug that they have on the regression line.

More specifically, when the value of the independent variable is unusually far from X̄ (either low or

high), the data pair has the potential to exert more pull on the regression line than other points.

We begin developing the notion of leverage by expressing the predicted value of Yi, denoted by

Ŷi, as a function of Yi. Using Theorems 1.1 and 1.3, the predicted value of Yi is

Ŷi = β̂0 + β̂1Xi

= Ȳ − β̂1X̄ + β̂1Xi

= Ȳ + β̂1 (Xi− X̄)

=
1

n

n

∑
j=1

Yj +
n

∑
j=1

a jYj (Xi− X̄)

=
1

n

n

∑
j=1

Yj +
n

∑
j=1

X j− X̄

SXX

Yj (Xi− X̄)
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=
n

∑
j=1

[
1

n
+

(Xi− X̄)(X j− X̄)

SXX

]
Yj

=
n

∑
j=1

hi jYj

for i = 1, 2, . . . , n. The hi j values form the elements of an n× n matrix H, which is often referred

to as the hat matrix or the projection matrix. The reason that this matrix is known as the projection

matrix is that it provides a linear transformation from the observed values of the dependent variable

to the associated fitted values. The diagonal elements of the hat matrix are known as the leverages

of the data pairs, which are defined next.

Definition 3.2 The leverage of data pair (Xi, Yi) in a simple linear regression model is

hii =
1

n
+

(Xi− X̄)
2

SXX

for i = 1, 2, . . . , n.

The leverage is a measure of a data pair’s potential to influence the regression line. Notice that

the leverage is a function of the values of the independent variable X1, X2, . . . , Xn only; the heights

of the data pairs do not play a role. Since the two denominators in the expression from Definition 3.2

are constants for a particular data set, only the numerator (Xi− X̄)
2

changes for each value of Xi.

It reflects the distance between a particular Xi value and its associated sample mean. The leverage

increases as the distance between Xi and X̄ increases. There are several results concerning the

leverages; one that concerns the average of the leverages is presented next.

Theorem 3.2 For data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) in a simple linear regression model,

the sample mean of the leverages is 2/n.

Proof The sample mean of the leverages is

h11 +h22 + · · ·+hnn

n
=

1

n

[
1

n
+

(X1− X̄)
2

SXX

+
1

n
+

(X2− X̄)
2

SXX

+ · · ·+ 1

n
+

(Xn− X̄)
2

SXX

]

=
1

n

[
1+

(X1− X̄)
2
+(X2− X̄)

2
+ · · ·+(Xn− X̄)

2

SXX

]

=
1

n

[
1+

SXX

SXX

]

=
2

n
. �

To summarize what we know about the n leverages,

• the leverages are the diagonal elements of the hat matrix H,

• all leverages are positive, with a minimum of 1/n (for Xi = X̄) and a maximum of 1, and

• the sum of the leverages is 2, so the average of the leverages is 2/n.
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If all of the leverages are equal (this is always the case, for example, for n = 2 data pairs), then each

leverage is 2/n, which is the average from Theorem 3.2. We would like to establish a threshold at

which a data pair has the ability to exert a significant influence over the regression line so that such

points might be examined with additional scrutiny. Such data pairs are known as leverage points.

Although not used universally, a common way to identify a leverage point is if the leverage hii is

more than twice the average of the leverages. Symbolically, a point is designated a leverage point if

hii >
4

n
.

This threshold will be illustrated in the next example.

Example 3.3 To illustrate the identification of leverage points, we consider the first

data set in Anscombe’s quartet. For notational convenience, the n = 11 data pairs have

been ordered by their independent variable values in Table 3.2. We will investigate the

leverages associated with this data set and two other data sets with an extra data pair

appended.

Xi Yi

4.0 4.26

5.0 5.68

6.0 7.24

7.0 4.82

8.0 6.95

9.0 8.81

10.0 8.04

11.0 8.33

12.0 10.84

13.0 7.58

14.0 9.96

Table 3.2: Data set I (sorted by Xi) in Anscombe’s quartet.

The R code below calculates the n= 11 leverages using the formula from Definition 3.2.

x = 4:14

xbar = mean(x)

sxx = sum((x - xbar) ^ 2)

n = length(x)

leverages = 1 / n + (x - xbar) ^ 2 / sxx

Notice that the values of Y1, Y2, . . . , Y11 are not needed to compute the leverages. The

leverages are displayed in Table 3.3. Not surprisingly, the leverages are symmetric about

X̄ = 9 because the values of the independent variable are equally spaced. The leverage

for X6 = 9 is just 1/n = 1/11 ∼= 0.09, which is the first term in hii in Definition 3.2.

None of the leverages exceeds the threshold value 4/n = 4/11 ∼= 0.36, so this data set

does not contain any leverage points.

Calculating leverages is so common in regression analysis that R has two built-in func-

tions that calculate leverages. The hat function calculates the leverages for Anscombe’s

first data set with the single statement
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i 1 2 3 4 5 6 7 8 9 10 11

Xi 4 5 6 7 8 9 10 11 12 13 14

hii 0.32 0.24 0.17 0.13 0.10 0.09 0.10 0.13 0.17 0.24 0.32

Table 3.3: Leverages for data set I in Anscombe’s quartet.

hat(4:14)

Alternatively, the hatvalues function with the fitted model as an argument can be used

to calculate the leverages.

x = 4:14

y = c(4.26, 5.68, 7.24, 4.82, 6.95, 8.81, 8.04, 8.33, 10.84, 7.58, 9.96)

fit = lm(y ~ x)

hatvalues(fit)

The top graph in Figure 3.5 is a scatterplot of the data pairs and the associated regres-

sion line. From a cursory visual assessment, using a simple linear regression model to

describe the relationship between X and Y seems reasonable for these data pairs. The

leverages for the first three data pairs are identified on the graph. All three graphs in

Figure 3.5 have the same horizontal and vertical scales for easier comparison.

The middle graph in Figure 3.5 includes all of the data values from the Anscombe’s

first data set, but adds the additional data pair (19, 12.5), which was gleaned from

Anscombe’s fourth data set. The leverages are given in Table 3.4, with the lever-

age for the data pair (19, 12.5) set in boldface because it has a leverage that exceeds

4/n = 4/12 ∼= 0.33. This data pair is a leverage point that warrants particular scrutiny.

Although the data pair has the ability to exert unusual effect on the regression line, it is

clear that the data point does not alter the regression line from where it was in the top

graph. So although the new data pair is a leverage point (and is therefore circled in the

middle graph), it does not contradict the existing trend from the other 11 points. In this

sense, the leverage point provides some (scant) evidence that the scope of the model

can be extended from 4≤ X ≤ 14 to 4≤ X ≤ 19.

The bottom graph in Figure 3.5 includes all of the data values from the Anscombe’s first

data set, but adds the additional data pair (19, 4). Since the values of the independent

variable have not changed, the leverages match those from Table 3.4. The leverage

point (19, 4) is circled on the graph. This leverage point exerts a significant downward

tug on the right side of the regression line relative to the pattern established by the first

11 data pairs. A simple linear regression model is not appropriate in this case. There

are several potential explanations for the deleterious effects of this leverage point.

i 1 2 3 4 5 6 7 8 9 10 11 12

Xi 4 5 6 7 8 9 10 11 12 13 14 19

hii 0.25 0.20 0.16 0.12 0.10 0.09 0.08 0.09 0.11 0.13 0.17 0.50

Table 3.4: Leverages for data set I in Anscombe’s quartet with appended X12 = 19.
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Figure 3.5: Fitted regression models and leverage points.
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• The leverage point might have been incorrectly recorded.

• The leverage point might be fundamentally different than the others and does not

belong in the data set.

• The leverage point might indicate that a nonlinear regression model is appropriate.

• The leverage point might signal that the scope of the model should be restricted to

4≤ X ≤ 14, where a simple linear regression appears to be appropriate.

• The leverage point is legitimate and not fundamentally different than the others.

It might just happen to be an extreme value. The linear model still might be

appropriate, but more data pairs need to be collected to show that this is the case.

The previous example has indicated a fitted simple linear regression model is likely to pass close

to a leverage point. Leverage points exert more tug on the regression line than those points whose

independent variable value is closer to X̄ . The next illustration of identifying leverage points revisits

the heights of couples from Example 2.7.

Example 3.4 Identify the leverage points for the n = 96 pairs of couples heights from

Example 2.7.

The following R statements load the PBImisc package, set x to the heights of the wives,

set y to the associated heights of the husbands, calculate the leverages using the hat

function, store the indexes of those points whose leverage exceeds 4/n in the vector i,

plot the data pairs using the plot function, plot the regression line using the abline

function, and circle the leverage points using the symbols function.

library(PBImisc)

x = heights$Wife

y = heights$Husband

n = length(x)

leverages = hat(x)

i = leverages > 4 / n

m = sum(i)

fit = lm(y ~ x)

plot(x, y, pch = 16)

abline(fit$coefficients)

symbols(x[i], y[i], circles = rep(0.7, m), inches = FALSE, add = TRUE)

The resulting graph is displayed in Figure 3.6. There are a total of ten leverage points—

seven on the left end of the scope of the model and three on the right end of the scope

of the model. Examining each of the ten leverage points carefully, nine of the ten

do not seem out of step with the rest of the data values. The leverage point (147, 178),
however, which corresponds to an unusually short wife marrying and fairly tall husband,

is clearly a point that exerts a significant upward tug on the left side of the regression

line. Assuming that the X and Y values were recorded correctly, there is no reason

to remove this point from the data set. The impact of this point on the slope of the

regression line is minimized by the large sample size.

Identifying leverage points is helpful for knowing which points to more carefully scrutinize. It is

not appropriate to simply delete a leverage point because it falls far from the regression line. Lever-

age points can be helpful in highlighting an aspect of the model that was not originally considered
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Figure 3.6: Fitted regression model and leverage points for the n = 96 data pairs.

relevant. The next subsection considers how to determine if a leverage point (or any other point)

does produce a significant impact on β̂0 and β̂1.

3.2.2 Influential Points

Leverage points have the potential to produce large changes in the values of β̂0 and β̂1 when they are

deleted. How can we determine whether a leverage point (or any other point) does have significant

impact on the regression line? American statistician R. Dennis Cook suggested a quantity that

measures the influence of each data pair on the regression line.

Definition 3.3 For a simple linear regression model, Cook’s distances D1, D2, . . . , Dn associated

with the n data pairs have the following three equivalent definitions.

• Di =
∑n

j=1(Ŷj− Ŷj(i))
2

2 ·MSE
,

• Di =
n(β̂0(i)− β̂0)

2
+2(β̂0(i)− β̂0)(β̂1(i)− β̂1)∑n

i=1 Xi +(β̂1(i)− β̂1)
2

∑n
i=1 X2

i

2 ·MSE
,

• Di =
e2

i hii

2 ·MSE (1−hii)
2
,

where MSE is the mean square error (see Theorem 1.8), Ŷj(i) is the fitted value of data pair j with

data pair i removed, β0(i) is the estimated intercept of the regression line for the simple linear

regression model with data pair i removed, β1(i) is the estimated slope of the regression line for the

simple linear regression model with data pair i removed, and hii is the leverage of data pair i (see

Definition 3.2), for i = 1, 2, . . . , n.

The equivalence between the three very diverse formulas in Definition 3.3 is left as an exercise.

The data pairs must not be collinear because MSE appears in the denominator of each formula. Each
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of the three formulas is helpful in developing intuition about Cook’s distance, so each is illustrated

in the following three examples.

Example 3.5 Use the first formula from Definition 3.3 to calculate the Cook’s distances

for the n = 11 data pairs in the Anscombe’s first data set (sorted by the values of the

independent variable), appended with the point (X12, Y12) = (19, 4). This was the last

data set encountered in Example 3.3.

The bottom graph in Figure 3.5 shows that the first 11 data pairs are consistent with an

underlying linear model, but the 12th data pair is not consistent with this model. The

first formula from Definition 3.3 is

Di =
∑n

j=1(Ŷj− Ŷj(i))
2

2 ·MSE

for i = 1, 2, . . . , n. Since the term Ŷ j− Ŷj(i) is a measure of the effect of dropping data

pair i from the data set on the fitted value, larger values for Di indicate that data pair

i is more influential. Squaring Ŷ j − Ŷj(i) assures that the direction of the fitted value

when data pair i is dropped makes a positive contribution to Di. The R code below

loops through the data points, excluding the data pairs one-by-one. Hence there will

in general be a total of n+ 1 simple linear regression models fitted when using the

first formula for computing Cook’s distance—one regression model for all data pairs

included and n other regression models for dropping each data pair once.

x = c(4:14, 19)

y = c(4.26, 5.68, 7.24, 4.82, 6.95, 8.81, 8.04, 8.33, 10.84,

7.58, 9.96, 4)

n = length(x)

fit = lm(y ~ x)

mse = sum(fit$residuals ^ 2) / (n - 2)

fitted = fit$fitted.values

cooks = numeric(n)

for (i in 1:n) {

fit.exclude = lm(y[-i] ~ x[-i])

beta0 = fit.exclude$coefficients[1]

beta1 = fit.exclude$coefficients[2]

fitted.exclude = beta0 + beta1 * x

cooks[i] = sum((fitted - fitted.exclude) ^ 2) / (2 * mse)

}

print(cooks)

Several of the Cook’s distances are given in Table 3.5. Consistent with the bottom

graph in Figure 3.5, the 12th Cook’s distance D12 = 3.621 is substantially larger than

i 1 2 3 4 · · · 11 12

Di 0.236 0.029 0.005 0.069 · · · 0.128 3.621

Table 3.5: Cook’s distances for Anscombe’s data set I with (X12, Y12) = (19, 4) appended.
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the second-largest Cook’s distance D1 = 0.236. So the 12th data pair, (X12, Y12), is the

most influential point. The first data pair, (X1, Y1), is the second most influential point.

Notice that these are the two points with the highest leverage (see Table 3.4).

To show some of the geometry associated with the calculation of D1, D2, . . . , Dn , Fig-

ure 3.7 shows the regression line

Y = β̂0 + β̂1X = 6.09+0.114X

fitted to all n = 12 data pairs, which are indicated by solid points (•). This regression

line corresponds to the fitted value at X12 = 19 of

Ŷ12 = 6.09+(0.114)(19) = 8.25.

The other regression line,

Y = β̂0(12)+ β̂1(12)X = 3.00+0.500X ,

is the regression that excludes the influential 12th data pair (X12, Y12) = (19, 4). This

regression line corresponds to the fitted value at X12 = 19 of

Ŷ12(12) = 3.00+(0.500)(19) = 12.50.

The two fitted values are indicated by open points (◦). So when calculating D12 using

the first formula in Definition 3.3, one of the terms in the numerator is
(
Ŷ12− Ŷ12(12)

)2
= (8.25−12.50)2 = (−4.25)2 = 18.07,

which makes a huge contribution to the numerator of D12.

4 19

3

13

Y = β̂0+ β̂1X

Y = β̂ 0(1
2)
+ β̂ 1(1

2)
X

Ŷ12

Ŷ12(12)

X

Y

Figure 3.7: Calculating Cook’s distances using fitted values.

The previous example has indicated that Cook’s distance is a measure of the influence of each

data pair based on the effect of removing each data pair sequentially, and measuring the associated

impact on the fitted values. If the fitted values are not substantially altered by removing data pair i,

then Di will be small; if the fitted values are substantially altered by removing data pair i, then Di

will be large. This, however, does not explain why the denominator 2 ·MSE is in all four formulas

in Definition 3.3. That will be addressed in the next example.
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Example 3.6 Use the second formula from Definition 3.3 to calculate the Cook’s dis-

tances for the n = 11 data pairs in the Anscombe’s first data set (sorted by the values of

the independent variable), appended with the point (X12, Y12) = (19, 4).

The second formula for computing Cook’s distance for data pair i from Definition 3.3

is

Di =
n(β̂0(i)− β̂0)

2
+2(β̂0(i)− β̂0)(β̂1(i)− β̂1)∑n

i=1 Xi +(β̂1(i)− β̂1)
2

∑n
i=1 X2

i

2 ·MSE

for i = 1, 2, . . . , n. This formula emphasizes the change in the regression coefficients

when data pair i is dropped. Figure 3.8 shows (a) the estimators
(
β̂0, β̂1

)
for all n = 12

data pairs as a +, (b) the associated confidence regions for β0 and β1 at levels 0.25, 0.5,

and 0.75, and (c) twelve points indicated by solid circles (•) giving the values of the

slope and intercept when data pair i is dropped, for i = 1, 2, . . . , n. Not surprisingly, the

estimated slope and intercept when the 12th data point, (X12, Y12) = (19, 4), is dropped,

strays the furthest from
(
β̂0, β̂1

)
. The other 11 estimated slope and intercept pairs all

fall within the 0.25 confidence region.

The connection with the confidence region for β0 and β1 in this case illuminates why

the 2 ·MSE appears in the denominator of all of the formulas for Di in Definition 3.3.

Compare the right-hand side of the second formula in Definition 3.3 with the expression

in Theorem 2.16. They are identical except that β0 is replaced by β0(i) and β1 is replaced

by β1(i). So under the assumption that the data pairs are drawn from a simple linear

regression model, one would expect that Di is approximately F(2, n−2). Some suggest

using the median of a F(2, n−2) distribution as a threshold for classifying a data pair

as an influential point. Another approach is to observe that the population mean and

variance of an F(2, n−2) random variable are

E[Di] =
n−2

n−4
(for n > 4) and V [Di] =

(n−2)3

(n−4)2(n−6)
(for n > 6).
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(
β̂0(1), β̂1(1)

)
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)
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(
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)
= (6.09, 0.11)

Figure 3.8: Calculating Cook’s distances using the parameter estimates.
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So in the limit as the number of data pairs increases,

lim
n→∞

E[Di] = 1 and lim
n→∞

V [Di] = 1.

It is for this reason that a threshold of 1 is used as a simple threshold for classifying a

data point as influential based on Cook’s distance. Regardless of whether the median

of an F(2,10) random variable (which is 0.743) or 1 is used as a threshold, the first 11

points are not deemed to be influential points, and the 12th point, (19, 4), is deemed to

be an influential point.

One weakness associated with the first two formulas for computing the Cook’s distances in

Definition 3.3 involves computation time. There are n+1 regression lines to estimate (one for all of

the data pairs and then another n associated with dropping each of the data pairs). For large values

of n, this can require significant computation time. The third formula is much faster, as illustrated

next.

Example 3.7 Use the third formula from Definition 3.3 to calculate the Cook’s dis-

tances for the n = 96 data pairs in the data set of heights of wives and husbands from

Example 2.7.

The third formula for computing Cook’s distance for data pair i from Definition 3.3 is

Di =
e2

i hii

2 ·MSE (1−hii)
2

for i = 1, 2, . . . , n. The advantage to using this formula over the other two formulas is

that it only requires one regression line to be calculated, rather than n+ 1 regression

lines in the other two formulas. This is a substantial time savings for large values of n.

The R code below calculates Cook’s distances for the heights data.

library(PBImisc)

x = heights$Wife

y = heights$Husband

n = length(x)

fit = lm(y ~ x)

mse = sum(fit$residuals ^ 2) / (n - 2)

lev = hat(x)

cooks = fit$residuals ^ 2 * lev / (2 * mse * (1 - lev) ^ 2)

plot(cooks)

The n = 96 Cook’s distances are plotted in Figure 3.9. The 12th data pair, which is

(X12, Y12) = (147, 178), has a spectacular Cook’s distance of D12 = 0.192. Since this

does not exceed the first threshold (which is the median of an F random variable with

2 and 94 degrees of freedom: 0.698) or the second threshold (which is 1 using the

asymptotic result), we conclude that there are no influential points. Cook’s distances

are calculated so frequently in regression analysis that R includes a function named

cooks.distance that calculates the Cook’s distances, as illustrated below.

library(PBImisc)

x = heights$Wife
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Figure 3.9: Cook’s distances for the heights data.

y = heights$Husband

fit = lm(y ~ x)

cooks.distance(fit)

Cook’s distances are effective for identifying influential points. Once an influential point in a

simple linear regression model has been identified, there are several possible next steps.

• The influential point might have been recorded or coded improperly; a typographical error has

occurred. In most situations, this is easily remedied.

• The influential point has some unusual characteristic that is not present with the other data

points that might account for it being deemed influential. Depending on the setting, the influ-

ential point can be removed and the regression model can be refitted without the influential

point.

• The influential point might provide some evidence that an alternative regression model is

appropriate. This might be a nonlinear regression model or a linear regression model with

additional independent variables.

• The influential point might be at one of the extremes of the scope of the model. This might

indicate that the scope of the model is too wide; narrowing the scope should be considered. It

is often the case that a simple linear regression model is valid only over a rather limited scope.

This might result in eliminating all data points outside of the narrowed scope and refitting the

simple linear regression model.

• The high-leverage point is indeed within the scope of the model and was recorded correctly,

but its extreme influence on the regression line is resulting in poor diagnostic measures. One

approach here is to collect more data values, particularly at the extreme values of the inde-

pendent variable within the scope of the model in order to mitigate the effect of the influential

point.
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3.3 Remedial Procedures

The diagnostic procedures presented in the previous section are designed to identify assumptions

associated with the simple linear regression model that are not satisfied for a particular set of n data

pairs. But these diagnostic procedures do not suggest remedies when model assumptions are not

satisfied. This section considers remedial procedures.

Reasons that simple linear regression model with normal error terms can fail to satisfy the as-

sumptions given in Definition 2.1 include

• the regression function is not linear,

• the regression model has not included an important independent variable,

• the error terms have a variance that varies with X ,

• the error terms are not independent,

• the error terms are not normally distributed,

• the scope of the regression model is too wide,

• the scope of the regression model is too narrow, and

• an influential point has an unusually strong effect on the regression line.

Two common approaches to handling a regression model which violates one or more of the

assumptions are (a) formulate and fit a regression model with nonlinear terms, and (b) transform

the X-values or the Y -values (or both) in a fashion so that the simple linear regression assumptions

are satisfied. Regression models with nonlinear terms will be considered in a subsequent section in

this chapter; transformations will be considered here. Transformations will be illustrated in a single

(long) example.

Example 3.8 A simple linear regression model with normal error terms for the speed

of a car X (in miles per hour) versus the stopping distance Y (in feet) for the built-in R

cars data set was abandoned in Example 2.8 for several reasons. A scatterplot (without

jittering) with the associated regression line is displayed in Figure 3.10. The purpose of

this example is to see whether a transformation can overcome the problems associated

with

• the relationship between X and Y appears to be slightly nonlinear,

• the variance of the error terms appears to be increasing in X , and

• the residuals do not appear to be normally distributed.

Rather than providing a complete inventory of all possible patterns and associated po-

tential helpful transformations, four transformations will be illustrated here. This trial-

and-error approach is not what is typically relied on in practice. There are some patterns

associated with data pairs that tend to give clues as to which transformations will be ef-

fective.

The first transformation is X ′ = X2. The R code below implements the transformation,

generates a scatterplot of the transformed data pairs, and plots the associated regression

line.
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Figure 3.10: Scatterplot and regression line of speed X and stopping distance Y .

x = cars$speed ^ 2

y = cars$dist

plot(x, y)

abline(lm(y ~ x)$coefficients)

This scatterplot appears in the upper-left graph in Figure 3.11. Tick mark labels have

been suppressed on these graphs because the interest is in gazing at the data pairs in

order to determine whether the transformed data pairs conform to the simple linear re-

gression model with normal error terms. For the transformation X ′ = X2, little progress

is made on the constant variance issue. The first 19 data pairs, which are associated with

speeds from 4 to 13 miles per hour, seem to have a smaller variance in their stopping

distances than the faster speeds. This transformation is deemed ineffective.

The second transformation is Y ′ = ln Y . The R code below implements the transfor-

mation, generates a scatterplot of the transformed data pairs, and plots the associated

regression line.

x = cars$speed

y = log(cars$dist)

plot(x, y)

abline(lm(y ~ x)$coefficients)

This scatterplot appears in the upper-right graph in Figure 3.11. The transformation

Y ′ = ln Y also results in a nonconstant variance in the error terms; this time the variance

in the stopping distances is greater for the slower speeds. So this transformation is also

abandoned for lack of constant variance of the error terms.

The third transformation is Y ′ =
√

Y . The R code below implements the transformation,

generates a scatterplot of the transformed data pairs, and plots the associated regression

line.

x = cars$speed
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Figure 3.11: Scatterplots and estimated regression lines for transformed cars data.

y = sqrt(cars$dist)

plot(x, y)

abline(lm(y ~ x)$coefficients)

This scatterplot appears in the lower-left graph in Figure 3.11. The transformation

Y ′ =
√

Y is the first to show some promise for the use of the simple linear regression

model with normal error terms. The variance of the error terms appears to be constant

over the scope of the model. There is nothing magical, however, about the 1/2 power in

the transformation Y ′ =
√

Y =Y 1/2. Might the cube root be a superior transformation to

the square root? This prompts a fourth transformation, which is Y ′ = Y λ, and is known

as the Box–Cox transformation, named after British statisticians George Box and David

Cox. They suggested a similar transformation in 1964, which is

Y ′ =
Y λ−1

λ
,

and the fitting of the λ parameter by maximum likelihood estimation can be performed

by the boxcox function in the MASS package in R.

So the fourth transformation is Y ′ = (Y λ−1)/λ. The R code below calculates the max-

imum likelihood estimator of λ, implements the transformation, generates a scatterplot

of the transformed data pairs, and plots the associated regression line. The boxcox

function generates the log likelihood function for estimating λ, and the which.max

function extracts the maximum likelihood estimator.
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library(MASS)

x = cars$speed

y = cars$dist

bc = boxcox(y ~ x, plotit = FALSE, lambda = seq(0, 1, by = 0.01))

lambda = bc$x[which.max(bc$y)]

y = (y ^ lambda - 1) / lambda

plot(x, y)

abline(lm(y ~ x)$coefficients)

The log likelihood function and an associated 95% confidence interval for λ is generated

by setting the plotit argument to FALSE in the call to boxcox. This confidence interval

includes λ = 1/2. The maximum likelihood estimator λ̂ = 0.43 falls between a square

root and cube root transformation. This scatterplot appears in the lower-right graph in

Figure 3.11, and is very similar to the square root transformation; either would work

fine for this data set. Since the last two scatterplots and associated regression lines are

nearly identical, we move forward with the transformation Y ′ =
√

Y . So the tentative

fitted model is

E
[√

Y
]
= 1.28+0.322X

where the regression coefficients β′0 = 1.28 and β′1 = 0.322 are calculated with the R

statement

lm(sqrt(cars$dist) ~ cars$speed)$coefficients

The next step is to assess the aptness of the model by examining the residuals. The

four graphs (read row-wise) in Figure 3.12 are (a) the residuals associated with the

transformed model
√

Y = 1.28+0.322X plotted against their index, (b) the standardized

residuals ei/
√

MSE associated with the transformed model plotted against the value of

the independent variable Xi, (c) a histogram of the standardized residuals ei/
√

MSE

for the transformed model, and (d) a QQ plot of the standardized residuals ei/
√

MSE

for the transformed model with theoretical quantiles on the horizontal axis and sample

quantiles on the vertical axis. Although there is some nonsymmetry in the histogram

of the residuals (which might be due to the binning of the 50 data pairs), the residual

plots and the QQ plot make the simple linear regression model with normal error terms

for the transformed data pairs seem plausible. A roughly mound-shaped histogram is

typically adequate for the normality assumption. Moving from the visual assessment to

statistical tests, the R code

x = cars$speed

y = sqrt(cars$dist)

fit = lm(y ~ x)

shapiro.test(fit$residuals)

max(cooks.distance(fit))

gives a p-value for the Shapiro–Wilk test of p = 0.314. This is a big improvement

over the p-value obtained in Example 2.8, which rejected normality with p = 0.0215.

The transformation is effective. The largest Cook’s distance is 0.134, which occurs

at the 49th observation (X49, Y49) = (24, 120). Returning to the 49th observation in
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Figure 3.12: Visual assessment of the residuals of the transformed model.

Figure 3.12, we see that it achieves the largest Cook’s distance because of its leverage,

but does not appear to be inconsistent with the transformed model.

So the visual assessment and statistical tests lead us to believe that a simple linear

regression model with normal error terms for the transformed data is appropriate. The

fitted regression model is

E
[√

Y
]
= 1.28+0.322X .

All of the statistical inference techniques can now be applied to the transformed data.

For example, confidence intervals for the β′0 and β′1 (the intercept and slope of the

regression line for the transformed data) can be calculated with the R statements

x = cars$speed

y = sqrt(cars$dist)

fit = lm(y ~ x)

confint(fit)

which give the 95% confidence intervals

0.303 < β′0 < 2.25 and 0.263 < β′1 < 0.382.

Figure 3.13 displays all of the exact two-sided 95% confidence intervals for E[
√

Yh ]
and all of the exact two-sided 95% prediction intervals for

√
Y ∗h for all values of Xh in
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Figure 3.13: Transformed cars model 95% confidence and prediction intervals.

the scope of the regression model. For Xh = 21 miles per hour, for example, an exact

two-sided 95% prediction interval for
√

Y ∗h is

5.78 <
√

Y ∗h < 10.3,

which can be calculated with the R commands

x = cars$speed

y = sqrt(cars$dist)

fit = lm(y ~ x)

predict(fit, data.frame(x = 21), interval = "prediction")

So to translate this back to the original units, for a 51st car going Xh = 21 miles per

hour, the expected stopping distance using the transformed model is

Ŷh =
(
1.28+0.322 ·21

)2
= 64.8

feet, and an exact two-sided 95% prediction interval for the associated stopping distance

is

33.5 < Y ∗h < 106.

The previous example took a trial-and-error approach to determining an appropriate transfor-

mation to apply to the raw data pairs in order to satisfy the assumptions implicit in a simple linear

regression model with normal error terms. There are templates that can give a more systematic

approach to determining these transformations.

There is a nice synergy between matrix algebra and regression, which will be presented in the

next section.
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3.4 Matrix Approach to Simple Linear Regression

So far, a purely algebraic approach has been taken to simple linear regression modeling. This section

considers a matrix-based approach. There are (at least) four reasons to take this approach. First, the

mathematical expressions are in many cases much more compact; summations from the algebraic

approach are often equivalent to matrix multiplications. Second, matrix algebra can easily be imple-

mented on a computer. Third, the matrix approach generalizes very easily to the multiple regression

case in which there are several independent variables. Fourth, the matrix approach generalizes very

easily to weighted least squares, which will be introduced in the next section.

We begin the matrix approach by defining certain critical matrices, which will be set in boldface.

Let X be an n× 2 matrix whose first column is all ones and whose second column contains the

observed values of the independent variable, Y be an n×1 vector which holds the observed values

of the dependent variable, βββ be a 2×1 vector which holds the population intercept and slope, and εεε
be an n×1 vector which holds the error terms:

X =




1 X1

1 X2

...
...

1 Xn


 , Y =




Y1

Y2

...

Yn


 , βββ =

[
β0

β1

]
, and εεε =




ε1

ε2

...

εn


 .

The X matrix is known as the design matrix.

As before, the values of the independent variable (the second column of X) are assumed to be

fixed constants observed without error with at least two distinct values, the values of the dependent

variable contained in Y are assumed to be continuous random responses, and the elements of the

vector εεε are assumed to be mutually independent random variables, each with population mean 0

and finite positive population variance σ2. Stated another way, the expected value of εεε is the zero

vector and the variance–covariance matrix of εεε is



σ2 0 · · · 0

0 σ2 · · · 0
...

...
. . .

...

0 0 · · · σ2


 .

The simple linear regression model

Yi = β0 +β1Xi + εi

for i = 1, 2, . . . , n, can be written more explicitly in terms of each observed data pair as

Y1 = β0 +β1X1 + ε1

Y2 = β0 +β1X2 + ε2

...

Yn = β0 +β1Xn + εn

which, in matrix form, is



Y1

Y2

...

Yn


=




1 X1

1 X2

...
...

1 Xn


 ·
[

β0

β1

]
+




ε1

ε2

...

εn
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or simply

Y = Xβββ+εεε.

This explains why the artificial column of ones appears as the first column of the X matrix; it is to

account for the intercept term. To force a regression line through the origin, simply omit the column

of ones in the X matrix. Taking the expected value of both sides of this equation results in

E[Y] = Xβββ

because E[εi] = 0, for i = 1, 2, . . . , n, (that is, E[εεε] = 0). The left-hand side of this equation, E[Y], is

an n-element column vector with elements E[Y1], E[Y2], . . . , E[Yn]. The sum of squares which is to

be minimized to find the least squares estimators is

S = (Y−Xβββ)′ (Y−Xβββ) .

With this notation established, the algebraic results concerning the simple linear regression

model can be restated more compactly in terms of these matrices. The results have already been

proved, so there is no need to prove them again when stated in matrix form. The ′ superscript de-

notes transpose. It is a good exercise to perform the algebra necessary to see that the algebraic and

matrix versions of these definitions and theorems match. The dimensions of the matrices should be

checked for conformity.

• Definition 1.1. The simple linear regression model is

Y = Xβββ+εεε,

where E[εεε] = 0, V [εεε] = σ2I, and I is the n×n identity matrix.

• Theorem 1.1. The least squares estimators of βββ, denoted by β̂ββ = (β̂0, β̂1

)′
, solve the normal

equations

X′Xβ̂ββ = X′Y.

The X matrix has rank 2 because there are at least two distinct Xi values. So X′X is invertible

and the normal equations have the unique solution

β̂ββ =
(
X′X

)−1
X′Y,

by premultiplying both sides of the normal equations by
(
X′X

)−1
.

• Theorem 1.2. The least squares estimator of βββ in a simple linear regression model is an

unbiased estimator of βββ because

E[β̂ββ]= βββ.

• Theorem 1.3. The least squares estimators of βββ in the simple linear regression model can be

written as linear combinations of the dependent variables:

β̂ββ =
(
X′X

)−1
X′Y,

where the coefficients in the linear combinations are given by
(
X′X

)−1
X′.

• Theorem 1.4. The variance–covariance matrix of the least squares estimators of βββ is

σ2
(
X′X

)−1
.
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• Theorem 1.5 (Gauss–Markov theorem). The least squares estimators of βββ in a simple linear

regression model, β̂ββ = (X′X)−1X′Y, have the smallest population variance amongst all linear

unbiased estimators of βββ.

• Definition 1.2. The vector of fitted values in a simple linear regression model is the n× 1

column vector

Ŷ= Xβ̂ββ = X(X′X)−1X′Y,

which is a linear combination of the dependent variables. The vector of residuals is the n×1

column vector

e = Y− Ŷ

= Y−Xβ̂ββ

= Y−X(X′X)−1X′Y

=
(
I−X(X′X)−1X′

)
Y,

which is also a linear combination of the dependent variables. The matrix I is the n×n identity

matrix.

• Theorem 1.6. For the simple linear regression model with fitted values Ŷand residuals e,

• e′1 = 0,

• Y′1 = Ŷ′1

• Ŷ′e = 0,

where 1 is an n-element column vector of ones.

• Theorem 1.7. An unbiased estimator of σ2 in a simple linear regression model is

σ̂2 = MSE =
e ′e

n−2
.

• Theorem 1.8. The sums of squares can be partitioned in a simple linear regression model as

SST = SSR+SSE or

(Y− Ȳ)
′
(Y− Ȳ)= (Ŷ− Ȳ)

′
(Ŷ− Ȳ)+(Y− Ŷ)

′
(Y− Ŷ),

where Ȳ is an n-element column vector with identical elements which are each the sample

mean of the values of the dependent variable.

• Definition 1.3. The coefficient of determination in a simple linear regression model is

R2 =
SSR

SST
=
(Ŷ− Ȳ)

′
(Ŷ− Ȳ)

(Y− Ȳ)
′
(Y− Ȳ)

,

when (Y− Ȳ)
′
(Y− Ȳ) 6= 0. The coefficient of correlation is

r =±
√

R2,

where the sign associated with r is positive when β̂1 ≥ 0 and negative when β̂1 < 0.



Section 3.4. Matrix Approach to Simple Linear Regression 149

• Definition 2.1. The simple linear regression model with normal error terms is

Y = Xβββ+εεε,

where εεε∼ N
(
0, σ2I

)
.

• Theorem 2.1. For the simple linear regression model with normal error terms, the maximum

likelihood estimators of βββ are

β̂ββ = (X′X)−1X′Y

and the maximum likelihood estimator of σ2 is

σ̂2 =
1

n
(Y−Xβ̂ββ)

′
(Y−Xβ̂ββ).

Since the vector of error terms εεε consists of independent and identically distributed normal

random variables, Y = Xβββ+εεε is a vector of independent and identically distributed normal

random variables, and the linear transformation β̂ββ = (X′X)−1X′Y has normally distributed

elements.

• Theorem 2.2. For the simple linear regression model with normal error terms,

e′e
σ2
∼ χ2(n−2),

and is independent of β̂ββ.

• Theorem 2.3. For the simple linear regression model with normal error terms, an exact two-

sided 100(1−α)% confidence interval for σ2 is

e′e

χ2
n−2,α/2

< σ2 <
e′e

χ2
n−2,1−α/2

.

• Theorems 2.4 and 2.7. For the simple linear regression model with normal error terms,

β̂ββ∼ N(βββ, σ2(X′X)−1).

• Theorem 2.12. For the simple linear regression model with normal error terms, an exact two-

sided 100(1−α)% confidence interval for E[Yh] for a given value of the independent variable

Xh is

X′h β̂ββ− tn−2,α/2

√
σ̂2X′h(X

′X)−1Xh < E[Yh]< X′h β̂ββ+ tn−2,α/2

√
σ̂2X′h(X

′X)−1Xh,

where Xh = (1, Xh)
′ and σ̂2 = MSE.

• Theorem 2.15. For the simple linear regression model with normal error terms, an exact two-

sided 100(1−α)% prediction interval for Y ⋆
h for a given value of the independent variable Xh

is

X′h β̂ββ−tn−2,α/2

√
σ̂2
(

1+X′h(X′X)
−1

Xh

)
<Y ⋆

h <X′h β̂ββ+tn−2,α/2

√
σ̂2
(

1+X′h(X′X)
−1

Xh

)
,

where Xh = (1, Xh)
′ and σ̂2 = MSE.
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• Theorem 2.16. Under the simple linear regression model with normal error terms and param-

eters estimated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn),

(
β̂ββ−βββ

)′
X′X

(
β̂ββ−βββ

)

2 ·MSE
∼ F(2, n−2).

• Theorem 2.17. Under the simple linear regression model with normal error terms and pa-

rameters estimated from the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), the values of β0 and

β1 satisfying (
β̂ββ−βββ

)′
X′X

(
β̂ββ−βββ

)

2 ·MSE
≤ F2,n−2,α

form an exact joint 100(1−α)% confidence region for β0 and β1.

• Definition 3.2. Under the simple linear regression model, the hat matrix is

H = X
(
X′X

)−1
X′.

The diagonal elements of the hat matrix are the leverages. The matrix equation

Ŷ= HY

indicates that H transforms Y to Ŷ. The hat matrix is symmetric (that is, H = H′) and idem-

potent (that is, HH = H).

The matrix approach applied to a simple linear regression model is illustrated for a small sample

size next.

Example 3.9 Consider again the sales data set from Example 1.3. Let the independent

variable X be the number of sales per week that Cheryl completes. Each sale results in

a random amount of revenue to the company that can be attributed to Cheryl. Let the

dependent random variable Y be the associated total revenue to the company from the

sales attributed to Cheryl for that week, in thousands of dollars. The data pairs for the

past n = 3 weeks are

(X1, Y1) = (6, 2), (X2, Y2) = (8, 9), and (X3, Y3) = (2, 2).

Use the matrix approach to simple linear regression to define the matrices X, Y, βββ, and

εεε. Calculate the least squares estimates of the population intercept β0 and population

slope β1, the fitted values, the hat matrix, the residuals, the unbiased estimate of the

variance of the error terms, SST , SSR, SSE, R2, r, an exact 95% confidence interval

for E[Yh] when Xh = 5 weekly sales, and an exact 95% prediction interval for Y ⋆
h when

Xh = 5 weekly sales using the matrix approach to simple linear regression.

The X, Y, βββ, and εεε matrices associated with the n = 3 data pairs are

X =




1 6

1 8

1 2


 , Y =




2

9

2


 , βββ =

[
β0

β1

]
, and εεε =




ε1

ε2

ε3


 .

The R code below uses the matrix approach to simple linear regression to calculate the

estimate of the intercept β̂0, the estimate of the slope β̂1, the fitted values Ŷ, the hat
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matrix H, the residuals e, and the estimate of the population variance of the error terms

σ̂2. SST , SSR, SSE, R2, r, an exact 95% confidence interval for E[Yh] when Xh = 5,

and an exact 95% prediction interval for Y ⋆
h when Xh = 5 using the matrix approach to

simple linear regression. The t function computes a matrix transpose, the diag function

creates an identity matrix, and the solve function computes the inverse of X ′X . The

matrix multiplication operator is %*%.

x = c(6, 8, 2)

y = c(2, 9, 2)

x = cbind(1, x)

beta = solve(t(x) %*% x) %*% t(x) %*% y

yhat = x %*% beta

H = x %*% solve(t(x) %*% x) %*% t(x)

n = length(y)

e = (diag(n) - H) %*% y

sighat = (t(e) %*% e) / (n - 2)

ybar = rep(mean(y), n)

sst = t(y - ybar) %*% (y - ybar)

ssr = t(yhat - ybar) %*% (yhat - ybar)

sse = t(y - yhat) %*% (y - yhat)

R2 = ssr / sst

r = sign(beta[2]) * sqrt(R2)

alpha = 0.05

conf1 = c(sum(e ^ 2) / qchisq(1 - alpha / 2, n - 2),

sum(e ^ 2) / qchisq(alpha / 2, n - 2))

xh = matrix(c(1, 5), 2, 1)

half2 = qt(1 - alpha / 2, n - 2) *

sqrt(sse / (n - 2) * t(xh) %*% solve(t(x) %*% x) %*% xh)

conf2 = c(t(xh) %*% beta - half2, t(xh) %*% beta + half2)

half3 = qt(1 - alpha / 2, n - 2) *

sqrt(sse / (n - 2) * (1 + t(xh) %*% solve(t(x) %*% x) %*% xh))

conf3 = c(t(xh) %*% beta - half3, t(xh) %*% beta + half3)

The output of this code is given in the equations that follow. The least squares estimators

of the intercept and slope of the regression line are

β̂ββ =
(
X′X

)−1
X′Y =

[
3 16

16 104

]−1 [
1 1 1

6 8 2

]


2

9

2


=

[
−1

1

]
.

The fitted values are

Ŷ= Xβ̂ββ =




1 6

1 8

1 2



[
−1

1

]
=




5

7

1


 .

The 3×3 hat matrix H is

H=X
(
X′X

)−1
X′=




1 6

1 8

1 2



[

3 16

16 104

]−1 [
1 1 1

6 8 2

]
=




5/14 3/7 3/14

3/7 5/7 −1/7

3/14 −1/7 13/14


 .
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The diagonal elements of the hat matrix are the leverages h11, h22, h33. The vector of

residuals is

e = (I−H)Y =




9/14 −3/7 −3/14

−3/7 2/7 1/7

−3/14 1/7 1/14






2

9

2


=



−3

2

1


 .

The fitted values and the residuals computed here are consistent with the geometry

shown in Figure 1.15 from Example 1.8. The unbiased estimate of the population vari-

ance of the error terms is

σ̂2 = MSE =
e ′e

n−2
=

1

3−2

[
−3 2 1

]


−3

2

1


= 14.

The sums of squares can be partitioned as SST = SSR+SSE using

(Y− Ȳ)
′
(Y− Ȳ)= (Ŷ− Ȳ)

′
(Ŷ− Ȳ)+(Y− Ŷ)

′
(Y− Ŷ),

where Ȳ is an n-element column vector with identical elements which are each the

sample mean of the values of the dependent variable. For the n = 3 data pairs, this

becomes

(
−7

3

)2

+

(
14

3

)2

+

(
−7

3

)2

=

(
2

3

)2

+

(
8

3

)2

+

(
−10

3

)2

+(−3)2 +22 +12

or
98

3
=

56

3
+14.

Figure 3.14 show the geometry associated with SST = SSR+ SSE for the three data

pairs. The sum of the areas of the three squares in the top graph is SST ; the sum of the

areas of the three squares in the middle graph is SSR; the sum of the areas of the three

squares in the bottom graph is SSE.

The coefficient of determination and the correlation coefficient in a simple linear re-

gression model are

R2 =
SSR

SST
=
(Ŷ− Ȳ)

′
(Ŷ− Ȳ)

(Y− Ȳ)
′
(Y− Ȳ)

=
56/3

98/3
=

4

7
= 0.57 and r = 0.76.

The three intervals are

2.8 < σ2 < 14000,

−24 < E[Yh]< 32,

and

−51 < Y ⋆
h < 59.

The intervals are unusually wide because there are only n = 3 data pairs which have

significant deviation from the regression line. Notice that these results match those

obtained earlier by algebraic methods and by using the lm (linear model) function as

given in Examples 1.3, 1.7, 1.8, and 1.10.
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Figure 3.14: Geometry associated with SST = SSR+SSE for the sales data.
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Theorem 2.2 stated that under the simple linear regression model with normal errors,

SSE

σ2
∼ χ2(n−2).

An outline of the proof of Theorem 2.2 was given in Chapter 2 in purely algebraic terms. An outline

of the proof to the result using the matrix approach to simple linear regression is given here to

contrast the difference between the two approaches.

Proof (Outline only; matrix approach) As given in the matrix version of Definition 1.2,

the vector of fitted values in a simple linear regression model is the n×1 column vector

Ŷ= X
(
X′X

)−1
X′Y.

The sum of squares for error in matrix form is

SSE = (Y− Ŷ)
′
(Y− Ŷ)

=
[
Y−X

(
X′X

)−1
X′Y

]′ [
Y−X

(
X′X

)−1
X′Y

]

=
[
Y′−Y′X′′

(
(X′X)

′)−1
X′
][

Y−X
(
X′X

)−1
X′Y

]

= Y′
[
I−X

(
X′X

)−1
X′
][

I−X
(
X′X

)−1
X′
]

Y.

Let R = I−X
(
X′X

)−1
X′, where I is the n× n identity matrix. This matrix plays a

critical role in the proof. The matrix R is symmetric because

R′ =
[
I−X

(
X′X

)−1
X′
]′
= I′−X′′

(
(X′X)

′)−1
X′ = I−X

(
X′X

)−1
= R.

The matrix R is idempotent because

R2 =
[
I−X

(
X′X

)−1
X′
][

I−X
(
X′X

)−1
X′
]

= I2−2X
(
X′X

)−1
X′+X

(
X′X

)−1
X′X

(
X′X

)−1
X′

= I−X
(
X′X

)−1
X′

= R.

Since R is a symmetric idempotent matrix, it is a projection matrix. This has two

implications. First, the rank of R equals the trace of R, which in this case is n− 2.

Second, all eigenvalues of R are either zero or one, and in this setting, there are n− 2

ones and 2 zeros. The rest of the proof proceeds as follows. Since R is symmetric matrix

it can be orthogonally diagonalized as R = UDU′, where U is an orthogonal matrix

and D is a diagonal matrix with n− 2 ones and 2 zeros on the diagonal. The assumed

normality of the error terms in the model results in normally distributed residuals, which

can be simplified to yield SSE/σ2 ∼ χ2(n−2). �

The matrix approach gives an alternative way of computing measures of interest in a simple

linear regression. Using matrices also allows the following two helpful extensions to simple linear

regression.



Section 3.5. Multiple Linear Regression 155

• Removing the first column of the X matrix that consists entirely of ones corresponds to forcing

a regression line through the origin.

• Adding additional columns to the X matrix corresponds to including additional independent

variables to the regression model, which is known as multiple linear regression. This is the

topic of the next section.

3.5 Multiple Linear Regression

Multiple linear regression can often be applied when there are several independent variables (or pre-

dictors) X1, X2, . . . , Xp which can be used to explain a continuous dependent (or response) variable

Y . Three examples are listed below.

• The asking price of a home Y is a function of

– the number of square feet in the home,

– the number of bedrooms, and

– acreage of the land associated with the home.

• The annual amount of money a person donates to charity Y is a function of

– the nationality of the person,

– the annual income of the person,

– the net worth of the person,

– the religious affiliation of the person,

– the age of the person, and

– the gender of the person.

• The stopping distance of a car Y is a function of

– the speed of the car,

– the weight of the car, and

– the type of brakes installed on the car.

One way to formulate a multiple linear regression model is to treat the left-hand side of the

model as an expected value:

E[Y ] = β0 +β1X1 +β2X2 + · · ·+βpXp.

Since E[Y ] denotes a conditional expectation of Y given the values of the p independent variables

X1, X2, . . . , Xn, a more careful way to write this model is

E[Y |X1, X2, . . . , Xn] = β0 +β1X1 +β2X2 + · · ·+βpXp.

So far, there has been no consideration of the probability distribution of the error terms, and that

is addressed in the formal definition of a multiple linear regression model given next.



156 Chapter 3. Topics in Regression

Definition 3.4 A multiple linear regression model is given by

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε,

where

• X1, X2, . . . , Xp are the independent variables, assumed to be a fixed values observed without

error,

• Y is the dependent variable, which is a continuous random variable,

• β0 is the population intercept of the regression plane, an unknown constant parameter,

• β1, β2, . . . , βp are unknown constant parameters which control the inclination of the regres-

sion plane, and

• ε is the error term, a continuous random variable with population mean zero and positive,

finite population variance σ2 that accounts for the randomness in the relationship between

X1, X2, . . . , Xp and Y .

To estimate the parameters in a multiple linear regression model, we collect n observations

which each consist of the p independent variables and the associated dependent variable. In most

applications, p > n. Occasions arise (often in biostatistical applications) in which p < n. The

formulation of the simple linear regression model with notation included for the n observations is

Yi = β0 +β1Xi1 +β2Xi2 + · · ·+βpXip + εi

for i = 1, 2, . . . , n. So Xi j denotes the value of the jth independent variable collected on the ith

observational unit. In the real estate example given at the beginning of this section, X83 is the value

of the third independent variable (acreage) collected on the 8th home collected by the analyst. The

associated asking price of the 8th home is Y8.

Figure 3.15 shows a portion of the population regression plane E[Y ] = β0 +β1X1 +β2X2 for a

multiple linear regression model with p = 2 independent variables X1 and X2. The plane extends

outward from the portion shown in Figure 3.15. The regression parameters β0, β1, and β2 are fixed

constants. The intercept β0 is positive in Figure 3.15 because the plane strikes the Y -axis above the

origin. Based on the inclination of the population regression plane relative to the X1- and X2-axes it

is clear that β1 < 0 and β2 > 0. To avoid clutter and highlight the geometry and notation, only the

ith data triple (Xi1, Xi2, Yi) and the associated error term εi are shown in the figure.

Figure 3.16 shows a portion of the estimated regression plane Y = β̂0 + β̂1X1 + β̂2X2 for a

multiple linear regression model with p = 2 independent variables X1 and X2. The estimated re-

gression parameters β̂0, β̂1, and β̂2 are random variables which are estimated from n data triples

(X11, X12, Y1) , (X21, X22, Y2) , . . . , (Xn1, Xn2, Yn). The estimated regression parameters are random

variables because the dependent variable values Y1, Y2, . . . , Yn are random variables. The estimated

intercept β̂0 is positive in Figure 3.16 because the plane strikes the Y -axis above the origin. Based

on the inclination of the estimated regression plane relative to the X1- and X2-axes it is clear that

β̂1 < 0 and β̂2 > 0. To avoid clutter and highlight the geometry and notation, just the ith data triple

(Xi1, Xi2, Yi), the associated fitted value (Xi1, Xi2, Ŷi), and the associated residual ei are shown in the

figure.

When there are p > 2 independent variables, the estimated regression model is a hyperplane in

R p+1. Residual i is the distance ei = Yi− Ŷi, for i = 1, 2, . . . , n.
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(0, 0, β0)

(Xi1, Xi2, 0)

(Xi1, Xi2, Yi)

(
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)

E[Y ] =
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Y

Figure 3.15: Population regression plane and a sample point.
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(
Xi1, Xi2, Ŷi

)

Y = β̂0+ β̂1X1+ β̂2X2

ei
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Y

Figure 3.16: Estimated regression plane and a sample point.

When the error terms are assumed to be normally distributed, this model is known as the multiple

linear regression model with normal error terms. This additional assumption allows for statistical

inference concerning parameters and predicted values in a similar manner to that described in Chap-

ter 2.

The multiple linear regression model can also be expressed in terms of matrices. Relative to the

simple linear regression model, additional columns are appended to the X matrix, and the βββ vector

is expanded to include the parameters associated with the additional parameters:

X =




1 X11 X12 · · · X1p

1 X21 X22 · · · X2p

...
...

...
. . .

...

1 Xn1 Xn2 · · · Xnp


 , Y =




Y1

Y2

...

Yn


 , βββ =




β0

β1

...

βp


 , and εεε =




ε1

ε2

...

εn


 .
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The vectors Y and εεε remain unchanged from the simple linear regression formulation. The first row

of X corresponds to the values of the independent variables collected on the first observational unit,

the second row of X corresponds to the values of the independent variables collected on the second

observational unit, etc. As was the case in simple linear regression, X is known as the design matrix.

The good news about the matrix approach to multiple linear regression is that the definitions

and results from simple linear regression only require some minor tweaking in order to generalize

to multiple regression. Several of these definitions and results are given below. In many cases, it

is just a matter of replacing the word “simple” with the word “multiple” or updating the degrees of

freedom to account for the p independent variables. It is assumed that the X matrix has rank p+1

(that is, a full rank matrix), which means that the columns of X are linearly independent.

• The multiple linear regression model is

Y = Xβββ+εεε,

where E[εεε] = 0, V [εεε] = σ2I, and I is the n×n identity matrix.

• The least squares estimators of βββ, denoted by β̂ββ = (β̂0, β̂1, . . . , β̂p

)′
, solve the normal equa-

tions

X′Xβ̂ββ = X′Y.

Since X has full rank, X′X is invertible and the normal equations have the unique solution

β̂ββ =
(
X′X

)−1
X′Y,

by premultiplying both sides of the normal equations by
(
X′X

)−1
.

• The least squares estimator of βββ in a multiple linear regression model is an unbiased estimator

of βββ because

E[β̂ββ]= βββ.

• The least squares estimators of βββ in the multiple linear regression model can be written as

linear combinations of the dependent variables:

β̂ββ =
(
X′X

)−1
X′Y,

where the coefficients in the linear combinations are given by
(
X′X

)−1
X′.

• The variance–covariance matrix of the least squares estimators of βββ is

σ2
(
X′X

)−1
.

• (Gauss–Markov theorem) The least squares estimators of βββ in a multiple linear regression

model, β̂ββ = (X′X)−1X′Y, have the smallest population variance amongst all linear unbiased

estimators of βββ.

• The vector of fitted values in a multiple linear regression model is the n×1 column vector

Ŷ= Xβ̂ββ = X(X′X)−1X′Y,
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which is a linear combination of the dependent variables. The vector of residuals is the n×1

column vector

e = Y− Ŷ

= Y−Xβ̂ββ

= Y−X(X′X)−1X′Y

=
(
I−X(X′X)−1X′

)
Y,

which is also a linear combination of the dependent variables. The matrix I is the n×n identity

matrix.

• The multiple linear regression model with normal error terms is

Y = Xβββ+εεε,

where εεε∼ N
(
0, σ2I

)
.

• For the multiple linear regression model with normal error terms, the maximum likelihood

estimators of βββ are

β̂ββ = (X′X)−1X′Y

and the maximum likelihood estimator of σ2 is

σ̂2 =
1

n
(Y−Xβ̂ββ)

′
(Y−Xβ̂ββ).

Since the vector of error terms εεε consists of independent and identically distributed normal

random variables, Y = Xβββ+εεε is a vector of independent and identically distributed normal

random variables. Since β̂ββ is a linear transformation of Y , β̂ββ∼ N
(

βββ, σ2
(
X′X

)−1
)

.

• Under the multiple linear regression model, the n×n hat matrix is

H = X
(
X′X

)−1
X′.

The diagonal elements of the hat matrix are the leverages. The matrix equation

Ŷ= HY

indicates that H transforms Y to Ŷ. The hat matrix is symmetric (that is, H = H′) and idem-

potent (that is, HH = H). The trace of the hat matrix is ∑n
i=1 hii = p+1.

The example of multiple linear regression that follows considers p = 2 predictors of the sales

price of a home.

Example 3.10 In Example 2.9, the sales price, Y , of homes sold in Ames, Iowa be-

tween 2006 and 2010 with between 2500 and 3500 square feet were fitted to a simple

linear regression model with the square footage as an independent variable X . There

were n = 120 homes in the data frame that fit this criteria. In that analysis, the value

of the land was estimated to be $21,233 (although this was outside of the scope of the

simple linear regression model), and the price of the home increased by an average of

$112 with each additional square foot of indoor space. Fit a multiple linear regression
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model with normal error terms to the same data set using two independent variables, X1,

the square footage of indoor space, and X2, the square footage of the lot. The dependent

variable is again the sales price Y .

The multiple regression model in this setting is

Y = β0 +β1X1 +β2X2 + ε,

where ε∼N
(
µ, σ2

Z

)
. The R code below estimates the regression parameters β0, β1, and

β2. The regression function

E[Y ] = β0 +β1X1 +β2X2,

is a plane in R 3. The values of β1 and β2 control the tilt of the regression plane,

and the value of β0 is the intercept of the regression plane with the E[Y ] axis. The

regression plane will be fitted in two fashions in R: the matrix approach to multiple

linear regression and the built-in lm function. The R code below defines the X and Y

matrices, and then uses the formula

β̂ββ =
(
X′X

)−1
X′Y

to calculate the estimates of the regression coefficients.

library(modeldata)

i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

sqft = ames$Gr_Liv_Area[i]

lotarea = ames$Lot_Area[i]

X = cbind(1, sqft, lotarea)

Y = ames$Sale_Price[i]

beta = solve(t(X) %*% X) %*% t(X) %*% Y

These R statements return the least squares regression parameter estimates β̂0 = 26,515,

β̂1 = 96.88, and β̂2 = 2.65. The intercept is not meaningful in this setting because it is

associated with a home with 0 square feet and no land. This situation does not make

sense nor does it fall in the scope of the model. The naive interpretation of the other

regression coefficients in the fitted model are (a) the sales price of a home increases

by an average of $96.88 for each additional square foot in the home, and (b) the sales

price of the home increases by $2.65 for each additional square foot in the lot size.

The interpretation of the estimated regression coefficients is more nuanced in the case

of multiple independent variables because those independent variables are often corre-

lated. So reporting that “the value of β̂1 = 96.88 means that the sales price of the house

increases by an average of $96.88 for each additional square foot of interior space with

the lot size fixed” is not quite accurate because the interior space and lot size might

be correlated. Larger homes might be built on larger lots, for example. Regression

analysts acknowledge possible correlations between the independent variables by just

stating “the sales price increases by an average of $96.88 for each additional square foot

of interior space, adjusted for lot size” when interpreting β̂1. Likewise, “the sales price

increases by an average of $2.65 for each additional square foot of lot size, adjusted for

interior square footage” when interpreting β̂2.

A second way to calculate the estimated regression coefficients is to use R’s built-in lm

function.
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library(modeldata)

i = ames$Gr_Liv_Area >= 2500 & ames$Gr_Liv_Area <= 3500

sqft = ames$Gr_Liv_Area[i]

lotarea = ames$Lot_Area[i]

price = ames$Sale_Price[i]

fit = lm(price ~ sqft + lotarea)

summary(fit)

The call to the summary function prints the following output concerning the fitted mul-

tiple linear regression model.

Call:

lm(formula = price ~ sqft + lotarea)

Residuals:

Min 1Q Median 3Q Max

-226718 -61645 -5756 62774 288215

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.652e+04 1.087e+05 0.244 0.8077

sqft 9.688e+01 4.043e+01 2.396 0.0181 *

lotarea 2.645e+00 1.660e+00 1.593 0.1138

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 99890 on 117 degrees of freedom

Multiple R-squared: 0.08339, Adjusted R-squared: 0.06772

F-statistic: 5.322 on 2 and 117 DF, p-value: 0.006134

The estimated regression coefficients match those that were calculated using the matrix

approach to multiple linear regression. The right-hand column of p-values tells us that

the size of a home is a statistically significant predictor of the sales price of a home, but

the lot size is not a statistically significant predictor of the sales price of a home.

A multiple linear regression model can easily be adapted to include nonlinear terms. A multiple

regression model with two independent variables X1 and X2, for example, with a linear relationship

between X1 and Y and a quadratic relationship between X2 and Y which includes an intercept term

is

Y = β0 +β1X1 +β2X2 +β3X2
2 + ε.

Using the R lm function to estimate the coefficients will be illustrated in Section 3.7.

Multiple linear regression has many more modeling issues that arise than simple linear re-

gression. The subsections that follow consider the following topics within multiple regression:

(a) handling categorical independent variables which fall in categories rather than quantitative val-

ues, (b) handling the case in which independent variables have interactive effects, (c) extending the

ANOVA table to multiple independent variables, (d) calculation of the coefficient of determination

for multiple linear regression, and an adjustment that can be made to reduce its bias, (e) the effect of

multicollinearity among the independent variables, and ( f ) algorithms for model selection.
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3.5.1 Categorical Independent Variables

Some regression models include independent variables which are not naturally quantitative, but are

rather categorical. These categorical independent variables require some special treatment in order

to be included in a multiple linear regression model. The cases in which a categorical indepen-

dent variable falls in one of two categories will be considered separately from the case in which a

categorical independent variable falls in one of more than two categories.

Categorical independent variable which falls in one of two categories. Consider a multiple

linear regression model with p = 2 independent variables, X1, which is age, and X2, which is gender.

The dependent variable is the annual salary Y . So the multiple linear regression model is

Y = β0 +β1X1 +β2X2 + ε.

Regression models assume that the independent variables are quantitative rather than categorical

like gender. One solution to this problem is to code the gender as 0 for female and 1 for male. The

independent variable X2 in this case is known as a dummy variable or an indicator variable. As a

particular instance, consider n = 6 data points consisting of three women (ages 26, 71, and 34) and

three men (ages 44, 65, and 21). In this case the design matrix is

X =




1 26 0

1 71 0

1 34 0

1 44 1

1 65 1

1 21 1



.

The elements of the six-element column vector Y are the associated salaries. The value of β̂0 is not

meaningful here. Not only is it outside of the scope of the model, its interpretation as the annual

salary of a newborn baby girl doesn’t fit with societal norms. Newborn baby girls seldom earn

annual salaries. The value of β̂1 indicates the increase in annual salary for each additional year in

age, adjusted for gender. Since salaries tend to rise over time, we anticipate that β̂1 will be positive.

The value of β̂2 indicates the change in salary associated being male rather than female, adjusted for

age. If β̂2 is significantly greater than zero, then men’s salaries are significantly higher than women’s

salaries, adjusted for age; if β̂2 is significantly less than zero, then women’s salaries are significantly

higher than men’s salaries, adjusted for age. The choice of using an indicator of 0 for women and 1

for men was arbitrary. See if you can predict what would happen if instead we used 0 for men and 1

for women.

Categorical independent variable which falls in one of more than two categories. Let’s

extend the regression model to predict the annual salary to include another categorical variable:

political affiliation. This categorical variable will have three levels: Republican, Democrat, and

Independent. The third category includes anyone who is not affiliated with the two main political

parties in the United States. Although it might be tempting to just let X3 = 1 denote a Republican,

X3 = 2 denote a Democrat, and X3 = 3 denote an Independent, this will likely produce erroneous

results for two reasons. First, using the ordering X3 = 1, X3 = 2, and X3 = 3 implies an ordering of

the salaries associated with individuals from the three different political affiliations for β3 > 0, or

the opposite ordering of the salaries associated with individuals from the three political affiliations

for β3 < 0. This ordering might not be the correct ordering. Second, leaving a gap of 1 between each

of the values of X3 indicates that there is a known and equal salary gap between individuals from

the ordered different political affiliations. The usual way to account for a categorical independent
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variable which can take on c values is to define c−1 independent indicator variables. In the case of

political affiliation, the independent variables X3 and X4 can be defined as

X3 =

{
0 not a Republican

1 Republican

and

X4 =

{
0 not a Democrat

1 Democrat.

So now the multiple linear regression model with p = 4 independent variables is

Y = β0 +β1X1 +β2X2 +β3X3 +β4X4 + ε.

In this fashion, the expected value of an Independent’s salary is given by

E[Y ] = β0 +β1X1 +β2X2,

the expected value of an Republican’s salary is given by

E[Y ] = β0 +β1X1 +β2X2 +β3X3,

and the expected value of a Democrat’s salary is given by

E[Y ] = β0 +β1X1 +β2X2 +β4X4.

With this arrangement of the levels of the categorical variable representing the political affiliation,

there is no predicted ordering of salaries by the three political affiliations nor are the gaps between

the affiliations necessarily equal.

As a particular instance, consider n = 6 data points with three women (a 26-year-old Indepen-

dent, a 71-year-old Democrat, and a 34-year-old Republican) and three men (a 44-year-old Indepen-

dent, a 65-year-old Democrat, and a 21-year-old Republican) in the study. The appropriate design

matrix is

X =




1 26 0 0 0

1 71 0 0 1

1 34 0 1 0

1 44 1 0 0

1 65 1 0 1

1 21 1 1 0



.

The value of β̂3 is the estimated difference between the mean annual salary of an Independent and

a Republican, adjusted for age and gender. The value of β̂3 is the estimated difference between the

mean annual salary of an Independent and a Democrat, adjusted for age and gender. This example

has been for illustrative purposes only. Estimating five parameters β0, β1, . . . ,β4 from just six data

values will almost certainly not provide strong statistical evidence concerning the effect of age,

gender, and political affiliation on salary. Furthermore, many other important factors, such as years

of education, years on the job, and type of work, have not been included in this regression model.

3.5.2 Interaction Terms

The multiple linear regression model

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε
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assumes a linear relationship between each independent variable and Y and the slope associated with

an independent variable is identical at all values of the other independent variables within the scope

of the multiple linear regression model. This relationship is illustrated for some selected data points

of smaller homes from the Ames, Iowa housing data set from Examples 2.9 and 3.10. In this case,

X1 is the interior square footage, X2 is an indicator variable reflecting the lot size,

X2 =

{
0 lot size is less than or equal to 10,000 square feet

1 lot size is greater than 10,000 square feet,

and Y is the sales price. The multiple linear regression model with the p = 2 independent variables

is

Y = β0 +β1X1 +β2X2 + ε.

Figure 3.17 shows a scatterplot of the interior square footage and sales price of homes on smaller

lots (X2 = 0 as open points) and larger lots (X2 = 1 as solid points). The values of β̂0, β̂1, and β̂2

are indicated on the graph. The estimated intercept β̂0 = 21,473, although slightly outside of the

scope of the model, gives the estimated sales price of a small lot containing no dwelling as $21,473.

The estimated regression coefficient β̂1 = 31.33 indicates that the sales price of a home increases

by an estimated $31.33 for each additional interior square foot, adjusted for lot size. The estimated

regression coefficient β̂2 = 35,693 indicates that homes on larger lots cost $35,693 more, on average,

than homes on smaller lots, adjusted for interior square feet. Notice that this formulation of the

multiple linear regression model forces the slopes of the two lines in Figure 3.17 to be identical,

regardless of the value of X2.

But is the assumption of equal slopes of the two lines in Figure 3.17 justified? Separate simple

linear regression models are fitted to the homes built on smaller and larger lots, and the results are

plotted in Figure 3.18. The lines do not appear to be parallel in this case, indicating that a more

complex regression model is warranted. There appears, in this case, to be an interaction effect
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β̂2

slope: β̂1
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Y

Figure 3.17: Fitted multiple linear regression model Y = β0 +β1X1 +β2X2 + ε.



Section 3.5. Multiple Linear Regression 165

0 500 1000 1500 2000 2500

0

40,000

80,000

120,000

smaller lots (X2 = 0)

bigger lots (X2 = 1)

X1

Y

Figure 3.18: Fitted simple linear regression models Y = β0 +β1X1 + ε.

between X1 and X2. This means that the effect of one independent variable (X1, for example, the

interior size) on Y is altered based on the value of another independent variable (X2, the lot size

indicator).

Regression analysts account for this interaction by including cross-product terms in the regres-

sion model. In this Ames housing data set example, the regression model with an interaction term

is

Y = β0 +β1X1 +β2X2 +β3X1X2 + ε.

If the regression parameter β̂3 differs statistically from 0, then the inclusion of the interaction term

is warranted. Notice that when X2 = 0 (smaller lots), the model reduces to

Y = β0 +β1X1 + ε,

which is a simple linear regression model with intercept parameter β0 and slope parameter β1. On

the other hand, when X2 = 1 (larger lots), the model reduces to

Y = β0 +β1X1 +β2 +β3X1 + ε

or

Y = β0 +β2 +(β1 +β3)X1 + ε

which is a simple linear regression model with intercept parameter β0 + β2 and slope parameter

β1 +β3. It is in this fashion that the two non-parallel lines depicted in Figure 3.18 can be estimated

in a single regression model. Not surprisingly, it requires four parameters, β0, β1, β2, and β3, to do

so. The multiple linear regression model with an interaction term can be fitted using the lm function

in R by simply replacing the usual + in the formula with *. All four parameters are statistically

significant at the 0.05 level in this case, so the inclusion of an interaction term is warranted.
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3.5.3 The ANOVA Table

The degrees of freedom for the sums of squares in multiple linear regression are modified because

of the additional parameters estimated relative to those given in the ANOVA table from Table 2.2

for simple linear regression. The ANOVA table for a multiple linear regression model with p inde-

pendent variables and normal error terms is given in Table 3.6. Formulas for the sums of squares

Source SS df MS F

Regression SSR p MSR MSR/MSE

Error SSE n− p−1 MSE

Total SST n−1

Table 3.6: Basic ANOVA table for multiple linear regression.

using the matrix formulation for multiple linear regression are SST = SSR+SSE, which is

(Y− Ȳ)
′
(Y− Ȳ)= (Ŷ− Ȳ)

′
(Ŷ− Ȳ)+(Y− Ŷ)

′
(Y− Ŷ),

where Ȳ is an n-element column vector with identical elements which are each the sample mean of

the values of the dependent variable. Equivalently,

SST = Y′Y−Y′JY/n, SSR = β̂ββ
′
X′Y−Y′JY/n, SSE = Y′Y− β̂ββ

′
X′Y,

where J is an n×n matrix with all elements being equal to 1. The mean square error for regression

is MSR = SSR/p, the mean square error is MSE = SSE/(n− p− 1), and the test statistic F =
MSR/MSE can be used for testing

H0 : β1 = β2 = · · ·= βp = 0

versus

H1 : not all β1, β2, . . . , βp equal 0

where F has an F(p, n− p− 1) distribution under H0. The anova function in R can be used

to generate an ANOVA table associated with a multiple linear regression model fitted by the lm

function. For the Ames, Iowa housing data from Example 3.10 which used p = 2 independent

variables (interior square footage and lot size), the R summary function returns the test statistic

F = 5.322, which is associated with a p-value of p = 0.006 based on the F distribution with p = 2

and n− p−1= 120−2−1= 117 degrees of freedom. There is strong statistical evidence that one or

both of the coefficients β̂1 and β̂2 is statistically different from zero. One or both of the independent

variables is effective in predicting the sales price.

3.5.4 Adjusted Coefficient of Determination

The coefficient of determination for a multiple linear regression model is defined as

R2 =
SSR

SST
=

SST −SSE

SST
= 1− SSE

SST
,

and it measures the fraction of variation in Y1, Y2, . . . , Yn about Ȳ that is accounted for by the linear

relationship between the independent variables X1, X2, . . . , Xp and Y . As before 0≤ R2 ≤ 1, and the
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extreme cases are associated with β̂1 = β̂2 = · · ·= β̂p = 0 (for R2 = 0) and all Y -values falling in the

estimated regression hyperplane (for R2 = 1).

Now consider a multiple linear regression model with p independent variables X1, X2, . . . , Xp.

What is the effect on SST and SSE of adding another independent variable, Xp+1, to the model?

Adding another independent variable does not affect SST because it depends only on Y1, Y2, . . . , Yn.

The value of SSE cannot increase with the addition of the new independent variable because either

(a) SSE will remain the same if β̂p+1 = 0, or (b) SSE will decrease if β̂p+1 6= 0. The impact on R2

is that it must stay the same or increase for every additional independent variable that is added to the

model.

It is for this reason that R2 tends to be a biased estimator of the fraction of variation in Y1, Y2, . . . , Yn

accounted for by the independent variables. Some regression software (including R) calculate an ad-

justed coefficient of variation by dividing the sums of squares by their associated degrees of freedom

R2
adj = 1− SSE/(n− p−1)

SST/(n−1)
.

Both values are reported in the call to the summary function with the Ames, Iowa housing data in

Example 3.10 as

R2 = 0.08339 and R2
adj = 0.06772.

3.5.5 Multicollinearity

In many settings, the values of the independent variables are correlated. In the housing data set from

Example 3.10, for example, the independent variables X1 (interior square footage) and X2 (lot size)

are probably positively correlated. Intuition suggests that larger homes are built on larger lots, on

average. In the extreme case, what if homes in Ames were required by some bizarre municipal code

to all be single story homes with the square footage of the lot always exactly four times the square

footage of the interior of the home? In this case, X2 = 4X1, so knowing the value of either X1 or

X2 allows you to know the value of the other. Intuitively, one of the two independent variables is

superfluous. When this is the case, the design matrix X has two columns which are multiples of one

another, so these columns are linearly dependent and the matrix does not have full rank. This implies

that the matrix X′X (which is used in computing the estimates of the regression coefficients) is

singular, so it does not have an inverse. In this case, the usual formula for the regression coefficients,

β̂ββ =
(
X′X

)−1
X′Y,

is undefined because the matrix X′X does not have an inverse. In the case in which X2 = 4X1, all

pairs of the independent variables fall on a line, so it is impossible to know the proper tilt of the

fitted regression plane in R 3. There are many planes that minimize the sum of squared errors.

Multicollinearity is the condition associated with independent variables that are highly corre-

lated among themselves in a multiple regression model. More specifically, multicollinearity occurs

when two or more of the independent variables have a high correlation. This can appear as an

approximately linear relationship between two of the independent variables. Multicollinearity is a

condition associated with the design matrix X rather than the values of the dependent variable Y or

the model Y = Xβββ+εεε. In cases in which multicollinearity exists, the matrix X′X has an inverse, but

it is ill-conditioned and subject to slight variations in the data or is unstable because of large differ-

ences in the magnitudes of the various values of the independent variables. One of the key practical

issues when multicollinearity is present is that an estimated regression coefficient for a particular
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independent variable depends on whether the other independent variables are included or left out of

the model.

So multicollinearity has been loosely defined as high correlation among the independent vari-

ables. There is redundancy to the information contained in the independent variables. The next

paragraphs describe how to detect multicollinearity, its consequences, and some remedies.

Although the hypothetical perfect correlation between the interior space and the lot size of a

home from Ames, Iowa described previously occurs seldom in practice, highly correlated indepen-

dent variables can result in some unusual behavior of regression coefficients as a regression model

is constructed. Some signs that multicollinearity might be present in a multiple linear regression

model include the following.

• Large values of the estimated standard deviations of the regression coefficients.

• Including or not including an independent variable in the model results in large changes to the

estimated regression coefficients.

• An estimated regression coefficient that is statistically significant when the associated inde-

pendent variable is considered alone, but becomes insignificant when one or more other inde-

pendent variables are added to the model.

• An estimated regression coefficient with a sign that is inconsistent with expected sign or in-

consistent with previous similar data sets.

• The pairwise sample correlation among the independent variables is high. The cor function

in R can be used to assess the correlation among independent variables. The R statement

cor(swiss)

for example, calculates the correlation matrix for the columns of the built-in data frame named

swiss. The off-diagonal elements of this matrix range from −0.69 to 0.70, indicating that

multicollinearity is present.

All of the criteria listed above are informal. A more formal way to determine whether multicollinear-

ity is present is to introduce a statistic which reflects multicollinearity. The estimate of the variance

of β̂ j can be written as

V̂
[
β̂ j

]
=

1

1−R2
j

[
MSE

∑n
i=1(Xi j− X̄ j)2

]
,

where X̄ j = ∑n
i=1 Xi j, MSE = SSE/(n− p− 1) for the full multiple regression model, and R2

j is

the coefficient of determination obtained by conducting a multiple linear regression with X j as the

dependent variable and the other p− 1 X-values as the independent variables, for j = 1, 2, . . . , p.

The coefficient on the right-hand side of this equation,

V IFj =
1

1−R2
j

,

is known as a variance inflation factor for independent variable j, for j = 1, 2, . . . , p. In the extreme

case when R2
j = 0, the associated variance inflation factor is V IFj = 1. This corresponds to the case

in which X j is not linearly related to the other independent variables. As R2
j increases, V IFj also in-

creases, corresponding to increased correlation between the independent variables. When the largest
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of the V IFj values exceeds the threshold value of 10, one can conclude that the multicollinearity is

present among the independent variables.

The R code below calculates the variance inflation factors for the data values in the swiss data

frame, where the independent variables

• X1, the percentage of males involved in agriculture as an occupation,

• X2, the percentage of draftees receiving the highest make on an army examination,

• X3, the percentage of draftees with education beyond the primary school,

• X4, the percentage of Catholics, and

• X5, the percentage of live births who live less than one year,

are used to predict Y , a common standardized fertility measure, from the n = 47 French-speaking

provinces of Switzerland in about the year 1888. The R code below computes the variance inflation

factors for the p = 5 independent variables.

swiss = as.matrix(swiss)

p = 5

y = swiss[ , 1]

n = length(y)

x = cbind(1, swiss[ , 2:(p + 1)])

for (i in 2:(p + 1)) {

yy = x[ , i]

xx = x[ , -i]

beta = solve(t(xx) %*% xx) %*% t(xx) %*% yy

fitted = xx %*% beta

resid = yy - fitted

sse = sum(resid ^ 2)

m = mean(yy)

sst = sum((yy - m) ^ 2)

r2 = 1 - sse / sst

vif = 1 / (1 - r2)

print(vif)

}

The variance inflation factors for the p = 5 independent variables are

V IF1 = 2.28,V IF2 = 3.68,V IF3 = 2.77,V IF4 = 1.94,V IF5 = 1.11.

Since none of these five values exceeds 10, we can conclude that the multicollinearity that exists in

the independent variables is not strong enough to cause concern. (Some regression analysts use 5 as

a threshold rather than 10.) Some keystrokes can be saved by using the vif function from the car

package on a multiple linear regression model fitted by the lm function.

library(car)

fit = lm(Fertility ~ Agriculture + Examination + Education +

Catholic + Infant.Mortality, data = swiss)

summary(fit)

vif(fit)
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One popular remedy for multicollinearity is known as ridge regression, which is a parameter

estimation technique that abandons the requirement of unbiased parameter estimates. The approach

taken with ridge regression is to choose estimates for the regression parameters that are biased, but

have a smaller variance than the ordinary least squares estimates. The goal is to generate param-

eter estimates with tolerable bias but smaller variance. The typical approach used in statistics to

overcome this bias/variability trade-off is to use the estimates that minimize the mean square errors.

Assuming that the X and Y values have been centered, we can dispense with the need for an intercept

term in the multiple regression model. Rather than minimizing the usual sum of squared errors

S =
n

∑
i=1

(Yi−β1Xi1−β2Xi2−·· ·−βpXip)
2 ,

ridge regression minimizes

SR =
n

∑
i=1

(Yi−β1Xi1−β2Xi2−·· ·−βpXip)
2 +λ

p

∑
j=1

β2
j .

There are now two terms in the modified sum of squares. The second term in SR is known as the

penalty term. The new parameter λ is known as the penalty parameter. When λ = 0, SR reduces to

the ordinary least squares case and achieves a value SSE at the ordinary least squares estimators. As

λ increases, the estimators converge to β̂1 = β̂2 = · · ·= βp = 0. We desire a λ value that introduces

some bias into the parameter estimates, but also have a reduced variance.

The geometry associated with ridge regression for p = 2 independent variables X1 and X2 in a

multiple linear regression model is illustrated in Figure 3.19. The ellipses are level surfaces of the

first term in SR. The center of the ellipses is the ordinary least squares estimators of (β1, β2) =(
β̂1, β̂2

)
, which are the values that minimize the first term of SR. The circles centered at the origin

are level surfaces of the second term in SR. The ridge regression estimators for β1 and β2 will occur

at the intersection of one of elliptical and circular contours. In Figure 3.19 the two outermost level

surfaces intersect at a point, which is a value of the ridge regression estimates of β1 and β2 which

correspond to one particular value of the penalty parameter λ. The point at which this intersection

β0

β1

β̂0

β̂1

0

0

Figure 3.19: Ridge regression geometry for p = 2 independent variables.
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occurs is a function of the penalty parameter λ. In higher dimensions, the circles become spheres

and the ellipses become ellipsoids.

Determining the value of the penalty parameter is critical in ridge regression, but its choice de-

pends on the regression model and associated data set. A common technique for determining an

optimal value for λ is known as k-fold cross-validation. There are several functions in R which can

perform ridge regression: the lm.ridge function from the MASS package, the linearRidge func-

tion from the ridge package, and the glmnet function from the glmnet package. Ridge regression

is related to the lasso (least absolute shrinkage and selection operator) estimator and elastic net regu-

larization, two other popular parameter estimation techniques that are often applied for large values

of p.

Is there a way to completely avoid multicollinearity? In some settings, the answer is yes. When

the values of the independent variables are chosen so that they are uncorrelated, the regression

coefficients associated with a simple linear regression model of each independent variable separately

match the regression coefficients of any model involving more independent variables. This fact

provides a strong argument for a designed experiment which can result in uncorrelated independent

variables whenever the setting of the regression problem make this possible.

3.5.6 Model Selection

It is common in regression modeling to have a large number of potential independent variables that

might adequately predict the dependent variable Y that need to be sifted through in order to decide

whether each should be included or excluded from the regression model. If there are p potential

independent variables in the multiple linear regression model

Y = β0 +β1X1 +β2X2 + · · ·+βpXp + ε

then there are 2p possible regression models (always including an intercept term and not considering

interaction terms or nonlinear terms) because each independent variable will either be included or not

included in the regression model. Since the number of regression models to fit can be daunting, even

for moderate values of p, we desire an algorithm for selecting the appropriate independent variables

to include in the model. Forward stepwise regression is one such automatic search procedure used

to select the independent variables to include in a multiple linear regression model. The procedure

begins with the null model Y = β0 + ε and progressively adds independent variables to the model

that are deemed to be statistically significant. In the initial step, p simple linear regression models

are fit for each potential independent variable. The independent variable with the smallest p-value

falling below a prescribed threshold (commonly, α = 0.05) associated with the t-test described in

Section 2.3.2 is added to the model. In the second step, p−1 multiple linear regression models with

two independent variables are fitted using the previously selected independent variable and each of

the other potential independent variables. The independent variable with the smallest p-value is

added to the model. This process continues until no more independent variables meet the criteria.

This is the multiple linear regression model selected by forward stepwise regression. Several other

variants of forward stepwise regression and other model selection algorithms are outlined below.

• Foreward stepwise regression often includes a test to determine whether independent variables

that have previously been added to the model have p-values that exceed the threshold and

should consequently be removed from the model.

• Backward stepwise regression starts by including all p independent variables in the regres-

sion model and eliminates the independent variable with the largest p-value on each step.



172 Chapter 3. Topics in Regression

Unfortunately, there is no guarantee that forward stepwise regression and backward stepwise

regression will result in the same final regression model.

• Once this statistically significant independent variables have been identified, a similar step-

wise procedure can be executed to test for statistically significant interaction terms.

• A similar stepwise procedure can be executed to test for the significance of nonlinear terms in

the regression model.

• With increased computer speeds and a moderate value of p, the number of independent vari-

ables, it is possible to fit all 2p possible regression models and compare them to determine an

appropriate final regression model.

• Comparing potential regression models using p-values is not universal. The Akaike Informa-

tion Criterion (AIC) is a measure which extracts a penalty for each additional parameter in a

model in an effort to avoid overfitting.

In summary, selecting a multiple linear regression model is not easy. The skills required to

select a model include the ability to (a) detect and remedy multicollinearity, (b) assess ev-

idence of interaction effects between independent variables and include them in the model

when appropriate, (c) assess evidence of nonlinear relationships between some or all of the

independent variables and the dependent variable and include appropriate terms in the model,

(d) execute the appropriate multidimensional diagnostic procedures (outlined in the simple

linear regression case in Section 3.2) and execute the appropriate remedial procedures (out-

lined in the simple linear regression case in Section 3.3) when model assumptions are violated,

and (e) assess the normality of the residuals.

3.6 Weighted Least Squares

The three approaches to estimating the parameters in a simple linear regression model that we have

encountered thus far,

• the algebraic approach,

• the matrix approach,

• using the R lm (linear model) function,

all have the same assumptions regarding the independent variable, the dependent variable, and the

model Y = β0 +β1X + ε. In all three approaches, the error terms are assumed to be mutually inde-

pendent random variables, each with population mean 0 and population variance–covariance matrix

V [ε] = σ2
ZI, where I is the n× n identity matrix. This means that V [εi] = σ2

Z , for i = 1, 2, . . . , n.

There is also an implicit assumption that each of the data pairs (Xi, Yi) are each given equal weight

in the regression.

Settings occasionally arise in which some data values should be given different weights. There

might be evidence that some of the Yi values have more precision than others. Weights can be placed

on each of the data pairs to account for this difference in precision. This leads to a weighted least

squares approach to estimating the coefficients in a regression model.

In the standard simple linear regression model, the assumption

V [εi] = σ2
Z ,
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for i = 1, 2, . . . , n, means that the variance of the dependent variable from the regression line is

equal for all of the n data pairs, regardless of the value of the independent variable. In weighted least

squares modeling, the positive weights w1, w2, . . . , wn are determined so that

V [εi] = σ2
Z/wi

for i = 1, 2, . . . , n, which means that certain data pairs have more precision than other data pairs.

The weights are fixed constants. There is no requirement that the weights sum to one. Data pairs

with larger weights are assumed to have a lower variability to their error terms. This allows for a

population variance that changes from one data pair to another.

As an illustration, the values of the dependent variable Y might be sample means at the various

values of the independent variable X . Furthermore, if the sample sizes associated with the sample

means are known and unequal, then we would like to assign higher weights to the data pairs asso-

ciated with larger sample sizes. If ni is the sample size for data pair i, for i = 1, 2, . . . , n, then the

appropriate weight for data pair i is wi = ni so that

V [εi] = σ2
Z/ni

for i = 1, 2, . . . , n.

So rather than minimizing the sum of squares

S =
n

∑
i=1

(Yi−β0−β1Xi)
2

as was the case in the standard simple linear regression model, weighted least squares minimizes the

weighted sum of squares

S =
n

∑
i=1

wi(Yi−β0−β1Xi)
2.

Notice that this reduces to the ordinary sum of squares when w1 = w2 = · · · = wn = 1. As before,

calculus can be used to minimize S with respect to β0 and β1 to arrive at the least squares estimators

β̂0 and β̂1. The partial derivatives of S with respect to β0 and β1 are

∂S

∂β0
=−2

n

∑
i=1

wi(Yi−β0−β1Xi) = 0

and
∂S

∂β1
=−2

n

∑
i=1

wiXi(Yi−β0−β1Xi) = 0.

These can be simplified to give the normal equations

β0

n

∑
i=1

wi +β1

n

∑
i=1

wiXi =
n

∑
i=1

wiYi

and

β0

n

∑
i=1

wiXi +β1wiX
2
i =

n

∑
i=1

wiXiYi.

The normal equations are a system of two linear equations in the two unknowns β0 and β1, given

the data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn) and the weights w1, w2, . . . , wn. The normal equations
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can be solved to yield the weighted least squares estimators. This derivation constitutes a proof of

the following theorem.

Theorem 3.3 Let (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn) be n data pairs with at least two distinct Xi val-

ues. Let w1, w2, . . . , wn be the weights associated with the data pairs. The weighted least squares

estimators of β0 and β1 in the simple linear regression model are the solution to the simultaneous

normal equations

β0

n

∑
i=1

wi +β1

n

∑
i=1

wiXi =
n

∑
i=1

wiYi

β0

n

∑
i=1

wiXi +β1wiX
2
i =

n

∑
i=1

wiXiYi.

and are given by

β̂1 =
∑n

i=1 wi(Xi− X̄w)(Yi− Ȳw)

∑n
i=1 wi(Xi− X̄w)2

and

β̂0 = Ȳw− β̂1X̄w,

where X̄w and Ȳw are the weighted sample means

X̄w =
∑n

i=1 wiXi

∑n
i=1 wi

and Ȳw =
∑n

i=1 wiYi

∑n
i=1 wi

.

The matrix approach can also be applied to weighted least squares. Define the X, Y, βββ and εεε
matrices as in Section 3.4:

X =




1 X1

1 X2

...
...

1 Xn


 , Y =




Y1

Y2

...

Yn


 , βββ =

[
β0

β1

]
, and εεε =




ε1

ε2

...

εn


 .

In addition, assume that the matrix W is a diagonal matrix with the weights w1, w2, . . . , wn on the

diagonal:

W =




w1 0 · · · 0

0 w2 · · · 0
...

...
. . .

...

0 0 · · · wn


 .

In this case, the normal equations can be written in matrix form as

X′WXβββ = X′WY.

Pre-multiplying both sides of this equation by (X′WX)−1
gives the least squares estimators for the

regression parameters in matrix form as

β̂ββ =
(
X′WX

)−1
X′WY.



Section 3.6. Weighted Least Squares 175

As before, the fitted values can also be written in matrix form as

Ŷ= Xβ̂ββ

or

Ŷ= X
(
X′WX

)−1
X′WY.

The residuals ei = Yi− Ŷi for i = 1, 2, . . . , n, can also be written in matrix form as

e = Y− Ŷ

= Y−Xβ̂ββ

= Y−X
(
X′WX

)−1
X′WY

=
(

I−X
(
X′WX

)−1
X′W

)
Y,

where e is the column vector of residuals e = (e1, e2, . . . , en)
′. These matrix results are summarized

in the following theorem.

Theorem 3.4 Let X, Y, βββ, and εεε be the matrices associated with a simple linear regression model

with weights w1, w2, . . . , wn associated with the data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn). Let W

be an n×n diagonal matrix with the weights on the diagonal elements. The least squares estimators

of β0 and β1 are

β̂ββ =
(
X′WX

)−1
X′WY.

The fitted values are

Ŷ= Xβ̂ββ = X
(
X′WX

)−1
X′WY.

The residuals are

e =
(

I−X
(
X′WX

)−1
X′W

)
Y.

The algebraic approach, matrix approach, and R approach to weighted least squares problem

will be illustrated in the next example. Establishing the weights w1, w2, . . . , wn can be a nontrivial

problem, and differs depending on the setting in which the weighted regression model is employed.

Example 3.11 In reliability, current status data is generated by testing a randomly se-

lected group of items with varying ages from a population at a particular fixed time

in order to determine whether or not each item has failed or is operating at its partic-

ular age. Items were selected at ages 100, 200, 300, and 400 hours to see if they are

operating. In this case, the independent variable X is the age, measured in hours, at

which an item is tested. Each item tested is deemed to be either operating or failed.

Table 3.7 contains the results of the test. Notice that 100 items were tested at ages

X1 = 100 and X2 = 200, but only 10 items were tested at ages X3 = 300 and X4 = 400.

The dependent variable in this setting is the fraction of items that survive to a particular

age. The sample size at each testing age is denoted by ni, i = 1, 2, 3, 4. So a total of

n1 + n2 + n3 + n4 = 220 items were tested. The number of items that are operating at

each testing age is denoted by Si, i = 1, 2, 3, 4. The fraction of items that are operating

at each testing age, which is the dependent variable in the regression, is denoted by

Yi, i = 1, 2, 3, 4. Notice that the fraction surviving is not necessarily decreasing from

one time to the next because of random sampling variability. The small sample sizes at
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Time (hours) X1 = 100 X2 = 200 X3 = 300 X4 = 400

Sample size n1 = 100 n2 = 100 n3 = 10 n4 = 10

Number surviving S1 = 50 S2 = 25 S3 = 4 S4 = 3

Fraction surviving Y1 = 0.5 Y2 = 0.25 Y3 = 0.4 Y4 = 0.3

Table 3.7: Current status data test results.

times X3 = 300 and X4 = 400 magnify this problem with the data set. The goal here is

to establish a regression function that will adequately smooth the data values in order to

estimate the survivor function for the items at any time.

Assume for now that the standard (non-weighted) least squares approach using the n= 4

data pairs

(100, 0.5), (200, 0.25), (300, 0.4), and (400, 0.3)

is taken to this problem. The R code below fits the simple linear regression model to

the data.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

fit = lm(y ~ x)

fit$coefficients

The regression line in this case has intercept β̂0 = 0.475 and slope β̂1 = −0.00045.

The survival probability of a brand-new item is estimated to be 0.475, and the survival

probability decreases by 0.00045 for every hour that passes. The unimpressive survival

probability of 0.475 for a new item is outside of the scope of the simple linear regression

model, so its interpretation is not meaningful.

But using the standard simple linear regression approach is not appropriate here. The

first two data pairs, both of which involved testing 100 items, should be weighted more

heavily that the last two data pairs, which only involved testing 10 items. Determining

the appropriate weights, however, is nontrivial.

Assume that the test results for each item are mutually independent Bernoulli trials. The

number of items that survive a test at one particular time (that is, Si using the notation

from Table 3.7) is a binomial random variable with parameters ni and pi, where pi is

the population probability that item i is operating at time Xi. The population variance

of the dependent variable Yi = Si/ni is

V [ p̂i] =V [Yi] =V

[
Si

ni

]
=

1

n2
i

V [Si] =
ni pi(1− pi)

n2
i

=
pi(1− pi)

ni

,

for i= 1, 2, 3, 4. Using the point estimate for pi on the right-hand side of this expression

results in the following estimated variances for the four dependent variables:

V̂ [Y1] =
50

100

(
1− 50

100

)

100
=

1

400
, V̂ [Y2] =

25
100

(
1− 25

100

)

100
=

3

1600
,
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V̂ [Y3] =
4
10

(
1− 4

10

)

10
=

24

1000
, V̂ [Y4] =

3
10

(
1− 3

10

)

10
=

21

1000
.

Not surprisingly, the first two variance estimates are about an order of magnitude smaller

than the second two variance estimates because of the differences in the sample sizes.

This approach will have problems if one of the testing times has all successes (Si = ni)

or all failures (Si = 0).

Since the weights wi appear in the denominator of the expression V [εi] = σ2
Z/wi, the

reciprocals of these variance estimates will be used as the weights in the weighted least

squares regression:

w1 =
400

1
, w2 =

1600

3
, w3 =

1000

24
, w4 =

1000

21
.

The regression coefficients will be calculated in three ways, all of which yield identical

results: the algebraic approach, the matrix approach, and using the lm function.

First, the algebraic approach for calculating the slope and intercept of the regression

line using weighted least squares uses the following R statements. These are an imple-

mentation of Theorem 3.3.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

w = n / (y * (1 - y))

meanx = sum(w * x) / sum(w)

meany = sum(w * y) / sum(w)

slope = sum(w * (x - meanx) * (y - meany)) / (sum(w * (x - meanx) ^ 2))

inter = meany - slope * meanx

print(c(inter, slope))

The weighted mean of the X values is

X̄w =
∑n

i=1 wiXi

∑n
i=1 wi

= 174.2725.

Notice that this is slightly lower than the unweighted mean of the x values, which is

(100+200+300+400)/4 = 250 hours. This is due to the larger sample sizes at testing

times 100 and 200, resulting in larger weights for these values. The weighted mean of

the Y values is

Ȳw =
∑n

i=1 wiYi

∑n
i=1 wi

= 0.3562.

The estimates for the slope and intercept of the regression line for weighted least squares

is

β̂1 =
∑n

i=1 wi(Xi− X̄w)(Yi− Ȳw)

∑n
i=1 wi(Xi− X̄w)2

=−0.001081

and

β̂0 = Ȳw− β̂1X̄w = 0.5447.
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The interpretation of these estimates is that the estimated probability of survival at time

0 is 0.5447 and the probability of survival decreases by 0.001081 with every hour that

passes.

Second, using the matrix approach, the X, Y, and W matrices associated with this data

set are

X =




1 100

1 200

1 300

1 400


 , Y =




0.50

0.25

0.40

0.30


 , and W =




400
1 0 0 0

0 1600
3 0 0

0 0 1000
24 0

0 0 0 1000
21


 .

The R code below uses the matrix approach to simple linear regression with weights to

calculate the estimated slope β̂0 and intercept β̂1, the fitted values Ŷ, and the residuals

e for the current status data set using Theorem 3.4. The R solve function is used to

compute the inverse of X′X.

options(digits = 4)

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

w = n / (y * (1 - y))

w = diag(w)

x = cbind(1, x)

beta = solve(t(x) %*% w %*% x) %*% t(x) %*% w %*% y

fitted = x %*% beta

e = y - fitted

The results of these calculations are given below. The point estimators of the slope and

intercept are

β̂ββ =
(
X′WX

)−1
X′WY =

[
0.5447

−0.001081

]
.

The fitted values are

Ŷ= Xβ̂ββ =




0.4365

0.3284

0.2203

0.1121


 .

The residuals are

e = Y− Ŷ=




0.0635

−0.0784

0.1797

0.1879


 .

Third, the built-in function lm can be used for weighted least squares by using the

weights argument. The R code below calculates the estimates of the regression coeffi-

cients, the fitted values, and the residuals.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)
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s = c( 50, 25, 4, 3)

y = s / n

w = n / (y * (1 - y))

fitw = lm(y ~ x, weights = w)

print(fitw$coefficients)

print(fitw$fitted.values)

print(fitw$residuals)

print(weighted.residuals(fitw))

The three approaches all yield the same results. The regression line associated with

ordinary least squares and weighted least squares can be compared graphically. The

R code below plots the four data pairs and the associated ordinary least squares and

weighted least squares regression lines.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

fit = lm(y ~ x)

w = n / (y * (1 - y))

fitw = lm(y ~ x, weights = w)

plot(x, y)

abline(fit$coefficients)

abline(fitw$coefficients)

Figure 3.20 contains the resulting plot, which shows the ordinary least squares line with

equal weighting to the four data values and the weighted least squares line with much

more weight to the first two data pairs and much less weight to the last two data pairs.

Extra circles have been added to the two data pairs associated with the larger sample

sizes with larger weights in Figure 3.20. The effect of the larger weights on the first

0 100 200 300 400
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Figure 3.20: Current status data ordinary and weighted least squares fits.
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two data pairs is apparent in the weighted least squares regression line. The rightmost

two data pairs exert significantly less tug on the weighted least squares regression line

because of their smaller weights.

Using simple linear regression in the previous example, either weighted or unweighted, might

not be the best approach. The dependent variable Y is the probability that an item of age X is func-

tioning. This dependent variable must lie between 0 and 1, but the regression line could potentially

fall outside of that range within the scope of the model. Two potential remedies are given in the next

two sections: using a regression model with nonlinear terms such as X2 or X3, or a survivor function

of a lifetime model rather than a line, or a nonlinear model known as a logistic regression model,

whose dependent variable necessarily lies between 0 and 1.

3.7 Regression Models with Nonlinear Terms

Regression models with nonlinear terms arise frequently in regression modeling. One simple exam-

ple is polynomial regression. A quadratic regression model, for example, is

Y = β0 +β1X +β2X2 + ε,

where β0, β1, and β2 are the regression coefficients, and ε is a white noise term. This model is still

linear in β0, β1, and β2. One way to think about this model is to consider X and X2 to be the p = 2

independent variables in a multiple regression model. The next example fits a quadratic model to

the data pairs in which the independent variable X is the speed of an automobile and the dependent

variable Y is its stopping distance.

Example 3.12 Consider the n = 50 data pairs from Example 2.8 which give the speed

(in miles per hour) as X and the stopping distance (in feet) as Y . These data pairs are

built into the base R language in the data frame named cars, where the speed column

contains the values of X and the dist column contains the values of Y . Fit a quadratic

regression model forced through the origin to the data pairs.

Since the quadratic regression model is being forced through the origin in order to

account for the fact that stationary cars (X = 0) do not require any distance (Y = 0) to

stop, the quadratic regression model is

Y = β1X +β2X2 + ε,

where ε∼WN
(
0, σ2

Z

)
. R is capable of fitting nonlinear models to data. The I (inhibit

interpretation) function allows the modeling of some function of a particular indepen-

dent variable. For the data pairs in the cars data frame, a quadratic regression model

that is forced through the origin can be fit with lm function.

fit = lm(dist ~ speed + I(speed ^ 2) - 1, data = cars)

The -1 part of the formula forces the regression function to pass through the origin.

The output generated by the summary(fit) statement is given below.

Call:

lm(formula = dist ~ speed + I(speed^2) - 1, data = cars)
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Residuals:

Min 1Q Median 3Q Max

-28.836 -9.071 -3.152 4.570 44.986

Coefficients:

Estimate Std. Error t value Pr(>|t|)

speed 1.23903 0.55997 2.213 0.03171 *

I(speed^2) 0.09014 0.02939 3.067 0.00355 **

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 15.02 on 48 degrees of freedom

Multiple R-squared: 0.9133, Adjusted R-squared: 0.9097

F-statistic: 252.8 on 2 and 48 DF, p-value: < 2.2e-16

The fitted quadratic regression model that is forced to pass through the origin is

Y = 1.24X +0.0901X2,

where X is speed and Y is stopping distance. Notice that β̂2 = 0.0901 > 0, which

means that a graph of the fitted regression function—a parabola that passes through the

origin—is concave up. Since the p-value associated with the linear term is p = 0.032

and the p-value associated with the quadratic term is p = 0.0036, both of the regression

coefficients are statistically significant. The R commands

plot(cars, xlim = c(0, 25), pch = 16, las = 1)

fit = lm(dist ~ speed + I(speed ^ 2) - 1, data = cars)

x = 0:25

y = fit$coefficients[1] * x + fit$coefficients[2] * x ^ 2

lines(x, y)

plot the fitted model over the scatterplot. This graph appears in Figure 3.21.

How do we compare the simple linear regression model to the quadratic regression

model forced through the origin? Both have two parameters, but which one of the

models is a better approximation to the data pairs? One way to compare the two models

is with the sum of squared residuals for each of the models, which are computed with

the R commands

sum(lm(dist ~ speed, data = cars)$residuals ^ 2)

sum(lm(dist ~ speed + I(speed ^ 2) - 1, data = cars)$residuals ^ 2)

The simple linear regression model has a sum of squared residuals of S = 11,353.52,

and the quadratic regression model forced through the origin has a sum of squared

residuals of S = 10,831.12. Using the quadratic regression model forced through the

origin reduces the sum of squared residuals by 522.4. Higher-order polynomials can be

fit using the lm function in a similar manner. As was the case in multiple regression,

adding more terms generally results in a reduction in the sum of squared residuals.
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Figure 3.21: Scatterplot and quadratic fit of speed X and stopping distance Y .

Nonlinear regression modeling is not limited to just polynomial regression models. The next

two examples fit the same data set concerning the national debt in the United States between 1970

and 2020 to a nonlinear regression model using two fundamentally different approaches. The first

approach is to transform the nonlinear regression model to a linear regression model and then apply

the standard techniques for parameter estimation to the transformed model. The second approach is

to use numerical methods to minimize the sum of squares in the usual least squares fashion described

previously.

Example 3.13 The national debt of the United States, in trillions of dollars, between

1970 and 2020 is given in Table 3.8. These values are not adjusted for inflation. Fit

an exponential regression model to the national debt of the United States, where X is

the year and Y is the debt, by transforming an exponential regression model to a linear

model.

Year Debt

1970 0.37

1975 0.53

1980 0.91

1985 1.82

1990 3.23

1995 4.97

2000 5.67

2005 7.93

2010 13.56

2015 18.15

2020 27.75

Table 3.8: United States national debt, 1970–2020.

The scatterplot in Figure 3.22 shows that a simple linear regression model is not appro-
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Figure 3.22: Scatterplot of the year X and the national debt Y .

priate for these data pairs. A regression model that reflects the exponential growth rate

in the debt is warranted. Both savings and debt tend to grow exponentially, so an ex-

ponential regression model is a reasonable initial model to investigate. Consider fitting

the regression model

Y = eβ0+β1X+ε

to the data set, where X is the year, Y is the debt, ε is an error term, and β0 and β1 are

unknown regression parameters to be estimated from the data pairs. This model can

be transformed to a linear model by taking the natural logarithm of both sides of the

model:

ln Y = β0 +β1X + ε.

This model is now in the form of a simple linear regression with independent variable
X and dependent variable ln Y . The intercept of the fitted model is β0 and the slope
of the fitted model is β1. So a graph that contains X on the horizontal axis and ln Y
on the vertical axis should be approximately linear if this transformation approach is
appropriate. Such a graph is given in Figure 3.23, which is much closer to linear than
the raw data points. It is apparent that some work on debt reduction occurred in the
late 1990s, resulting in a slight bit of nonlinearity. We will proceed with fitting the
transformed model. The R code below follows a similar pattern to the earlier examples,
but this time the formula used in the call to the lm function is log(debt) ~ year.
The curve function is used to add the fitted regression function to the scatterplot.

year = seq(1970, 2020, by = 5)

debt = c(.37, .53, .91, 1.82, 3.23, 4.97, 5.67, 7.93, 13.56, 18.15, 27.75)

fit = lm(log(debt) ~ year) # fit an exponential model

b0 = coef(fit)[1] # estimated beta0 value

b1 = coef(fit)[2] # estimated beta1 value

plot(year, debt, las = 1, pch = 16) # scatterplot of data pairs

curve(exp(b0 + b1 * x), add = TRUE) # plot fitted model

The fitted model is displayed in Figure 3.24. The values of the estimated parameters

are β̂0 =−170.4 and β̂1 = 0.08606.
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Figure 3.23: Scatterplot of the year X and the logarithm of the national debt Y .
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Figure 3.24: Scatterplot and exponential fit of year X and debt Y .

There is a second approach to fitting an exponential regression model to the national debt data

pairs that follows the standard approach to least squares estimation, which is given next.

Example 3.14 Fit an additive exponential regression model to the United States na-

tional debt data pairs from Example 3.13.

The second approach to fitting an exponential regression model to the debt data pairs is

to use the additive model

Y = eβ0+β1X + ε.

Using the traditional least squares approach, the sum of squares

S =
n

∑
i=1

(
Yi− eβ0+β1Xi

)2
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is minimized with respect to β0 and β1, yielding the associated least squares estimators

β̂0 and β̂1. The estimators cannot be expressed in closed form, so numerical methods
must be used to estimate β0 and β1. A nonlinear least squares R function named nls
can be used to estimate the parameters. Here is a first attempt at fitting the model.

year = seq(1970, 2020, by = 5)

debt = c(.37, .53, .91, 1.82, 3.23, 4.97, 5.67, 7.93, 13.56, 18.15, 27.75)

fit = nls(debt ~ exp(b0 + b1 * year)) # fit exponential model

This code returns an error message indicating that the nls function was unable to esti-
mate the parameters. What went wrong? The way that the model has been formulated,

the parameter eβ0 represents the United States national debt in the year 0. This is why

we had the parameter estimate eβ̂0 = e−170.4 = 10−74 from the transformation approach
in Example 3.13. The nls function attempts to do a search over all values of β0 and

β1 to minimize the sum of squares. Finding the value of β̂0 is like finding a needle in a
haystack. We need to give the nls function some help. We will give nls some starting
values in a list named start to make the internal search performed by the nls function

easier. The initial values for β̂0 and β̂1 will be the estimates for β0 and β1 from the
transformation approach from the previous example.

year = seq(1970, 2020, by = 5)

debt = c(.37, .53, .91, 1.82, 3.23, 4.97, 5.67, 7.93, 13.56, 18.15, 27.75)

fit = nls(debt ~ exp(b0 + b1 * year), start = list(b0 = -170, b1 = 0.09))

b0 = coef(fit)[1] # fitted beta0 value

b1 = coef(fit)[2] # fitted beta1 value

plot(year, debt, pch = 16) # scatterplot of data pairs

curve(exp(b0 + b1 * x), add = TRUE) # plot fitted model

The estimated parameters are β̂0 =−151.7 and β̂1 = 0.07676. Thus, the fitted nonlinear

regression model is

E[Y ] = eβ̂0+β̂1X .

The fitted exponential regression model is displayed in Figure 3.25. The two different
exponential regression models can be compared by computing the sums of squares for
the two models, which can be computed by the additional R command

sum((debt - exp(b0 + b1 * year)) ^ 2) # calculate sum of squares

The sum of squares for fitting the exponential regression model using the transformation

technique is 22.7 and the sum of squares for the nonlinear least squares is 3.1. So

consistent with Figures 3.24 and 3.25, the nonlinear least squares approach provides a

better fit to the data pairs.

One drawback that emerged from the survival function estimation example from the previous

section (involving current status data) is that fitting a regression line results in a survival probability

that can be negative or greater than one when extrapolated outside of the range of the independent

variable in the data pairs. In addition, the estimated probability of survival at time zero for both the

ordinary simple linear regression model and the weighted simple linear regression model seemed

low. Typically, a brand-new item is not defective. A nonlinear regression function is an attractive

alternative model in this particular setting. The next example combines a nonlinear regression model

and weighted least squares estimators to provide an improved regression model.
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Figure 3.25: Scatterplot and exponential fit of year X and debt Y .

Example 3.15 Consider again the estimate of the probability of survival from the cur-

rent status data given in Example 3.11. A simple nonlinear model that might be ap-

propriate for the current status data set is to assume that the lifetime of the item under

consideration follows the exponential(λ) distribution. The survivor function for an ex-

ponential random variable T with positive failure rate λ is

S(t) = P(T ≥ t) = e−λt t > 0,

where t is the failure time in hours.

(a) Fit this nonlinear regression model using ordinary least squares.

(b) Fit this nonlinear regression model using weighted least squares.

(c) Compare the two fitted regression models.

(a) There are two ways to proceed with this regression problem. The first is to mini-

mize the squared deviations

S =
n

∑
i=1

(
Yi− e−λXi

)2

with respect to λ to arrive at an appropriate regression parameter estimator. Equiv-

alently, the least squares estimator of λ is

λ̂ = argmin
λ

n

∑
i=1

(
Yi− e−λXi

)2
.

This is the usual least squares approach. The second is to perform algebraic ma-

nipulations to the model in order to “linearize” the model so that the theory asso-

ciated with the simple linear regression model can be implemented. The second

approach is considered here. Treating this as a regression problem with X as time
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and Y as the survival probability results in the multiplicative nonlinear regression

model

Y = e−λX ε.

Taking the natural logarithm of both sides of this model results in

ln Y =−λX + ε

or

− ln Y = λX + ε.

(Notice that when the error distribution is symmetric, which is often the case, the

last step is justified.) This can be thought of as a linear regression problem with

X as the independent variable and − ln Y as the dependent variable. There is no

intercept in this model, so it can be treated as forcing the regression line through

the origin and the single regression parameter λ corresponds to the slope of the

regression line.

The R code below uses unweighted least squares to estimate the slope λ using

the algebraic approach that forces the regression line through the origin using the

techniques from Section 3.1.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

logy = -log(y)

lamhat = sum(x * logy) / sum(x * x)

The R code using the matrix approach is identical to the algebraic approach in this

case. Likewise, the regression parameter λ can be estimated using the lm function

with the - 1 parameter to force the regression through the origin via the code

below.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

logy = -log(y)

lm(logy ~ x - 1)$coefficients

Using any of these approaches to estimating λ, the estimate for the failure rate is

λ̂ = 0.003677

failures per hour.

(b) For the current status data set, it is sensible to incorporate the weights that are

based on the various sample sizes into the regression model.

The algebraic and the matrix approach to the nonlinear weighted least squares

model, which will be a regression model forced through the origin, have identical

R code, which is given below.
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x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

w = n / (y * (1 - y))

logy = -log(y)

sum(x * w * logy) / sum(x * w * x)

The R code using the lm function to estimate the parameter λ is given below.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

w = n / (y * (1 - y))

logy = -log(y)

lamhat = lm(logy ~ x - 1, weights = w)$coefficients

Regardless of which approach is taken, the least squares estimate for the failure

rate is

λ̂ = 0.005721

failures per hour, which is slightly higher than the estimated failure rate in the

ordinary least squares approach.

(c) The two approaches (ordinary least squares and weighted least squares) for the

nonlinear regression model can be compared graphically by plotting the two esti-

mated survivor functions associated with the two fitted models. The R code below

generates that plot. The estimated failure rate in the case of ordinary nonlinear

least squares is stored in lambda.ols. The estimated failure rate in the case of

weighted nonlinear least squares is stored in lambda.wls.

x = c(100, 200, 300, 400)

n = c(100, 100, 10, 10)

s = c( 50, 25, 4, 3)

y = s / n

logy = -log(y)

lambda.ols = lm(logy ~ x - 1)$coefficients

w = n / (y * (1 - y))

lambda.wls = lm(logy ~ x - 1, weights = w)$coefficients

xx = 0:400

plot(x, y, xlim = c(0, 400), ylim = c(0, 1))

lines(xx, exp(-lambda.ols * xx))

lines(xx, exp(-lambda.wls * xx))

Figure 3.26 contains the graph. The ordinary least squares fit with λ̂ = 0.003677

gives equal weight to the four data pairs; the weighted least squares fit with

λ̂ = 0.005721 gives significantly more weight to the first two data pairs. The

two data pairs with the larger sample sizes are again circled in the figure. The

weighted least squares model indicates that there is a higher estimated failure rate

when increased weight is placed on the first two data pairs.
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Figure 3.26: Current status data ordinary and weighted least squares fits for the exponential model.

3.8 Logistic Regression

Logistic regression is appropriate when the dependent variable Y can assume one of two values: zero

and one. This is sometimes known as a binary or dichotomous response variable. For now, to keep

the mathematics and interpretations simple, assume that there is a single predictor X . This is known

as a simple logistic regression model, and is a special type of nonlinear regression model. Including

multiple independent variables in a logistic regression model is a straightforward extension. For

dichotomous data, instead of predicting 0 or 1, we predict the probability of getting a 1 [that is,

P(Y = 1)]. So we need a regression model that predicts values of the interval [0, 1].
The following example will be used throughout this section to motivate the need for a special

model to accommodate a binary dependent variable, and to illustrate the techniques for the estima-

tion of the model parameters.

Example 3.16 As an example to motivate the application of simple logistic regression,

consider the n = 948 field goal attempts in the National Football League during the 2003

season. Let the independent variable X be the length of the field goal attempt (in yards)

and the dependent variable Y be the outcome (0 for failure and 1 for success). The

scatterplot (without jittering for ties) of the data values is shown in Figure 3.27, along

with the associated least squares regression line with estimated intercept β̂0 = 1.35 and

slope β̂1 = −0.015. The regression line is heading in the correct direction because

longer field goals are less likely to be successful. Simple linear regression is clearly not

an appropriate statistical model in this setting because it predicts probabilities outside of

the interval [0, 1]. Even if predictions greater than 1 are set to 1 and negative predictions

are set to zero, the model predicts that all 20-yard field goal attempts will be successful,

and, at the other extreme, it predicts that the probability of kicking an 85-yard field goal

is 0.06. This is inconsistent with the fact that the longest field goal ever in the NFL was

a 66-yard field goal by Justin Tucker of the Baltimore Ravens on September 26, 2021.

Obviously we can build a better regression model.

One of the initial considerations in developing a statistical model for the outcome of a field goal

as a function of the length of the field goal attempt is to find a function that will only assume values
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Figure 3.27: Scatterplot of field goal outcomes vs. yards with regression line.

between 0 and 1. A diagram that gives some guidance with regard to this function is to batch the data

into 5-year increments. So the bins are all field goals that fall in the ranges 20±2, 25±2, . . . , 60±2.

This window is long enough so that the random sampling variability associated with nearby attempts

is damped considerably, and yet short enough so that outcome patterns as a function of yardage are

still apparent. The R code below batches the independent variable into the 5-yard increments and

plots the estimated probability of success for attempts in each batch at its midpoint. This estimated

probability is just the fraction of successful field goals within a particular range. Furthermore, the

area of each point plotted is proportional to the number of attempts in that particular bin. For

example, there were 79 attempts in the first bin (18–22 yards) and only 4 attempts in the last bin

(58–62 yards). The R code below reads a data set off of the web that contains the results of n = 948

NFL field goal attempts during 2003. The data consists of columns that give the length of the field

goal attempt and the outcome, failure (Y = 0) or success (Y = 1). The R code rounds each length

to the nearest 5 yards, and plots the midpoint of the rounded field goal lengths versus the estimated

probability of success.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")

yards = df[, 1]

outcome = df[, 2]

plot(NA, xlim = c(15, 65), ylim = c(0, 1))

yards = floor((yards + 2) / 5) * 5

for (i in 1:9) points(5 * i + 15, mean(outcome[yards / 5 - 3 == i]),

pch = 16, cex = 0.12 * sqrt(table(yards / 5 - 3)[i]))

While the performance of NFL field goal kickers varies from one kicker to the next, these points

give us an idea of what we would like for a smooth regression function in this setting.

The results are shown in Figure 3.28. It is clear that the estimated probability of making a field

goal decreases as the length of the field goal attempt increases, as one would expect. There is a

strong relationship between the length of the field goal attempt and the probability of success. Our

goal is to fit a nonlinear regression function to the raw data values that smooths the random sampling

variability and can be used for the purpose of prediction.
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Figure 3.28: Field goal outcomes vs. yards in 5-yard increments.

When the dependent variable only takes on the values zero and one, the usual mean response

function for the simple linear regression model

Y = β0 +β1X + ε

is

E[Y ] = β0 +β1X ,

where E[Y ] denotes the conditional expected value of Y given a particular setting of the independent

variable X . This mean response function does not limit the values of Y to just zero and one. With

normally distributed error terms, this model would allow for Y values which could be less than 0 or

greater than 1.

In logistic regression, this type of curve, regardless of whether it begins near one and ends near

zero or it begins near zero and ends near one, is known as a sigmoidal response function. A natural

choice for the sigmoidal response function is a cumulative distribution function associated with a

random variable, or its complement (the survivor function). Three popular probability distributions

whose cumulative distribution functions are used in logistic regression are the standard logistic dis-

tribution (also commonly called the logit model), the standard normal distribution (also commonly

called the probit model), and the standard extreme value distribution (also commonly called the

complimentary log-log model). These are described in the next paragraph.

The standard logistic distribution has probability density function

f (x) =
ex

(1+ ex)2
−∞ < x < ∞

and cumulative distribution function

F(x) =
ex

1+ ex
−∞ < x < ∞.

The probability density function is symmetric about the population mean E[X ] = 0 and has popula-

tion variance V [X ] = π2/3. The standard normal distribution has probability density function

f (x) =
1√
2π

e−x2/2 −∞ < x < ∞
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and cumulative distribution function

F(x) =
∫ x

−∞
f (w)dw −∞ < x < ∞.

The probability density function is also symmetric about the population mean E[X ] = 0 and has

population variance V [X ] = 1. The probability density function for the standard logistic distribution

is similar in shape (that is, bell-shape) to that for the standard normal distribution, but has heavier

tails. The symmetry of the probability density functions for the standard logistic distribution and

the standard normal distribution limits the shape of the associated cumulative distribution function.

A nonsymmetric distribution often provides a better fit. This leads to a search for a probability

distribution with a nonsymmetric probability density function. One such probability distribution

is the extreme value distribution. The standard extreme value distribution has probability density

function

f (x) = ex−ex −∞ < x < ∞

and cumulative distribution function

F(x) = 1− e−ex −∞ < x < ∞.

The population mean and the population variance are not mathematically tractable, but the numeric

values, to ten digits, are

E[X ] =−0.5772156649 and V [X ] = 1.644934067.

The probability density function is not symmetric about the mean.

The R code below plots these three probability density functions on the same set of axes. The

standard normal probability density function is taken directly from the formulas in the previous

paragraph. The probability density functions for the standard logistic distribution and the standard

extreme value distribution have been standardized (by subtracting their population mean and divid-

ing by the population standard deviation) so that all three probability density functions can be viewed

on an equal footing. The plot emphasizes the shape of the various probability density functions.

x = seq(-3, 3, by = 0.01)

k = pi / sqrt(3)

y = k * exp(k * x) / (1 + exp(k * x)) ^ 2

plot(x, y, type = "l", xlim = c(-3, 3), ylim = c(0, 0.5))

lines(x, dnorm(x))

mu = -0.5772156649

sig = sqrt(1.644934067)

y = sig * exp(mu + sig * x - exp(mu + sig * x))

lines(x, y)

The results are displayed in Figure 3.29. All three probability distributions have support on the en-

tire real number line −∞ < x < ∞, although the graph only includes the values within three standard

deviation units from the population mean. As expected, the probability density functions for the

standard normal distribution and the standardized version of the standard logistic distribution are

symmetric and bell-shaped. The probability density function of the standardized version of the stan-

dard extreme value distribution is nonsymmetric. The R code below plots the cumulative distribution

function associated with the standardized version of the standard logistic distribution.
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Figure 3.29: Standardized logistic, normal, and extreme value probability density functions.

x = seq(-3, 3, by = 0.01)

k = pi / sqrt(3)

y = exp(k * x) / (1 + exp(k * x))

plot(x, y, type = "l", xlim = c(-3, 3), ylim = c(0, 1))

The cumulative distribution function F(x) = P(X ≤ x) is graphed in Figure 3.30. This cumulative

distribution function is monotone increasing and satisfies limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.

Notice that a plot of F(−x) gives the complement of the cumulative distribution function. In

other words, S(x) = 1− F(x) = P(X ≥ x). This function is monotone decreasing and satisfies

limx→−∞ S(x) = 1 and limx→∞ S(x) = 0. This function is known in survival analysis as the sur-

vivor function.
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Figure 3.30: Standardized version of the standard logistic cumulative distribution function.
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Now that cumulative distribution functions and their complements have been identified as a rea-

sonable way to estimate the probability of success for the field goal data, we would like to establish

a mechanism for incorporating the value of the predictor X into the probability model. The empha-

sis here will be on using the cumulative distribution function for the logistic distribution, since that

seems to be the most commonly used in logistic regression.

The usual form of the mean response function for simple linear regression is

E[Y ] = β0 +β1X .

But in the case of a binary outcome, the constraint

0≤ E[Y ]≤ 1

must be imposed. This is done naturally using the cumulative distribution functions and their com-

plements for the various probability distributions described earlier. Let π(X) be the mean response

function for a regression model with a binary response. Using the cumulative distribution function

for the logistic distribution, the mean response function is

π(X) = E[Y ] =
eβ0+β1X

1+ eβ0+β1X
.

Since the random variable Y can only assume the values 0 and 1 for a particular value of X , it

is a Bernoulli random variable with probability of success π(X). Since the expected value and

the probability that a Bernoulli random variable assumes the value 1 are equal, the mean response

function can also be expressed as

π(X) = P(Y = 1) =
eβ0+β1X

1+ eβ0+β1X
,

where P(Y = 1) is the probability that the dependent variable Y equals 1 for a particular fixed setting

of the independent variable X . The parameters β0 and β1 assume the following roles.

• The sign of β1 controls whether the mean response function is monotone increasing or de-

creasing. Table 3.9 shows the direction of the relationship associated with the sign of β1. The

statistical significance of the point estimator of β1 depends on its magnitude.

• The magnitude of β1 controls the steepness of the mean response function, with larger mag-

nitudes corresponding to steeper mean response functions.

• The value of β0 controls the location of the mean response function on the X-axis.

A graph that illustrates the effect of varying values of β1 for the fixed value of β0 = 0 on the

mean response function π(X) is given in Figure 3.31. As expected, the mean response function π(X)

Condition lim
X→−∞

π(X) lim
X→∞

π(X)

β1 < 0 1 0

β1 > 0 0 1

β1 = 0 eβ0/
(
1+ eβ0

)
eβ0/

(
1+ eβ0

)

Table 3.9: Direction of monotonicity of π(X).
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Figure 3.31: Mean response functions for β0 = 0 and various β1 values.

is monotone decreasing for β1 < 1 and monotone increasing for β1 > 1. The mean response function

is steeper as the magnitude of β1 increases.

A graph that illustrates the effect of varying values of β0 for the fixed value of β1 = 1 on the

mean response function π(X) is given in Figure 3.32. As expected, the mean response function π(X)
is monotone increasing in all cases because β1 > 1. The effect of varying β0 is to shift the mean

response functions horizontally. The rationale behind the horizontal shift can be seen by writing the

mean response function with β1 = 1 as

π(X) =
eβ0+X

1+ eβ0+X
.

So the effect of increasing β0 in this case is to shift the mean response function to the right (for
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Figure 3.32: Mean response functions for β1 = 1 and various β0 values.
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β1 < 1) or to the left (for β1 > 1) relative to the π(X) curve associated with β0 = 0.

To summarize, the sign of β1 controls the direction of the monotonicity of π(X), the magnitude

of β1 controls the steepness of π(X), and β0 controls the location of π(X) along the X-axis.

We now consider the estimation of the parameters β0 and β1 from a data set consisting of the n

data pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn). The first components X1, X2, . . . , Xn are real numbers and

the second components Y1, Y2, . . . , Yn assume only the values 0 and 1. Since

P(Y = 1) = π(X) and P(Y = 0) = 1−π(X)

the contribution to the likelihood function of the data pair (Xi, Yi) is

π(Xi)
Yi [1−π(Xi)]

1−Yi

for i = 1, 2, . . . , n. When Yi = 0, the contribution to the likelihood function is 1−π(Xi), which is

P(Yi = 0), where P(Yi = 0) is the probability that Yi = 0 for the particular setting of the independent

variable at Xi. When Yi = 1, the contribution to the likelihood function is π(Xi), which is P(Yi = 1).
Since Xi is assumed to be observed without error, Yi is a random binary response, and the responses

are assumed to be mutually independent random variables, the likelihood function is

L(β0, β1) =
n

∏
i=1

π(Xi)
Yi [1−π(Xi)]

1−Yi .

The log likelihood function is

ln L(β0, β1) =
n

∑
i=1

Yi ln
[
π(Xi)

]
+(1−Yi) ln

[
1−π(Xi)

]
.

This can be written in terms of β0 and β1 as

ln L(β0, β1) =
n

∑
i=1

Yi

[
β0 +β1Xi− ln(1+ eβ0+β1Xi)

]
− (1−Yi) ln(1+ eβ0+β1Xi)

or

ln L(β0, β1) =
n

∑
i=1

Yi (β0 +β1Xi)− ln(1+ eβ0+β1Xi).

The likelihood function and the log likelihood function are maximized at the same values of β0 and

β1 because the natural logarithm is a monotonic transformation. The score vector is comprised of

the partial derivatives of the log likelihood function with respect to β0 and β1:

∂ ln L(β0, β1)

∂β0
=

n

∑
i=1

(
Yi−

eβ0+β1Xi

1+ eβ0+β1Xi

)

and

∂ ln L(β0, β1)

∂β1
=

n

∑
i=1

(
XiYi−

Xie
β0+β1Xi

1+ eβ0+β1Xi

)
.

When these two equations are equated to zero, there is no closed form solution for β̂0 and β̂1, so

numerical methods must be relied on to calculate these point estimates. The second derivatives of

the log likelihood function after simplification are

∂2 ln L(β0, β1)

∂β2
0

=−
n

∑
i=1

eβ0+β1Xi

(
1+ eβ0+β1Xi

)2
,
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∂2 ln L(β0, β1)

∂β0∂β1
=−

n

∑
i=1

Xie
β0+β1Xi

(
1+ eβ0+β1Xi

)2
,

and
∂2 ln L(β0, β1)

∂β2
1

=−
n

∑
i=1

X2
i eβ0+β1Xi

(
1+ eβ0+β1Xi

)2
.

The Fisher information matrix is the matrix of expected values of these partial derivatives:

I (β0, β1) =




E

[−∂2 lnL(β0, β1)

∂β2
0

]
E

[−∂2 lnL(β0, β1)

∂β0β1

]

E

[−∂2 lnL(β0, β1)

∂β1β0

]
E

[−∂2 lnL(β0, β1)

∂β2
1

]


 .

The expected values in this matrix can be determined because they do not contain any random

variables. Their values cannot be calculated, however, because the values of the parameters β0 and

β1 are unknown. The observed information matrix

O
(

β̂0, β̂1

)
=




−∂2 lnL(β0, β1)

∂β2
0

−∂2 lnL(β0, β1)

∂β0β1

−∂2 lnL(β0, β1)

∂β1β0

−∂2 lnL(β0, β1)

∂β2
1




β0 = β̂0, β1 = β̂1

can be estimated from data values once the maximum likelihood estimators are computed. This ma-

trix is the variance–covariance matrix of the score vector and its inverse is the asymptotic variance–

covariance matrix of the maximum likelihood estimators. The square roots of the diagonal elements

of this inverse matrix provide estimates of the standard errors of the maximum likelihood estimates.

The NFL field goal data set has a large sample size (n = 948) and a strong statistical relationship

between the length of the field goal attempt and the probability of success. The R code below

again uses the optim function to calculate the parameter estimates. The first argument to optim

are initial parameter estimates. The second argument to optim is the function to be minimized, so

the negative of the log likelihood function is given as the second argument. Once the maximum

likelihood estimates are calculated, the observed information matrix, standard errors, z-statistics,

and associated p-values are calculated.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")

yards = df[, 1]

outcome = df[, 2]

logl = function(parameters) {

beta0 = parameters[1]

beta1 = parameters[2]

sum(-outcome * (beta0 + beta1 * yards) + log(1 + exp(beta0 + beta1 * yards)))

}

fit = optim(c(0, -1), logl)

beta0hat = fit$par[1]

beta1hat = fit$par[2]

oim = matrix(0, 2, 2)

oim[1, 1] = sum(exp(beta0hat + beta1hat * yards) /

(1 + exp(beta0hat + beta1hat * yards)) ^ 2)
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oim[1, 2] = sum(yards * exp(beta0hat + beta1hat * yards) /

(1 + exp(beta0hat + beta1hat * yards)) ^ 2)

oim[2, 1] = oim[1, 2]

oim[2, 2] = sum(yards * yards * exp(beta0hat + beta1hat * yards) /

(1 + exp(beta0hat + beta1hat * yards)) ^ 2)

print(oim)

se.beta0hat = sqrt(solve(oim)[1, 1])

se.beta1hat = sqrt(solve(oim)[2, 2])

z0 = beta0hat / se.beta0hat

z1 = beta1hat / se.beta1hat

p0 = 2 * (1 - pnorm(abs(z0)))

p1 = 2 * (1 - pnorm(abs(z1)))

print(c(beta0hat, se.beta0hat, z0, p0))

print(c(beta1hat, se.beta1hat, z1, p1))

The results of the code are summarized in Table 3.10. The values of β̂0 and β̂1 are both statistically

significant with p-values near zero. The observed information matrix for the NFL field goal data set

i β̂i σ̂
β̂i

z p

0 5.69 0.451 12.6 0.00

1 −0.110 0.0106 −10.4 0.00

Table 3.10: Summary statistics for NFL field goal data.

is

O(β̂0, β̂1)=
(

130.83 5470.26

5470.26 237,653.57

)
.

These values can be compared to the values obtained using the glm (generalized linear model)

function:

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")

yards = df[, 1]

outcome = df[, 2]

fit = glm(outcome ~ yards, family = binomial(link = logit))

summary(fit)

The results match those given in Table 3.10. When the link parameter within the binomial family

is set to logit, the cumulative distribution function (or its complement) for the standard logistic

distribution is employed. When the link parameter is set to probit, the cumulative distribution

function (or its complement) for the standard normal distribution is employed. The logit and probit

choices force the sigmoidal function to be symmetric, so that it approaches 0 and 1 at the same rate.

When the link parameter is set to cloglog, the cumulative distribution function (or its comple-

ment) for the standard extreme value distribution is employed. It approaches 0 and 1 at the different

rates.

When the following R statements are added to the code that generated Figure 3.28, the fitted

mean response function π̂(X) is added to the graph.

x = seq(15, 65, by = 0.1)

beta0hat = 5.6942693
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beta1hat = -0.1098488

y = exp(beta0hat + beta1hat * x) / (1 + exp(beta0hat + beta1hat * x))

lines(x, y)

The graph is shown in Figure 3.33. The estimated mean response function is monotone decreasing

because β̂1 < 0. Furthermore, the mean response curve does an adequate job of modeling the proba-

bility of success as the points lie very close to the estimated mean response function. The estimated
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Figure 3.33: Field goal outcomes and estimated mean response function.

mean response function can be used for prediction. The estimated probability that a 38-yard field

goal attempt is successful is

π̂(38) =
e5.6942693−0.1098488(38)

1+ e5.6942693−0.1098488(38)
= 0.82.

This value can be generated with the predict function in R with the additional statements

linear = predict(fit, newdata = data.frame(yards = 38))

exp(linear) / (1 + exp(linear))

Some keystrokes can be saved by using the type = "response" argument in the call to predict.

predict(fit, newdata = data.frame(yards = 38), type = "response")

The limitations of a symmetric mean response function also become apparent in this case. The

estimated probability that a 71-yard field goal attempt is successful is

π̂(71) =
e5.6942693−0.1098488(71)

1+ e5.6942693−0.1098488(71)
= 0.11,

even though the NFL field goal record from 2021 is 66 yards. This is clearly a case of extrapolating

beyond the range of the data, which is discouraged. The meaningful range of π̂(X) is over the scope

of the model 18 ≤ X ≤ 62, whose endpoints are the shortest and longest field goal attempt during

the 2003 season. The symmetric nature of the logistic distribution makes the π̂(X) values associated

with X-values greater than 62 yards higher than are meaningful.
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Confidence intervals for the parameters in a logistic regression model can be calculated with

the confint and confint.default functions. These confidence intervals give a measure of the

precision of the point estimates. The R code below calculates the 95% confidence intervals for the

parameters using the confint and confint.default functions for the NFL field goal data.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")

yards = df[, 1]

outcome = df[, 2]

fit = glm(outcome ~ yards, family = binomial(link = logit))

confint(fit)

confint.default(fit)

The first set of confidence intervals that are returned via confint use the profiled log likelihood

function to return the confidence intervals given in the output below. The default is a 95% confidence

interval.

2.5 % 97.5 %

(Intercept) 4.8435441 6.61425072

yards -0.1312492 -0.08970744

To three significant digits, these 95% confidence intervals are

4.84 < β0 < 6.61 and −0.131 < β1 <−0.0897.

The second set of confidence intervals that are returned via confint.default are based on the

asymptotic normality of the maximum likelihood estimators. The call to confint.default returns

the confidence intervals given in the output below.

2.5 % 97.5 %

(Intercept) 4.8137433 6.58201706

yards -0.1306527 -0.08916745

To three significant digits, these 95% confidence intervals are

4.82 < β0 < 6.58 and −0.131 < β1 <−0.0892.

Alternatively, the 95% confidence interval for β1 can be calculated by using the qnorm function to

calculate the appropriate quantile from the standard normal distribution.

df = read.table("http://users.stat.ufl.edu/~winner/data/fieldgoal.dat")

yards = df[, 1]

outcome = df[, 2]

fit = glm(outcome ~ yards, family = binomial(logit))

coef(fit)[2] + c(-1, 1) * qnorm(0.975) * summary(fit)$coefficients[2, 2]

The 95% confidence interval for β1 that is returned matches that returned by confint.default.

The confidence intervals based on the asymptotic normality of the maximum likelihood estimator

from confint.default will be symmetric about the maximum likelihood estimators, but the con-

fidence interval based on the profiled log likelihood function from confint will not be symmetric

about the maximum likelihood estimators. The confidence intervals given here are somewhat narrow

because of the large sample size of n = 948 for the NFL field goal data.
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The last topic is the interpretation of the point estimators for the coefficients. This interpretation

is much more difficult than the interpretation of the coefficients in a standard simple linear regression

model. The next paragraph defines the odds and the log odds. The subsequent paragraph relates the

log odds to the logistic regression model.

Consider an event which occurs with probability 0.9. The probability that the event will not

occur is 0.1. The odds are defined as the ratio of the probability that the event will occur to the

probability that the event will not occur. In this case that ratio is 9, so the odds are often referred

to as 9 to 1. Table 3.11 gives several probability values and associated odds for several probability

values.

Probability Odds

0.2 0.25

0.5 1

0.6 1.5

0.75 3

0.8 4

0.9 9

0.99 99

Table 3.11: Probability and odds.

The R code below generates a graph of the odds on the vertical axis versus the probability on the

horizontal axis.

prob = seq(0, 0.9, by = 0.01)

odds = prob / (1 - prob)

plot(prob, odds, type = "l", xlim = c(0, 1), ylim = c(0, 9))

Figure 3.34 shows the transformation from probability to odds, which reveals a monotone increasing

function. Probabilities fall on the interval [0, 1]; odds fall on the interval [0, ∞). The natural loga-

0.0 0.2 0.4 0.6 0.8 1.0

0
1
2
3
4
5
6
7
8
9

probability

odds

Figure 3.34: Odds versus probability.
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rithm of the odds is the function, known as the log odds, which is a transformation of the probability

p in the following fashion:

ln

(
p

1− p

)
.

This is a transformation from [0, 1] to (−∞, ∞). Table 3.12 extends the previous table by including

a column for the log odds. Notice that a probability of 1/2 corresponds to a log odds of 0 and the

symmetry of the log odds associated with the probabilities 0.2 and 0.8. The R code below graphs

Probability Odds Log Odds

0.2 0.25 −1.3863

0.5 1 0

0.6 1.5 0.4055

0.75 3 1.0986

0.8 4 1.3863

0.9 9 2.1972

0.99 99 4.5951

Table 3.12: Probability, odds, and log odds.

the log odds versus the probability.

prob = seq(0.045, 0.955, by = 0.001)

odds = prob / (1 - prob)

logodds = log(odds)

plot(prob, logodds, type = "l", xlim = c(0, 1), ylim = c(-3, 3))

The associated graph is shown in Figure 3.35. The shape of the log odds is a transformed version

of the mean response functions seen earlier. The purpose of defining the log odds is to convert from

probability, which has a restricted range between 0 and 1, and the log odds, which has an unrestricted

range.
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Figure 3.35: Log odds versus probability.



Section 3.9. Exercises 203

Now back to logistic regression and the interpretation of the estimated coefficients. Recall that

for a simple logistic regression problem, the mean response function is

π(x) = E [Y |X = x] = P(Y = 1 |X = x) =
eβ0+β1x

1+ eβ0+β1x
,

where x is the independent variable and Y is the response variable. The logit transformation of π(x)
is

ln

[
π(x)

1−π(x)

]
= ln

[
eβ0+β1x

]
= β0 +β1x.

Since π(x) is a probability, the expression on the left-hand side of this equation is a log odds.

Now consider the NFL data. From the earlier work, the estimated intercept provided by the R

glm function is β̂0 = 5.6979 and the estimated coefficient associated with the length of the field goal

attempt in yards is β̂1 =−0.1099. The estimated intercept is the log odds of a kicker making a field

goal from a (theoretical) zero yards, which has no meaningful interpretation in this setting. The

value of β̂1 =−0.1099 is the change in the log odds for a one-yard change in the length of the field

goal attempt. Additionally, the quantity

eβ̂1 = e−0.1099 = 0.8959

is the multiplier that gives the change in the odds for a one-unit change in the independent variable.

We expect to see a 10.4% decrease in the odds associated with the probability of success for a field

goal attempt for every additional yard added to the field goal attempt. This value and an associated

95% confidence interval can be generated with the additional R statement

exp(cbind(oddsratio = coef(fit), confint(fit)))

The analysis of the NFL data given here is a composite of all kickers in the NFL during 2003.

Individual kickers within the NFL will have their own logistic regression curve.

With this background concerning simple logistic regression in place, it is straightforward to ex-

tend this to more complicated modeling situations. Additional topics in logistic regression include

constructing a confidence interval for a predicted value, the calculation of deviance residuals, includ-

ing multiple independent variables in a logistic regression model, model assessment, and interpreting

estimated coefficients for interaction terms.

3.9 Exercises

3.1 Write a paragraph that describes why the sum of squares for error associated with the simple

linear regression model Y = β0 + β1X + ε will always be less than or equal to the sum of

squares for error associated with the simple linear regression model forced through the origin

Y = β1X + ε for the same data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn).

3.2 Under what condition(s) does the regression line forced through the origin have the same

sum of squares for error as the simple linear regression for the full model Y = β0 +β1X + ε
for the same data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn).

3.3 Consider the simple linear regression model forced through the origin

Y = β1X + ε.

Show that the least squares estimator β̂1 is an unbiased estimator of β1.
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3.4 Consider the simple linear regression model forced through the origin

Y = β1X + ε.

Find V [β̂1].

3.5 Consider the simple linear regression model forced through the origin with normal error

terms,

Y = β1X + ε,

where ε∼ N
(
0, σ2

)
.

(a) Find the maximum likelihood estimators of β1 and σ2.

(b) Show that the maximum likelihood estimators maximize the log likelihood function.

3.6 Give an example of n = 2 data pairs corresponding to the case in which a simple linear

regression line forced through the origin contains the point (X̄ , Ȳ ).

3.7 Give an example of n = 2 data pairs corresponding to the case in which a simple linear

regression line forced through the origin does not contain the point (X̄ , Ȳ ).

3.8 Consider the simple linear regression model forced through the origin with normal error

terms

Y = β1X + ε,

with known parameters β1 and σ2. Find an exact two-sided 100(1−α)% confidence interval

for β1 from n data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn).

3.9 Consider the simple linear regression model forced through the origin with normal error

terms,

Y = β1X + ε,

with unknown parameters β1 and σ2. Show that the R statement

confint(lm(Formaldehyde$optden ~ Formaldehyde$carb - 1))

uses the formula

β̂1− tn−1,α/2

√
SSE

(n−1)∑n
i=1 X2

i

< β1 < β̂1 + tn−1,α/2

√
SSE

(n−1)∑n
i=1 X2

i

to calculate the 95% two-sided confidence interval for β1 for the data pairs in the built-in

R data frame Formaldehyde. Notice that the degrees of freedom are one more than the

associated degrees of freedom for the full simple linear regression model.

3.10 Consider the simple linear regression model forced through the origin with normal error

terms,

Y = β1X + ε,

with unknown parameters β1 and σ2. Conduct a Monte Carlo simulation experiment to

provide convincing numerical evidence that the two-sided 100(1−α)% confidence interval

β̂1− tn−1,α/2

√
SSE

(n−1)∑n
i=1 X2

i

< β1 < β̂1 + tn−1,α/2

√
SSE

(n−1)∑n
i=1 X2

i

is an exact confidence interval for β1 for the following parameter settings: n = 3, α = 0.05,

β1 = 2, X1 = 1, X2 = 2, X3 = 3, and σ2 = 1.
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3.11 The Brown–Forsythe test can be used to determine whether the error terms have constant

variance. In particular, it tests for equality of the variances of the error terms in two subsets of

the data values. The test is analogous to a t-test. The test is robust with respect to departures

from normality of the error terms. The data pairs are partitioned by a threshold value of X

which is not one of the X1, X2, . . . , Xn values. Let n1 be the number of data pairs with X-

values less than the threshold value and n2 be the number of data pairs with X-values greater

than the threshold value so that n = n1 +n2. In addition, let

• ei1 be residual i for group 1,

• ei2 be residual i for group 2,

• ẽ1 be the sample median of the group 1 residuals,

• ẽ2 be the sample median of the group 2 residuals,

• di1 = |ei1− ẽ1|,
• di2 = |ei2− ẽ2|,
• d̄1 = (1/n1)∑

n1
i=1 di1, and

• d̄2 = (1/n2)∑
n2
i=1 di2.

The test statistic for the Brown–Forsythe test is

t =
d̄1− d̄2

s
√

1/n1 +1/n2

,

where s2 is the pooled sample variance

s2 =
∑

n1
i=1

(
di1− d̄1

)2
+∑

n2
i=1

(
di2− d̄2

)2

n−2
.

The test statistic is approximately t(n−2) when the population variances of the error terms

in the two groups are equal n1 and n2 are large enough so that the dependency between the

residuals is not too large. Write R code to compute the p-value for the Brown–Forsythe test

for the cars data set using speed as the independent variable and dist as the dependent

variable with a threshold value of 13.5 miles per hour.

3.12 Find the leverages for n = 2 data pairs in a simple linear regression model.

3.13 For a simple linear regression model with Xi = i, for i = 1, 2, . . . , n, derive a formula for the

leverage of the ith data pair.

3.14 Write R functions named cooks.distance1, cooks.distance2, and cooks.distance3,

which calculate the Cook’s distances for each of the n data pairs associated with the simple

linear regression model

Y = β0 +β1X + ε

using the three formulas from Definition 3.3. The arguments for these three functions are the

vector x, which contains the n values of the independent variable, and the vector y, which

contains the n values of the dependent variable. Test your functions on the Formaldehyde

data set which is built into R, with carb as the independent variable and optden as the

dependent variable.
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3.15 Make a scatterplot (with associated regression line) of the n = 11 data pairs in the third data

set in Anscombe’s quartet with the R commands

x = anscombe[ , 3]

y = anscombe[ , 7]

plot(x, y, xlim = c(4, 19), ylim = c(3, 13), pch = 16)

abline(lm(y ~ x))

Without doing any calculations,

(a) circle the point(s) with the largest leverage, and

(b) circle the point(s) with the largest Cook’s distance.

3.16 What is the smallest and largest possible leverage?

3.17 Show that leverage is scale invariant. In other words, show that the leverages remain un-

changed when the scale of the independent variable changes (for example, from centimeters

to meters).

3.18 Use Monte Carlo simulation to estimate the probability that all of the Cook’s distances are

less than 1 for a simple linear regression model with normal error terms and the following

parameter settings: β0 = 1, β1 = 1/2, σ = 1, n = 10, and Xi = i for i = 1, 2, . . . , n. Is this

probability affected by changes is σ or n?

3.19 Use Monte Carlo simulation to draw empirical cumulative distribution functions of Cook’s

distances D1, D2, D3, D4, and D5 for a simple linear regression model with the following

parameter settings: β0 = 1, β1 = 1/2, σ = 1, n = 10, and Xi = i for i = 1, 2, . . . , n.

3.20 Consider a simple linear regression model with the independent variable X and the dependent

variable Y having the same units (for example, centimeters). If the same linear transforma-

tion is applied to both X and Y so as to change their units (for example, from centimeters to

meters), show that the Cook’s distances remain unchanged.

3.21 Show that the row sums of the hat matrix are all equal to 1 for data pairs (X1, Y1), (X2, Y2),
. . . , (Xn, Yn) in a simple linear regression model.

3.22 Perform a Monte Carlo simulation to provide convincing numerical evidence that

(
β̂ββ−βββ

)′
X′X

(
β̂ββ−βββ

)

2 ·MSE
∼ F(2, n−2)

for a simple linear regression model with normal error terms of your choice. This result is

used to establish a 100(1−α)% confidence region for β0 and β1.

3.23 Show that the residuals ei = Yi− Ŷi for i = 1, 2, . . . , n, can be written in terms of the hat

matrix H as

e = (I−H)Y.

3.24 For the simple linear regression model with normal error terms, the variance–covariance

matrix of β̂ββ is

σ2
(
X′X

)−1
.

For data pairs (X1, Y1) , (X2, Y2) , . . . , (Xn, Yn), give an estimator for this matrix.
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3.25 For the simple linear regression model, show that

X′h
(
X′X

)−1
Xh =

1

n
+

(Xh− X̄)
2

SXX

.

3.26 For a simple linear regression model, show that the matrix equation

X′Xβ̂ββ = X′Y,

where

X =




1 X1

1 X2

...
...

1 Xn


 , Y =




Y1

Y2

...

Yn


 , and β̂ββ =

[
β̂0

β̂1

]
,

corresponds to the normal equations given in Theorem 1.1 as

nβ̂0 + β̂1

n

∑
i=1

Xi =
n

∑
i=1

Yi

β̂0

n

∑
i=1

Xi + β̂1

n

∑
i=1

X2
i =

n

∑
i=1

XiYi.

3.27 A multiple linear regression model is used to determine the relationship between the sales

price of a home Y as a function of the two predictor variables: X1, the number of square feet

in the home, and X2, the distance from downtown in miles. The fitted model is

Y = 170,024+133X1−14,123X2.

One home sells for $314,159. Find the predicted sales price for a second home, which is the

same size as the first but is ten miles further away from downtown that the first home.

3.28 The R built-in data frame named swiss contains a standardized fertility measure and five

socio-economic indicators for 47 French-speaking provinces in Switzerland from about 1888.

(a) Using a forward stepwise regression with threshold α = 0.05, determine a multiple

linear regression model with a dependent variable Y , the standardized fertility measure,

and the five associated potential independent variables.

(b) Using a backward stepwise regression with threshold α = 0.05, determine a multiple

linear regression model with a dependent variable Y , the standardized fertility measure,

and the five associated potential independent variables.

(c) For one of the two final multiple linear regression models determined in parts (a) and

(b), test the statistical significance of all possible interaction terms.

3.29 Show that when the independent variables X1 and X2 in a multiple linear regression model

are uncorrelated, the estimator for β̂1 is the same for both the simple linear regression model

involving just X1 and Y and the multiple linear regression model involving X1, X2, and Y .

3.30 Consider a simple linear regression model that uses the weighted least squares estimation.

When all of the weights w1, w2, . . . , wn are equal, show that the weighted least squares nor-

mal equations reduce to the associated unweighted least squares normal equations.
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3.31 “I first believed I was dreaming . . . but it is absolutely certain and exact that the ratio which

exists between the period times of any two planets is precisely the ratio of the 3/2th power

of the mean distance” was the reaction of Johannes Kepler upon discovering the relationship

y = βx3/2

as translated from Harmonies of the World by Kepler in 1619, where x is the distance between

a planet and the sun and y is the period. Using the data from the Wikipedia webpage titled

Kepler’s Laws of Planetary Motion, the data values for the n = 8 planets are given below.

Semi-major Period

Planet axis (AU) (days)

x y

Mercury 0.38710 87.9693

Venus 0.72333 224.7008

Earth 1 365.2564

Mars 1.52366 686.9796

Jupiter 5.20336 4332.8201

Saturn 9.53707 10,775.599

Uranus 19.1913 30,687.153

Neptune 30.0690 60,190.03

The semi-major axes values are measured in Astronomical Units (AU).

(a) Make an appropriate scatterplot to visually assess whether a regression model is appro-

priate.

(b) Find the least squares point estimate for β.

(c) Perhaps fit a least squares model in another fashion.

(d) Interpret the value for β̂.

(e) Find a 95% confidence interval for β.

3.32 Fit the quadratic regression function forced through the origin

Y = β1X2 + ε,

to the data pairs in the cars data frame in R, where X is the speed of the car in miles per

hour and Y is the stopping distance in feet.

3.33 Using an extreme value distribution as a link function, fit a regression function to the 2003

NFL field goal data from Section 3.8 and use the fitted model to predict that probability of

success on a 38-yard field goal attempt.
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SURVIVAL ANALYSIS



Chapter 4

Probability Models in Survival

Analysis

One of the central aspects of survival analysis is the investigation of the probability distribution

of a random variable T which has nonnegative support. In some settings, there are covariates that

influence the probability distribution of T . In addition, the data collected on the random variable T

is often right censored, which means that only a lower bound is available on the value of T . So there

is a bit of a mental adjustment that needs to be made from probability theory, where X is usually

used to denote a random variable, to survival analysis, where T is used to denote a random variable

that can only assume nonnegative values. The choice of T is made because the random variable of

interest is typically time. This chapter introduces probability models for T .

Four lifetime distribution representations that are commonly used to define the probability dis-

tribution of a random variable T are introduced in this chapter: the survivor function, the probability

density function, the hazard function, and the cumulative hazard function. These four representa-

tions apply to both continuous (for example, the lifetime of a light bulb) and discrete (for example,

the lifetime of the landing gear on an airplane) lifetimes. The survival time distribution of a drill

bit, an automobile, a cat, and a recession are vastly different. One would certainly not want to use

the same failure time distribution with identical parameters to model these diverse lifetimes. This

chapter surveys two probability distributions (the exponential distribution as an example of a one-

parameter distribution and the Weibull distribution as an example of a two-parameter distribution)

that are commonly used to model lifetimes. The exponential distribution is central to survival anal-

ysis just as the normal distribution is central to classical statistics. After sections that survey other

lifetime distributions and moment ratio diagrams, the Cox proportional hazards model is introduced.

The proportional hazards model is appropriate for incorporating a vector of covariates that influence

survival (for example, the turning speed and feed rate for a drill bit) into a lifetime model.

4.1 Lifetime Distribution Representations

The application areas associated with the probability distribution of the nonnegative random variable

T are quite wide.

• In reliability engineering, T is typically the lifetime of a component or a system of compo-

nents. Examples include the lifetime of a light bulb or the lifetime of a tennis racket.
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• In biostatistics, T is typically the survival time of a patient. To be more specific, this might be

the survival time of a patient after a particular type of surgery. More generally, the lifetime T

could be the time between the end of radiation treatment for a particular cancer and the time

the cancer recurs. In other words, T is the remission time.

• In actuarial science, T is often the lifetime of an insured individual in the life insurance indus-

try. On the casualty and property side of actuarial science, T is often the lifetime of a structure

or a vehicle.

• In sociology, T can model the duration of a strike, the duration of a marriage, or the duration

of a business partnership. More generally, T might model the social distance between two

strangers having a conversation.

• In economics, T can be the time between recessions or the absolute change in a stock market

index from one year to the next.

• In systems engineering, T could be the length of time that it takes to screen a passenger at an

airport. The time that a customer spends in a slow-moving queue before exiting the queue is

another nonnegative random variable that might be of interest.

• In public policy, T could be the response time by emergency vehicles to a reported building

fire. Alternatively, T could be the time for a released inmate to return to prison in a recidivism

application within the criminal justice system.

• In library science, T could be the time that a book is checked out. The time between an

interlibrary loan request and its fulfillment is another nonnegative random variable of interest

to librarians.

• In meteorology, T could be the time between the formation of a tropical storm and the time it

makes landfall. The time that a severe hurricane spends as a Category 5 hurricane is another

nonnegative random variable of interest to meteorologists.

• In chemistry, T could be the length of time required to complete a chemical reaction. A

chemist could also use T to denote the bond length between two atoms.

The long list given above is intended to highlight that survival analysis is a field that has a very wide

range of applications. Although the letter T has been selected because it most often represents time,

there are many applications in which it represents something other than time (for example, social

distance or bond length).

When T represents time, T can be thought of as the time between two events. For this reason,

this part of survival analysis is often referred to as time-to-event modeling. The time of purchase

and the time of failure, for example, might be the two events for a manufactured product. Since the

applications of survival analysis are wide, we will use the generic terms “failure” of an “item” when

referring to the second of the two events.

This section introduces four functions that define the probability distribution of a continuous,

nonnegative random variable T , the lifetime of an item. The four representations presented in this

chapter are not the only ways to define the distribution of T . Other methods include the moment

generating function E
[
esT
]
, the characteristic function E

[
eisT
]
, the Mellin transform E [T s], the

mean residual life function E[T − t |T ≥ t], and the reversed failure rate f (t)/F(t). The four rep-

resentations used here have been chosen because of their intuitive appeal, usefulness in problem

solving, and popularity in the literature.
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4.1.1 Survivor Function

The first lifetime distribution representation is the survivor function S(t). The survivor function is

the probability that an item is functioning at any time t.

Definition 4.1 The survivor function for a nonnegative random variable T is

S(t) = P(T ≥ t) t ≥ 0,

where S(t) = 1 for all t < 0.

A survivor function is also known as the reliability function [because S(t) is the reliability of an

item at time t] and the complementary cumulative distribution function [because S(t) = 1−F(t) for

continuous random variables, where F(t) = P(T ≤ t) is the cumulative distribution function]. All

survivor functions must satisfy three conditions:

S(0) = 1 lim
t→∞

S(t) = 0 S(t) is nonincreasing.

There are two interpretations of the survivor function. First, S(t) is the probability that an indi-

vidual item is functioning at time t. Second, if there is a large population of items with identically

distributed lifetimes, S(t) is the expected fraction of the population that is functioning at time t.

The survivor function is useful for comparing the survival patterns of several populations of

items. The graph in Figure 4.1 shows survivor functions S1(t) and S2(t), where S1(t) corresponds

to population 1 and S2(t) corresponds to population 2. Since S1(t)≥ S2(t) for all t values, it can be

concluded that the items in population 1 are superior to those in population 2 with regard to survival.

The conditional survivor function, ST |T ≥a(t), is the survivor function of an item that is func-

tioning at time a:

ST |T ≥a(t) =
P(T ≥ t and T ≥ a)

P(T ≥ a)
=

P(T ≥ t)

P(T ≥ a)
=

S(t)

S(a)
t ≥ a.
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Figure 4.1: Two survivor functions.
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Figure 4.2 shows the original survivor function S(t) and the conditional survivor function ST |T ≥a(t)
when a = 0.5. Since the conditional survivor function is rescaled by the factor S(a), it has the same

shape as the remaining portion of the original survivor function. The conditional survivor function

is useful for comparing the survival experience of a group of items that has survived to time a.

Examples include manufactured items surviving a burn-in test and cancer patients surviving 5 years

after diagnosis and treatment. The conditional survivor function is of particular interest to actuaries.

If a 37-year-old woman, for example, is purchasing a one-year term life insurance policy, an estimate

of ST |T ≥37(38) is required to determine an appropriate premium for the policy.
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Figure 4.2: Conditional survivor function.

4.1.2 Probability Density Function

The second lifetime distribution representation is the familiar probability density function, which is

defined as the negative of the derivative of the survivor function.

Definition 4.2 The probability density function of the nonnegative random variable T is

f (t) =−S′(t) t ≥ 0,

where S(t) is the survivor function and its derivative exists.

The probability density function has the probabilistic interpretation

f (t)∆t ∼= P(t ≤ T ≤ t +∆t)

for small ∆t values. Although the probability density function is not as effective as the survivor func-

tion for comparing the survival patterns of two populations, a graph of f (t) indicates the likelihood

of failure for any t. The probability of failure between times a and b is calculated by an integral:

P(a≤ T ≤ b) =
∫ b

a
f (t)dt.
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All probability density functions for lifetimes must satisfy two conditions:
∫ ∞

0
f (t)dt = 1 f (t)≥ 0 for all t ≥ 0.

It is assumed that f (t) = 0 for all t < 0, which is consistent with our assumption that the random

variable T is nonnegative. This assumption excludes distributions with negative support, such as the

normal distribution. The probability density function shown in Figure 4.3 illustrates the relationship

between the cumulative distribution function F(t) and the survivor function S(t) for a continuous

lifetime. The area under f (t) to the left of the arbitrary time t0 is F(t0); the area under f (t) to the

right of t0 is S(t0).
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Figure 4.3: Relationship between the survivor and cumulative distribution functions.

4.1.3 Hazard Function

The hazard function, h(t), is perhaps the most popular of the four representations for survival analy-

sis due to its intuitive interpretation as the amount of risk associated with an item at time t. A second

reason for its popularity is its usefulness in comparing the way risks change over time for several

populations of items by plotting their hazard functions on a single axis. A third reason is that the

hazard function is a special case of the intensity function for a nonhomogeneous Poisson process,

which will be introduced in a subsequent chapter. A hazard function models the occurrence of one

event, a failure, whereas the intensity function models the occurrence of a sequence of events over

time. The hazard function goes by several aliases: in reliability it is also known as the hazard rate or

failure rate; in actuarial science it is known as the force of mortality or force of decrement; in point

process and extreme value theory it is known as the rate or intensity function; in vital statistics it is

known as the age-specific death rate; and in economics its reciprocal is known as Mill’s ratio.

The hazard function can be derived using conditional probability. First, consider the probability

of failure between t and t +∆t:

P(t ≤ T ≤ t +∆t) =
∫ t+∆t

t
f (τ)dτ = S(t)−S(t +∆t).
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Conditioning on the event that the item is working at time t yields

P(t ≤ T ≤ t +∆t |T ≥ t) =
P(t ≤ T ≤ t +∆t)

P(T ≥ t)
=

S(t)−S(t +∆t)

S(t)
.

If this conditional probability is averaged over the interval [t, t +∆t] by dividing by ∆t, an average

rate of failure is obtained:
S(t)−S(t +∆t)

S(t)∆t
.

As ∆t→ 0, this becomes the instantaneous failure rate, which is the hazard function

h(t) = lim
∆t→0

S(t)−S(t +∆t)

S(t)∆t

=−S′(t)
S(t)

=
f (t)

S(t)
t ≥ 0

using the definition of the derivative from calculus. This forms the basis for the following definition.

Definition 4.3 The hazard function for a nonnegative random variable T is

h(t) =
f (t)

S(t)
t ≥ 0,

where f (t) is the probability density function and S(t) is the survivor function.

Thus, the hazard function is the ratio of the probability density function to the survivor function.

Using the previous derivation, a probabilistic interpretation of the hazard function is

h(t)∆t ∼= P(t ≤ T ≤ t +∆t |T ≥ t)

for small ∆t values, which is a conditional version of the interpretation for the probability density

function. All hazard functions must satisfy two conditions:

∫ ∞

0
h(t)dt = ∞ h(t)≥ 0 for all t ≥ 0.

Example 4.1 Consider the Weibull distribution defined by the survivor function

S(t) = e−(λt)κ
t ≥ 0,

with positive scale parameter λ and positive shape parameter κ. Find the hazard func-

tion.

By differentiating the survivor function with respect to t and negating, the probability

density function is

f (t) = λκ(λt)κ−1 e−(λt)κ
t ≥ 0,



216 Chapter 4. Probability Models in Survival Analysis

so the hazard function is

h(t) =
f (t)

S(t)
= λκ(λt)κ−1 t ≥ 0.

Figure 4.4 illustrates the shape of the hazard function for the Weibull distribution with

λ = 1 and three κ values. The hazard function is constant when κ = 1, increasing when

κ > 1, and decreasing when κ < 1.
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Figure 4.4: Hazard functions for the Weibull distribution.

The units on a hazard function are typically given in failures per unit time. In Example 4.1, if

λ = 0.01, κ = 1, and time is measured in hours, then h(t) = 0.01 failures per hour. Manufactured

items are often so reliable that to avoid hazard functions such as h(t) = 0.00000128 failures per hour

the units are changed so that the hazard function may be expressed as h(t) = 1.28 failures per 106

hours. Another way to avoid writing too many leading zeroes is to change the units to years, where

one year equals 8760 hours.

The shape of the hazard function indicates how an item ages. The intuitive interpretation of h(t)
as the amount of risk an item is subject to at time t implies that when the hazard function is larger

the item is under greater risk of failure, and when the hazard function is smaller the item is under

less risk of failure. The three hazard functions plotted in Figure 4.5 correspond to an increasing

hazard function (labeled IFR for increasing failure rate), a decreasing hazard function (labeled DFR

for decreasing failure rate), and a bathtub-shaped hazard function (labeled BT for bathtub-shaped

failure rate).

The increasing hazard function is probably the most common situation of the three depicted in

Figure 4.5. In this case, items are more likely to fail as time passes. In other words, items wear out

or degrade with time. This is almost certainly the case with mechanical items that undergo wear or

fatigue. It can also be the case in certain biomedical experiments. Let T , for example, be the time

until a tumor appears after the injection of a substance into a laboratory animal. If the substance

makes the tumor more likely to appear as time passes, then the hazard function associated with T

is increasing. This leads to the formal definition of the IFR class. Notice the loose use of the term
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Figure 4.5: Common hazard function shapes.

increasing in the definition of the IFR class (because IFR distributions have nondecreasing hazard

functions).

Definition 4.4 The distribution of a nonnegative random variable T is in the IFR (increasing fail-

ure rate) class if h(t) is a nondecreasing function of t.

The second situation depicted in Figure 4.5, the decreasing hazard function, is less common. In

this case, the item is less likely to fail as time passes. Items with this type of hazard function improve

with time. Some metals work-harden through use and thus have increased strength as time passes.

Another situation for which a decreasing hazard function might be appropriate for modeling is in

working bugs out of computer programs. Bugs are more likely to appear initially, but the likelihood

of them appearing decreases as time passes. This leads to the formal definition of the DFR class.

Definition 4.5 The distribution of a nonnegative random variable T is in the DFR (decreasing

failure rate) class if h(t) is a nonincreasing function of t.

The loose use of the term increasing in the definition of the IFR class and the term decreasing in

the definition of the DFR class allows a distribution with a constant hazard function, the exponential

distribution, to serve as a boundary between the two classes. The exponential distribution’s hazard

function h(t) = λ for t ≥ 0, is both nondecreasing and nonincreasing, so it belongs to both the IFR

and DFR classes. As shown in the Venn diagram in Figure 4.6, this definition of IFR and DFR

classifies all lifetime distributions into one of four sets: a constant hazard function (that is, the

exponential distribution, which is the intersection of the IFR and DFR classes), strictly increasing

hazard functions, strictly decreasing hazard functions, and other hazard functions (such as bathtub-

shaped hazard functions).

The third situation depicted in Figure 4.5, a bathtub-shaped hazard function, occurs when the

hazard function decreases initially and then increases as items age. Items improve initially and then

degrade as time passes. One situation in which the bathtub-shaped hazard function arises is in the
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IFR DFR

Figure 4.6: Venn diagram for IFR and DFR distribution classes.

lifetimes of manufactured items. Often manufacturing, design, or component defects cause early

failures. The period in which these failures occur is sometimes called the burn-in period. If failure

is particularly catastrophic, this part of the lifetime will often be consumed by the manufacturer in

a controlled environment. The time value during which early failures have been eliminated may be

valuable to a producer who is determining an appropriate warranty period. Once items pass through

this early part of their lifetime, they have a fairly constant hazard function, and failures are equally

likely to occur at any point in time. Finally, as items continue to age, the hazard function increases,

resulting in wear-out failures. The three paragraphs that follow give examples of applications of the

bathtub-shaped hazard function.

The bathtub-shaped hazard function can be envisioned for calculators; the burn-in period cor-

responds to the first few weeks of use when manufacturing, design, or component defects arise.

Wear-out failures occur after a few years of use when the buttons are about ready to fall off. Fail-

ures due to calculators being dropped occur throughout the life of a calculator. If these failures

are equally likely at any time, the hazard function will be increased by a constant that reflects the

probability of dropping the calculator for all time values.

The bathtub-shaped hazard function also arises in the lifetimes of people. In this case, the early

failures are known as infant mortality deaths and occur during the first few years of life. After this

time, the hazard function has a very gentle increase through the teenage years and into adulthood.

Finally, old age deaths occur during the later years of life. The magnitude of the hazard function

depends on factors such as the standard of living and medical services available. Also, occupation

(for example, flower arranger versus stunt man) and lifestyle (for example, eating habits, sleeping

habits, smoking habits, stress level) affect the lifetime distribution of a person. The hazard function is

used in actuarial science; the appropriate premium for a life insurance policy is based on probabilities

associated with the lifetime distribution. The lowest life insurance premiums are usually for children

who have survived the infant mortality part of their lifetimes.

There are dozens of other lifetime distribution classes beyond just the IFR and DFR classes.

These include IFRA (increasing failure rate on average), DFRA (decreasing failure rate on average),

IMRL (increasing mean residual life), and DMRL (decreasing mean residual life).

Care must be taken to differentiate between the hazard function for a population and the hazard

function for an individual item under consideration. To use human lifetimes as an illustration, con-

sider the following question: do two healthy 11-year-old boys living in the same town necessarily

have the same hazard function? The answer is no. The reason is that all people are born with genetic

predispositions that will influence their risk as they age. So, although a hazard function exists for all

11-year-old boys living in that particular town, it is an aggregate hazard function representing the

population, and individual boys may be at increased or decreased risk. This is why life insurance
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companies typically require a medical exam to determine whether an individual is at higher risk than

the rest of the population. The common assumption in most probabilistic models and statistical anal-

yses is that of mutually independent and identically distributed random variables, which in this case

are lifetimes. This assumption is not always valid in survival analysis applications because items are

often manufactured in diverse conditions (for example, different temperatures or raw materials).

4.1.4 Cumulative Hazard Function

The fourth lifetime distribution representation, the cumulative hazard function, is defined as the

integral of the hazard function.

Definition 4.6 The hazard function for a nonnegative random variable T is

H(t) =
∫ t

0
h(τ)dτ t ≥ 0,

where h(t) is the hazard function.

Whereas the hazard function reflects the risk pattern associated with an item over time, the

cumulative hazard function gives the accumulated risk at time t. Similar to the way a cumulative

distribution function accumulates probability, the cumulative hazard function H(t) accumulates the

risk from time 0 to time t. All cumulative hazard functions must satisfy three conditions:

H(0) = 0 lim
t→∞

H(t) = ∞ H(t) is nondecreasing.

The cumulative hazard function is valuable for random variate generation in Monte Carlo simulation,

implementing certain procedures in statistical inference, and defining certain distribution classes (for

example, the IFRA class).

The four lifetime distribution representations presented here are equivalent in the sense that each

completely specifies a lifetime distribution. In addition, any one lifetime distribution representation

implies the other three. Algebra and calculus can be used to find one lifetime distribution represen-

tation given that another is known. For example, if the survivor function is known, the cumulative

hazard function can be determined by

H(t) =

∫ t

0
h(τ)dτ =

∫ t

0

f (τ)

S(τ)
dτ =− ln S(t),

where ln is the natural logarithm (log base e). The from–to matrix in Table 4.1 shows that any of

the three other lifetime distribution representations (given by the columns) can be found if one of

the representations (given by the rows) is known. It is assumed that the support of the lifetime T is

[0, ∞) in Table 4.1.

Example 4.2 Given h(t) = 18t for t ≥ 0, find f (t).

Using the
(
h(t), f (t)

)
element of the from–to matrix in Table 4.1,

f (t) = h(t)e−
∫ t

0 h(τ)dτ

= 18t e−
∫ t

0 18τdτ

= 18t e−9t 2
t ≥ 0,

which is a special case of the Weibull distribution with λ = 3 and κ = 2.
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f (t) S(t) h(t) H(t)

f (t) •
∫ ∞

t
f (τ)dτ

f (t)∫ ∞

t
f (τ)dτ

− ln

[∫ ∞

t
f (τ)dτ

]

S(t) −S′(t) • −S′(t)
S(t)

− ln S(t)

h(t) h(t)e−
∫ t

0 h(τ)dτ e−
∫ t

0 h(τ)dτ •
∫ t

0
h(τ)dτ

H(t) H ′(t)e−H(t) e−H(t) H ′(t) •

Table 4.1: Lifetime distribution representation relationships.

4.2 Exponential Distribution

Just as the normal distribution plays a pivotal role in classical statistics because of the central limit

theorem, the exponential distribution plays a pivotal role in survival analysis because it is the only

continuous distribution with a constant hazard function. The exponential distribution has a single

positive scale parameter λ, often called the failure rate by reliability engineers.

Definition 4.7 The four lifetime distribution representations associated with a random variable T

having the exponential distribution with positive rate parameter λ are

S(t) = e−λt f (t) = λe−λt h(t) = λ H(t) = λt

for t ≥ 0. Symbolically, this is written as T ∼ exponential(λ).

The four lifetime distribution representations are plotted in Figure 4.7 for λ = 1 and λ = 2. Two-

parameter distributions, which are more complex but can model a wider variety of situations, are

presented in subsequent sections.

The centrality, tractability, and importance of the exponential distribution make it a key prob-

ability distribution to know well. In that light, this section surveys several probabilistic properties
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Figure 4.7: Lifetime distribution representations for the exponential distribution.

of the exponential distribution that are useful in understanding how it is unique and when it should

be applied. In all the properties, it is assumed that the nonnegative lifetime T has the exponential

distribution with parameter λ.

Theorem 4.1 (memoryless property) If T ∼ exponential(λ), then

P(T ≥ t) = P(T ≥ t + s |T ≥ s) t ≥ 0; s≥ 0.

Proof The probability of surviving to time t + s conditioned on survival to time s is

P(T ≥ t + s |T ≥ s) =
P(T ≥ t + s)

P(T ≥ s)

=
S(t + s)

S(s)

=
e−λ(t+s)

e−λs

= e−λt

= S(t)

= P(T ≥ t)

for all t ≥ 0 and s≥ 0. �
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As shown in Figure 4.8 for λ = 1 and s = 0.5, this result indicates that the conditional survivor

function for the lifetime of an item that has survived to time s is identical to the survivor function for

the lifetime of a brand new item. This used-as-good-as-new assumption is very strong. Consider, for

example, whether the exponential distribution should be used to model the lifetime of a candle with

an expected burning time of 5 hours. If several candles are sampled and burned, we could imagine

a bell-shaped histogram for candle lifetimes, centered around 5 hours. The exponential lifetime

model is certainly not appropriate in this case, because a candle that has burned for 4 hours does

not have the same remaining lifetime distribution as that of a brand new candle. The exponential

distribution would only be appropriate for candle lifetimes if the remaining lifetime of a used candle

is identical to the lifetime of a new candle. An electrical component for which the exponential

lifetime assumption might be justified is a fuse. A fuse is designed to fail when there is a power

surge that causes the fuse to fail, resulting in a blown fuse which must be replaced. Assuming that

the fuse does not undergo any weakening or degradation over time and that power surges that cause

failure occur at a constant rate over time, the exponential lifetime assumption is appropriate, and a

used fuse that has not failed is as good as a new one in terms of longevity.
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Figure 4.8: The memoryless property of the exponential distribution.

The exponential distribution should be applied judiciously because the memoryless property

restricts its applicability. It is often misapplied for the sake of simplicity because the statistical

techniques for the exponential distribution are particularly tractable, or because small sample sizes

do not support more than a one-parameter distribution.

The exponential distribution is the only continuous distribution with the memoryless property.

The exponential distribution is the only continuous lifetime distribution for which the conditional

lifetime distribution of a used item is identical to the original lifetime distribution. The only discrete

distribution with the memoryless property is the geometric distribution.

Theorem 4.2 If T is a continuous nonnegative random variable with cumulative hazard function

H(t), then H(T )∼ exponential(1).
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Proof The survivor function for λT is

P(λT ≥ t) = P(T ≥ t/λ)

= e−λ(t/λ)

= e−t t ≥ 0,

so λT has survivor function e−t , which is exponential(1). �

This property is mathematically equivalent to the probability integral transformation, which

states that F(T ) ∼ U(0, 1), resulting in the inverse-cdf technique for generating random variates

for Monte Carlo simulation: T ← F−1(U), where U ∼ U(0, 1). Using Theorem 4.2, random life-

time variates are generated by

T ← H−1
(
− ln(1−U)

)

because− ln(1−U) is a unit exponential random variate. Random lifetimes generated in this fashion

are generated by the cumulative hazard function technique.

Example 4.3 Assuming that the failure time of an item has the Weibull distribution

with survivor function

S(t) = e−(λt)κ
t ≥ 0

for positive scale parameter λ and positive shape parameter κ, find an equation to con-

vert U(0, 1) random numbers to Weibull random variates.

The cumulative hazard function for the Weibull distribution is

H(t) =− ln S(t) = (λt)κ t ≥ 0,

which has inverse

H−1(y) =
y1/κ

λ
y≥ 0.

Weibull random variates can be generated by

T ← 1

λ
[− ln(1−U)]1/κ ,

where U is uniformly distributed between 0 and 1.

Figure 4.9 illustrates the geometry associated with generating a variate from the cumulative

hazard function. The value of − ln(1−U), the unit exponential random variate, is indicated on the

vertical axis, and the corresponding random variate T is indicated on the horizontal axis.

The next result gives a general expression for the sth moment of an exponential random variable.

Theorem 4.3 If T ∼ exponential(λ), then

E [T s] =
Γ(s+1)

λs
s >−1,

where Γ(α) =
∫ ∞

0
xα−1e−x dx.
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Figure 4.9: Generating a random variate by the inverse cumulative hazard function technique.

Proof Using the substitution x = λt, the expected value of T s is

E [T s] =
∫ ∞

0
t sλe−λt dt

= λ−s

∫ ∞

0
xse−x dx

= λ−sΓ(s+1) s >−1. �

When s is a nonnegative integer, this expression reduces to E[T s] = s!/λs. By setting s = 1,2,3,

and 4, the population mean, variance, coefficient of variation, skewness, and kurtosis can be ob-

tained:

E[T ] =
1

λ
V [T ] =

1

λ2
γ = 1 γ3 = 2 γ4 = 9.

Since the coefficient of variation of an exponential random variable is 1, a quick check for expo-

nentiality for a data set is to see if the ratio of the sample standard deviation to the sample mean is

approximately 1. The histogram of the sample values should also have the appropriate shape.

Theorem 4.4 (self-reproducing) If T1, T2, . . . , Tn are mutually independent random variables,

Ti ∼ exponential(λi), for i = 1, 2, . . . , n, and T = min{T1, T2, . . . , Tn}, then

T ∼ exponential

(
n

∑
i=1

λi

)
.

Proof The survivor function for T is

ST (t) = P(T ≥ t)
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= P(min{T1, T2, . . . , Tn} ≥ t)

= P(T1 ≥ t, T2 ≥ t, . . . , Tn ≥ t)

= P(T1 ≥ t)P(T2 ≥ t) . . .P(Tn ≥ t)

= e−λ1te−λ2t . . .e−λnt

= e−∑n
i=1 λit t ≥ 0.

Therefore, T ∼ exponential(∑n
i=1 λi). �

This result indicates that the minimum of n exponential random lifetimes also has the exponential

distribution. This is important in two applications. First, if n components, each with mutually

independent exponential times to failure, are arranged in a series system, then the distribution of

the system failure time is also exponential with a failure rate equal to the sum of the component

failure rates. Second, when there are several mutually independent, exponentially distributed causes

of failure competing for the lifetime of an item (for example, failing by open or short circuit for an

electronic item or death by various diseases for a human being), then the lifetime can be modeled as

the minimum of the individual lifetimes from each cause of failure.

Theorem 4.5 If T1, T2, . . . , Tn are mutually independent and identically distributed exponential(λ)

random variables, then

2λ
n

∑
i=1

Ti ∼ χ2(2n),

where χ2(2n) denotes the chi-square distribution with 2n degrees of freedom.

Proof Since T1, T2, . . . , Tn are mutually independent and identically distributed exponential(λ)

random variables,
n

∑
i=1

Ti ∼ Erlang(λ, n).

Furthermore

λ
n

∑
i=1

Ti ∼ Erlang(1, n),

which implies that

2λ
n

∑
i=1

Ti ∼ χ2(2n). �

This property is useful for determining a confidence interval for λ based on a data set of n

mutually independent exponential(λ) lifetimes. With probability 1−α,

χ2
2n,1−α/2 < 2λ

n

∑
i=1

Ti < χ2
2n,α/2,

where the left- and right-hand sides of this inequality are the α/2 and 1−α/2 fractiles of the chi-

square distribution with 2n degrees of freedom. This notation is illustrated in Figure 4.10, with the

three areas under the probability density function of the chi-square random variable plotted on the



226 Chapter 4. Probability Models in Survival Analysis

x

f (x)

α/2α/2

1−α

χ2
2n,1−α/2 χ2

2n,α/2

0

0

Figure 4.10: Fractiles of the chi-square distribution with 2n degrees of freedom.

graph. Rearranging this expression yields an exact 100(1−α)% two-sided confidence interval for

λ:
χ2

2n,1−α/2

2
n

∑
i=1

Ti

< λ <
χ2

2n,α/2

2
n

∑
i=1

Ti

.

Theorem 4.6 If T ∼ exponential(λ), then ⌈T ⌉ ∼ Geometric
(
1− e−λ

)
.

Proof Let N = ⌈T ⌉. The ceiling function applied to the continuous random variable

T means that the random variable N is discrete. Since the support of T is t ≥ 0, the

support of N is n = 1, 2, . . . . The probability mass function of N is

fN(n) =P(N = n) =P(n−1≤ T < n) =
∫ n

n−1
λe−λt dt =

[
−e−λt

]n

n−1
= e−(n−1)λ−e−nλ

for n = 1, 2, . . . . Equivalently,

fN(n) = e−(n−1)λ
(
1− e−λ

)
n = 1, 2, . . . ,

which can be recognized as a Geometric
(
1− e−λ

)
random variable with support begin-

ning at 1. �

This property involves the only two probability distributions with the memoryless property.

The ceiling function returns the next highest integer associated with the continuous failure time

T . A modeling situation in which this property might be of interest occurs when an item with an

exponential(λ) failure time distribution is placed on test at noon on a particular day. (The item could

be a manufactured item such as a light bulb in the reliability setting or a subject such as a laboratory

animal with cancer in a biostatistics setting.) Rather than continuously monitoring the item in order
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to observe its failure time T , you instead check the item for failure each subsequent day at noon.

If time is measured in days, then the day number in which you observe failure is ⌈T ⌉, which the

property indicates has a geometric distribution. Data collected in this fashion is known as current

status data. A time to failure is known as interval censored when only a lower bound and upper

bound are known on a failure time, as is the case in the scenario presented here.

The exponential distribution, for which the item under study does not age in a probabilistic sense,

is the simplest of the lifetime models. Three are many other important properties of the exponential

distribution in addition to those presented in this section. The two-parameter Weibull distribution,

which includes the exponential distribution as a special case, is presented next. It is more flexible

for modeling, although more complex mathematically.

4.3 Weibull Distribution

The exponential distribution is limited in applicability because of the memoryless property. The

assumption that a lifetime has a constant failure rate is often too restrictive or inappropriate. Me-

chanical items, for instance, typically degrade over time and hence their lifetimes are more likely

to follow a probability distribution with a strictly increasing hazard function. The Weibull distribu-

tion, named after Swedish mathematician Waloddi Weibull, is a generalization of the exponential

distribution that is appropriate for modeling lifetimes having constant, strictly increasing, or strictly

decreasing hazard functions.

Definition 4.8 The four lifetime distribution representations associated with a random variable T

having the Weibull distribution with positive scale parameter λ and positive shape parameter κ are

S(t) = e−(λt)κ
f (t) = κλκtκ−1e−(λt)κ

h(t) = κλκtκ−1 H(t) = (λt)κ

for t ≥ 0. Symbolically, this is written as T ∼Weibull(λ, κ).

The first four lifetime distribution representations for the Weibull(λ, κ) distribution are for t ≥ 0,

where λ > 0 and κ > 0 are the scale and shape parameters of the distribution. The hazard function

approaches zero from infinity for κ < 1, is constant for κ = 1, the exponential case, and increases

from zero for κ > 1. One other special case occurs when κ = 2, commonly known as the Rayleigh

distribution, which has a linear hazard function with slope 2λ2. When 3 < κ < 4, the probability

density function resembles that of a normal probability density function, and the mode and median

of the distribution are equal when κ ∼= 3.26. The R code for plotting these lifetime distribution

representations for λ = 1 and κ = 0.5, 1, 2, 3 is given below. The by argument in the call to the

seq function controls the spacing between the t values plotted. The matplot function plots several

functions on a single plot simultaneously.

par(mfrow = c(2, 2))

kappa = c(0.5, 1, 2, 3)

t = seq(0, 1.5, by = 0.05)

f = cbind(dweibull(t, kappa[1]), dweibull(t, kappa[2]),

dweibull(t, kappa[3]), dweibull(t, kappa[4]))

matplot(t, f, type = "l")

S = cbind(1 - pweibull(t, kappa[1]), 1 - pweibull(t, kappa[2]),

1 - pweibull(t, kappa[3]), 1 - pweibull(t, kappa[4]))

matplot(t, S, type = "l")
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h = f / S

matplot(t, h, type = "l")

H = -log(S)

matplot(t, H, type = "l")

These four functions are plotted in Figure 4.11 for λ = 1 and κ = 0.5, 1, 2, 3.

The characteristic life of the Weibull distribution is a special fractile defined by tc = 1/λ. All

Weibull survivor functions pass through the point (1/λ, 1/e), regardless of the value of κ, as shown

in Figure 4.11 for λ = 1. Also, since H(t) =− ln S(t), all Weibull cumulative hazard functions pass

through the point (1/λ, 1), regardless of the value of κ.

There are several ways to parameterize the Weibull distribution. The previous two paragraphs

introduced one such parameterization with a scale parameter λ and a shape parameter κ. Another

common way to parameterize the Weibull distribution is with the survivor function

S(t) = e−(t/η)β
t ≥ 0,

where η is a positive scale parameter and β is a positive shape parameter. This is the parameterization

used in R. Comparing the two survivor functions, it is clear that the two shape parameters κ and β
play identical roles, and the two scale parameters λ and η are reciprocals. Both parameterizations

correspond to the Weibull distribution, but some careful bookkeeping is necessary to account for the

different roles of the various parameters. The version of the Weibull distribution with parameters λ
and κ will be used consistently throughout this book.
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Figure 4.11: Lifetime distribution representations for the Weibull distribution for λ = 1.
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Moments for the Weibull distribution are not as mathematically tractable as those for the ex-

ponential distribution. Using the substitution u = (λt)κ, the rth central moment about the origin

is

E [T r] =
∫ ∞

0
tr f (t)dt

=
∫ ∞

0
κλκtκ+r−1e−(λt)κ

dt

=
1

λr

∫ ∞

0
ur/κe−u du

=
1

λr
Γ
(

1+
r

κ

)

=
r

κλr
Γ
( r

κ

)

for r = 1, 2, . . . . Using this expression for E [T r] with r = 1 and r = 2 and the shortcut formula for

the population variance, the population mean and variance of a Weibull(λ, κ) random variable are

E[T ] =
1

λ
Γ

(
1+

1

κ

)
=

1

λκ
Γ

(
1

κ

)

and

V [T ] =
1

λ2

{
Γ

(
1+

2

κ

)
−
[

Γ

(
1+

1

κ

)]2
}

=
1

λ2

{
2

κ
Γ

(
2

κ

)
−
[

1

κ
Γ

(
1

κ

)]2
}
.

The associated coefficient of variation is

γ =
σ

µ
=

{
2

κ
Γ

(
2

κ

)
−
[

1

κ
Γ

(
1

κ

)]2
}1/2

1

κ
Γ

(
1

κ

) .

Using this expression for E [T r] with r = 3 and r = 4 yields the population skewness and kurtosis:

γ3 =

{
2

κ
Γ

(
2

κ

)
−
[

1

κ
Γ

(
1

κ

)]2
}−3/2{

3

κ
Γ

(
3

κ

)
− 6

κ2
Γ

(
1

κ

)
Γ

(
2

κ

)
+2

[
1

κ
Γ

(
1

κ

)]3
}
,

γ4 =

{
2

κ
Γ

(
2

κ

)
−
[

1

κ
Γ

(
1

κ

)]2
}−2{

4

κ
Γ

(
4

κ

)
− 12

κ2
Γ

(
1

κ

)
Γ

(
3

κ

)

+
12

κ3

[
Γ

(
1

κ

)]2

Γ

(
2

κ

)
− 3

κ4

[
Γ

(
1

κ

)]4
}
.

The next example applies the formulas developed thus far for the Weibull distribution to the

lifetime of a spring.

Example 4.4 The lifetime of a certain type of spring used continuously under known

operating conditions has the Weibull distribution with λ = 0.0014 and κ = 1.28, where

time is measured in hours. (Estimating the parameters for the Weibull distribution from

a data set is introduced in the next chapter; the parameters are assumed to be known

constants in this example.)
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• Find the population mean time to failure.

• Find the probability that a new spring will operate for 400 hours.

• Find the probability that a spring that has operated for 200 hours without failure

will operate another 400 hours.

The population mean time to failure is

µ = E[T ] =
1

(0.0014)(1.28)
Γ

(
1

1.28

)
∼= 661.8 hours.

The probability that a new spring will operate for 400 hours is

S(400) = e−[(0.0014)(400)]1.28 ∼= 0.6222.

To calculate the conditional probability that a used spring lasts another 400 hours re-

quires a conditional survivor function. The conditional survivor function for a spring

that has operated for 200 hours is

ST |T≥200(t) =
S(t)

S(200)
=

e−(0.0014t)1.28

e−[(0.0014)(200)]1.28
t ≥ 200.

So the conditional probability that a spring that has operated for 200 hours lasts another

400 hours is ST |T≥200(600) ∼= 0.5469, as illustrated in Figure 4.12. It is not surprising

that this conditional survival probability is slightly lower than the probability that a new

spring survives 400 hours. Since the shape parameter κ = 1.28 is greater than 1, the

spring’s lifetime is in the IFR class, which means that the spring degrades over time.

0 200 400 600 800 1000
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0.6
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1.0

•
•

t
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S(t)
ST |T≥200(t)

(400, 0.6222) (600, 0.5469)

Figure 4.12: The original and conditional survivor functions.

Finding fractiles of the Weibull distribution requires only a few steps of algebra. The pth frac-

tile of a Weibull(λ, κ) random variable, denoted by tp, can be found by equating the cumulative
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distribution of T to p and solving for tp:

p = 1− e−(λtp)
κ ⇒ tp =

1

λ
[− ln(1− p)]1/κ .

These fractiles can be useful for establishing warranty periods or setting burn-in periods for manu-

factured items.

The Weibull distribution has the self-reproducing property. If T1, T2, . . . , Tn are mutually inde-

pendent component lifetimes having the Weibull distribution with the same shape parameters, then

the minimum of these values has the Weibull distribution. More specifically, if Ti ∼Weibull(λi, κ)

for i = 1, 2, . . . , n, then min{T1, T2, . . . , Tn} ∼Weibull
(
(∑n

i=1 λκ
i )

1/κ , κ
)

.

4.4 Other Lifetime Distributions

Although the exponential and Weibull distributions are popular lifetime models, they are limited in

their modeling capability. For example, if it were determined that an item had a bathtub-shaped

hazard function, none of these three models would be appropriate unless a piecewise model over

time segments of the lifetime were used. Several other models that may be used to describe the

distribution of a continuous lifetime T are surveyed in this section.

The distributions for the nonnegative random variable T described here have three types of pa-

rameters: location parameters, denoted by a, b, and µ; scale parameters, denoted by λ and σ; and

shape parameters, denoted by κ, γ, and δ. All distributions have support on [0, ∞) except for the

uniform and Pareto distributions.

The one-parameter lifetime models that are summarized in this section are the exponential(λ) and

Muth(κ) distributions. The two-parameter lifetime models summarized here are the Weibull(λ, κ),

gamma(λ, κ), uniform(a, b), log normal(µ, σ), log logistic(λ, κ), inverse Gaussian(λ, µ), exponential

power(λ, κ), Pareto(λ, κ), and Gompertz(δ, κ) distributions. The three-parameter lifetime models

summarized here are the Makeham(δ, κ, γ), IDB(δ, κ, γ), and generalized Pareto(δ, κ, γ) distribu-

tions. The n-parameter lifetime models summarized here are the hypoexponential(λ1, λ2, . . . , λn)

and hyperexponential(λ1, λ2, . . . , λn) distributions.

The shapes of the lifetime distribution representations, particularly the hazard function, are use-

ful in determining the appropriate distribution to use to model a lifetime. One-, two-, three-, and

n-parameter lifetime distributions are described consecutively in the following paragraphs.

4.4.1 Some One-Parameter Lifetime Models

The one-parameter lifetime distributions defined here have their f (t), S(t), h(t), and H(t) functions

given in Table 4.2. The simplest lifetime distribution is the exponential distribution, with a positive

scale parameter λ. As indicated in Section 4.2, it is the only continuous distribution with a constant

failure rate.

Muth developed a distribution with a single shape parameter κ (0 < κ ≤ 1). The Muth distri-

bution is asymptotically equivalent to the unit exponential distribution as κ→ 0 and has a hazard

function that increases from h(0) = 1−κ, for all κ.

4.4.2 Some Two-Parameter Lifetime Models

The two-parameter lifetime distributions defined here have their lifetime distribution representations

given in Table 4.3. As outlined in Section 4.3, the Weibull distribution, having positive scale param-

eter λ and positive shape parameter κ, is one of the most popular two-parameter lifetime models
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Distribution f (t) S(t) h(t) H(t) Parameters

Exponential λe−λt e−λt λ λt λ > 0

Muth (eκt −κ)e[−
1
κ eκt+κt+ 1

κ ] e[−
1
κ eκt+κt+ 1

κ ] eκt −κ 1
κ eκt −κt− 1

κ 0 < κ≤ 1

Table 4.2: One-parameter univariate lifetime distributions.

used in survival analysis. The Weibull distribution includes the exponential distribution as a special

case when κ = 1, and the hazard function increases from zero to infinity when κ > 1 and decreases

from infinity to zero when κ < 1.

The gamma distribution, has positive scale parameter λ and positive shape parameter κ. As with

Distribution f (t) S(t) h(t) H(t) Parameters

Weibull κλκtκ−1e−(λt)κ

e−(λt)κ

κλκtκ−1 (λt)κ λ > 0; κ > 0

Gamma
λ(λt)κ−1e−λt

Γ(κ)
1− I(κ, λt)

λ(λt)κ−1e−λt

Γ(κ)[1−I(κ, λt)]
− ln [1−I(κ, λt)] λ > 0; κ > 0

Uniform
1

b−a

b− t

b−a

1

b− t
− ln

(
b− t

b−a

)
a≤ t ≤ b;
0≤ a < b

Log normal
1

σt
√

2π
e−(ln t−µ)2/2σ2

∫ ∞

t
f (τ)dτ

f (t)

S(t)
− ln S(t)

−∞ < µ < ∞;
σ > 0

Log logistic
λκ(λt)κ−1

[1+(λt)κ]2
1

1+(λt)κ

λκ(λt)κ−1

1+(λt)κ
ln
[
1+(λt)κ

]
λ > 0; κ > 0

Inverse
Gaussian

√
λ

2πt3 e−λ(t−µ)2/2µ2t

∫ ∞

t
f (τ)dτ

f (t)

S(t)
− ln S(t) λ > 0; µ > 0

Exponential
Power λκtκ−1e1−eλtκ+λtκ

e1−eλtκ

eλtκ
λκtκ−1 eλtκ −1 λ > 0; κ > 0

Pareto
κλκ

tκ+1

(
λ

t

)κ κ

t
κ ln
( t

λ

)
t ≥ λ;

λ > 0; κ > 0

Gompertz δκte−δ(κt−1)/ ln κ e−δ(κt−1)/ ln κ δκt δ(κt −1)

ln κ
κ > 1; δ > 0

Table 4.3: Two-parameter univariate lifetime distributions.
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the Weibull distribution, the gamma distribution includes the exponential distribution as a special

case when κ = 1. The hazard function increases from zero to λ when κ > 1, decreases from infinity

to λ when κ < 1.

The uniform distribution is a simple two-parameter model. The main application of the uni-

form distribution in survival analysis is to approximate lifetime distributions over relatively small

intervals. The uniform distribution has support on [a, b] with location parameters a and b, where

0≤ a < b. The hazard function increases from h(a) = 1/(b−a) to infinity. When a = 0 and b = 1,

the uniform distribution can be used to generate random variates for Monte Carlo simulation by

inversion of the cumulative distribution function based on the probability integral transformation.

The log normal distribution has a hazard function shape that places it in the UBT [upside-

down bathtub-shaped, or hump-shaped, where h(t) increases initially and then decreases] class.

It is parameterized by µ and σ because the logarithm of a log normal random variable is a normal

random variable with population mean µ and standard deviation σ. One historical reason that the log

normal distribution has been less popular than the Weibull distribution is that its survivor function is

not closed form. This is important for estimating parameters for right-censored data sets, although

widespread algorithms and computer routines can overcome this issue. The survivor function for a

log normal random variable is

S(t) = 1−Φ

(
ln t−µ

σ

)
t ≥ 0,

where Φ is the cumulative distribution function of a standard normal random variable.

The log logistic distribution has positive scale parameter λ and positive shape parameter κ. The

hazard function is decreasing when κ≤ 1 and is UBT for κ> 1. As with the exponential and Weibull

distributions, its survivor function can be inverted in closed form, so log logistic variates can easily

be generated by inversion for Monte Carlo simulation. The log logistic distribution is widely used

in biomedical applications.

The inverse Gaussian distribution has a positive parameter µ and positive scale parameter λ.

Similar to the log normal distribution, the inverse Gaussian distribution is also in the UBT class.

The survivor function is not closed form, but can be written in terms of the cumulative distribution

function of a standard normal random variable. The population mean of the inverse Gaussian distri-

bution is µ and the population variance is µ3/λ, so the parameter µ is not a true location parameter

because it does more than just shift the location of the distribution.

The exponential power distribution has a positive scale parameter λ and a positive shape param-

eter κ. The exponential power distribution has two properties that make it unique. First, the hazard

function increases exponentially in t, whereas the Weibull hazard function increases in a polynomial

fashion. Second, the exponential power distribution is one of the few two-parameter distributions

that has a hazard function that can assume a bathtub shape. The hazard function achieves a mini-

mum at t = [(1−κ)/(λκ)]1/κ when κ < 1. For κ > 1, the hazard function increases from zero to

infinity, and for κ = 1 the hazard function increases from λ. The distribution has a characteristic life

of (1/λ)1/κ. The exponential power distribution’s survivor function, which is

S(t) = e1−eλtκ

t ≥ 0,

can be inverted in closed form, so random variates can easily be generated by inversion.

Pareto devised a probability distribution with support on t ≥ λ, where κ is a positive shape pa-

rameter and λ is a positive scale parameter. The hazard function for the Pareto distribution decreases

to zero from h(λ) = κ/λ.
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The Gompertz distribution is a lifetime model that has been used to model adult lifetimes in

actuarial applications. This distribution has positive shape parameters δ and κ. Gompertz assumed

that Mill’s ratio, the reciprocal of the hazard function, measures human resistance to death. He

assumed this resistance decreases over time at a rate proportional to itself; that is,

d

dt

[
1

h(t)

]
= κ

[
1

h(t)

]
,

where κ is a constant. The solution to this separable differential equation is h(t) = δect , where

ec = κ. The hazard function increases from h(0) = δ.

4.4.3 Some Three-Parameter Lifetime Models

The three-parameter lifetime distributions defined here have their f (t), S(t), h(t), and H(t) functions

given in Table 4.4. The Makeham distribution has three positive shape parameters and is a general-

ization of the Gompertz distribution with γ included in the hazard function. Whereas the Gompertz

distribution has been used to model lifetimes in terms of death from natural causes, the Makeham

distribution takes into account the possibility of accidental deaths by including the extra parameter.

The hazard function increases from δ+ γ.

The IDB (increasing, decreasing, bathtub) distribution is a three-parameter model with a hazard

function that can exhibit increasing (δ ≥ γκ), decreasing (δ = 0), and bathtub shapes (0 < δ < γκ).

The distribution has shape parameters δ≥ 0, κ≥ 0, and γ≥ 0. Special cases of the IDB distribution

are the Rayleigh distribution when γ = 0 and the exponential distribution when δ = κ = 0 and γ > 0.

The generalized Pareto distribution is another three-parameter distribution with shape param-

eters δ,κ, and γ. It is able to achieve an increasing hazard function when κ < 0, a decreasing

hazard function when κ > 0, and a constant hazard function when κ = 0. For all parameter values,

h(0) = γ + κ/δ and lim t→∞ h(t) = γ. The special cases of γ = 0 and κ = −δγ result in the hazard

functions

h(t) =
κ

t +δ
and h(t) =

γt

t +δ

for t ≥ 0.

Distribution f (t) S(t) h(t) H(t) Parameters

Makeham (γ+δκt)e−γt−δ(κt−1)/ln κ e−γt−δ(κt−1)/ln κ γ+δκt γt +
δ(κt −1)

ln κ
δ≥ 0; κ > 1;

γ > 0

IDB
(1+κt)δt + γ

(1+κt)γ/κ+1
e−δt2/2 (1+κt)−γ/κe−δt2/2 δt+

γ

1+κt

δ

2
t2+

γ

κ
ln(1+κt)

δ≥ 0; κ≥ 0;
γ≥ 0

Generalized
Pareto

(
γ+

κ

t +δ

)(
1+

t

δ

)−κ
e−γt

(
1+

t

δ

)−κ
e−γt γ+

κ

t +δ
γt+κ ln

(
1+

t

δ

) δ > 0; γ≥ 0;
κ≥−δγ

Table 4.4: Three-parameter univariate lifetime distributions.
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4.4.4 Some n-Parameter Lifetime Models

Two n-parameter distributions are related to the exponential distribution. The first is the hypoexpo-

nential distribution. If Ti ∼ exponential(λi) for i = 1, 2, . . . , n, then T = T1 +T2 + · · ·+Tn has the

hypoexponential distribution. The hypoexponential distribution collapses to the Erlang distribution

with parameters λ and n when λ = λ1 = λ2 = · · · = λn. The hypoexponential distribution is in the

IFR class for all values of its parameters.

A second n-parameter distribution is the hyperexponential distribution. If Ti ∼ exponential(λi)

for i = 1, 2, . . . , n, and T has probability density function

fT (t) = p1 fT1
(t)+ p2 fT2

(t)+ · · ·+ pn fTn(t),

where p1 + p2 + · · ·+ pn = 1 and pi > 0 for i = 1, 2, . . . , n, then T has the hyperexponential dis-

tribution. This lifetime distribution is a mixture of exponential distributions. The hyperexponential

distribution collapses to the exponential distribution with failure rate λ when λ= λ1 = λ2 = · · ·= λn.

The hyperexponential distribution is in the DFR class for all values of its parameters.

4.4.5 Summary

Figure 4.13 shows how these univariate lifetime distributions are related to one another. Each oval

represents one lifetime distribution, listing its name, parameter(s), and support. Solid arrows con-

necting the distributions denote special cases and transformations. An example of a special case

is the arrow pointing from the Weibull distribution to the exponential distribution with the label

κ = 1. An example of a transformation is the arrow pointing from the exponential distribution to the

chi-square distribution with the label 2λ∑n
i=1 Ti (iid). This result is given in Theorem 4.5. Another

example of a transformation is the self-loop on the exponential distribution, where the minimum of

independent exponential random variables is also exponential. This result is given in Theorem 4.4.

Dashed arrows denote limiting distributions, which typically arise as one of the parameters ap-

proaches 0 or infinity. An example of a limiting distribution is the arrow pointing from the gamma

distribution to the normal distribution with the label κ→ ∞. The limiting distribution of a gamma

random variable converges to the normal distribution as its shape parameter increases.

Table 4.5 contains a summary of the distribution classes to which the distributions belong. Dou-

ble lines are used to separate the distributions by the number of parameters. For each class to which a

distribution belongs, the corresponding set of parameter values is specified. The distribution classes

that are considered are IFR, DFR, BT, and UBT.

4.5 Moment Ratio Diagrams

The lifetime distributions introduced in this chapter have been presented in a serial fashion with-

out much attention being directed toward looking at all of them simultaneously. Isolating their

presentation in this fashion is unfortunate; it would be of benefit to view all of these distributions

simultaneously. One way to view these probability distributions simultaneously is to place them on

a graph of their moments. These graphs are often known as moment-ratio diagrams. A moment-

ratio diagram is the locus of pairs of standardized moments for a particular probability distribution

plotted on a single set of axes. Moment-ratio diagrams are useful for (1) quantifying the “distance”

or “proximity” between univariate probability distributions based on their second, third, and fourth

moments, (2) illustrating the limiting behavior of probability distributions, (3) highlighting the ver-

satility of a particular probability distribution based on the range of values that the moments can

assume, and (4) generating a list of potential probability models based on a data set.
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Figure 4.13: Relationships among continuous univariate lifetime distributions.
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Distribution IFR DFR BT UBT

Exponential YESall λ YESall λ NO NO

Muth YESall κ NO NO NO

Weibull YESκ≥1 YESκ≤1 NO NO

Gamma YESκ≥1 YESκ≤1 NO NO

Uniform YESall a and b NO NO NO

Log normal NO NO NO YESall µ and σ

Log logistic NO YESκ≤1 NO YESκ>1

Inverse Gaussian NO NO NO YESall λ and µ

Exponential Power YESκ≥1 NO YESκ<1 NO

Pareto NO YESall κ NO NO

Gompertz YESall δ and κ NO NO NO

Makeham YESall δ and κ NO NO NO

IDB YESδ≥γκ YESδ=0 YES0<δ<γκ NO

Generalized Pareto YESκ≤0 YESκ≥0 NO NO

Hypoexponential YESall λ1,λ2,...,λn
YESn=1 NO NO

Hyperexponential YESλ1=λ2=···=λn
YESall λ1,λ2,...,λn

NO NO

Table 4.5: Distribution classes.

4.5.1 Skewness vs. Coefficient of Variation

As one illustration of a moment-ratio diagram, Figure 4.14 contains a plot of the population skew-

ness

γ3 = E

[(
T −µ

σ

)3
]

on the vertical axis, versus the population coefficient of variation

γ =
σ

µ

on the horizontal axis for several of the lifetime distributions introduced in this chapter, where µ and

σ are the population mean and standard deviation of the random variable T . Some features of this

moment-ratio diagram are listed below.
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Figure 4.14: Skewness γ3 versus coefficient of variation γ.

• The locus of points associated with the various probability distribution consist of either a

single point (for example, the Rayleigh distribution), a curve (for example, the log logistic

distribution), or a region (for example, the beta distribution).

• There are two gathering points: the exponential distribution at (γ, γ3)= (1, 2) and a degenerate
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distribution at (γ, γ3) = (0, 0).

• The Poisson distribution, with γ3 = γ, and the gamma distribution, with γ3 = 2γ, have linear

relationships between γ and γ3.

• The limiting values of the beta distribution region are the line associated with the gamma

distribution γ3 = 2γ and the curve associated with the Bernoulli distribution γ3 = γ−1/γ.

• Symmetric distributions, such as the N
(
µ, σ2

)
, U(a, b), and discrete uniform distributions,

all have population skewness γ3 = 0.

• The curves associated with the gamma and Weibull distributions intersect at the exponential

distribution, which is associated with shape parameter κ = 1.

• The open point associated with the Pareto distribution gives the limiting distribution as κ→∞.

The values of γ and γ3 are defined for κ > 3.

• The chi-square distribution, indicated by a C for various values of its degrees of freedom, and

the Erlang distribution, indicated by an E for various values of its integer shape parameter,

coincide when the degrees of freedom for the chi-square distribution are even. This accounts

for the alternating pattern of C and CE labels along the line for the gamma distribution.

4.5.2 Kurtosis vs. Skewness

A second moment-ratio diagram, which is given in Figure 4.15 is a plot of the population kurtosis

γ4 = E

[(
T −µ

σ

)4
]

on the vertical axis, versus the population skewness

γ3 = E

[(
T −µ

σ

)3
]

on the horizontal axis for several lifetime distributions introduced in this chapter. (Some authors

prefer to work with the excess population kurtosis γ4−3.) Although it uses higher-order moments,

it is considered the more classic moment-ratio diagram because the distributions plotted consist of

points, curves, and regions that are independent of location and scale parameters. The population

skewness scale can sometimes be replaced by the squared skewness, resulting in what is known as

a Cullen and Frey graph. Figure 4.15 contains a moment-ratio diagram for the population skewness

versus the population kurtosis, plotted upside down per tradition.

The locus of (γ3, γ4) values that a distribution occupies in Figure 4.15 typically depends on the

number of shape parameters. The Rayleigh(λ) distribution, for example, with just a scale parameter,

occupies just the single point because it has no shape parameters. The gamma distribution, on the

other hand, occupies the curve γ3 = 3γ2
2 + 3 because it has one shape parameter. Finally, the beta

distribution occupies a region because it has two shape parameters. Some further features of this

moment-ratio diagram are listed below.
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Figure 4.15: Population kurtosis γ4 versus population skewness γ3.

• There are two gathering points: the exponential distribution at (γ3, γ4) = (2, 9) and the normal

distribution at (γ3, γ4) = (0, 3). This is further evidence of the centrality of these two distri-

butions in probability theory: the exponential distribution plays a pivotal role in stochastic

processes (for example, queueing theory and survival analysis) and the normal distribution
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plays a pivotal role in classical statistics. Stochastic processes can be thought of as probability

over time; statistics can be thought of as probability applied to data.

• Once again, the beta distribution covers the largest amount of territory in Figure 4.15, high-

lighting its versatility as a probability model.

• The smallest possible value of the population kurtosis is γ4 = 1, which is achieved by the

Bernoulli distribution with p = 1/2. This distribution is equivalent to the discrete uniform

distribution with parameters 0 and 1.

• The curves associated with the gamma and Weibull distributions again intersect at the expo-

nential distribution at (γ3, γ4) = (2, 9), which corresponds to the shape parameter κ = 1.

• The discrete uniform distribution is plotted as a solid line between its limits as a two-mass

value at (γ3, γ4) = (0, 1) and its limiting distribution (as the number of mass values increases)

at (γ3, γ4) = (0, 1.8). The locus of points is actually a series of points along this line.

A statistician can plot the sample skewness and the sample kurtosis

1

n

n

∑
i=1

(
Ti− T̄

S

)3

and
1

n

n

∑
i=1

(
Ti− T̄

S

)4

for a set of data values T1, T2, . . . , Tn, sample mean T̄ , and sample standard deviation S on Fig-

ure 4.15 for a particular data set. Doing so gives a sense for which of the distributions might be

candidate probability models for the implied population distribution. The moment-ratio diagram

allows a statistician to compare several candidate distributions simultaneously in terms of their mo-

ments.

4.6 Proportional Hazards Model

The proportional hazards model is appropriate for including a vector of covariates (for example,

the turning speed and feed rate for a drill bit) in a lifetime model. It is often known as the Cox

proportional hazards model because it was devised by British statistician Sir David Cox in 1972. A

covariate—often called an explanatory variable—is a variable that influences the survival time of

the item under consideration. Covariates might account for the fact that the population is not truly

homogeneous, or they might account for treatments imposed on the population.

The q× 1 vector z = (z1, z2, . . . , zq)
′ contains q covariates associated with a particular item.

These covariates might be treatments, stresses, intrinsic properties of items, or exogenous (environ-

mental) variables. The simplest case is the two-population situation modeled by a single (q = 1)

binary covariate z, where z = 0 typically corresponds to the control group and z = 1 typically corre-

sponds to the treatment group. A second, slightly more complicated example arises when a single

covariate assumes a continuous value (for example, dosage in a medical setting or turning speed in

a manufacturing setting). The objective in an analysis of this type might be to find the dosage or

turning speed that minimizes risks or costs, respectively. Other possibilities for the elements of z

include cumulative load applied, time-varying stresses, and environmental factors.

The covariates increase or decrease the hazard function in the proportional hazards model. This

model was originally developed for medical settings in which covariates are usually patient char-

acteristics such as age, gender, cholesterol level, or blood pressure. The models are often used to

determine which covariate has the most significant impact on survival or to compare the survival
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patterns for different treatments (for example, chemotherapy versus surgery for cancer) by factoring

out the impact of the covariates.

One issue of immediate interest is how to link the covariates to a lifetime distribution. One

approach is to define one lifetime model when z = 0 (often called the baseline distribution) and

other models when z 6= 0. One problem that arises with this approach is that there might be dozens

or even thousands of possible values associated with z 6= 0, and a separate lifetime model would

need to be defined for each of these vectors. The more practical approach is to define a single

lifetime model which is appropriate for all values of z in order to simplify the modeling.

The baseline distribution corresponds to having all the covariates equal to zero. In a reliability

setting, this is typically the normal operating conditions for the item. Other covariate vectors are

often used for accelerated environmental conditions. In a biomedical setting, the baseline is typically

the control group that receives either no treatment or the standard treatment for a particular disease.

The covariates are linked to the lifetime by the link function ψ(z), which typically satisfies ψ(0) = 1

and ψ(z) > 0 for all z. When a link function satisfies these conditions, then z = 0 implies that

S0(t)≡ S(t). The most general case is to let ψ(z) be any function of the covariates.

Definition 4.9 Let the q× 1 vector z = (z1, z2, . . . , zq)
′ denote q covariates associated with the

lifetime of an item. The proportional hazards model can be defined by

h(t) = ψ(z)h0(t) t ≥ 0,

where h0(t) is a baseline hazard function and ψ(z)> 0 is a link function.

The covariates increase the hazard function when ψ(z)> 1 or decrease the hazard function when

ψ(z)< 1. A popular choice is the log-linear link function ψ(z) = eββ′z , where ββ = (β1, β2, . . . , βq)
′

is a q× 1 vector of regression coefficients corresponding to the q covariates. The log-linear link

function satisfies ψ(z) > 0 for all vectors z and ββ. Other, less popular choices for the link func-

tion are ψ(z) = ββ′z and ψ(z) = (ββ′z)−1. Both alternative choices suffer from the limitation that

ψ(z)< 0 for some values of ββ and z, resulting in a constrained optimization problem when the

models are fitted to data. The left-hand side of this model is often written as h(t; z) because survival

is now a function of both time and the covariate vector z.

Regression modeling tools, such as indicator variables, modeling of interaction terms, modeling

of nonlinear relationships between variables, and stepwise selection of significant covariates, can all

be used here in the same fashion as in regression modeling covered earlier in the text. Estimation

of the regression coefficients β1, β2, . . . , βq and the baseline distribution parameters from a data

set consisting of times to failure and associated covariates is introduced in the next chapter. The

proportional hazards model has a unique feature that allows estimation of the regression parameters

(the ββ vector) without knowledge of the baseline distribution.

Reliability engineers often use accelerated conditions to induce failures. These conditions in-

clude voltage, current, pressure, impact, and humidity. The results from the fitted proportional

hazards model can then be extrapolated back to the standard operating conditions by adjusting the

values of the covariates. The accelerated levels of the covariates must be chosen carefully based

on sound engineering judgment and previous experience in order to assure that failure modes that

would not occur in the standard operating conditions are not induced by the accelerated testing

environment.

The other lifetime distribution representations can be determined for the proportional hazards
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model. For example, the cumulative hazard function for a random variable T with covariates z is

H(t) =

∫ t

0
h(τ)dτ

=
∫ t

0
ψ(z)h0(τ)dτ

= ψ(z)
∫ t

0
h0(τ)dτ

= ψ(z)H0(t) t ≥ 0.

Similarly,

S(t) = e−H(t)

= e−ψ(z)H0(t)

= (e−H0(t))
ψ(z)

=
[
S0(t)

]ψ(z)
t ≥ 0.

Finally,

f (t) = S(t)h(t)

=
[
S0(t)

]ψ(z)
ψ(z)h0(t)

=
[
S0(t)

]ψ(z)−1
ψ(z)S0(t)h0(t)

=
[
S0(t)

]ψ(z)−1
ψ(z) f0(t) t ≥ 0.

The notation has been simplified in the three expressions above; these functions are more accurately

expressed as H(t, z), S(t, z), and f (t, z). Table 4.6 summarizes the various lifetime distribution

representations for the proportional hazards models. This table allows a modeler to determine any

of the four lifetime distribution representations for either model once the baseline distribution and

link function are specified, as illustrated in the next example.

Representation Proportional Hazards

S(t)
[
S0(t)

]ψ(z)

f (t) f0(t)ψ(z)
[
S0(t)

]ψ(z)−1

h(t) ψ(z)h0(t)

H(t) ψ(z)H0(t)

Table 4.6: Lifetime distribution representations for the proportional hazards model.
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Example 4.5 Consider the case of a Weibull baseline function in a proportional hazards

model. Find the hazard function, survivor function, and the mean time to failure for an

item having covariate vector z.

The baseline hazard function is Weibull with parameters λ and κ:

h0(t) = κλκtκ−1 t ≥ 0.

So the hazard function for an item with covariates z is

h(t) = ψ(z)h0(t) = ψ(z)κλκtκ−1 t ≥ 0.

Using Table 4.6, the appropriate formula for determining the survivor function is

S(t) = [S0(t)]
ψ(z) t ≥ 0.

Using the usual baseline survivor function for the Weibull distribution,

S(t) = [e−(λt)κ

]
ψ(z)

= e−(λt)κψ(z) t ≥ 0.

This survivor function can be recognized as that of a Weibull lifetime with scale param-

eter λψ(z)1/κ and shape parameter κ. The population mean time to failure for an item

with covariate vector z is

E[T ] =
1

λψ(z)1/κκ
Γ

(
1

κ

)
.

As before, the notation has been simplified. It is certainly more accurate to write this as

E[T |z].

This chapter has contained a brief introduction to probability models for univariate lifetime dis-

tributions, both without and with associated covariates. These models are appropriate for a nonneg-

ative random variable T with applications in reliability, biostatistics, actuarial science, economics,

sociology, etc. The distribution of T can be defined by one of five lifetime distribution representa-

tions: the survivor function, the probability density function, the hazard function, or the cumulative

hazard function. The exponential distribution is a key central lifetime distribution because it is the

only continuous distribution having both a constant hazard function and the memoryless property.

The Weibull distribution is a two-parameter lifetime distribution that includes the exponential dis-

tribution as a special case when its shape parameter κ is equal to 1. The Cox proportional hazards

model provides one way to incorporate a vector of covariates z into a lifetime model. This model

contains a link function ψ(z) which links the values of the covariates to the failure time distribution.

The next chapter introduces statistical methods that can be applied to lifetime data.

4.7 Exercises

4.1 Let t∗ > 0 be the mode value for a continuous lifetime T . Show that h′(t∗) = [h(t∗)]2.

4.2 The probability that an item will survive a 1000-hour mission is 0.4. If the item is operating

800 hours into the mission, the probability of surviving the remaining 200 hours of the

mission is 0.85. What is the probability that the item survives the initial 800 hours of the

mission?
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4.3 The hazard function shown below is for a continuous random variable measured in hours.

(a) Find S(4).

(b) Find S(10).

(c) Find f (10).
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0.05

t

h(t)

4.4 Draw the survivor function corresponding to the probability density function illustrated

below. Use a straight edge whenever the function is linear. The rectangles and triangle on

the probability density function all have area 1/3.
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0.3

10 12

t

f (t)

4.5 Consider the hazard function

h(t) = α+ eβt t ≥ 0.

What conditions must the parameters α and β meet for h(t) to be a legitimate hazard func-

tion for a random lifetime T ?
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4.6 Jordan has designed a new screwdriver. Its lifetime, measured in years, follows a distribu-

tion with survivor function

S(t) =
1

1+(eλt −1)κ
t ≥ 0,

where λ and κ are positive parameters. If κ = 1/2 and λ = 1/7, find the probability that a

screwdriver that is still functioning after 5 years of use will last another 3 years.

4.7 Let the time to failure of a bar code reader have survivor function

S(t) =
2

1+ eθt
t ≥ 0,

where θ > 0. If Ellen places n bar code readers on test simultaneously at time t = 0, find

the expected number that fail by time t0.

4.8 The lifetime of a motor, in years, is a continuous random variable with probability density

function

f (t) = 3(t +3)−2 t ≥ 0.

Find the warranty period so that 5% of the motors will fail during the warranty period on

average.

4.9 Carrie purchases a hammer whose lifetime T is a random variable with survivor function

S(t) = e−(λ t)κ
t ≥ 0,

where λ is a positive scale parameter and κ is a positive shape parameter. Assuming that

λ = 0.001 and κ = 2, find P(T > 80 |T > 50).

4.10 Let the lifetime T have hazard function

h(t) =

{
λ 0 < t < 1

λt t ≥ 1

for positive parameter λ. Find the associated survivor function S(t).

4.11 Consider a random lifetime T with survivor function

S(t) =

{
1 t ≤ 3

1− (t−3)/(t−2) t > 3.

Give a variate generation algorithm for this probability distribution.

4.12 Show that

E[T ] =

∫ ∞

0
t f (t)dt

can also be found by

E[T ] =
∫ ∞

0
S(t)dt

for any continuous random variable T with nonnegative support and a finite population

mean whenever lim t→∞ t S(t) = 0.
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4.13 Consider the random variable T with hazard function

h(t) =

{
1 0≤ t ≤ 1

t t > 1.

(a) Find S(t).

(c) Find the median of T .

(d) Find the 95th percentile of T .

4.14 Let T be a random variable with hazard function

h(t) = κ+ t t ≥ 0,

where κ is a positive parameter.

(a) Use numerical methods to determine a value of κ such that E[T ] = 1/5.

(b) Conduct a Monte Carlo simulation experiment that supports the value of κ determined

in part (a).

4.15 The random variable T has hazard function

h(t) = 1+2t t ≥ 0.

Find E[T ].

4.16 An insurance company issues a 30-month warranty on an automobile transmission. Lisa has

purchased a 30-month warranty on her transmission and has not made a claim during the 30

months. She would like to purchase a 12-month extension to the warranty. This insurance

company will pay a fixed $5000 for a new transmission on the extended warranty if her

transmission fails within the next 12 months. Let the continuous random variable T denote

the lifetime of Lisa’s transmission, measured in months, from the date of the purchase of

the automobile. The survivor function of T is S(t). Find an expression for the expected

payment that the insurance company will make on Lisa’s extended warranty.

4.17 Find the population skewness and kurtosis for an exponential(λ) random variable.

4.18 Which of the following lifetimes is the best candidate for being well approximated by an

exponential distribution?

(a) The burning time for a particular type of candle.

(b) The duration of a woman’s pregnancy associated with her newborn baby.

(c) The duration of a strike.

(d) The duration of a men’s haircut by John at John’s barbershop.

(e) The breaking strength of a particular type of yarn.

4.19 Tami purchases a battery whose lifetime T is exponential(λ), for some fixed, positive failure

rate λ. The battery is placed in storage on the interval [0, t0], where t0 is a fixed, positive

constant time value, then monitored continuously for failure thereafter. Thus, the time to

detect failure is X = max{T, t0}. Find E[X ].
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4.20 Consider the continuous random variables T1 and T2, each with positive support. Let S1(t)
denote the survivor function of T1 and S2(t) denote the survivor function of T2. When

S1(t)≥ S2(t) for all values of t ≥ 0, T1 is said to “stochastically dominate” T2. This is one

way of showing the superiority of the probability distribution of T1 over the probability

distribution of T2. One measure of the difference between T1 and T2 is the Kolmogorov

metric

D = sup
t
|S1(t)−S2(t)| .

Calculate the value of D for the independent random variables T1 ∼ exponential(λ1) and

T2 ∼ exponential(λ2), where λ1 < λ2.

4.21 Rosie purchases a light bulb whose lifetime follows an exponential distribution. If the mean

lifetime is one year longer than the median lifetime, find the value of the mean lifetime.

4.22 Marian purchases 30 sixty-watt light bulbs, each having a lifetime which is exponentially

distribution with a mean of 1000 hours. If she places the 30 bulbs on a life test without

replacement upon failure, find the probability that 10 or fewer of these light bulbs survive

to 1200 hours.

4.23 An automobile insurance policy is structured as follows. For claims below $1000, the

policyholder bears the entire cost of the claim. For claims between $1000 and $2000, the

policyholder bears the first $1000 of the claim and the policy pays any additional amount.

For claims over $2000, the policyholder bears the first $1000 of the claim and the policy

pays $1000 plus half of the amount that exceeds $2000. The distribution of a claim T has

the exponential distribution with mean $3000. Find the cumulative distribution function of

the reimbursement amount that the insurance company pays on a claim.

4.24 Let T1, T2, . . . , T5 be independent and identically distributed exponential(λ) random vari-

ables.

(a) Find the probability density function of the second order statistic T(2).

(b) Find P
(
T(2) ≤ 1/λ

)
.

4.25 Let T1, T2, T3, be independent and identically distributed exponential(λ) random variables.

Find the 96th percentile of the random variables:

(a) 3min{T1, T2, T3},
(b) T1 +T2−T3.

4.26 Troy is a bicyclist. His bike has a front wheel with eight spokes. The wheel is in the failed

state when two consecutive spokes have failed. The initial lifetime distributions of the

eight spokes are independent and identically distributed exponential random variables with

failure rates of one failure per year. When a spoke fails, the failure rate of the two adjacent

operating spokes doubles. Conduct a Monte Carlo simulation experiment to estimate the

population mean time to wheel failure (considering only the spokes) to two-digit accuracy.

4.27 For the Weibull random lifetime T , show that

P

(
T <

1

λ

)
= 1− 1

e
,

regardless of the value of κ.
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4.28 Find the population skewness and kurtosis of a Weibull(λ, κ) random variable.

4.29 Find the value of the shape parameter in the Weibull distribution associated with a popula-

tion skewness of zero.

4.30 Drea is using a graphics design software package that has a Weibull time to failure. Find

the mode of the time to failure distribution. For which parameter values is this value the

mode? Find the probability that the software package is still functioning at the mode value.

4.31 Let T ∼Weibull(λ, κ).

(a) Find expressions for the mean, median, and mode of T . (Hint: they might not all be

closed-form.)

(b) Find parameter values associated with the following three cases: the median and mode

of the distribution are equal; the mean and median of the distribution are equal; the

mean and mode of the distribution are equal.

4.32 Katherine designs a scanner and desires a one-month reliability of 0.8. She finds that

the failure time of the scanner has a Weibull distribution with parameters λ = 8.33 and

κ = 0.334, with time measured in months. Unfortunately, she finds that the one-month

reliability is

S(1) = e−8.330.334
= 0.13,

which is clearly unacceptable. Fortunately, this Weibull distribution has a decreasing fail-

ure rate, so she knows that if she burns in the scanners, she can increase their one-month

reliability. How long should she burn in the scanners to achieve a one-month reliability of

0.8 for scanners that survive the test? What fraction of the scanners placed on the burn-in

test will fail during the test?

4.33 Statistical applications involving the Weibull distribution can benefit from reparameterizing

the distribution. One such reparameterization replaces the scale parameter λ with a partic-

ular fractile of the distribution. More specifically, let p0 be a prescribed constant satisfying

0 < p0 < 1. Denote the associated fractile of the Weibull distribution as tp0
. Perform the

necessary algebra to write the survivor function of the reparameterized Weibull distribution

in terms of the parameters tp0
and κ.

4.34 Alex purchases a laptop computer with a lifetime T , in years, which has a Weibull dis-

tribution with λ = 0.2 and κ = 2. The laptop computer can be purchased for $600. The

manufacturer of the laptop provides a full refund if the laptop fails within the first year after

purchase, a one-third refund if the laptop fails during the second year after purchase, and

no refund if the laptop fails thereafter. What is the expected refund on a laptop?

4.35 Steve takes three generators to a work site. He will use the three generators in a cold standby

system to provide electrical power. The lifetimes of the generators are exponentially dis-

tributed with mean 1000 hours. Find the variance of the total amount of time that electrical

power can be supplied by the generators.

4.36 Find E [T r] for r = 1, 2, . . . for a log logistic random variable.

4.37 Find the population skewness and kurtosis of a log logistic random variable.
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4.38 Lindsay purchases a jack hammer. Let the lifetime of an item be defined by a special case

of the log logistic distribution with survivor function

S(t) =
1

1+λt
t ≥ 0,

where λ is a positive scale parameter. If the item has been operating for a time units, find

(a) the probability it will last another r time units,

(b) the expected remaining time to failure.

4.39 Consider the random variable X having the logistic distribution with location parameter η,

positive scale parameter ρ > 0, and probability density function

f (x) =
e(x−η)/ρ

ρ
(
1+ e(x−η)/ρ

)2
−∞ < x < ∞.

Show that eX has the log logistic distribution.

4.40 Derive lim t→∞ h(t) for the log normal distribution.

4.41 Many life insurance companies offer a “last-to-die” policy for couples or business partners

that pays out when the second of the two individuals dies. These policies are often pur-

chased to pay tax liabilities on small businesses. Assume that David, age 40, and his wife

Laura, age 35, celebrate their mutual birthday by purchasing a one-year, $100,000 term

last-to-die policy. Find, to the nearest penny, the revenue-neutral premium (that is, where

the premium equals the expected payout). For simplicity, assume that

• all new-born baby boys have Weibull random lifetimes with λ = 1/65 and κ = 3/2,

• all new-born baby girls have exponential power random lifetimes with λ = 1/12 and

κ = 1/2,

• health care, lifestyle, environmental factors, etc. remain constant throughout David

and Laura’s lifetimes,

• there is no overhead or profit associated with the premium,

• the prevailing interest rate during the next year is 0%, and

• their two lifetimes are independent.

4.42 Meghan purchases a book stand for a rare book, which has lifetime T . If T has the log

logistic distribution, S(1) = 1/5 and S(3) = 1/37, find S(2).

4.43 Joanna purchases a food truck whose lifetime is a continuous random variable T with the

power distribution, having probability density function

f (t) =
βtβ−1

αβ
0 < t < α,

where α is a positive scale parameter and β is a positive shape parameter. Find the median

of T .
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4.44 Summer and Brigid are conducting a study concerning the random time T required to

reshelve a book after it has been returned to a library. The time between the return of a

book and the time it is reshelved has a special case of the extreme value distribution with

survivor function

S(t) = 1− e−e−t −∞ < t < ∞.

For real constants a and b satisfying a < b, find P(a < T < b).

4.45 Daneen is modeling the lifetimes of light bulbs (in years) with the proportional hazards

model with q = 2 covariates: wattage (z1) and operating temperature in degrees Fahrenheit

(z2). The baseline distribution is exponential with a failure rate of 1.1 failures per year and

the log-linear form of the link function ψ(z) is used. If previous data has shown that the

associated regression coefficients are β1 = 0.003 and β2 = 0.004, what is the expected time

to failure of a 60-watt bulb operating in a constant 72◦F environment?

4.46 In a log logistic regression model with a single covariate z, the lifetime T can be expressed

as

T = eβ0+β1z+θY ,

where β0 and β1 are regression parameters, θ > 0 is a parameter of the model, and Y has

probability density function

fY (y) =
ey

(1+ ey)2
−∞ < y < ∞.

(a) Find the survivor function of T for one particular value of the covariate z; that is, find

ST |Z=z(t |Z = z).

(b) The odds ratio
1−ST |Z=z(t |Z = z)

ST |Z=z(t |Z = z)

gives the odds that an item fails by time t for one particular value of the covariate z.

Calculate the odds ratio for the log logistic regression model.

(c) Consider two different items with covariates z1 and z2. Prove that the quotient of their

odds ratios is independent of t for any time t > 0.

4.47 Consider the baseline hazard function

h0(t) =

{
1 0≤ t < 1

t t ≥ 1.

In a proportional hazards model, find the probability that an item with covariates z and link

function ψ(z) survives to time t.

4.48 A proportional hazards model is applied to a lifetime that has a single binary covariate z with

regression coefficient β, link function ψ(z) = eβz, and Weibull baseline hazard function.

Find

(a) the survivor function for the time to failure,

(b) the mean time to failure when z = 0,

(c) the mean time to failure when z = 1.
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4.49 Ali purchases a freezer with a lifetime that is well approximated by the proportional hazards

model with q = 2 covariates: external temperature z1 (measured in degrees Celsius) and

humidity z2. Assume that the Weibull baseline distribution and a log-linear link function

are used.

(a) What would you expect the sign (positive or negative) of β̂1 to be if a large sample of

failure times and associated covariates was collected? Explain your reasoning.

(b) Find the probability that such a component survives to time t for any covariate vector z

and regression coefficients ββ.

4.50 Write a few sentences describing the suitability of the link functions

ψ(z) = 1+β1z1 +β2z2 and ψ(z) = (β1z1 +β2z2)
2

for a proportional hazards model with q = 2 covariates.

4.51 Consider the Cox proportional hazards model

h(t) = ψ(z)h0(t) t ≥ 0,

with q = 2 covariates, z1 and z2, which includes an interaction term between the covariates.

The link function assumes the log linear form:

ψ(z) = eβ1z1+β2z2+β3z1z2 .

Find the ratio of the hazard function for covariates z1 and z2 to the hazard function for

covariates z1 and z2 +5.



Chapter 5

Statistical Methods in Survival

Analysis

The previous chapter introduced probability models that are frequently used in survival analysis.

This chapter introduces the associated statistical methods.

The focus in this chapter is the use of maximum likelihood for parameter estimation and infer-

ence. Likelihood theory is illustrated in the first section. The matrix of the expected values of the

opposite of the second partial derivatives of the log likelihood function is known as the Fisher infor-

mation matrix and its statistical analog, the observed information matrix, is useful for determining

confidence intervals for parameters. Asymptotic properties of the likelihood function, which are

associated with large sample sizes, are reviewed in the second section. One distinctive feature of

lifetime data is the presence of censoring, which occurs when only an upper or lower bound on the

lifetime is known. Statistical methods for handling censored data values are introduced in the third

section. The focus is on right censoring, where only a lower bound on the failure time is known.

These methods are applied to the exponential distribution and the Weibull distribution in the next

two sections. Finally, the last section indicates how to fit the proportional hazards model to a data

set consisting of lifetimes with associated covariates.

5.1 Likelihood Theory

There are always merits in obtaining raw data (that is, exact individual failure times), as opposed

to grouped data (counts of the number of failures over prescribed time intervals). Given raw data,

we can always construct grouped data, but the converse is typically not true; therefore, we limit

discussion in this chapter to the raw data case.

The random variable T has denoted a random lifetime in previous chapter. So it is natural to use

T1, T2, . . . , Tn to denote a random sample of n such lifetimes, where n is the number of items on test.

When specific values are given for realizations of such lifetimes, which is typically the case from this

point forward, they are denoted by t1, t2, . . . , tn. In other words, t1, t2, . . . , tn are the experimental

values of the mutually independent and identically distributed random variables T1, T2, . . . , Tn. The

associated ordered observations, or order statistics, are denoted by t(1), t(2), . . . , t(n).

The Greek letter θ is often used to denote a generic unknown parameter. We will refer to θ̂ in

the abstract as a point estimator; when θ̂ assumes a specific numeric value, it will be referred to as a

point estimate. The probability distribution of a statistic is referred to as a sampling distribution.
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Assume that there is a single unknown parameter θ in the probability model for T . Assume

further that the data values t1, t2, . . . , tn are mutually independent and identically distributed random

variables. The joint probability density function of the data values is the product of the marginal

probability density functions of the individual observations:

L(t1, t2, . . . , tn, θ) =
n

∏
i=1

f (ti; θ).

This function is the likelihood function. In order to simplify the notation, the likelihood function is

often written as simply

L(θ) =
n

∏
i=1

f (ti).

The maximum likelihood estimator of θ, which is denoted by θ̂, is the value of θ that maximizes

L(θ).
The next example reviews the associated notions of the log likelihood function, score vector,

maximum likelihood estimator, Fisher information matrix, and observed information matrix for a

two-parameter lifetime model. We assume for now that there are no censored observations in the

data set; all of the failure times are observed.

Example 5.1 Let t1, t2, . . . , tn be a random sample from an inverse Gaussian (Wald)

population having unknown positive parameters λ and µ, where µ is the population

mean. The probability density function of the inverse Gaussian distribution is

f (t) =

√
λ

2π
t−3/2e−λ(t−µ)2/(2µ2t) t > 0.

Find the likelihood function, log likelihood function, score vector, maximum likelihood

estimator, Fisher information matrix, and observed information matrix.

The likelihood function is

L(t, λ, µ) =
n

∏
i=1

√
λ

2π
t
−3/2
i e−λ(ti−µ)2/(2µ2ti)

= λn/2(2π)−n/2

[
n

∏
i=1

ti

]−3/2

e−λ/(2µ2)∑n
i=1 (ti−µ)2/ti ,

where t= (t1, t2, . . . , tn). The likelihood function and any monotonic transformation of

the likelihood function are maximized at the same value. Since the calculus and algebra

is often easier when working with the logarithm of the likelihood function, we do so in

this setting. The log likelihood function is

ln L(t, λ, µ) =
n

2
ln λ− n

2
ln(2π)− 3

2

n

∑
i=1

ln ti−
λ

2µ2

n

∑
i=1

(ti−µ)2

ti
.

The two-component score vector, U(λ, µ), consists of the partial derivatives with re-

spect to the two unknown parameters:

∂ ln L(t, λ, µ)

∂λ
=

n

2λ
− 1

2µ2

n

∑
i=1

(ti−µ)2

ti
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and

∂ ln L(t, λ, µ)

∂µ
=

λ

µ3

[
n

∑
i=1

ti−nµ

]
.

When the second equation is equated to zero, the maximum likelihood estimator µ̂ is

determined. Then using µ̂ as an argument in the first equation and solving for λ̂ results

in the maximum likelihood estimators

λ̂ =

[
1

n

n

∑
i=1

1

ti
− n

∑n
i=1 ti

]−1

and µ̂ =
1

n

n

∑
i=1

ti.

The second partial derivatives of the log likelihood function are

∂2 ln L(t, λ,µ)

∂λ2
=− n

2λ2

∂2 ln L(t, λ,µ)

∂λ∂µ
=

1

µ3

n

∑
i=1

ti−
n

µ2

∂2 ln L(t, λ,µ)

∂µ2
=−3λ

µ4

n

∑
i=1

ti +
2nλ

µ3
.

Since E[T ] = µ for the inverse Gaussian distribution, the Fisher information matrix

consists of the expected values of the negatives of these derivatives:

I(λ, µ) =




E

[−∂2 ln L(t, λ,µ)

∂λ2

]
E

[−∂2 ln L(t, λ,µ)

∂λ∂µ

]

E

[−∂2 ln L(t, λ,µ)

∂µ∂λ

]
E

[−∂2 ln L(t, λ,µ)

∂µ2

]


=




n

2λ2
0

0
nλ

µ3


 .

The Fisher information matrix is the variance–covariance matrix of the score vector.

The off-diagonal elements being zero for the inverse Gaussian distribution implies that

the elements of the score vector are uncorrelated. Although this example has simple

closed-form expressions for the Fisher information matrix, it is more often the case that

the elements of the Fisher information matrix are not closed form. The observed infor-

mation matrix can be calculated for all distributions; it uses the maximum likelihood

estimates:

O(λ̂, µ̂ ) =




−∂2 ln L(t, λ,µ)

∂λ2

−∂2 ln L(t, λ,µ)

∂λ∂µ
−∂2 ln L(t, λ,µ)

∂µ∂λ

−∂2 ln L(t, λ,µ)

∂µ2




λ = λ̂, µ = µ̂

=




n

2λ̂2
0

0
nλ̂

µ̂ 3


 .

In some cases, it is possible to find the exact distribution of a pivotal quantity which results

in exact statistical inference (that is, constructing exact confidence intervals and performing exact

hypothesis tests). It is more often the case that exact statistical inference is not possible, and asymp-

totic properties associated with the likelihood function must be relied on for approximate inference.

The next section reviews some asymptotic properties that arise in likelihood theory. When a large

data set of lifetimes is available, these properties often lead to approximate statistical methods of

inference.
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5.2 Asymptotic Properties

When the number of items on test n is large, there are some asymptotic results concerning the

likelihood function that are useful for constructing confidence intervals and performing hypothesis

tests associated with a vector of p unknown parameters θθ = (θ1, θ2, . . . , θp)
′. As indicated in the

example in the last section, the p×1 score vector U(θθ) has elements

Ui(θθ) =
∂ ln L(t, θθ)

∂θi

=
∂

∂θi

n

∑
j=1

ln f (t j, θθ)

for i = 1, 2, . . . , p. Therefore, each element of the score vector is a sum of mutually independent

random variables, and, when n is large, the elements of U(θθ) are asymptotically normally distributed

by the central limit theorem. More specifically, the score vector U(θθ) is asymptotically normal with

population mean 0 and variance–covariance matrix I(θθ), where I(θθ) is the Fisher information matrix.

This means that when the true value for the parameter vector is θθ0 then

U ′(θθ0)I(θθ0)
−1U(θθ0)

is asymptotically chi-square with p degrees of freedom. This can be used to determine confidence

intervals and perform hypothesis tests with respect to θθ.

The maximum likelihood estimator for the parameter vector θ̂θ can also be used for confidence

intervals and hypothesis testing. Since θ̂θ is asymptotically normal with population mean θθ and

variance–covariance matrix I−1(θθ), when θθ = θθ0,

(
θ̂θ−θθ0

)′
I(θθ0)

(
θ̂θ−θθ0

)

is also asymptotically chi-square with p degrees of freedom. Two statistics that are asymptotically

equivalent to this statistic that can be used to estimate the value of the chi-square random variable

are (
θ̂θ−θθ0

)′
I
(
θ̂θ
)(

θ̂θ−θθ0

)

and (
θ̂θ−θθ0

)′
O
(
θ̂θ
)(

θ̂θ−θθ0

)
.

A third asymptotic result involves the likelihood ratio statistic

−2
[
ln L(θθ)− ln L(θ̂θ)

]
=−2ln

[
L(θθ)

L(θ̂θ)

]
,

which is asymptotically chi-square with p degrees of freedom. The conditions necessary for these

asymptotic properties to apply are cited at the end of the chapter.

These three asymptotic results are summarized in the result below, where the a above the ∼ is

shorthand for “asymptotically distributed.”

Theorem 5.1 Let t1, t2, . . . , tn be mutually independent and identically distributed lifetimes from

a population distribution with p unknown parameters θθ = (θ1, θ2, . . . , θp)
′. Then

U ′(θθ0)I(θθ0)
−1U(θθ0)

a∼ χ2(p),
(
θ̂θ−θθ0

)′
O
(
θ̂θ
)(

θ̂θ−θθ0

) a∼ χ2(p), −2ln

[
L(θθ)

L(θ̂θ)

]
a∼ χ2(p).
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Example 5.2 Let t1, t2, . . . , tn be a random sample from a population with probability

density function

f (t) =
1√
2πt3

e−(t−µ)2/(2µ2t) t > 0,

where µ is a positive unknown parameter, which is the population mean. This popu-

lation distribution is a special case of the two-parameter inverse Gaussian distribution.

Use one of the asymptotic results from Theorem 5.1 to construct an asymptotically

exact two-sided 100(1−α)% confidence interval for µ.

The first step is to find the maximum likelihood estimator of µ. The likelihood function

is

L(t, µ) =
n

∏
i=1

(
2πt3

i

)−1/2
e−(ti−µ)2/(2µ2ti)

= (2π)−n/2

[
n

∏
i=1

ti

]−3/2

e−∑n
i=1 (ti−µ)2/(2µ2ti).

The log likelihood function is

ln L(t, µ) =−n

2
ln(2π)− 3

2

n

∑
i=1

ln ti−
1

2µ2

n

∑
i=1

(ti−µ)2

ti
.

The score is the derivative of the log likelihood function with respect to µ, which, after

simplification, is

∂ ln L(t,µ)

∂µ
=

1

µ3

[
n

∑
i=1

ti−nµ

]
.

When this equation is equated to zero, the maximum likelihood estimator for µ is

µ̂ =
1

n

n

∑
i=1

ti,

which is the sample mean. The second partial derivative of the log likelihood function

is
∂2 ln L(t, µ)

∂µ2
=− 3

µ4

n

∑
i=1

ti +
2n

µ3
,

which is negative at the maximum likelihood estimator, so the maximum likelihood

estimator maximizes the log likelihood function. The next step is to find the 1× 1

Fisher information matrix. Using the second partial derivative of the log likelihood

function, the Fisher information matrix is

I(µ) = E

[
−∂2 ln L(t, µ)

∂µ2

]
= E

[
3

µ4

n

∑
i=1

ti−
2n

µ3

]
=

3nµ

µ4
− 2n

µ3
=

n

µ3

because E[X ] = µ for this population distribution. The 1×1 observed information is

O(µ̂ ) =

[
−∂2 ln L(t, µ)

∂µ2

]

µ=µ̂

=
n

µ̂ 3
.
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In order to construct an asymptotically exact two-sided 100(1−α)% confidence interval

for µ, recall that µ̂ is asymptotically normal with population mean µ and variance–

covariance matrix I−1(µ). In other words,

µ̂
a∼ N

(
µ, I−1(µ)

)
.

For large values of n, we replace the Fisher information matrix with the observed infor-

mation matrix:

µ̂
a∼ N

(
µ, O−1(µ̂ )

)

or

µ̂
a∼ N

(
µ,

µ̂ 3

n

)
.

This random variable can be standardized by subtracting its population mean and divid-

ing by its population standard deviation:

µ̂ −µ√
µ̂ 3/n

a∼ N (0, 1) .

So the probability that this random variable falls between −zα/2 and zα/2 for large n is

lim
n→∞

P

(
−zα/2 <

µ̂ −µ√
µ̂ 3/n

< zα/2

)
= 1−α.

where zα/2 is the 1−α/2 quantile of the standard normal distribution. Rearranging the

inequality

−zα/2 <
µ̂ −µ√

µ̂ 3/n
< zα/2

so that µ is in the center of the inequality yields the asymptotically exact two-sided

100(1−α)% confidence interval

µ̂ − zα/2

µ̂ 3/2

√
n

< µ < µ̂ + zα/2

µ̂ 3/2

√
n
,

where µ̂ is the sample mean of the observed data values. The actual coverage of con-

fidence intervals developed in this fashion typically approaches 1−α as the number of

items on test n increases.

All of the statistical methods developed thus far have assumed that we are able to observe all n

of the items on test fail. The associated lifetimes are denoted by t1, t2, . . . , tn. Although this is ideal

and might be the case in some settings, a short testing time or items with long lifetimes might result

in some items that survive the test. The lifetimes of the items which do not fail during the test are

known as right-censored observations. The lifetimes of these items are not observed, but are known

to exceed the time at which the test is concluded. If a decision concerning the acceptability of the

items must be made with some of the items still operating at the end of the test, then a statistical

model must be formulated to account for the unobserved lifetimes of these items. The next section

introduces the important topic of censoring, which is pervasive in survival analysis.
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5.3 Censoring

Censoring occurs in lifetime data sets when only an upper or lower bound on the lifetime is known.

Censoring occurs frequently in lifetime data sets because it is often impossible or impractical to

observe the lifetimes of all the items on test. A data set for which all failure times are known is

called a complete data set. Figure 5.1 illustrates a complete data set of n = 5 items placed on test

simultaneously at time t = 0, where the×’s denote failure times. Consider the two endpoints of each

of the horizontal segments. It is critical to provide an unambiguous definition of the time origin (for

example, the time a product is purchased or the time a cancer is diagnosed). Likewise, failure must

be defined in an unambiguous fashion. This is easier to define for a light bulb or a fuse than for

a ball bearing or a sock. Outside of a reliability setting, a data set of lifetimes is often generically

referred to as time-to-event data, corresponding to the time between the time origin and the event of

interest. A censored observation occurs when only a bound is known on the time of failure. If a data

set contains one or more censored observations, it is called a censored data set.

The most common type of censoring is known as right censoring. In a right-censored data

set, one or more items have only a lower bound known on their lifetime. The term sample size is

now vague. From this point forward, we use n to denote the number of items on test and use r to

denote the number of observed failures. In an industrial life testing situation, for example, n = 12

cell phones are put on a continuous, rigorous life test on January 1, and r = 3 of the cell phones

have failed by December 31. These failed cell phones are discarded upon failure. The remaining

n−r = 12−3 = 9 cell phones that are still operating on December 31 have lifetimes that exceed 365

days, and are therefore right-censored observations. Right censoring is not limited to just reliability

applications. In a medical study in which T is the survival time after the diagnosis of a particular

type of cancer, for example, a patient can either (a) still be alive at the end of a study, (b) die of a

cause other than the particular type of cancer, constituting a right-censored observation, or (c) lose

contact with the study (for example, if they leave town), constituting a right-censored observation.

Three special cases of right censoring are common in survival analysis. The first is Type II or

order statistic censoring. As shown in Figure 5.2, this corresponds to terminating a study upon one of

the ordered failures. The diagram corresponds to a set of n = 5 items placed on a test simultaneously

at time t = 0. The test is terminated when r = 3 failures are observed. Time advances from left to

right in Figure 5.2 and the failure of the first item (corresponding to the third ordered observed

failure) terminates the test. The lifetimes of the third and fourth items are right censored. Observed

failure times are indicated by an × and right-censoring times are indicated by a ◦. In Type II

censoring, the time to complete the test is random.

1

2

3

4

5

t0

×
×

×
×

×

Figure 5.1: Complete data set with n = 5.
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1

2

3

4

5

t0

◦
◦

×
×

×

Figure 5.2: Type II right-censored data set with n = 5 and r = 3.

The second special case is Type I or time censoring. As shown in Figure 5.3, this corresponds

to terminating the study at a particular time. The diagram shows a set of n = 5 items placed on a

test simultaneously at t = 0 that is terminated at the time indicated by the dotted vertical line. For

the realization illustrated in Figure 5.3, there are r = 4 observed failures. In Type I censoring, the

number of failures r is random.

Finally, random censoring occurs when individual items are withdrawn from the test at any

time during the study. Figure 5.4 illustrates a realization of a randomly right-censored life test with

n = 5 items on test and r = 2 observed failures. It is usually assumed that the failure times and the

censoring times are mutually independent random variables and that the probability distribution of

the censoring times does not involve any unknown parameters from the failure time distribution. In

other words, in a randomly censored data set, items cannot be more or less likely to be censored

because they are at unusually high or low risk of failure.

Although other types of censoring exist, such as left censoring and interval censoring, the focus

of this chapter will be on right censoring because it is the most common type of censoring. In the

case of right censoring, the ratio r/n is the fraction of items which are observed to fail. When r/n

is close to one, the data set is referred to as a lightly censored data set; when r/n is close to zero,

the data set is referred to as a heavily censored data set. In the reliability setting, many data sets are

heavily censored because the items have long lifetimes. In the biomedical setting, certain cancers

have long remission times, resulting in heavily censored data sets.

1

2

3

4

5

t0

◦

×
×

×

×

Figure 5.3: Type I right-censored data set with n = 5 and r = 4.
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1
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3

4

5

t0

◦
◦

◦

×

×

Figure 5.4: Randomly right-censored data set with n = 5 and r = 2.

Of the following three approaches to handling the problem of censoring, only one is both valid

and practical. The first approach is to ignore all the censored values and to perform analysis only

on those items that were observed to fail. Although this simplifies the mathematics involved, it

is not a valid approach. If, for example, this approach is used on a right-censored data set, the

analyst is discarding the right-censored values, and these are typically the items that have survived

the longest. In this case, the analyst arrives at an overly pessimistic result concerning the lifetime

distribution because the best items (that is, the right-censored observations) have been excluded from

the analysis. A second approach is to wait for all the right-censored observations to fail. Although

this approach is valid statistically, it is not practical. In an industrial setting, waiting for the last

light bulb to burn out or the last machine to fail may take so long that the product being tested will

not get to market in time. In a medical setting, waiting for the last patient to die from a particular

disease may take decades. For these reasons, the proper approach is to handle censored observations

probabilistically, including the censored values in the likelihood function.

The likelihood function for a censored data set can be written in several different equivalent

forms. Let t1, t2, . . . , tn be mutually independent observations denoting lifetimes sampled randomly

from a population. The corresponding right-censoring times are denoted by c1, c2, . . . , cn. The ti and

ci values are assumed to be independent, for i = 1, 2, . . . , n. In the case of Type I right censoring,

c1 = c2 = · · · = cn = c. The set U contains the indexes of the items that are observed to fail during

the test (that is, the uncensored observations):

U = {i | ti ≤ ci}.

The set C contains the indexes of the items whose failure time exceeds the corresponding censoring

time (that is, those that are right censored):

C = { i | ti > ci}.

This notation, along with an important notion known as alignment, are illustrated in the next exam-

ple.

Example 5.3 Consider the case of n = 5 items placed on test as indicated in Figure 5.5.

Find the sets U and C.

Observe that the right-censored data set depicted in Figure 5.5, unlike the previous right-

censored data sets with n = 5 items on test, does not have all of the items starting on

test at time t = 0. This is quite common in practice. A software engineer, for example,
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1
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4

5

t0

◦

◦

×
×

×

Figure 5.5: Randomly right-censored data set.

cannot get all customers to purchase a computer program at the same time; a medical

researcher evaluating the time between first and second heart attacks cannot get all of

the patients in the study to have their first heart attack at the same time; a casualty

actuary cannot get all customers to purchase motorcycle insurance at the same time. In

all cases, it is necessary to shift each data value back to a common origin. As long as

there are not any changes to the items over the time window of observation, aligning

the data values in this fashion is appropriate. Figure 5.6 displays the aligned data set.

In this particular case, the first, second, and fourth items were observed to fail, and the

failure times for the third and fifth items were right-censored. Therefore, the sets U and

C are

U = {1, 2, 4} and C = {3, 5}.

1
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4

5

t0

◦

◦

×
×

×

Figure 5.6: Aligned randomly right-censored data set.

The usual form for right-censored lifetime data is given by the pairs (xi, δi), where xi =min{ti, ci}
and δi is a censoring indicator variable:

δi =

{
0 ti > ci

1 ti ≤ ci

for i = 1, 2, . . . , n. The (xi, δi) pairs can be reconstructed from the (ti, ci) pairs and vice versa.

Hence, δi is 1 if the failure of item i is observed and 0 if the failure of item i is right censored, and
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xi is the failure time (when δi = 1) or the censoring time (when δi = 0). For the vector of unknown

parameters θθ = (θ1, θ2, . . . , θp)
′, ignoring a constant factor, the likelihood function is

L(x, θθ) =
n

∏
i=1

f (xi, θθ)δiS(xi, θθ)1−δi = ∏
i∈U

f (ti, θθ)∏
i∈C

S(ci, θθ)

where S(ci, θθ) is the survivor function of the population distribution with parameters θθ evaluated

at censoring time ci, i ∈ C. The reason that the survivor function is the appropriate term in the

likelihood function for a right-censored observation is that S(ci, θθ) is the probability that item i

survives to ci. The log likelihood function is

ln L(x, θθ) = ∑
i∈U

ln f (ti, θθ)+ ∑
i∈C

ln S(ci, θθ),

or

ln L(x, θθ) = ∑
i∈U

ln f (xi, θθ)+ ∑
i∈C

ln S(xi, θθ).

Since the probability density function is the product of the hazard function and the survivor function,

the log likelihood function can be simplified to

ln L(x, θθ) = ∑
i∈U

ln h(xi, θθ)+ ∑
i∈U

ln S(xi, θθ)+ ∑
i∈C

ln S(xi, θθ)

or

ln L(x, θθ) = ∑
i∈U

ln h(xi, θθ)+
n

∑
i=1

ln S(xi, θθ),

where the second summation now includes all n items on test. Finally, to write the log likelihood in

terms of the hazard and cumulative hazard functions only,

ln L(x, θθ) = ∑
i∈U

ln h(xi, θθ)−
n

∑
i=1

H(xi, θθ),

since H(t) =− ln S(t). The choice of which of these three expressions for the log likelihood to use

for a particular distribution depends on the particular forms of S(t), f (t), h(t), and H(t). In other

words, one of the distribution representations may possess a mathematical form that is advantageous

over the others.

The next example will use the last version of the log likelihood function to find a maximum

likelihood estimator and an asymptotically exact confidence interval for an unknown parameter.

Example 5.4 Consider a life test with n items on test with random right censoring and

r ≥ 1 observed failures. Assume that previous tests on these same items informs us

that lifetimes of the items are drawn from a Rayleigh population with positive unknown

parameter λ. Find the maximum likelihood estimator and construct an asymptotically

exact two-sided 100(1−α)% confidence interval for λ.

The survivor function for the Rayleigh distribution is

S(t) = e−(λt)2
t ≥ 0.

The associated cumulative hazard function and hazard function are

H(t) =− ln S(t) = (λt)2 t ≥ 0
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and

h(t) = H ′(t) = 2λ2t t ≥ 0.

In the case of random right censoring, the log likelihood function is

ln L(x, λ) = ∑
i∈U

ln h(xi, λ)−
n

∑
i=1

H(xi, λ)

= ∑
i∈U

ln
(
2λ2xi

)
−

n

∑
i=1

(λxi)
2

= r ln 2+2r ln λ+ ∑
i∈U

ln xi−λ2
n

∑
i=1

x2
i ,

where r is the number of observed failures. The single-element score vector can be

found by differentiating the log likelihood function with respect to λ:

∂ ln L(x, λ)

∂λ
=

2r

λ
−2λ

n

∑
i=1

x2
i .

Equating the score to zero and solving for λ yields the maximum likelihood estimator

λ̂ =

√
r

∑n
i=1 x2

i

.

The second derivative of the log likelihood function is

∂2 ln L(x, λ)

∂λ2
=−2r

λ2
−2

n

∑
i=1

x2
i .

As an aside, the 1×1 Fisher information matrix

I(λ) = E

[
−∂2 ln L(x, λ)

∂λ2

]
= E

[
2r

λ2
+2

n

∑
i=1

x2
i

]

cannot be calculated without knowing the probability distribution of the censoring times.

The observed information matrix, however, can be calculated as

O
(
λ̂
)
=

[
−∂2 ln L(x, λ)

∂λ2

]

λ=λ̂

=
2r

λ̂2
+2

n

∑
i=1

x2
i = 4

n

∑
i=1

x2
i .

For large values of n, we know that

λ̂
a∼ N(λ, O−1

(
λ̂
)
)

or

λ̂
a∼ N


λ,

(
4

n

∑
i=1

x2
i

)−1

 .

Standardizing by subtracting the population mean and dividing by the population stan-

dard deviation of λ̂ gives

λ̂−λ
(
4∑n

i=1 x2
i

)−1/2

a∼ N (0, 1) ,
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which implies that

lim
n→∞

P

(
−zα/2 <

λ̂−λ
(
4∑n

i=1 x2
i

)−1/2
< zα/2

)
= 1−α.

Performing the algebra required to isolate λ in the center of the inequality results in an

asymptotically exact two-sided 100(1−α)% confidence interval for λ:

λ̂− zα/2

(
4

n

∑
i=1

x2
i

)−1/2

< λ < λ̂+ zα/2

(
4

n

∑
i=1

x2
i

)−1/2

.

This confidence interval narrows as ∑n
i=1 x2

i increases. So placing a large number of

items on test with a lightly censored data set with r/n close to one will result in a

narrow confidence interval for λ.

To provide a numerical illustration, assume that the n = 5 items on a randomly right-

censored life test with r = 3 observed failures illustrated in Figure 5.6 are

1.3, 0.6, 1.6∗, 1.9, 0.4∗,

where the superscript ∗ denotes a right-censored observation. For this data set,

n

∑
i=1

x2
i = 1.32 +0.62 +1.62 +1.92 +0.42 = 1.69+0.36+2.56+3.61+0.16 = 8.38.

The maximum likelihood estimate of λ is

λ̂ =

√
r

∑n
i=1 x2

i

=

√
3

8.38
= 0.598.

An asymptotically exact two-sided 95% confidence interval for λ is

0.598−1.96(4 ·8.38)−1/2 < λ < 0.598+1.96(4 ·8.38)−1/2

or

0.260 < λ < 0.937.

To summarize the material introduced so far in this chapter, point estimators are statistics calcu-

lated from a data set to estimate an unknown parameter. Confidence intervals reflect the precision

of a point estimator. The most common technique for determining a point estimator for an unknown

parameter is maximum likelihood estimation, which involves finding the parameter value(s) that

make the observed data values the most likely. The maximum likelihood estimators are usually

found by using calculus to maximize the log likelihood function. Most population lifetime distribu-

tions do not have exact confidence intervals for unknown parameters, so the asymptotic properties

of the likelihood function can be used to generate approximate confidence intervals for unknown

parameters. Finally, many data sets in reliability are censored, which means that only a bound is

known on the lifetime for one or more of the data values. The most common censoring mechanism

is known as right censoring, where only a lower bound on the lifetime is known. The number of

items on test is denoted by n and the number of observed failures is denoted by r.

The next section applies the techniques developed so far in this chapter to the exponential distri-

bution.
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5.4 Exponential Distribution

The exponential distribution is popular due to its tractability for parameter estimation and inference.

The exponential distribution can be parameterized by either its population rate λ or its population

mean µ = 1/λ. Using the rate to parameterize the distribution, the survivor, density, hazard, and

cumulative hazard functions are

S(t, λ) = e−λt f (t, λ) = λe−λt h(t, λ) = λ H(t, λ) = λt

for t ≥ 0. Note that the unknown parameter λ has been added as an argument in these lifetime

distribution representations because it is now also an argument in the likelihood function and is

estimated from data.

All the analysis in this and subsequent sections assumes that a random sample of n items from a

population has been placed on a test and subjected to typical environmental conditions. Equivalently,

t1, t2, . . . , tn are independent and identically distributed random lifetimes from a particular popula-

tion distribution (exponential in this section). As with all statistical inference, care must be taken

to ensure that a random sample of lifetimes is collected. Consequently, random numbers should be

used to determine which n items to place on test. In a reliability setting, laboratory conditions should

adequately mimic field conditions. Only representative items should be placed on test because items

manufactured using a previous design may have a different failure pattern than those with the cur-

rent design. This is more difficult in a biomedical setting because of inherent differences between

patients.

Four classes of data sets (complete, Type II right censored, Type I right censored, and randomly

right censored) are considered in separate subsections. In all cases, n is the number of items placed

on test and r is the number of observed failures.

5.4.1 Complete Data Sets

A complete data set is typically the easiest to analyze because extensive analytical work exists for

finding point and interval estimators for parameters. Also, by testing each item to failure, we have

equal confidence in the fitted model in both the left-hand and right-hand tails of the distribution.

A heavily right-censored data set, on the other hand, might fit well in the left-hand tail of the dis-

tribution where failures were observed, but we have less confidence in the right-hand tail of the

distribution where there were few or no failures.

A complete data set consists of failure times t1, t2, . . . , tn. Although lowercase letters are used

to denote the failure times here to be consistent with the notation for censoring times, the failure

times are nonnegative random variables. The likelihood function can be written as a product of the

probability density functions evaluated at the failure times:

L(λ) =
n

∏
i=1

f (ti, λ).

Note that the t argument has been left out of the likelihood expression for compactness. Using the

last expression for the log likelihood function (adapted for a complete data set) from Section 5.3,

ln L(λ) =
n

∑
i=1

[
ln h(ti, λ)−H(ti, λ)

]
.

For the exponential distribution, this is

ln L(λ) =
n

∑
i=1

[
ln λ−λti

]
= n ln λ−λ

n

∑
i=1

ti.
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To determine the maximum likelihood estimator for λ, the single-element score vector

U(λ) =
∂ ln L(λ)

∂λ
=

n

λ
−

n

∑
i=1

ti,

also known as the score statistic, is equated to zero and solved for λ, yielding

λ̂ =
n

∑n
i=1 ti

,

where the denominator is often referred to as the total time on test. Not surprisingly, the maximum

likelihood estimator λ̂ is the reciprocal of the sample mean.

Theorem 5.2 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The maximum likelihood estimator of λ is

λ̂ =
n

∑n
i=1 ti

.

Example 5.5 A complete data set of n = 23 ball bearing failure times associated with

testing the endurance of deep-groove ball bearings has been extensively studied. The

failure times measured in 106 revolutions, ordered for readability, are

17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96

54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40.

Notice that there is a single tied value of 68.64 million revolutions. Fit the exponential

distribution to the n = 23 ball bearing failure times.

For this particular data set, the total time on test is ∑n
i=1 ti = 1661.16 million revolutions,

yielding the maximum likelihood estimate

λ̂ =
n

∑n
i=1 ti

=
23

1661.16
= 0.01385

failure per 106 revolutions. The number of significant digits reported in the point es-

timate matches the number of digits in the data set. The value of the log likelihood

function at the maximum likelihood estimate is ln L
(
λ̂
)
= −121.435, which will be

used later in this chapter to compare the exponential and Weibull fits to this data set.

Figure 5.7 displays a graph of the empirical survivor function, which takes a down-

ward step of 1/n = 1/23 at each data value, along with the fitted exponential survivor

function S(t) = e−λ̂t . Empirical and fitted distributions are traditionally compared by

plotting the two the survivor functions on the same set of axes because the probability

density function and hazard function suffer from the drawback of requiring the data to

be divided into cells to plot the empirical distribution. It is apparent from this figure that

the exponential distribution is a very poor fit. This particular data set was chosen for

this example to illustrate one of the shortcomings of using the exponential distribution

to model any data set without assessing the adequacy of the fit. Extreme caution must
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Figure 5.7: Empirical and exponential fitted survivor functions for the ball bearing data set.

be exercised when using the exponential distribution since, as indicated in Figure 5.7,

the exponential distribution is not an adequate probability model for this data set.

There are two clues that the exponential distribution would perform poorly in this set-

ting. First, we neglected to plot a histogram of the ball bearing failure times prior to

fitting the exponential distribution. The histogram in Figure 5.8 indicates a nonzero

mode to the population probability density function, implying that the exponential dis-

tribution is probably not going to be an adequate model. Second, knowing the physics

of failure can be helpful in this case. Ball bearings typically fail by wearing out. When

a ball bearing’s diameter falls outside of a prescribed range, it is considered to be failed.

This indicates that the hazard function for a ball bearing will probably increase over

time, so a distribution with a monotone increasing hazard function from the IFR class
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Figure 5.8: Histogram of the ball bearing failure times.
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would be a better choice than the exponential distribution. As shown in the next sec-

tion, the Weibull distribution provides a much better approximation to this particular

data set. Since the exponential distribution can be fitted to any data set that has at least

one observed failure, the adequacy of the model must always be assessed. The point

and interval estimators associated with the exponential distribution are legitimate only

if the data set is a random sample drawn from an exponential population. That is almost

certainly not the case for this particular data set.

Information matrices. To find the information matrix associated with a complete data set from

an exponential(λ) population, the derivative of the score statistic is required:

∂2 ln L(λ)

∂λ2
=− n

λ2
.

Taking the expected value of the negative of this quantity yields the 1×1 Fisher information matrix

I(λ) = E

[−∂2 ln L(λ)

∂λ2

]
= E

[ n

λ2

]
=

n

λ2
.

If the maximum likelihood estimator λ̂ is used as an argument in the negative of the second partial

derivative of the log likelihood function, the 1×1 observed information matrix is obtained:

O
(
λ̂
)
=

[−∂2 ln L(λ)

∂λ2

]

λ= λ̂

=
n

λ̂2
=

(∑n
i=1 ti)

2

n
.

Confidence interval for λ. Asymptotic confidence intervals for λ based on the likelihood ratio

statistic or the observed information matrix are unnecessary for a complete data set because the

sampling distribution of ∑n
i=1 ti is tractable. In particular, from Theorem 4.5,

2λ
n

∑
i=1

ti =
2nλ

λ̂

has the chi-square distribution with 2n degrees of freedom. Therefore, with probability 1−α,

χ2
2n,1−α/2 <

2nλ

λ̂
< χ2

2n,α/2,

where χ2
2n, p is the (1− p)th fractile of the chi-square distribution with 2n degrees of freedom. Per-

forming the algebra required to isolate λ in the middle of the inequality yields an exact two-sided

100(1−α)% confidence interval for λ.

Theorem 5.3 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. Let λ̂ denote the maximum likelihood estimator of λ.

An exact two-sided 100(1−α)% confidence interval for λ is

λ̂χ2
2n,1−α/2

2n
< λ <

λ̂χ2
2n,α/2

2n
.

A well-known example of a randomly right-censored data set is drawn from the biostatistical

literature. The focus here is on determining an estimate of the remission rate of a complete data set

of remission times for patients in a control group.
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Example 5.6 A clinical trial is conducted to determine the effect of an experimen-

tal drug named 6–mercaptopurine (6–MP) on leukemia remission times. A sample of

n = 21 leukemia patients is treated with 6–MP, and the remission times are recorded.

There are r = 9 individuals for whom the remission time is observed, and the remission

times for the remaining 12 individuals are randomly censored on the right. Letting an

asterisk denote a right-censored observation, the remission times (in weeks) are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.

In addition, 21 other leukemia patients are not given the drug, and they serve as a control

group. For this group there is no censoring and the remission times are

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23.

This data set illustrates the simplest possible use of a covariate for modeling: a single

binary covariate indicating the group to which each data value belongs. Fit the exponen-

tial distribution to the n = 21 remission times in the control group of the 6–MP clinical

trial. Give a point estimator and a 95% confidence interval for λ.

Having learned our lesson from the previous example, we begin by drawing a histogram

of the remission times, which is displayed in Figure 5.9. The shape of the histogram

reveals significant random sampling variability which can be attributed to the small

(n = 21) number patients in the control group. Modeling the remission times with a

probability distribution that has a mode of zero seems reasonable based on the shape of

the histogram, so we will proceed with fitting the exponential distribution.

The total time on test is
21

∑
i=1

ti = 182

weeks. The maximum likelihood estimate is

λ̂ =
n

∑n
i=1 ti

=
21

182
= 0.12
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Figure 5.9: Histogram of the leukemia remission times.
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remission per week. Figure 5.10 shows the empirical survivor function, which takes

a downward step of 1/n = 1/21 at each data point, along with the survivor function

for the fitted exponential distribution. In spite of the discrete nature of the data, the

excessive number of ties, and the fact that the number of patients in the control group

is rather small, the exponential distribution does a reasonable job of approximating the

empirical survivor function.

The observed information matrix is

O
(
λ̂
)
=

[−∂2 ln L(λ)

∂λ2

]

λ=λ̂

=
(∑n

i=1 ti)
2

n
=

1822

21
= 1577.

Since the data set is complete, an exact two-sided 95% confidence interval for the failure

rate of the distribution can be determined. Since χ2
42,0.975 = 26.0 and χ2

42,0.025 = 61.8,

the formula for the confidence interval

λ̂χ2
2n,1−α/2

2n
< λ <

λ̂χ2
2n,α/2

2n

becomes
(0.12)(26.0)

42
< λ <

(0.12)(61.8)

42
or

0.071 < λ < 0.17.

The involvement of the non-symmetric chi-square distribution in this confidence inter-

val means that the interval is not symmetric about the maximum likelihood estimate.

For this and subsequent examples, intermediate calculations involving numeric quan-

tities, such as critical values or total time on test values, are performed to as much

precision as possible, then final values are reported using only significant digits.
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Figure 5.10: Empirical and exponential fitted survivor functions for the 6–MP control group.
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The R code given below calculates the maximum likelihood estimator λ̂, calculates the

endpoints of the exact two-sided confidence interval for λ, and conducts the Kolmogorov–

Smirnov goodness-of-fit test. p = 0.55.

x = c(1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12, 12, 15,

17, 22, 23)

n = length(x)

l = n / sum(x)

lo = l * qchisq(0.025, 2 * n) / (2 * n)

hi = l * qchisq(0.975, 2 * n) / (2 * n)

p = ks.test(x, "pexp", l, exact = FALSE)$p.value

print(c(lo, l, hi, p))

Since the p-value for the Kolmogorov–Smirnov test is p = 0.55, there is not sufficient

evidence in the data to reject the null hypothesis that the data values were drawn from

an exponential population. This conclusion is consistent with the empirical and expo-

nential fitted survivor functions in Figure 5.10. The exponential distribution provides a

reasonable approximation to the leukemia remission times.

The importance of assessing model adequacy applies to all fitted distributions—not just the

exponential distribution. Furthermore, if a modeler knows the failure physics (for example, fatigue

crack growth) underlying a process, then an appropriate probability model that is consistent with the

failure physics should be chosen.

So far we have fitted the exponential distribution to two complete data sets: the ball bearing

failure times from Example 5.5 and the 6–MP remission times for the control group from Exam-

ple 5.6. We visually assessed the two fits in Figures 5.7 and 5.10 by comparing the empirical

survivor function, which takes a downward step of 1/n at each data value, with the fitted survivor

function S(t) = e−λ̂t and concluded that the exponential distribution did a very poor job of approx-

imating the ball bearing failure times and a (barely) adequate job of approximating the remission

times of the patients in the control group of the 6–MP clinical trial. This visual assessment was

subjective and was followed by a formal goodness-of-fit test in order to draw these conclusions for

the 6–MP remission times.

Confidence intervals for measures other than λ. It is possible to find point and interval estima-

tors for measures other than λ by using the invariance property for maximum likelihood estimators

and by rearranging the confidence interval formula. Define

L =
λ̂χ2

2n,1−α/2

2n
and U =

λ̂χ2
2n,α/2

2n

as the lower and upper bounds on the exact two-sided 100(1− α)% confidence interval for λ.

If the measure of interest is µ = 1/λ, for example, then the point estimator is the sample mean

µ̂ = 1
n ∑n

i=1 ti. Rearranging the confidence interval

L < λ <U

by taking reciprocals yields the exact two-sided 100(1−α)% confidence interval for µ:

1

U
< µ <

1

L
.
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As a second example, consider the probability of survival to a fixed time t, S(t) = e−λt . By the

invariance property of maximum likelihood estimators, the maximum likelihood estimator for the

survivor function at time t is

Ŝ(t) = e−λ̂t .

A confidence interval for S(t), on the other hand, can be found by rearranging the confidence interval

L < λ <U

in the following fashion:

−U <−λ <−L

e−Ut < e−λt < e−Lt

e−Ut < S(t)< e−Lt .

These formulas for point and interval estimates for quantities other than λ are illustrated next for a

complete data set that is assumed to be drawn from an exponential population.

Example 5.7 Assuming that the exponential distribution is an appropriate model for

the remission times in the control group of the 6–MP clinical trial, find point estimators

and exact two-sided 95% confidence intervals for the mean remission time and the

probability that a patient in the control group has a remission time that exceeds 10

weeks.

The point estimators in this case are

µ̂ =
1

n

n

∑
i=1

ti =
182

21
= 8.7

weeks and

Ŝ(t) = e−λ̂t ,

which is Ŝ(10) = e−(0.12)(10) = 0.32. The values of L and U for the exact two-sided

95% confidence interval for λ from the previous example are L = 0.071 and U = 0.17.

Finding a confidence interval for the population mean requires taking reciprocals of

these limits:
1

0.17
< µ <

1

0.071

5.9 < µ < 14.

An exact two-sided 95% confidence interval for S(100) using the formula

e−Ut < S(t)< e−Lt

results in

e−(0.17)(10) < S(100)< e−(0.071)(10)

or

0.18 < S(10)< 0.49.

Although the manipulation of the confidence interval for λ is performed here in the case of a

complete data set, these techniques may also be applied to any of the right-censoring mechanisms

to be described in the next three subsections.
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5.4.2 Type II Censored Data Sets

A life test of n items that is terminated when r failures have occurred produces a Type II right-

censored data set. The previous subsection is a special case of Type II censoring when r = n. As

before, assume that the failure times are t1, t2, . . . , tn, the test is terminated upon the rth ordered

failure, the censoring times are c1 = c2 = · · · = cn = t(r) for all items, and xi = min{ti, ci} for

i = 1, 2, . . . , n.

Since h(t, λ) = λ and H(t, λ) = λt for t ≥ 0, the log likelihood function is

ln L(λ) = ∑
i∈U

ln h(xi, λ)−
n

∑
i=1

H(xi, λ) = r ln λ−λ
n

∑
i=1

xi

because there are r observed failures. The expression

n

∑
i=1

xi = ∑
i∈U

ti + ∑
i∈C

ci =
r

∑
i=1

t(i)+(n− r)t(r),

where t(1) < t(2) < · · ·< t(r) are the order statistics of the observed failure times, is the total time on

test. It represents the total accumulated time that the n items accrue while on test.

To determine the maximum likelihood estimator, the log likelihood function is differentiated

with respect to λ,

U(λ) =
∂ ln L(λ)

∂λ
=

r

λ
−

n

∑
i=1

xi

and is equated to zero, yielding the maximum likelihood estimator.

Theorem 5.4 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The associated test is terminated at time t(r) (Type

II right censoring) for r ≥ 1. The censoring times are c1 = c2 = · · · = cn = t(r) for all items, and

xi = min{ti, ci} for i = 1, 2, . . . , n. The maximum likelihood estimator of λ is

λ̂ =
r

∑n
i=1 xi

.

So the maximum likelihood estimator of the failure rate is the ratio of the number of observed

failures to the total time on test. The second partial derivative of the log likelihood function is

∂2 ln L(λ)

∂λ2
=− r

λ2
,

so the information matrix is

I(λ) = E

[−∂2 ln L(λ)

∂λ2

]
=

r

λ2
,

and the observed information matrix is

O
(
λ̂
)
=

[−∂2 ln L(λ)

∂λ2

]

λ=λ̂

=
r

λ̂2
=

(∑n
i=1 xi)

2

r
.

Exact confidence intervals and hypothesis tests concerning λ can be derived by using the result

2λ
n

∑
i=1

xi =
2rλ

λ̂
∼ χ2(2r),
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where χ2(2r) is the chi-square distribution with 2r degrees of freedom. This result can be proved in

a similar fashion to Theorem 4.5 of the exponential distribution from Section 4.2. Using this fact,

an exact two-sided confidence interval for λ can be constructed in a similar fashion to that for a

complete data set. It can be stated with probability 1−α that

χ2
2r,1−α/2 <

2rλ

λ̂
< χ2

2r,α/2.

Rearranging terms yields an exact two-sided 100(1−α)% confidence interval for the failure rate λ.

Theorem 5.5 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The associated test is terminated at time t(r) (Type

II right censoring) for r ≥ 1. The censoring times are c1 = c2 = · · · = cn = t(r) for all items, and

xi = min{ti, ci} for i = 1, 2, . . . , n. An exact two-sided 100(1−α)% confidence interval for the

failure rate λ is
λ̂χ2

2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r
.

Example 5.8 A Type II right-censored data set of n = 15 automotive a/c switches has

been collected. The test was terminated when the fifth failure occurred. The r = 5

ordered observed failure times measured in number of cycles are

t(1) = 1410, t(2) = 1872, t(3) = 3138, t(4) = 4218, t(5) = 6971.

The remaining 10 automotive a/c switches are right-censored at 6971 cycles. Any para-

metric model that is fitted to this data set is only considered valid from 0 to 6971 cycles

unless there is some evidence (perhaps from previous test results) that indicates that the

parametric model is valid beyond 6971 cycles. Fit the exponential distribution to this

data set and give point and interval estimates for the failure rate and the mean time to

failure.

A diagram that can be helpful in visualizing lifetime data sets is given in Figure 5.11.

The top five horizontal lines ending with × denote the r = 5 observed failures and the

bottom n−r = 15−5 = 10 horizontal lines ending with ◦ denote the right-censored ob-

servations at 6971 cycles. Each of the right-censored observations will have an unseen

× somewhere to the right of the censoring time indicated by the ◦. It is a worthwhile

thought experiment to imagine where those ×s might occur for each right-censored ob-

servation in this particular data set. Once you have visualized the approximate positions

of the ten right-censored failure times, try to guess the approximate population mean of

the 15 failure times.

For this particular data set, the total time on test is ∑n
i=1 xi = 87,319 cycles, yielding a

maximum likelihood estimate

λ̂ =
r

∑n
i=1 xi

=
5

87,319
= 0.00005726

failure per cycle. Equivalently, the maximum likelihood estimate of the population

mean time to failure is

µ̂ =
∑n

i=1 xi

r
=

87,319

5
= 17,464
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Figure 5.11: Automotive switches failure and censoring times with n = 5 and r = 3.

cycles. Notice that the estimated mean time to failure exceeds the largest observed fail-

ure time, t(5) = 6971. As long as there is evidence, perhaps from previous testing on

identical or similar automotive switches, to support the exponential failure time distri-

bution, this estimate of the population mean time to failure is meaningful. Figure 5.12
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Figure 5.12: Empirical and exponential fitted survivor functions for the a/c switch data set.
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shows the empirical survivor function (which takes downward steps of 1/n = 1/15 at

each of the five observed failure times) and the associated fitted exponential survivor

function. In this case, the exponential distribution appears to adequately model the

lifetimes through 6971 cycles. The confidence intervals given below are only exact

when the data values are drawn from an exponential population, so assessing the fit is

a crucial part of data analysis. Assessing the adequacy of the fit is more difficult for a

right-censored data set because it is impossible to determine what the lifetime distribu-

tion looks like after the last observed failure time (6971 cycles for this data set) unless

previous test results support the exponential model.

The observed information matrix based on using the failure rate as the unknown param-

eter is

O
(
λ̂
)
=

[−∂2 ln L(λ)

∂λ2

]

λ=λ̂

=
(∑n

i=1 xi)
2

r
=

(87,319)2

5
= 1,525,000,000.

Since the data set is Type II right censored, an exact two-sided 95% confidence interval

for the failure rate of the distribution can be determined. Using the chi-square critical

values, χ2
10,0.975 = 3.247 and χ2

10,0.025 = 20.49, the formula for the confidence interval

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r

becomes
(0.00005726)(3.247)

10
< λ <

(0.00005726)(20.49)

10

or

0.00001859 < λ < 0.0001173.

Taking reciprocals, this is equivalent to an exact two-sided 95% confidence interval for

the population mean number of cycles to failure of

8526 < µ < 53,785.

Not surprisingly, with only r = 5 observed failures, this is a rather wide confidence

interval for µ, and hence there is not as much precision as in the case of the 6–MP

control group data, in which there were n = r = 21 observed remission times. The R

code below calculates the point estimates for λ and µ and the associated exact two-sided

95% confidence intervals.

n = 15

r = 5

x = c(1410, 1872, 3138, 4218, 6971, rep(6971, n - r))

lam = r / sum(x)

mu = 1 / lam

lam.lo = lam * qchisq(0.025, 2 * r) / (2 * r)

lam.hi = lam * qchisq(0.975, 2 * r) / (2 * r)

mu.lo = 1 / lam.hi

mu.hi = 1 / lam.lo
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Hypothesis testing, which is the rough equivalent of interval estimation, is also possible in the

case of Type II censoring because the sampling distribution of 2λ∑n
i=1 xi is tractable. Some aspects

of hypothesis testing in the setting of Type II censoring, such as the alternative hypothesis, one- and

two-tailed tests, and p-values are illustrated in the next example. The example shows how a life test

can be used to check a manufacturer’s claimed mean time to failure.

Example 5.9 The producer of the automotive switches tested in the previous example

claims that the population mean time to failure of their switches is µ = 100,000 cycles.

Is there enough evidence in the data set of 15 switches placed on test to conclude that the

population mean time to failure is less than 100,000 cycles? Assume that the automotive

switch lifetimes are exponentially distributed.

The producer’s claim is certainly suspect because the maximum likelihood estimator

for the population mean time to failure is only µ̂ = 17,464 from the previous example.

The null and alternative hypotheses for the hypothesis test are

H0 : µ = 100,000

H1 : µ < 100,000

or, equivalently,

H0 : λ = 0.00001

H1 : λ > 0.00001

in terms of the failure rate. So the hypothesis test being conducted here is to determine

whether there is statistically significant evidence in the data set to conclude that the

population mean time to failure of the switches is less then 100,000 cycles. Since small

values of ∑n
i=1 xi lead to rejecting H0, the attained level of significance (p-value) is

p = P

(
n

∑
i=1

xi < 87,319
∣∣∣λ = 0.00001

)
.

Since 2λ∑n
i=1 xi ∼ χ2(2r), the p-value, when H0 is true, is

p = P

(
(2)(0.00001)

n

∑
i=1

xi < (2)(0.00001)(87,319)

)

= P
(
χ2(10)< 1.746

)

= 0.002.

This p-value can be calculated with the following R statements.

n = 15

r = 5

x = c(1410, 1872, 3138, 4218, 6971, rep(6971, n - r))

pchisq(2 * 0.00001 * sum(x), 2 * r)

Although the number of observed failures is small, there is adequate evidence from

this data set to conclude that the population mean number of cycles to failure is less

than 100,000 (for example, the null hypothesis can be rejected at significance levels

α = 0.10, 0.05, and 0.01). We conclude that the manufacturer is probably exaggerating

the magnitude of the population mean time to failure based on this hypothesis test.
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The fact that the distribution of 2λ∑n
i=1 xi = 2rλ/λ̂ is independent of n implies that λ̂ has the

same precision in a test of r items tested until all have failed as that for a test of n items tested until r

items have failed. So the justification for obtaining a Type II censored data set over a complete data

set is time savings. The additional costs associated with this time savings are the additional n− r

test stands and the additional n− r items to place on test.

If a limited number of test stands are available for testing, the only way to speed up the test is

to perform a test with replacement in which failed items are immediately replaced with new items.

This will decrease the expected time to complete the test, which is terminated when r of the items

fail. The sequence of failures in this case is a Poisson process with rate nλ.

Although the inference for Type II censoring is tractable, the unfortunate consequence is that the

time to complete the test is a random variable. Constraints on the time to run a life test may make a

Type I censored data set more practical.

5.4.3 Type I Censored Data Sets

The analysis for Type I censored data sets is similar to that for the Type II censoring case. The test is

terminated at time c. The censoring times for each item on test are the same: c1 = c2 = · · ·= cn = c.

The number of observed failures, r, is a random variable. The total time on test in this case is

n

∑
i=1

xi = ∑
i∈U

ti + ∑
i∈C

ci =
r

∑
i=1

t(i)+(n− r)c.

As before, the log likelihood function is

ln L(λ) = ∑
i∈U

ln h(xi, λ)−
n

∑
i=1

H(xi, λ) = r ln λ−λ
n

∑
i=1

xi,

and the score statistic is

U(λ) =
r

λ
−

n

∑
i=1

xi.

The maximum likelihood estimator for r > 0 is

λ̂ =
r

∑n
i=1 xi

,

the information matrix is

I(λ) =
r

λ2
,

and the observed information matrix is

O
(
λ̂
)
=

r

λ̂2
.

The functional form of the maximum likelihood estimator is identical to the Type II censoring case.

For identical values of r, Type I censoring has a larger total time on test ∑n
i=1 xi than the correspond-

ing Type II censoring case because a Type I test ends between failures r and r+1. Thus the expected

value of λ̂ is smaller for Type I censoring than for Type II censoring. One problem that arises with

Type I censoring is that the sampling distribution of ∑n
i=1 xi is no longer tractable, so an exact con-

fidence interval for λ has not been established. Although many more complicated methods exist,

one of the best approximation methods is to assume that 2λ∑n
i=1 xi has the chi-square distribution

with 2r+1 degrees of freedom. This approximation, illustrated in Figure 5.13, is based on the fact
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Figure 5.13: Approximation technique for confidence intervals for Type I censoring.

that if c = t(r), then 2λ∑n
i=1 xi ∼ χ2(2r), and if c = t(r+1), then 2λ∑n

i=1 xi ∼ χ2(2r+2). Since c is

between t(r) and t(r+1), 2λ∑n
i=1 xi will be approximately chi-square with 2r+1 degrees of freedom.

This constitutes a proof, after a little algebra, of the following result.

Theorem 5.6 Let t1, t2, . . . , tn be the observed values of n mutually independent and identically

distributed exponential(λ) random variables. The associated test is terminated at time c (Type I

right censoring) for some positive real number c. The censoring times are c1 = c2 = · · · = cn = c

for all items, and xi = min{ti, ci} for i = 1, 2, . . . , n. The maximum likelihood estimator for λ is

λ̂ =
r

∑n
i=1 xi

and an approximate two-sided 100(1−α)% confidence interval for the failure rate λ is

λ̂χ2
2r+1,1−α/2

2r
< λ <

λ̂χ2
2r+1,α/2

2r
.

Example 5.10 A life test of n = 100 light bulbs is run for c = 5000 hours. Failed items

are not replaced upon failure in this Type I right censored data set. If the total time

on test is ∑n
i=1 xi = 384,968 hours, and r = 32 failures are observed, find a point and

interval estimator for the failure rate.

It is impossible to check to see whether the exponential distribution is an appropriate

model for the light bulb failure times from the problem statement because the actual

failure times are not given. Assuming that the exponential model is appropriate, the

maximum likelihood estimate for the failure rate is

λ̂ =
r

∑n
i=1 xi

=
32

384,968
= 0.0000831

failure per hour, or, equivalently, the maximum likelihood estimate for the population

mean time to failure is its reciprocal, 12,030 hours. To obtain an approximate 95%

confidence interval for the failure rate, the chi-square critical values for 2r + 1 = 65

degrees of freedom must be determined. These critical values are χ2
65,0.975 = 44.60 and

χ2
65,0.025 = 89.18. The approximate two-sided 100(1−α)% confidence interval for λ

λ̂χ2
2r+1,1−α/2

2r
< λ <

λ̂χ2
2r+1,α/2

2r

becomes
(0.0000831)(44.60)

64
< λ <

(0.0000831)(89.18)

64
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or

0.0000579 < λ < 0.000116.

Taking reciprocals, this is equivalent to an approximate 95% confidence interval for the

population mean number of cycles to failure of

8630 < µ < 17,260.

The R statements below compute the point and interval estimates.

n = 100

r = 32

ttt = 384968

lam = r / ttt

mu = 1 / lam

lam.lo = lam * qchisq(0.025, 2 * r + 1) / (2 * r)

lam.hi = lam * qchisq(0.975, 2 * r + 1) / (2 * r)

mu.lo = 1 / lam.hi

mu.hi = 1 / lam.lo

5.4.4 Randomly Censored Data Sets

Many of the examples that have the random censoring mechanism for which the failure times

t1, t2, . . . , tn and the censoring times c1, c2, . . . , cn are independent random variables are from bio-

statistics. Random censoring occurs frequently in biostatistics because it is not always possible to

control the time patients enter and exit the study. The log likelihood function, score statistic, infor-

mation matrix, and observed information matrix are the same as in the Type I censoring case. The

total time on test is now simply
n

∑
i=1

xi = ∑
i∈U

ti + ∑
i∈C

ci.

The sampling distribution of ∑n
i=1 xi is more complicated in this case, so asymptotic properties must

be relied on to determine approximate confidence intervals for λ. In the example that follows, three

different approximation procedures for determining a confidence interval for λ are illustrated.

The first technique is based on an approximation to a result that holds exactly in the Type II

censoring case: 2λ∑n
i=1 xi ∼ χ2(2r). The second technique is based on the likelihood ratio statistic,

where −2[ln L(λ)− ln L(λ̂)] is asymptotically chi-square with 1 degree of freedom. The third tech-

nique is based on the fact that the maximum likelihood estimator λ̂ is asymptotically normal with

population mean λ and a population variance that is the inverse of the observed information matrix.

Since this third technique results in a symmetric confidence interval, it should only be used with

large sample sizes.

Example 5.11 Find the maximum likelihood estimate and three approximate 95% con-

fidence intervals for the remission rate λ for the treatment group (those who received

the drug 6–MP) in the leukemia study described in Example 5.6.

For this data set, there are n = 21 individuals on test and r = 9 observed failures. A

“failure” for this data set is the end of a remission period. The total time on test for this
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data set is ∑n
i=1 xi = 359 weeks. The log likelihood function is

ln L(λ) = r ln λ−λ
n

∑
i=1

xi = 9ln λ−359λ.

As shown by the vertical dashed line in Figure 5.14, this function is maximized at

λ̂ =
r

∑n
i=1 xi

=
9

359
= 0.0251

remission per week. The maximum likelihood estimate of the expected remission time

is µ̂ = 359/9 = 39.9 weeks. The value of the log likelihood function at the maximum

likelihood estimate is ln L(λ̂) = −42.17, as indicated by the horizontal dashed line in

Figure 5.14. The observed information matrix is

O
(
λ̂
)
=

(∑n
i=1 xi)

2

r
=

(359)2

9
= 14,320.

The three approximation techniques for determining a confidence interval for λ are out-

lined next. Under the assumption that 2λ∑n
i=1 xi is approximately chi-square with 2r

degrees of freedom (this is satisfied exactly in the Type II censoring case), an approxi-

mate two-sided 100(1−α)% confidence interval for λ is

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r
,

which, for the 6–MP treatment group remission times with α = 0.05, is

(9)(8.23)

(359)(18)
< λ <

(9)(31.53)

(359)(18)
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Figure 5.14: Log likelihood function for the 6–MP treatment group.
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because χ2
18,0.975 = 8.23 and χ2

18,0.025 = 31.53, or

0.0115 < λ < 0.0439.

The second approximate confidence interval for λ is based on the likelihood ratio statis-

tic,−2[ln L(λ)− ln L(λ̂)], which is asymptotically chi-square with 1 degree of freedom.

Thus, with probability 1−α, the inequality

−2
[

ln L(λ)− ln L
(
λ̂
)]

< χ2
1,α

is approximately satisfied. For the 6–MP remission times in the treatment group and

α = 0.05, this can be rearranged as

ln L(λ)> ln L
(
λ̂
)
− 3.84

2

because χ2
1,0.05 = 3.84, or

ln L(λ)>−42.17− 3.84

2
.

As shown by the horizontal dashed lines in Figure 5.15, this corresponds to all values

of λ for which the log likelihood function is within 3.84/2 = 1.92 units of its largest

value. The inequality reduces to

9ln λ−359λ >−42.17−1.92,

which can be solved numerically to determine the endpoints. Many computer languages

have an equation solver that can determine the two λ values satisfying

9ln λ−359λ =−42.17−1.92 =−44.09.
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Figure 5.15: Log likelihood function and 95% confidence limits for λ for the 6–MP treatment group.
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In this particular example, the approximate two-sided confidence interval for λ is

0.0120 < λ < 0.0452,

which is shifted slightly to the right of the previous confidence interval. The lower and

upper bounds for this confidence interval are indicated by the vertical dashed lines in

Figure 5.15.

The final confidence interval for λ is based on the fact that the sampling distribution

of λ̂ is asymptotically normal with population mean λ and population variance I(λ)−1.

Replacing I(λ) by the observed information matrix O(λ̂), with approximate probability

1−α,

−zα/2 <
λ̂−λ

O
(
λ̂
)−1/2

< zα/2,

where zα/2 is the 1−α/2 fractile of the standard normal distribution. This is equivalent

to

λ̂− zα/2O
(
λ̂
)−1/2

< λ < λ̂+ zα/2O
(
λ̂
)−1/2

.

For the 6–MP treatment group remission times, an approximate two-sided 95% confi-

dence interval for λ is

9

359
− (1.96)(14,320)−1/2 < λ <

9

359
+(1.96)(14,320)−1/2

or

0.0087 < λ < 0.0414,

which has smaller bounds than the previous two interval estimators.

To summarize the conclusions of this long example, the maximum likelihood estimate

of the failure rate is

λ̂ = 0.0251

remission per week, which corresponds to an estimated mean remission time of 39.9

weeks. The three approximate two-sided 95% confidence intervals for λ are given in

the second column of Table 5.1. Taking reciprocals, the third column contains the

associated approximate two-sided 95% confidence intervals for the population mean

remission time µ. The confidence intervals for λ associated with the first two techniques

are not symmetric about the maximum likelihood estimator because they are based on

the non-symmetric chi-square distribution. Since there are only n = 21 patients in the

clinical trial and only r = 9 observed remission times, we have more faith in the actual

coverage of the first two confidence interval techniques. This conclusion would need to

be confirmed by a Monte Carlo simulation experiment.

Basis for confidence interval Confidence interval for λ Confidence interval for µ

Type II censoring approximate result 0.0115 < λ < 0.0439 22.8 < µ < 87.2
Likelihood ratio statistic 0.0120 < λ < 0.0452 22.1 < µ < 83.0
Asymptotic normality of the MLE 0.0087 < λ < 0.0414 24.1 < µ < 115.1

Table 5.1: Approximate 95% confidence intervals for λ and µ for the 6–MP treatment group.
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To summarize, the maximum likelihood estimator for the failure rate λ in the random censoring

case is the same as in the complete, Type II and Type I censoring cases:

λ̂ =
r

∑n
i=1 xi

.

Three approximate confidence intervals for λ are based on (a) an exact result from Type II censoring,

(b) the asymptotic distribution of the likelihood ratio statistic, and (c) the asymptotic normality of

the maximum likelihood estimator. The confidence interval based on the asymptotic normality of

the maximum likelihood estimator is symmetric and is therefore recommended only in the case of a

large number of items on test.

5.5 Weibull Distribution

The Weibull distribution is typically more appropriate for modeling the lifetimes of items with a

strictly increasing or decreasing hazard function, such as mechanical items. Rather than looking

at each censoring mechanism (for example, no censoring, Type II censoring, Type I censoring)

individually, we proceed directly to the general case of random censoring.

Maximum likelihood estimators. As before, let t1, t2, . . . , tn be the failure times, c1, c2, . . . , cn

be the associated censoring times, and xi = min{ti, ci} for i = 1, 2, . . . , n. The Weibull distribution

has hazard and cumulative hazard functions

h(t, λ, κ) = κλ(λt)κ−1 t ≥ 0

and

H(t, λ,κ) = (λt)κ t ≥ 0.

When there are r observed failures, the log likelihood function is

ln L(λ, κ) = ∑
i∈U

ln h(xi, λ, κ)−
n

∑
i=1

H(xi, λ, κ)

= ∑
i∈U

(
ln κ+κ ln λ+(κ−1) ln xi

)
−

n

∑
i=1

(λxi)
κ

= r ln κ+κr ln λ+(κ−1) ∑
i∈U

ln xi−λκ
n

∑
i=1

xκ
i ,

and the 2×1 score vector has elements

U1(λ, κ) =
∂ ln L(λ, κ)

∂λ
=

κr

λ
−κλκ−1

n

∑
i=1

xκ
i

and

U2(λ, κ) =
∂ ln L(λ, κ)

∂κ
=

r

κ
+ r ln λ+ ∑

i∈U

ln xi−
n

∑
i=1

(λxi)
κ ln(λxi).

When these equations are set equal to zero, the simultaneous equations have no closed-form solution

for λ̂ and κ̂:
κr

λ
−κλκ−1

n

∑
i=1

xκ
i = 0,
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r

κ
+ r ln λ+ ∑

i∈U

ln xi−
n

∑
i=1

(λxi)
κ ln(λxi) = 0.

One piece of good fortune, however, to avoid solving a 2× 2 set of nonlinear equations, is that the

first equation can be solved for λ in terms of κ as

λ =

(
r

∑n
i=1 xκ

i

)1/κ

.

Notice that λ reduces to the maximum likelihood estimator for the exponential distribution when

κ = 1. Using this expression for λ in terms of κ in the second element of the score vector yields

a single, albeit more complicated, expression with κ as the only unknown. After applying some

algebra, this equation reduces to

g(κ) =
r

κ
+ ∑

i∈U

ln xi−
r ∑n

i=1 xκ
i ln xi

∑n
i=1 xκ

i

= 0,

which must be solved iteratively. One technique that can be used to solve this equation is the

Newton–Raphson procedure, which uses

κ j+1 = κ j−
g(κ j)

g′(κ j)
,

where κ0 is an initial estimator. The iterative procedure can be repeated until the desired accuracy

for κ is achieved; that is, |κ j+1−κ j|< ε, for some small positive real number ε. When the accuracy

is achieved, the maximum likelihood estimator κ̂ is used to calculate λ̂ =
(
r/∑n

i=1 xκ̂
i

)1/κ̂
. The

derivative of g(κ) reduces to

g′(κ) =− r

κ2
− r

(∑n
i=1 xκ

i )
2



(

n

∑
i=1

xκ
i

)(
n

∑
i=1

(ln xi)
2xκ

i

)
−
(

n

∑
i=1

xκ
i ln xi

)2

 .

Determining an initial estimator κ0 is not trivial. When there are no censored observations, Menon’s

initial estimator for κ0 is

κ0 =

{
6

(n−1)π2

[
n

∑
i=1

(ln ti)
2− (∑n

i=1 ln ti)
2

n

]}−1/2

.

Least squares estimation can be used in the case of a right-censored data set. The Newton–Raphson

procedure can fail to converge to the maximum likelihood estimators. A bisection algorithm or fixed

point algorithm often provides more reliable convergence.

Fisher and observed information matrices. The 2×2 Fisher and observed information matri-

ces are based on the following partial derivatives:

−∂2 ln L(λ,κ)

∂λ2
=

κr

λ2
+κ(κ−1)λκ−2

n

∑
i=1

xκ
i ,

−∂2 ln L(λ,κ)

∂λ∂κ
=− r

λ
+

[
(
κλκ−1

)
(

n

∑
i=1

xκ
i ln xi

)
+

(
n

∑
i=1

xκ
i

)
(
κλκ−1 ln λ+λκ−1

)
]
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=− r

λ
+λκ−1

[
κ

n

∑
i=1

xκ
i ln xi +(1+κ ln λ)

n

∑
i=1

xκ
i

]
,

−∂2 ln L(λ,κ)

∂κ2
=

r

κ2
+

n

∑
i=1

(λxi)
κ(ln λxi)

2.

The expected values of these quantities are not tractable, so the Fisher information matrix does not

have closed-form elements. The observed information matrix, however, can be determined by using

λ̂ and κ̂ as arguments in these expressions.

Example 5.12 Example 5.5 showed that the exponential distribution was a poor ap-

proximation to the ball bearing data lifetimes. The histogram in Figure 5.8 indicated

that a probability distribution with a nonzero mode and an increasing hazard function

might provide a better fit. Fit the Weibull distribution to the ball bearing lifetimes and

assess the fit.

The maximum likelihood estimates, using the Newton–Raphson technique described

previously, are λ̂ = 0.0122 and κ̂ = 2.10. Figure 5.16 shows the empirical survivor

function, along with the fitted exponential and Weibull survivor functions. It is clear

that the Weibull distribution is superior to the exponential distribution in fitting the ball

bearing failure times because it is capable of modeling wear out. The log likelihood

function evaluated at the maximum likelihood estimators is ln L(λ̂, κ̂) = −113.691.

The log likelihood function is shown in Figure 5.17.

The observed information matrix is

O
(
λ̂, κ̂

)
=

[
681,000 875

875 10.4

]
,

revealing a positive correlation between the elements of the score vector. Using the fact

that the likelihood ratio statistic, −2
[

ln L(λ, κ)− ln L
(
λ̂, κ̂

)]
, is asymptotically χ2(2),
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Figure 5.16: Exponential and Weibull fits to the ball bearing data.
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Figure 5.17: Log likelihood function for the ball bearing data.

an approximate 95% confidence region for the parameters is all λ and κ satisfying

−2[ln L(λ, κ)+113.691]< 5.99,

since χ2
2,0.05 = 5.99. The 95% confidence region is shown in Figure 5.18, and, not sur-

prisingly, the line κ = 1 is not interior to the region. This indicates that the exponential

distribution is not an appropriate model for this particular data set. This is yet more

statistical evidence that the ball bearings are wearing out. Note that the boundary of

this region is a level surface of the log likelihood function shown in Figure 5.17 that is

cut 5.99/2 units below the maximum of the log likelihood function.

The R code to generate the confidence region is given below. The crplot function

contained in the conf package calculates the maximum likelihood estimates λ̂ and κ̂
and plots the 95% confidence region. The first argument to crplot contains the data

values, the second argument contains α, and the third argument contains the name of the

population distribution. Setting the pts argument to FALSE means the points along the

boundary are connected by lines; setting the origin argument to TRUEmeans the origin

is included in the plot; setting the info argument to TRUE means the maximum likeli-

hood estimates and boundary points in the confidence region can easily be retrieved.

library(conf)

bb = c(17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.48, 51.84,

51.96, 54.12, 55.56, 67.80, 68.64, 68.64, 68.88, 84.12,

93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40)

crplot(bb, 0.05, "weibull", pts = FALSE, origin = TRUE, info = TRUE)

As further evidence that the Weibull distribution is a significantly better model than

the exponential, the likelihood ratio statistic can be used to determine whether κ is

significant. Evaluating the log likelihood values at the maximum likelihood estimators
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Figure 5.18: Confidence region (α = 0.05) for λ and κ for the ball bearing data.

in the Weibull and exponential fits, the likelihood ratio statistic is

−2
[

ln L
(
λ̂
)
− ln L

(
λ̂, κ̂

)]
=−2[−121.435+113.691] = 15.488.

This value shows that there is a statistically significant difference between κ and 1 when

it is compared with the critical value χ2
1,0.05 = 3.84.

If we are still uncertain as to whether κ is significantly different from 1, the standard

errors of the distribution of the parameter estimators can be computed by determining

the inverse of the observed information matrix

O−1(λ̂, κ̂) =

[
0.00000165 −0.000139

−0.000139 0.108

]
.

This matrix is an estimate of the variance–covariance matrix for the parameter estimates

λ̂ and κ̂. The standard errors of the parameter estimates are the square roots of the

diagonal elements

σ̂
λ̂
= 0.00128 σ̂κ̂ = 0.329.

Thus, an asymptotic 95% confidence interval for κ is

2.10− (1.96)(0.329)< κ < 2.10+(1.96)(0.329)

or

1.46 < κ < 2.74,

since z0.025 = 1.96. Since this confidence interval does not contain 1, the parameter κ is

statistically significant. Three different techniques have all drawn the same conclusion:

the ball bearings are wearing out because there is a statistically significant difference

between κ̂ = 2.10 and κ = 1.
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5.6 Proportional Hazards Model

Parameter estimation for the proportional hazards model, which was introduced in Section 4.6, is

considered in this section. Since there is now a vector of covariates in addition to a failure or censor-

ing time for each item on test, special notation must be established to accommodate the covariates.

The proportional hazards model has the unique feature that the baseline distribution need not be

defined in order to estimate the regression coefficients associated with the covariates.

A lifetime model that incorporates a vector of covariates z = (z1, z2, . . . , zq)
′ models the impact

of the covariates on survival. The reason for including this vector may be to determine which

covariates significantly affect survival, to determine the distribution of the lifetime for a particular

setting of the covariates, or to fit a more complicated distribution from a small data set, as opposed

to fitting separate distributions for each level of the covariates.

The proportional hazards model was defined in Section 4.6 by

h(t, z) = ψ(z)h0(t),

for t ≥ 0, where h0(t) is a baseline hazard function. The covariates increase the hazard function

when ψ(z)> 1 or decrease the hazard function when ψ(z)< 1. The goal of this section is to develop

techniques for estimating the q× 1 vector of regression coefficients ββ from a data set consisting of

n items on test and r observed failure times.

The notation used to describe a data set in a lifetime model involving covariates will borrow

some notation established earlier in this chapter, but also establish some new notation. As before,

n is the number of items on test and r is the number of observed failures. The failure time of the

ith item on test, ti, is either observed or right censored at time ci, for i = 1, 2, . . . , n. As before, let

xi = min{ti, ci} and δi be a censoring indicator variable (1 for an observed failure and 0 for a right-

censored value), for i = 1, 2, . . . , n. In addition, a q×1 vector of covariates zi = (zi1, zi2, . . . , ziq)
′ is

collected for each item on test, for i = 1, 2, . . . , n. Thus, zi j is the value of covariate j for item i, for

i = 1, 2, . . . , n and j = 1, 2, . . . , q. This formulation of the problem can be stated in matrix form as

x=




x1

x2

...

xn


 δδ =




δ1

δ2

...

δn


 and Z =




z11 z12 . . . z1q

z21 z22 . . . z2q

...
...

. . .
...

zn1 zn2 . . . znq


 .

Each row in the Z matrix consists of the values of the q covariates collected on a particular item. The

matrix approach is useful because complicated systems of equations can be expressed compactly and

operations on data sets can be performed efficiently by a computer. For parameter estimation, the

survivor, density, hazard, and cumulative hazard functions now have the extra arguments z and ββ
associated with them:

S(t, z, θθ, ββ) f (t, z, θθ, ββ) h(t, z, θθ, ββ) H(t, z, θθ, ββ),

for t ≥ 0, where the vector θθ = (θ1, θ2, . . . , θp)
′ consists of the p unknown parameters associated

with the baseline distribution, which must be estimated along with the regression coefficients ββ.

Parameter estimation for the proportional hazards model can be divided into two cases. The first

case is when the baseline distribution is known. This case applies when previous test results have

indicated that a particular functional form of the baseline distribution is appropriate. The second

case is when the baseline distribution is unknown. This is almost certainly the case when looking

at a data set of lifetimes and covariates for the first time without any guidance with respect to an

appropriate baseline distribution.
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5.6.1 Known Baseline Distribution

When the baseline distribution is known, the parameter estimation procedure follows along the same

lines as in the previous sections. The hazard function and cumulative hazard function in the propor-

tional hazards model are

h(t, z, θθ, ββ) = ψ(z)h0(t)

and

H(t, z, θθ, ββ) = ψ(z)H0(t)

for t ≥ 0, where θθ is a p×1 vector of unknown parameters associated with the baseline distribution.

For simplicity and mathematical tractability, only the log linear form of the link function, which is

ψ(z) = eββ′z , is considered here. This assumption is not necessary for some of the derivations, so

many of the results apply to a wider range of link functions. When the log linear form of the link

function is assumed, the hazard function and cumulative hazard function become

h(t, z, θθ, ββ) = eββ′zh0(t)

and

H(t, z, θθ, ββ) = eββ′zH0(t)

for t ≥ 0, where θθ is a p×1 vector of unknown parameters associated with the baseline distribution.

The log likelihood function is

ln L(θθ, ββ) = ∑
i∈U

ln h(xi, zi, θθ, ββ)−
n

∑
i=1

H(xi, zi, θθ, ββ)

= ∑
i∈U

[
ββ ′zi + ln h0(xi)

]
−

n

∑
i=1

eββ′ziH0(xi).

This expression can be differentiated with respect to all the unknown parameters to arrive at the score

vector, which is then equated to zero and solved numerically to arrive at the maximum likelihood

estimates.

Two observations with respect to this model formulation are important. First, the maximum

likelihood estimates for θθ and ββ for most of the models in this section cannot be expressed in closed

form (as was the case for the exponential distribution in Section 5.4), so numerical methods typically

need to be used to find the values of the estimates. Second, the choice of whether to use a model

of dependence or to examine each population separately is dependent on the number of unique

covariate vectors z and the number of items on test, n. If, for example, n is large and there is only a

single binary covariate (that is, only two unique covariate vectors, z1 = 0 and z1 = 1), it is probably

wiser to analyze each of the two populations separately by the techniques described earlier.

Although numerical methods are required to find θ̂θ and β̂β in general, there are closed-form

expressions in a very narrow case that satisfies the following conditions.

• The log linear link function ψ(z) = eββ′z is used to incorporate the vector of covariates z into

the lifetime model.

• The baseline distribution is exponential(λ), which means that the baseline hazard function is

h0(t) = λ and the baseline cumulative hazard function is H0(t) = λt for t ≥ 0.

Under these assumptions, the general form for the hazard function in the proportional hazards model

h(t, z, θθ, ββ) = ψ(z)h0(t)
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reduces to the special case

h(t, z, λ, ββ) = λeββ′z.

for t ≥ 0. It is often more convenient notationally to define an additional covariate, z0 = 1, for all n

items on test. This allows the baseline parameter λ = eβ0z0 to be included in the vector of regression

coefficients, rather than being considered separately. The baseline hazard function is effectively

absorbed into the link function. In this case, the hazard function can be expressed as

h(t, z, ββ) = eββ′z

for t ≥ 0, where ββ = (β0, β1, . . . , βq)
′ and z = (z0, z1, . . . , zq)

′. The corresponding cumulative haz-

ard function is

H(t, z, ββ) = teββ′z

for t ≥ 0. Using this parameterization, the log likelihood function is

ln L(ββ) = ∑
i∈U

ln h(xi, zi, ββ)−
n

∑
i=1

H(xi, zi, ββ)

= ∑
i∈U

ββ′zi−
n

∑
i=1

xie
ββ′zi .

Differentiating this expression with respect to β j yields the elements of the score vector

∂ ln L(ββ)

∂β j

= ∑
i∈U

zi j−
n

∑
i=1

xizi je
ββ′zi

for j = 0, 1, . . . , q. When the elements of the score vector are equated to zero, the resulting set of

q+ 1 nonlinear equations in ββ must be solved numerically in the general case. There is a closed-

form solution for this set of simultaneous equations when there is a single binary covariate, often

referred to as the two-sample case.

To find the observed information matrix and the Fisher information matrix, a second partial

derivative of the log likelihood function is required:

∂2 ln L(ββ)

∂β j∂βk

=−
n

∑
i=1

xizi jzikeββ′zi

for j = 0, 1, . . . , q and k = 0, 1, . . . , q. The observed information matrix can be determined by using

the maximum likelihood estimate β̂β as an argument in this second partial derivative. Thus, the ( j, k)
element of the observed information matrix is

[
−∂2 ln L(ββ)

∂β j∂βk

]

ββ= β̂β

=
n

∑
i=1

xizi jzike β̂β
′
zi

for j = 0, 1, . . . , q and k = 0, 1, . . . , q. For computational purposes, this can be expressed in matrix

form as

O
(
β̂β
)
=Z ′B̂Z,

where B̂ is an n× n diagonal matrix whose elements are x1e β̂β
′
z1 , x2e β̂β

′
z2 , . . . , xne β̂β

′
zn . The Fisher

information matrix is more difficult to calculate because it involves the expected value of the second

partial derivative:

E

[
−∂2 ln L(ββ)

∂β j∂βk

]
=

n

∑
i=1

zi jzikeββ′ziE[xi]
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for j = 0, 1, . . . , q and k = 0, 1, . . . , q. Determining the value of E[xi] will be considered separately

in the paragraphs that follow for uncensored (r = n) and censored (r < n) data sets.

For a complete data set, E[xi] = E[ti], for i = 1, 2, . . . , n, because there is no censoring. Since the

population mean of the exponential distribution is the reciprocal of the failure rate and the ith item

on test has failure rate eββ′zi , E[xi] = e−ββ′zi . Returning to the Fisher information matrix, the ( j, k)
element is

E

[
−∂2 ln L(ββ)

∂β j∂βk

]
=

n

∑
i=1

zi jzikeββ′zie−ββ′zi =
n

∑
i=1

zi jzik

for j = 0, 1, . . . , q and k = 0, 1, . . . , q. This result for the Fisher information matrix has a particularly

tractable matrix representation

I(ββ) =Z ′Z,

which is a function of the matrix of covariates only.

For a censored data set, the expression for E[xi] is a bit more complicated. Since the failure rate

for the ith item on test is eββ′zi ,

E[xi] = E
[

min{ti, ci}
]

=
∫ ci

0
ti fTi

(ti)dti + ciP[ti ≥ ci]

=
∫ ci

0
tie

ββ′zie−eββ ′zi tidti + cie
−eββ ′zi ci

= e−ββ′zi

(
1− e−eββ ′zi ci

)

for i = 1, 2, . . . , n, by using integration by parts. This means that the ( j, k) element of the Fisher

information matrix is

E

[
−∂2 ln L(ββ)

∂β j∂βk

]
=

n

∑
i=1

zi jzikeββ′zie−ββ′zi

[
1− e−eββ ′zi ci

]
=

n

∑
i=1

zi jzik(1− γi),

where γi = e−eββ ′zi ci is the probability that the ith item on test is censored, for i = 1, 2, . . . , n. The

potential censoring time for the ith item on test, ci, must be known for each item in order to compute

the Fisher information matrix, which is not always the case in practice. Letting ΓΓ be a diagonal

matrix with elements γ1, γ2, . . . , γn, the Fisher information matrix can be written in matrix form as

I(ββ) =Z ′(I−ΓΓ)Z,

which is independent of the failure times.

Before ending the discussion on the exponential baseline distribution, the two-sample case,

where a binary covariate z1 is used to differentiate between the control (z1 = 0) and treatment

(z1 = 1) cases, is considered. This case is of interest because the maximum likelihood estimates

can be expressed in closed form. The notation for the two-sample case is summarized in Table 5.2.

As before, z0 = 1 is included in the vector of covariates to account for the baseline distribution. The

set of two nonlinear equations for finding the estimates of ββ = (β0,β1)
′ obtained by setting the score

vector equal to 0 is

∑
i∈U

zi0−
n

∑
i=1

xizi0eβ0zi0+β1zi1 = 0,

∑
i∈U

zi1−
n

∑
i=1

xizi1eβ0zi0+β1zi1 = 0.
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Let r0 > 0 be the number of observed failures in the control group (z1 = 0), and let r1 > 0 be the

number of observed failures in the treatment group (z1 = 1). Since z0 = 1 for all items on test, the

equations reduce to

r0 + r1−
n

∑
i=1

xie
β0+β1zi1 = 0,

r1−
n

∑
i=1

xizi1eβ0+β1zi1 = 0.

These equations can be further simplified by partitioning the summations based on the value of z1:

r0 + r1− ∑
i |zi1=0

xie
β0 − ∑

i |zi1=1

xie
β0+β1 = 0,

r1− ∑
i |zi1=1

xie
β0+β1 = 0.

Letting λ0 = eβ0 be the failure rate in the control group (z1 = 0) and letting λ1 = eβ0+β1 be the failure

rate in the treatment group (z1 = 1), the equations become

r0 + r1−λ0 ∑
i |zi1=0

xi−λ1 ∑
i |zi1=1

xi = 0,

r1−λ1 ∑
i |zi1=1

xi = 0.

When these equations are solved simultaneously, the maximum likelihood estimates for λ0 and λ1

are the same as those for the exponential distribution with two separate populations:

λ̂0 =
r0

∑i |zi1=0 xi

and λ̂1 =
r1

∑i |zi1=1 xi

.

These estimators are the ratio of the number of observed failures to the total time on test within the

two groups.

Example 5.13 The patients in the 6–MP drug experiment described in Example 5.6 are

broken down into a control group that did not receive the drug (z1 = 0) and a treatment

group that did receive the drug (z1 = 1). The remission times, in weeks, for the 21

patients in the control group are

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23.

Control Group Treatment Group

Number of failures r0 r1

Baseline covariate z0 1 1

Binary covariate z1 0 1

Table 5.2: Single binary covariate proportional hazards model notation.
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The remission times for the 21 patients that received the drug are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.

There are a total of n = 42 patients in the clinical trial, and there are a total of r = 30

observed cancer recurrences, r0 = 21 of which are in the control group and r1 = 9 of

which are in the treatment group. The values of x, δδ, and Z are given in Figure 5.19;

the control group values have been arbitrarily placed first in the x vector. Note that for

this analysis the order of the observations in the x vector is irrelevant. For tied values,

the censored values have been placed last.

The maximum likelihood estimates for the failure rates for the two populations are

λ̂0 =
r0

∑i |zi1=0 xi

=
21

182
= 0.115 and λ̂1 =

r1

∑i |zi1=1 xi

=
9

359
= 0.0251

or, equivalently, in terms of the estimated mean remission times, the expected remis-

sion times of the control and treatment groups are estimated to be 182
21 = 8.67 weeks

and 359
9 = 39.9 weeks, respectively. These estimates can be easily converted to the

coefficients in the proportional hazards model:

β̂0 = ln

[
21

182

]
=−2.16 and β̂1 = ln

[
(9)(182)

(359)(21)

]
=−1.53.

Confidence intervals can be determined separately for the two populations because the

remission times in each are assumed to be exponentially distributed. Using the tech-

niques from Section 5.4, an exact two-sided 95% confidence interval for λ0 is

(0.115)(26.00)

42
< λ0 <

(0.115)(61.78)

42

0.0714 < λ0 < 0.170

based on the chi-square distribution with 42 degrees of freedom. An approximate two-

sided 95% confidence interval for λ1 is

(0.0251)(8.23)

18
< λ1 <

(0.0251)(31.53)

18

0.0115 < λ1 < 0.0439

based on the chi-square distribution with 18 degrees of freedom. The first confidence

interval is exact because the control group contains no censored observations, and the

second confidence interval is approximate because the treatment group has randomly

censored observations. Since these confidence intervals do not overlap, it can be con-

cluded that 6–MP is effective in increasing remission times. If the side effects from

6–MP are minor, it should be prescribed to all leukemia patients.

Since exact confidence intervals apply only to the two-sample case with an exponential

baseline distribution and Type II censoring, asymptotic intervals will also be calculated

here to illustrate how they are developed in the general case. The Fisher information

matrix cannot be calculated for this data set because the observed remission times do
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Figure 5.19: Data values for the 6–MP experiment with a single binary covariate.
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not have corresponding known censoring times. The observed information matrix, on

the other hand, is easily calculated using the matrix formulation

O
(
β̂β
)
=Z ′B̂Z =

[
30 9

9 9

]
,

where B̂ is a 42× 42 diagonal matrix with elements x1eβ̂β
′
z1 , x2eβ̂β

′
z2 , . . . , x42eβ̂β

′
z42 .

Since the determinant of this matrix is (30)(9)−92 = 189, it has inverse

O−1
(
β̂β
)
=

[
9/189 −9/189

−9/189 30/189

]
,

which estimates the variance–covariance matrix of the maximum likelihood estimates.

The off-diagonal elements of O−1
(
β̂β
)

indicate a negative correlation between β̂0 and

β̂1. The square roots of the diagonal elements yield asymptotic estimates for the stan-

dard deviation of the regression parameter estimates. Thus, the asymptotic estimated

standard deviation of the estimate for β0 is

√
V̂
[
β̂0

]
=

√
9

189
= 0.218,

and the asymptotic estimated standard deviation of the estimate for β1 is

√
V̂
[
β̂1

]
=

√
30

189
= 0.398.

These values can be used in the usual fashion to obtain asymptotically valid confidence

intervals and perform hypothesis testing with respect to the regression parameter esti-

mates. Note that β̂1 = −1.53 is more than three standard deviation units away from 0,

supporting the conclusion that there is a statistically significant difference between the

patients who take 6–MP versus those that do not with respect to their remission times.

Since the sign of β̂1 is negative, the drug prolongs the remission times. More specif-

ically, since the proportional hazards model is being used, a patient taking the 6–MP

drug will have a hazard function that is estimated to be eβ̂1 = e−1.53 = 0.217 times that

of a patient who does not take the drug.

Parameter estimation for single binary covariate is ideal in the sense that the parameter estimates

can be expressed in closed form. The next subsection considers the more common situation in which

the baseline distribution is unknown.

5.6.2 Unknown Baseline Distribution

In many applications, the baseline distribution is not known. Furthermore, the modeler may not be

interested in the baseline distribution, rather only in the influence of the covariates on survival. A

technique has been developed for the proportional hazards model that allows the coefficient vector ββ
to be estimated without knowledge of the parametric form of the baseline distribution. This type

of analysis might be appropriate when the modeler wants to detect which covariates are significant,

to determine which covariate is the most significant, or to analyze interactions among covariates.

This technique is characteristic of nonparametric methods because it is impossible to misspecify the

baseline distribution.
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The focus of this estimation technique is on the indexes of the components on test, as will

be seen in the derivation to follow. Since this procedure is very different from all previous point

estimation derivations, an example will be carried through the derivation to illustrate the notation

and the method. The purpose in this small example is to determine whether light bulb wattage

influences light bulb survival. This introduction to parameter estimation will alternate between the

small example and the general case. In this example and the derivation, it is initially assumed that

there is no censoring and there are no tied observations.

Example 5.14 A set of n = 3 light bulbs are placed on test. The first and second bulbs

are 100-watt bulbs and the third bulb is a 60-watt bulb. A single (q = 1) covariate z1

assumes the value 0 for a 60-watt bulb and 1 for a 100-watt bulb. The purpose of the test

is to determine if the wattage has any influence on the survival distribution of the bulbs.

The baseline distribution is unknown and unspecified, so there is only one parameter in

the proportional hazards model, the regression coefficient β1, that needs to be estimated.

This small data set is used for illustrative purposes only, and we would obviously need

to collect more than three data points to detect any statistically significant difference

between the two wattages. Let t1 = 80, t2 = 20, and t3 = 50 denote the lifetimes of the

three bulbs. From the notation developed earlier in this chapter,

x=




80

20

50


 δδ =




1

1

1


 Z =




1

1

0


 .

The order statistics are t(1) = 20, t(2) = 50, and t(3) = 80. Figure 5.20 illustrates the

definitions made thus far. Recall that the first subscript on zi j is the bulb number and

the second subscript is the covariate number. The risk set R(t), parameterized by the

t

Bulb 1: 100 watts

Bulb 2: 100 watts

Bulb 3: 60 watts

20

t(1)

50

t(2)

80

t(3)

t3

t2

t1

Covariate
values

z11 = 1

z21 = 1

z31 = 0

×

×

×

Figure 5.20: Proportional hazards parameter estimation notation.
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failure times, is defined as the set of indexes of bulbs at risk just prior to time t. In this

case

R(t(1)) = R(t2) = R(20) = {1, 2, 3}
since all bulbs are at risk just prior to t(1). At time t(2), the risk set is

R(t(2)) = R(t3) = R(50) = {1, 3}

since bulbs 1 and 3 are at risk just prior to t(2). Finally, at time t(3), the risk set is

R(t(3)) = R(t1) = R(80) = {1}

since only bulb 1 is still on test just prior to t(3). Similar to the concept of a pointer

array from computer science, a rank vector r is used here to simplify the notation. The

ith element of the rank vector is the index of the item that fails at t(i), for i = 1, 2, 3. For

this particular data set,

r =




2

3

1




because bulb 2 fails first, bulb 3 fails next, and bulb 1 fails last. The failure times for

each bulb can therefore be determined from the order statistics and the rank vector.

The notation defined in the example is easily extended from three items on test with a single

binary covariate to the general case. Let t1, t2, . . . , tn be n distinct lifetimes. Each lifetime ti has an

associated q×1 vector of covariates zi, for i = 1, 2, . . . , n. The ith order statistic is given by t(i), and

the risk set R(t(i)) is the set of indexes of all items that are at risk just prior to t(i), for i = 1, 2, . . . , n.

The ith element of the rank vector r = (r1, r2, . . . ,rn)
′ is the index of the item that fails at time t(i),

for i = 1, 2, . . . , n. The observed failure times and their associated indexes are equivalent to the

observed order statistics and the associated rank vector. Now that the new notation has been defined,

the emphasis transitions to determining the probability that a particular permutation of the indexes

appears in the rank vector.

Example 5.15 We now return to the light bulb life test described in Example 5.14. The

joint probability distribution of the elements of the rank vector, denoted by f (r1, r2, r3),
is now considered for the data set containing n = 3 observations. In this case, there are

3! = 6 possible permutations of the ranks of the observations:



1

2

3







1

3

2







2

1

3







2

3

1







3

1

2







3

2

1


 .

If the wattage of the light bulb had no influence on the survival time, then clearly

f (r1, r2, r3) =
1
6 for all six permutations because all three items are drawn from a ho-

mogeneous population with respect to survival. Switching to the non-equally-likely

case, the probability mass function for the rank vector will be determined by finding the

conditional probabilities associated with the ranks. For example, assume that a failure

has just occurred at time t(2) = 50, and the history up to time 50, which is bulb 2 failed

at time t(1) = 20, is known. The bulb that fails at time 50 is either bulb 1 or bulb 3. For

small ∆t, the conditional probability that the bulb failing at time 50 is bulb 1 is

P
(
r2 = 1

∣∣ t(1) = 20, t(2) = 50, r1 = 2
)
=

P(bulb 1 fails at time 50)

P(one item from R(t(2)) fails at time 50)
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=
h(50, z11)∆t

h(50, z11)∆t +h(50, z31)∆t

=
h(50, z11)

h(50, z11)+h(50, z31)

=
ψ(z11)h0(50)

ψ(z11)h0(50)+ψ(z31)h0(50)

=
ψ(z11)

ψ(z11)+ψ(z31)

=
eβ1z11

eβ1z11 + eβ1z31

=
eβ1

eβ1 +1

because the first bulb is 100 watts (z11 = 1) and the third bulb is 60 watts (z31 = 0). Note

that the baseline hazard function has dropped out of this expression, so this probability

will be the same regardless of the choice of h0(t). Also, the first two order statistics,

t(1) and t(2), were not used in the calculation of this conditional probability. By similar

reasoning, the conditional probability that the 60-watt bulb is the second to fail is

P
(
r2 = 3

∣∣ t(1) = 20, t(2) = 50,r1 = 2
)
=

1

eβ1 +1
.

In the example, as well as in the general case, the conditional probability expression does not

involve the failure times, making it possible to shorten P(r j = i | t(1), t(2), . . . , t( j), r1, r2, . . . , r j−1) to

just P(r j = i |r1, r2, . . . , r j−1). The probability that the jth element of the rank vector will be equal

to i, given t( j) and the failure history up to t( j), is

P
(
r j = i

∣∣r1, r2, . . . , r j−1

)
=

h(t( j), zi)∆t

∑k∈R(t( j))
h(t( j), zk)∆t

=
h(t( j), zi)

∑k∈R(t( j))
h(t( j), zk)

=
ψ(zi)h0(t( j))

∑k∈R(t( j))
ψ(zk)h0(t( j))

=
ψ(zi)

∑k∈R(t( j))
ψ(zk)

=
eββ′zi

∑k∈R(t( j))
eββ′zk

.

Example 5.16 We continue with the light bulb life test with n = 3 bulbs on test from

Examples 5.14 and 5.15. It is now a simple task to use this conditional probability to

determine the probability mass function for the indexes. For the three light bulbs, this

probability mass function is

f (r1, r2, r3) = f (r3 |r1, r2) f (r1, r2)

= f (r3 |r1, r2) f (r2 |r1) f (r1)

= f (r1) f (r2 |r1) f (r3 |r1, r2)
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over all six permutations of the rank vector. Since the sequence that was observed for

the rank vector was r = (2, 3, 1)′, this becomes

f (2, 3, 1) = f (2) f (3 |2) f (1 |2, 3)

=
ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z31)

ψ(z11)+ψ(z31)
· ψ(z11)

ψ(z11)

=
eβ1z21

eβ1z11 + eβ1z21 + eβ1z31
· eβ1z31

eβ1z11 + eβ1z31

=
eβ1

eβ1 + eβ1 +1
· 1

eβ1 +1

=
eβ1

(
2eβ1 +1

)(
eβ1 +1

) .

Treating this expression as a likelihood function L(β1), the problem reduces to deter-

mining the β1 value that maximizes the log likelihood function

ln L(β1) = β1− ln
(
2eβ1 +1

)
− ln

(
eβ1 +1

)
.

The score statistic is

∂ ln L(β1)

∂β1
= 1− 2eβ1

2eβ1 +1
− eβ1

eβ1 +1
.

Setting the score statistic to zero and solving for the maximum likelihood estimate,

β̂1 = (− ln 2)/2 = −0.347. Since β̂1 < 0, there is lower risk for the 100-watt bulbs

than for 60-watt bulbs. More specifically, the hazard function for 100-watt light bulbs

is eβ̂1 =
√

2/2 = e−0.347 = 0.707 times that of the baseline hazard function for 60-watt

bulbs, regardless of what baseline distribution is considered. To see if this regression

coefficient is statistically significant involves calculating the negative of the derivative

of the score:

−∂2 ln L(β1)

∂β2
1

=
2eβ1

(
2eβ1 +1

)2
+

eβ1

(
eβ1 +1

)2
.

When this expression is evaluated at β1 = β̂1 =−0.347, the 1×1 observed information

matrix is 0.485, so the asymptotic estimate of the variance of β̂1 is 1/0.485 = 2.06, and

the asymptotic estimate of the standard deviation of β̂1 is
√

2.06= 1.44. Since β̂1 is only

a fraction of a standard deviation away from 0, z1 is not statistically significant. This re-

sult is not surprising considering the small number of light bulbs placed on the life test.

Note that these values are only asymptotically correct and are obviously poor approx-

imations when n = 3. The p-value for testing H0 : β1 = 0 versus H1 : β1 6= 0 is 0.809,

indicating that there is no statistical evidence that wattage influences the longevity of a

light bulb for this tiny data set. In addition, only the order of the failure times and not

their numerical values were used to find β̂1. This means, for example, that the failure

time of the third bulb, t3, could have fallen anywhere on the interval (20,80), and the

estimate would have been the same because the order of the observed failure times was

not changed.

The R code below confirms the calculations given above. The coxph function, which is

part of the survival package, is used to calculate the estimated regression coefficient
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β̂1 = −0.347, which is stored in b, the 1× 1 observed information matrix, which is

stored in v, and the p-value for the hypothesis test, which is stored in p.

library(survival)

failtimes = c(80, 20, 50)

censor = c(1, 1, 1)

z = c(1, 1, 0)

bulbs.fit = coxph(Surv(failtimes, censor) ~ z)

b = bulbs.fit$coef

v = bulbs.fit$var

p = 2 * pnorm(b / sqrt(v))

The procedure for estimating β1 can be generalized from the example without any significant

difficulties. The probability mass function for the indexes, or the likelihood function for ββ, is now

L(ββ) = f (r1) f (r2 |r1) . . . f (rn |r1, r2, . . . , rn−1)

=
n

∏
j=1

ψ(zr j
)

∑k∈R(t( j))
ψ(zk)

=
n

∏
j=1

e
ββ′zr j

∑k∈R(t( j))
eββ′zk

.

The log likelihood is

ln L(ββ) =
n

∑
j=1


ββ′zr j

− ln ∑
k∈R(t( j))

eββ′zk


 .

The score vector has sth component

∂ ln L(ββ)

∂βs

=
n

∑
j=1

[
zsr j
−

∑k∈R(t( j))
zskeββ′zk

∑k∈R(t( j))
eββ′zk

]

for s = 1, 2, . . . , q. The vector of maximum likelihood estimators β̂β is obtained when the elements

of the score vector are equated to zero and solved via numerical methods. To determine an estimate

for the variance of β̂β, the score vector must be differentiated to calculate the observed information

matrix. The diagonal elements of the inverse of the observed information matrix are asymptotically

valid estimates of the variance of β̂β.

There are two approaches to handle right censoring that do not significantly complicate the

derivation presented thus far. The first approach is to assume that right censoring occurs immediately

after a failure occurs when a failure time and right-censoring time coincide. This assumption is valid

for a Type II censored data set, but will involve an approximation for more general right-censoring

schemes. In this case the rank vector is shortened to only r elements, corresponding to the indexes

of the observed failure times t(1), t(2), . . . , t(r). The likelihood function is

L(ββ) =
r

∏
j=1

ψ(zr j
)

∑k∈R(t( j))
ψ(zk)

=
r

∏
j=1

e
ββ′zr j

∑k∈R(t( j))
eββ′zk

.
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The log likelihood function is

ln L(ββ) =
r

∑
j=1


ββ′zr j

− ln ∑
k∈R(t( j))

eββ′zk


 .

The score vector has sth component

∂ ln L(ββ)

∂βs

=
r

∑
j=1

[
zsr j
−

∑k∈R(t( j))
zskeββ′zk

∑k∈R(t( j))
eββ′zk

]

for s = 1, 2, . . . , q. Using the quotient rule, the derivative of the score vector is

∂2 ln L(ββ)

∂βs∂βt

=−
r

∑
j=1

(
∑k∈R(t( j))

eββ′zk

)(
∑k∈R(t( j))

zskztkeββ′zk

)
−
(

∑k∈R(t( j))
zskeββ′zk

)(
∑k∈R(t( j))

ztkeββ′zk

)

(
∑k∈R(t( j))

eββ′zk

)2

for s = 1, 2, . . . , q and t = 1, 2, . . . , q. The elements of the observed information matrix are obtained

by using the maximum likelihood estimates as arguments in the negative of this expression.

The second approach to right censoring is to write the likelihood function as the sum of all like-

lihoods for complete data sets that are consistent with the censoring pattern. Fortunately, this second

approach yields the same likelihood function as the first approach, as illustrated by the following

example.

Example 5.17 In the previous example, the data set consisted of three observed failure

times: 80, 20, 50. Now, if the situation changes so that the lifetime of the third light bulb

is right censored at time 50, the data set is 80, 20, 50*, as is illustrated in Figure 5.21.

Using the first approach to right censoring, the observed rank vector is now r = (2, 1)′,
and the likelihood function is

L(β1) =
2

∏
j=1

ψ(zr j
)

∑k∈R(t( j))
ψ(zk)

=
ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z11)

ψ(z11)

=
ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
.

For the second approach to right censoring, there are two possibilities for the rank vector

if there was no censoring: if the third bulb failed before time 80, the observed rank

vector would be r = (2, 3, 1)′; if the third bulb failed after time 80, the observed rank

vector would be r = (2, 1, 3)′. In the first case, the likelihood function would be that

from the previous example:

ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z31)

ψ(z11)+ψ(z31)
· ψ(z11)

ψ(z11)
.

In the second case, the likelihood function would be

ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
· ψ(z11)

ψ(z11)+ψ(z31)
· ψ(z31)

ψ(z31)
.



304 Chapter 5. Statistical Methods in Survival Analysis

t

Bulb 1: 100 watts

Bulb 2: 100 watts

Bulb 3: 60 watts

20

t(1)

50 80

t3

t2

t1

Covariate
values

z11 = 1

z21 = 1

z31 = 0

×

×

Figure 5.21: Proportional hazards model with censoring.

The sum of these two likelihood functions is

ψ(z21)

ψ(z11)+ψ(z21)+ψ(z31)
,

which is the same result as in the first approach to handling right censoring.

Tied lifetimes are typically handled by an approximation. When there are several failures at

the same time value, each is assumed to contribute the same term to the likelihood function. Con-

sequently, all the items with tied failure times are included in the risk set at the time of the tied

observation. This approximation works well when there are not many tied observations in the data

set and has been implemented in many software packages that estimate the vector of regression

coefficients ββ.

Example 5.18 Fit the Cox proportional hazards model via maximum likelihood to the

remission times in the 6–MP clinical trial with a single binary covariate z1 for the control

(z1 = 0) and treatment (z1 = 1) groups. The data values are given in Example 5.6.

Using numerical methods, the maximum likelihood estimate for the single regression

parameter is β̂1 = −1.51. The log likelihood function attains a value of −86.38 at the

maximum likelihood value, the observed information matrix has a single value 5.962,

and the inverse of the observed information matrix is 1/5.962 = 0.168. This means that

an asymptotic estimate of the standard deviation of the maximum likelihood estimate is
√

V̂
[
β̂1

]
=
√

0.168 = 0.41,

which indicates that the maximum likelihood estimate is 1.51/0.41 = 3.7 standard de-

viations units away from 0. It can be concluded, with a p-value less than 0.001, that
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the 6–MP drug is effective in increasing the remission times for leukemia patients,

assuming that the proportional hazards model is appropriate here. Regardless of the

baseline hazard function h0(t) chosen, the hazard function in the treatment case is

eβ̂1 = e−1.51 = 0.221 times that of the baseline hazard function for all time values. Note

that no work has been done here to assess model adequacy, and all these conclusions

have been based on the fact that the proportional hazards model adequately describes

the distribution of the remission time with the single binary covariate.

The R code below uses the coxph function in the survival package to compute β̂1

and a p-value for the appropriate hypothesis test.

library(survival)

x1 = c(1, 1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 8, 8, 11, 11, 12,

12, 15, 17, 22, 23)

d1 = rep(1, length(x2))

z1 = rep(0, length(x2))

x2 = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22, 23,

25, 32, 32, 34, 35)

d2 = c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0)

z2 = rep(1, length(x1))

x = c(x1, x2)

d = c(d1, d2)

z = c(z1, z2)

ph = coxph(Surv(x, d) ~ z)

summary(ph)

The data set is contained in the gehan data frame in the MASS package, so the Cox

proportional hazards model can also be fitted with the statements

library(survival)

library(MASS)

summary(coxph(Surv(time, cens) ~ treat, data = gehan))

which reverses the roles of the treatment and control groups, resulting in the reversal of

the sign of β̂1.

The last example moves from the single binary covariate case to the case in which there are

q > 1 covariates which can assume discrete and continuous values. The survival analysis appli-

cation comes from sociology, and the analyst is attempting to determine which of the covariates

significantly influences survival.

Example 5.19 The proportional hazards model has been used in diverse applications.

Recidivism considers the probability that an inmate will return to prison in the future

after release. Recidivism can be predicted using survival models. Several factors related

to inmate background that could affect an inmate’s adjustment to society are potential

screening variables. North Carolina collected recidivism data on n = 1540 prisoners in

1978. The lifetime of interest here is the time of release until the time of return to prison.

Obviously, not all inmates will return to prison, so a more complicated split model, for

which some of the lifetimes are assumed to be infinite, may also be used. In addition,
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there is significant right censoring in the data set. The purpose of the study is to assess

the impact of the q = 15 covariates. The covariates z1, z2, . . . , z15 are time served, age,

number of prior convictions, number of rule violations in prison, education, race, gen-

der, alcohol problems, drug problems, marital status, probationary period, participation

in a work release program, type of crime, crime against person, and crime against prop-

erty. Many of these covariates are coded as indicator variables. Table 5.3 presents the

estimates of the regression coefficients and their standard deviations in order of their

significance. The column labeled Covariate gives a short description of the covari-

ate considered. The next two columns give the regression coefficient estimator and an

asymptotic estimate of its standard deviation. The column labeled β̂
/√

V̂
[
β̂
]

gives a

test statistic for testing H0 : βi = 0 versus H1 : βi 6= 0, for i = 1, 2, . . . , 15. The column

labeled p-value indicates the attained significance of the covariates. A value less than

α = 0.05 indicates that a covariate is a statistically significant indicator of recidivism.

Ten of the fifteen covariates are statistically significant. This example includes indica-

tor variables (such as gender) and can easily be extended to include other regression

modeling tools such as nonlinear and interaction terms in the regression model.

Name Covariate β̂
√

V̂
[
β̂
] β̂√

V̂
[

β̂
] p-value Significant

z2 AGE −3.3420 0.5195 −6.4328 0.0000 •
z3 PRIORS 0.8355 0.1371 6.0957 0.0000 •
z1 TSERVD 1.1666 0.1957 5.9616 0.0000 •
z6 WHITE −0.4444 0.0876 −5.0701 0.0000 •
z8 ALCHY 0.4285 0.1043 4.1103 0.0000 •
z13 FELON −0.5782 0.1633 −3.5412 0.0002 •
z9 JUNKY 0.2819 0.0970 2.9058 0.0018 •
z7 MALE 0.6745 0.2423 2.7834 0.0027 •
z15 PROPTY 0.3894 0.1578 2.4678 0.0068 •
z4 RULE 3.0788 1.6890 1.8229 0.0342 •
z10 MARRIED −0.1532 0.1077 −1.4227 0.0774

z5 SCHOOL −0.2507 0.1933 −1.2966 0.0974

z12 WORKREL 0.0865 0.0902 0.9587 0.1688

z14 PERSON 0.0737 0.2425 0.3039 0.3806

z11 SUPER −0.0088 0.0966 −0.0914 0.4636

Table 5.3: North Carolina recidivism model.

This chapter has contained a brief introduction to some of the statistical methods that are used

in survival analysis. The key modeling features that indicate the use of survival analysis are (a) a

population lifetime distribution with nonnegative support, (b) appreciable dispersion, (c) possibly

right-censored data values, (d) possibly a vector of covariates which might influence the lifetime

distribution. The exponential, Weibull, and Cox proportional hazards model were fitted to complete

and right-censored data sets in this chapter.
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5.7 Exercises

5.1 Consider a large batch of light bulbs whose lifetimes are known to have exponential(1) life-

times. Gina knows that the population distribution is exponential, but she does not know the

value of the population mean. She estimates the population mean lifetime of the light bulbs

by averaging n observed lifetimes from bulbs chosen at random from the batch. Find the

smallest value of n that assures, with probability of at least 0.95, that the sample mean is

within 0.2 of the population mean

(a) exactly,

(b) approximately, using the central limit theorem.

5.2 Libby is a statistician for a light bulb company. She knows that the lifetimes of the 60-watt

bulbs that her company manufactures are exponentially distributed with population mean

1500 hours. She conducts a life test in which 39 of their 60-watt bulbs are placed on life test

until they fail and the average of the failure times is recorded. Find the probability that the

sample mean exceeds 1600 hours using

(a) the central limit theorem,

(b) the exact distribution of the sample mean.

5.3 Let t1, t2, . . . , tn be a random sample from an exponential(λ) population, where λ is a positive

unknown failure rate parameter. Find an unbiasing constant cn so that cnt(1) is an unbiased

estimator of 1/λ, where t(1) = min{t1, t2, . . . , tn} is the first order statistic. Hint: the unbias-

ing constant cn is a function of the number of items on test n.

5.4 Debbie purchases a laptop computer with a random lifetime T whose probability distribution

is a special case of the log logistic distribution with survivor function

S(t) =
1

1+λt
t > 0,

where λ is a positive unknown scale parameter. From just a single observation of the lifetime

of her laptop computer, find an exact two-sided 90% confidence interval for λ.

5.5 Let t1, t2, . . . , tn be a random sample from an exponential population with mean θ, where θ
is a positive unknown parameter. An exact two-sided 90% confidence interval for θ is

27 < θ < 55.

Carol is not concerned about large values of θ. Only small values of θ are of concern. What

is an exact one-sided 95% confidence interval of the form θ > k, for some constant k?

5.6 If t1, t2, . . . , tn are n mutually independent observations from a log normal distribution with

probability density function

f (t) =
1√

2πσt
e
− 1

2

(
ln t−µ

σ

)2

t ≥ 0

for σ > 0 and −∞ < µ < ∞, find the maximum likelihood estimators of µ and σ and exact

two-sided 100(1−α)% confidence intervals for µ and σ in terms of t1, t2, . . . , tn.
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5.7 Let t1, t2, . . . , t7 be a random sample of the lifetimes of n = 7 items on test drawn from an

exponential population with positive unknown mean θ.

(a) Find an exact two-sided 90% confidence interval for the median by finding a pivotal

quantity based on the sample median t(4).

(b) Give an exact two-sided 90% confidence interval for the median for the n = 7 rat sur-

vival times in the treatment group from Efron and Tibshirani (1993, page 11):

16, 23, 38, 94, 99, 141, 197.

(c) Conduct a Monte Carlo simulation experiment to provide convincing numerical evi-

dence that the exact two-sided 90% confidence interval for the median is indeed an

exact two-sided 90% confidence interval for an exponential population when θ is arbi-

trarily set to 1.

5.8 This chapter has emphasized confidence intervals. Another type of statistical interval is

known as a prediction interval, which contains a future value of an observation with a pre-

scribed probability. Let t1, t2, . . . , tn be a random sample from an exponential population

with a positive unknown mean θ. Conduct a Monte Carlo simulation experiment that pro-

vides convincing numerical evidence that the 100(1−α)% prediction interval for tn+1

t̄

F2n,2,α/2

< tn+1 <
t̄

F2n,2,1−α/2

is an exact prediction interval for the arbitrary parameter settings n = 11, α = 0.05, and

θ = 19.

5.9 Let T1, T2, T3 be mutually independent random variables such that Ti is exponentially dis-

tributed with mean iθ, for i = 1, 2, 3, where θ is a positive unknown parameter.

(a) Find the maximum likelihood estimator θ̂.

(b) Find the probability density function of the maximum likelihood estimator θ̂.

(c) Is θ̂ an unbiased estimator of θ?

(d) Find an exact two-sided 100(1−α)% confidence interval for θ.

(e) Perform a Monte Carlo simulation experiment to evaluate the coverage of the confi-

dence interval for θ = 10 and α = 0.1.

5.10 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =
θ

tθ+1
t ≥ 1,

where θ is a positive unknown parameter.

(a) Find the maximum likelihood estimator of θ.

(b) Use the invariance property to find the maximum likelihood estimator of the median of

the distribution.
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5.11 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =

√
λ

2πt 3
e−λ(t−1)2/(2t) t > 0,

where λ is a positive unknown parameter. This distribution is known as the standard Wald

distribution which is a special case of the inverse Gaussian distribution Find the maximum

likelihood estimator of λ.

5.12 Let T1, T2, . . . , Tn be mutually independent and identically distributed random variables from

a population having probability density function

f (t) = 7e−7(t−θ) t ≥ θ.

Find the limiting distribution of n
(
T(1)−θ

)
. Support this limiting distribution by conducting

a Monte Carlo simulation experiment.

5.13 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =
θ

(1+ t)θ+1
t ≥ 0,

where θ is a positive unknown parameter. Calculate an asymptotically exact two-sided

100(1−α)% confidence interval for θ based on the asymptotic normality of the maximum

likelihood estimator.

5.14 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =

√
1

2πt3
e−(t−θ)2/(2tθ2) t > 0,

where θ is a positive unknown parameter. This population distribution is a special case of

the inverse Gaussian distribution. Calculate an asymptotically exact two-sided 100(1−α)%
confidence interval for θ based on the asymptotic normality of the maximum likelihood

estimator. Hint: the expected value of T is E[T ] = θ.

5.15 Let t1, t2, . . . , tn be a random sample from a population with probability density function

f (t) =
θ

(1+θt)2
t ≥ 0,

where θ is a positive unknown parameter. This is a special case of the log logistic distribution.

(a) Find the maximum likelihood estimator of θ. Hint: The maximum likelihood estimator

cannot be expressed in closed form.

(b) Find the maximum likelihood estimate of θ for the n = 7 rat survival times (in days) of

the treatment group from Efron and Tibshirani (1993, page 11):

16, 23, 38, 94, 99, 141, 197.

(c) Find an asymptotically exact two-sided 95% confidence interval for θ based on the

likelihood ratio statistic for the rat survival times from part (b).
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5.16 If n items from an exponential population with failure rate λ are placed on a life test that is

terminated after r failures have occurred, show that

V

[
n

∑
i=1

xi

]
=

r

λ2
,

where xi = min{ti, ci}, ti is the time to failure of the ith item, and ci is the right-censoring

time for the ith item, i = 1, 2, . . . , n.

5.17 If n items from an exponential population with failure rate λ are placed on a life test that is

terminated after r failures have occurred, find the expected time to complete the test if

(a) failed items are not replaced,

(b) failed items are immediately replaced with new items.

5.18 Find the score, maximum likelihood estimator, and Fisher information matrix for a Type II

censored random sample from a population with

f (t) =
θ

tθ+1
t ≥ 1,

where θ is a positive unknown parameter.

5.19 The lifetimes of studio light bulbs, measured in days, is exponentially distributed with an

unknown failure rate λ. James places n studio light bulbs on test at noon on one day and

subsequently checks for failed bulbs at noon on subsequent days until all bulbs have failed.

Let r1, r2, . . . , rk be the number of observed bulb failures, some of which may be zero, on

the k days that the bulbs are inspected. Find the maximum likelihood estimator for λ. Also,

give the maximum likelihood estimate for the data values r1 = 8, r2 = 5, r3 = 2, r5 = 1, and

all other ri values equal zero.

5.20 James’s friend Alexandra decides to simplify matters from the previous question by assum-

ing that all failures that occur during any interval occur at midnight. What is Alexandra’s

maximum likelihood estimator for λ as a function of n and r1, r2, . . . , rk?

5.21 Dre conducts a life test on n items from an exponential population with mean θ. He observes

only the value of a single order statistic t(k), where k is known. So k− 1 lifetimes are left

censored at t(k), one lifetime is observed at t(k), and n− k lifetimes are right censored at t(k).

(a) What is the score statistic for estimating θ?

(b) What is the maximum likelihood estimator for θ when n = 30, k = 11, and t(11) = 15.5?

5.22 Consider a Type II right-censored life test with n items on test and r = 1 failure is observed at

time t(1). Assume that the items placed on the life test have lifetimes that are well described

by a Rayleigh(λ) population.

(a) What is the maximum likelihood estimator for λ?

(b) What is an exact confidence interval for λ?

(c) What is the expected width of the confidence interval from part (b)?

(d) Verify the coverage and expected width of the exact confidence interval for λ = 2,

n = 7, and α = 0.05 via Monte Carlo simulation.
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5.23 A randomly right-censored data set is collected from a population with hazard function

h(t) = θ(1+ t) t ≥ 0,

where θ is a positive parameter.

(a) Find the maximum likelihood estimator θ̂.

(b) Give an expression for the observed information matrix.

(c) Give an asymptotically exact confidence interval for θ based on the observed informa-

tion matrix.

5.24 Candice conducts a life test in which n items are simultaneously placed on test at time 0.

The test is concluded at time c > 0. Assuming that the lifetimes of the items are from

an exponential population with mean θ, find the distribution of the number of failures that

occur by time c.

5.25 Show that when a random sample is drawn an exponential(λ) population with Type II right

censoring
2rλ

λ̂
∼ χ2(2r),

where χ2(2r) is the chi-square distribution with 2r degrees of freedom.

5.26 Consider a Type II right censored sample of n items on test and r observed failures drawn

from an exponential population with mean θ. Show that the maximum likelihood estimate θ̂
is unbiased.

5.27 Assume that a life test without replacement is conducted on n items from an exponential pop-

ulation with failure rate λ. The exact failure times are not known, but the test is terminated

upon the rth ordered failure at time t(r). Find a point estimator for λ.

5.28 Consider a population of items with exponential(λ) lifetimes. A life test with replacement is

terminated when r failures occur or at time c, whichever occurs first. This is a combination

of Type I and Type II right censoring. Find the expected number of items that fail during the

test as a function of λ.

5.29 For a life test of n items with exponential(λ) lifetimes (items are not replaced upon failure)

which is continued until all items fail, show that

E
[
λ̂
]
=

n

n−1
λ,

where λ is the population failure rate and λ̂ is the maximum likelihood estimator for λ. Thus,

an unbiasing constant for λ̂ is un = (n−1)/n. Equivalently,

E

[
n−1

n
λ̂

]
= E

[
unλ̂
]
= λ.

Find an unbiasing constant for the case of Type II right censoring.

5.30 Give a point and 95% interval estimator for the median lifetime of the 6–MP treatment group

assuming that the data have been drawn from an exponential(λ) population.
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5.31 Consider the following Type II right censored data set for the lifetime of a product (n = 5

and r = 3) drawn from an exponential population with failure rate λ:

3.6 3.9 8.5.

(a) Find the maximum likelihood estimator for the mean of the population.

(b) Find the maximum likelihood estimator for S(5).

(c) Find an exact two-sided 80% confidence interval for E
[
T 3
]
.

(d) Find an exact one-sided 95% lower confidence interval for S(5).

(e) Find the p-value for the test H0 : λ = 0.04 versus H1 : λ > 0.04.

(f) Find the value of the log likelihood function at the maximum likelihood estimate.

(g) Find the value of the observed information matrix.

(h) Assume the data values

3.8 4.6 6.0 9.6

constitute a complete data set for a different product. Find an exact two-sided 90%

confidence interval for the ratio of the failure rates of the two products if both are

assumed to come from exponential populations.

5.32 Sara observes a single observed lifetime T from an exponential(λ) population, where λ is a

positive unknown rate parameter. Find an exact two-sided 95% confidence interval for λ.

5.33 Justin places a single item is placed on test (n = 1). The only information that is available

is that the item failed between times a and b, where a < b. In other words, the single item’s

lifetime is interval censored. Assuming that the population time to failure is exponential(λ),

what is the maximum likelihood estimator of λ?

5.34 Natalie conducts a life test with n = 19 items on test and random right censoring. Let

t1, t2, . . . , t19 be the independent exponential(2) times to failure. Let c1, c2, . . . , c19 be the

independent exponential(1) censoring times, which are independent of the times to failure.

Use Monte Carlo simulation to estimate the actual coverage of the following approximate

confidence interval procedures for the population failure rate λ at for α = 0.05.

(a) The confidence interval consisting of all λ satisfying

λ̂χ2
2r,1−α/2

2r
< λ <

λ̂χ2
2r,α/2

2r
.

(b) The confidence interval consisting of all λ satisfying

λ̂− zα/2O
(
λ̂
)−1/2

< λ < λ̂+ zα/2O
(
λ̂
)−1/2

.

(c) The confidence interval consisting of all λ satisfying

2[ln L(λ̂)− ln L(λ)]< χ2
1,α.

Replicate the experiment so as to estimate the actual coverages to three digits of accuracy.
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5.35 Sixty-watt light bulb lifetimes are known to be exponentially distributed with unknown pos-

itive population mean θ from previous test results. The company that produces these light

bulbs would like to estimate θ by testing n bulbs to failure at one facility and m bulbs to fail-

ure at a second facility. Let X1, X2, . . . , Xn be the independent lifetimes of the bulbs tested

at the first facility; let Y1, Y2, . . . , Ym be the independent lifetimes of the bulbs tested at the

second facility. An unbiased estimate of θ is the convex combination

θ̂ = pθ̂X +(1− p)θ̂Y ,

where 0 < p < 1, θ̂X = X̄ is the maximum likelihood estimator of θ for the data from the first

facility, and θ̂Y = Ȳ is the maximum likelihood estimator of θ for the data from the second

facility. Find the value of p that minimizes V
[
θ̂
]
.

5.36 Ash would like to test the hypothesis

H0 : λ = 17

versus

H1 : λ > 17

using a single value T from an exponential(λ) population, where λ is a positive unknown

population failure rate. The null hypothesis is rejected if T < 0.01. Find the significance

level α for the test.

5.37 Let T be an observation from an exponential population with positive unknown population

mean θ. This observation is used to test

H0 : θ = 6

versus

H1 : θ = 2.

(a) Find the critical value for the test for a fixed significance level α.

(b) Find β for a fixed significance level α.

5.38 Paul collects a random sample t1, t2, . . . , tn from an exponential population with positive

unknown mean θ. Show that the sample mean, t̄, and n times the first order statistic, nt(1),

are both unbiased estimators of θ.

5.39 Jessica and Mary collect a random sample t1, t2, . . . , tn of light bulb lifetimes drawn from an

exponential(λ) population, where λ is a positive unknown failure rate. The bulbs are stamped

with “1000 hour MTTF,” indicating that the mean time to failure equals 1000 hours. They

would like to determine whether there is statistical evidence in the sample that indicates the

bulbs last longer than 1000 hours.

(a) State the appropriate H0 and H1.

(b) Jessica uses the test statistic t̄ and Mary uses the test statistic nt(1) to test the hypothesis.

Find the critical values for their test statistics when α = 0.05 and n = 10.

(c) Draw the power curves associated with each of the test statistics from part (b) on the

same set of axes using a computer. Again assume that α = 0.05 and n = 10.
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5.40 Camille observes a single lifetime T from an exponential population with a positive unknown

population mean θ. She would like to test

H0 : θ = 1

versus

H1 : θ > 1

at α = 0.07 using T as a test statistic.

(a) Find the critical value c for this test.

(b) Plot the power function for this test.

5.41 Ellen collects a random sample t1, t2, . . . , t10 of light bulb lifetimes from an exponential(λ)

population, where λ is a positive unknown failure rate. Ellen is a reliability engineer. She

is confident from previous test results that the time to failure for these light bulbs is expo-

nentially distributed. She is interested in testing whether a manufacturer’s claim that the

population mean time to failure for the bulbs is 1000 hours. So she would like to test

H0 : λ = 0.001

versus

H1 : λ > 0.001.

She is in a hurry. She places ten bulbs on test and only observes the first bulb fail at t(1) = 14

hours, and would like to draw a conclusion at 14 hours. Give the p-value for the test based

on the value of this single order statistic.

5.42 Liz collects a random sample of lifetimes t1, t2, . . . , tn from an exponential(λ) distribution,

where λ is a positive unknown failure rate parameter. She conducts a significance test of

H0 : λ = 1

versus

H0 : λ 6= 1,

which achieves a p-value of p = 0.07 for a particular data set. If she then computes an

exact two-sided 95% confidence interval for λ for this particular data set, will the confidence

interval contain 1?

5.43 Karen fits the ball bearing data set to the Weibull distribution parameterized as

S(t) = e−(λt)κ
t ≥ 0,

yielding maximum likelihood estimates λ̂ = 0.0122 and κ̂ = 2.10. Ute also wants to fit the

same data set to the Weibull distribution, but she uses the parameterization

S(t) = e−ρtβ
t ≥ 0.

What will be the maximum likelihood estimates ρ̂ and β̂ that Ute obtains for the ball bearing

data set?
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5.44 Jay conducts a life test with n = 5 items on test which is terminated when r = 3 items

have failed. Failed items are not replaced in this traditional Type II right-censored data set.

Assuming that the time to failure of an item in the population has a Weibull(λ, κ) distribution

with known, positive parameters λ and κ, what is the probability density function of the time

to complete the life test?

5.45 Jennie collects a random sample t1, t2, . . . , t7 from a Rayleigh population with probability

density function

f (t) = 2θ−2te−(t/θ)2
t > 0,

where θ is a positive unknown parameter. She would like to test

H0 : θ = 10

versus

H1 : θ > 10

using the test statistic t(1) = min{t1, t2, . . . , t7}, which assumes the value t(1) = 6. Find the

p-value for her test.

5.46 Mildred collects a random sample t1, t2, . . . , tn from a Rayleigh(λ) population with survivor

function

S(t) = e−(λt)2
t > 0,

where λ is a positive unknown parameter.

(a) Find the maximum likelihood estimator of λ.

(b) Show that the log likelihood function is maximized at the maximum likelihood estima-

tor λ̂.

(c) Given that the expected value of T is E[T ] =
√

π/(2λ), find the method of moments

estimator of λ.

5.47 Find the elements of the score vector for the log logistic distribution for a randomly right-

censored data set.

5.48 Bryan places n items on test and observes r failures. Assuming that the failure times of the

items follow the log logistic distribution and censoring is random, set up an expression for

the boundary of a 95% confidence region for the shape parameter κ and scale parameter λ of

the log logistic distribution based on the likelihood ratio statistic. Assume that the survivor

function for the log logistic distribution is

S(t) =
1

1+(λt)κ
t ≥ 0,

for λ > 0 and κ > 0. It is not necessary to solve for the maximum likelihood estimators.

5.49 Consider a proportional hazards model with n = 3 items on test and distinct failure times

t1, t2, t3. Compute the joint probability mass function values for the 3! = 6 possible rank

vectors, and show that they sum to 1.

5.50 Give the equations that must be solved in order to find the maximum likelihood estimators

λ̂, κ̂, and β̂β for a proportional hazards model with log logistic baseline distribution and log

linear link function. A random right-censoring scheme is used.
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5.51 Joyce fits the Cox proportional hazards model with unknown baseline distribution given in

Examples 5.14, 5.15, and 5.16 to the n = 3 light bulb failure times. The purpose of the study

was to determine the effect of wattage on survival for 60-watt and 100-watt light bulbs.

(a) What is the value of the regression coefficient for wattage if it were coded as z = 60

and z = 100 rather than as a binary covariate?

(b) Write a short paragraph indicating whether or not these two approaches are fundamen-

tally equivalent ways of coding the covariate. If they differ, is one method of coding

the covariate superior to the other for the purpose of the study?

5.52 Survival times (in weeks) for two groups of leukemia patients (AG positive and AG neg-

ative blood types), along with an additional covariate, white blood cell count are given in

Feigl, P. and Zelen, M., “Estimation of Exponential Survival Probabilities with Concomitant

Information,” Biometrics, Vol. 21, No. 4, pp. 826–838, 1965, and are displayed below.

AG positive group AG negative group

Survival time White blood count Survival time White blood count

65 2300 56 4400

156 750 65 3000

100 4300 17 4000

134 2600 7 1500

16 6000 16 9000

108 10500 22 5300

121 10000 3 10000

4 17000 4 19000

39 5400 2 27000

143 7000 3 28000

56 9400 8 31000

26 32000 4 26000

22 35000 3 21000

1 100000 30 79000

1 100000 4 100000

5 52000 43 100000

65 100000

(a) Fit the Cox proportional hazards model to the survival times. Code the blood type as

the indicator variable z1, using 1 for AG positive and 0 for AG negative. The second

covariate z2 is the natural logarithm of the white blood cell counts minus the sample

mean of the natural logarithms of the white blood cell counts. Include the interaction

term (z1− z̄1)z2 in the model. Use the Breslow method for handling tied survival times.

(b) Write a sentence interpreting the sign of β̂1, β̂2, and β̂3 in terms of risk to the patient.

(c) Give a 95% confidence interval for β1.

(d) If covariates associated with p-values that are less than 0.10 are considered statistically

significant, what is the fitted hazard function for a leukemia patient with baseline hazard

function h0(t), white blood cell count 9000 who has AG positive blood type? Hint: The

sample mean of the natural logarithms of the white blood cell types is 9.52 and the mean

of the blood types coded as an indicator variable is 17/33 = 0.515.
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5.53 Consider the Cox proportional hazards model with a single (q = 1) binary covariate z1, an

exponential(λ) baseline distribution, and a log linear link function. The baseline distribution

can be absorbed into the link function by creating an artificial covariate z0 = 1 and setting

λ = eβ0z0 .

(a) For a randomly right-censored data set, find the score vector.

(b) For a randomly right-censored data set, find closed-form expressions for the maximum

likelihood estimators β̂0 and β̂1.

(c) For the n = 3 observations given in vector form below, calculate the maximum likeli-

hood estimates β̂0 and β̂1.

x=




80

20

50


 δδ =




1

1

1


 Z =




1

1

0


 .

(d) What is the hazard function of the fitted model for the data from part (c)?

(e) Use the observed information matrix to give approximate two-sided 95% confidence

intervals for β0 and β1 for the data from part (c).

(f) Give the p-values for testing the hypotheses

H0 :βi = 0

H1 :βi 6= 0

for i = 0, 1, for the data from part (c).

5.54 The wattage of the n = 3 light bulbs in Example 5.16 was coded as the covariate z1 = 0 for

a 60-watt bulb and z1 = 1 for a 100-watt bulb. When the Cox proportional hazards model

with an unspecified baseline hazard function was fit to the data set, the point estimate for the

regression parameter was β̂1 = −0.347. Without doing the derivation from scratch, what is

the point estimate for the regression parameter if the wattage (that is, 60 watts or 100 watts)

of the bulb were used as the covariate.

5.55 Mark fits a Cox proportional hazards model with unknown baseline distribution to a data

set of drill bit failure times (measured in number of items drilled) with q = 2, for which the

covariates denote the turning speed (revolutions per minute, rpm) and the hardness of the

material (Brinell hardness number, BHN) being drilled. The turning speeds range from 2400

to 4800 rpm and the hardness of the materials ranges from 250 to 440 BHN. Interactions are

not considered and the variables are not centered. The fitted model has estimated regression

vector β̂β = (0.014, 0.45)′, and the inverse of the observed information matrix is

O−1(β̂β) =

[
0.000081 0.000016

0.000016 0.010000

]
.

Write a paragraph interpreting these results.



Chapter 6

Topics in Survival Analysis

The previous two chapters have introduced some probabilistic models and statistical methods that

arise in survival analysis. This chapter surveys some topics that would be a part of a full-semester

course in survival analysis. The first section considers nonparametric methods that arise in survival

analysis, with a focus on estimating the survivor function. The empirical survivor function is used

in the case of a complete data set and the Kaplan–Meier product–limit estimator is used in the case

of a right-censored data set. These methods require no parametric assumptions from the modeler.

The log-rank test, which is a nonparametric hypothesis test used to compare two survivor functions,

is also introduced. The second section introduces the competing risks model, which is appropriate

when multiple risks compete for the lifetime of an item. The third section considers not just a single

failure time, but items which undergo multiple failures, such as an automobile.

6.1 Nonparametric Methods

Nonparametric methods require no parametric assumptions (for example, exponential or Weibull

lifetime models) concerning the lifetime of an item. The emphasis is to let the data speak for itself,

rather than approximating the lifetime distribution by a parametric model. In many applications,

the modeler does not have any clues revealing an appropriate parametric model, so a nonparametric

approach is warranted. The first subsection considers the estimation of the survivor function for a

complete data set of n items placed on test. The second subsection considers the estimation of the

survivor function for a randomly right-censored data set of n items placed on test. Two different

types of derivations both lead to the Kaplan–Meier product–limit estimator. The third subsection

considers the problem of comparing the estimated survivor functions of two different types of items.

In the reliability setting, this might be to compare the lifetimes of Product A versus Product B. In

the biostatistical setting, this might be to compare the survival times of patients undergoing radiation

and chemotherapy for a particular type of cancer.

6.1.1 Survivor Function Estimation for Complete Data Sets

Consider the nonparametric estimation of the survivor function from a complete data set of n life-

times with no ties. The risk set R(t) contains the indexes of all items at risk just prior to time t. Let

n(t) = |R(t)| be the cardinality of R(t). In other words, n(t) is the number of elements in R(t). The
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simplest and most popular nonparametric estimate for the survivor function is

Ŝ(t) =
n(t)

n
t ≥ 0,

which is often referred to as the empirical survivor function. This step function takes a downward

step of size 1/n at each observed lifetime. It is also the survivor function corresponding to a discrete

distribution with n equally likely mass values. Ties are not difficult to adjust for because the formula

for Ŝ(t) remains the same, but the function will take a downward step of d/n if there are d tied

observations at a particular time value.

When there are no ties in the data set, one method for determining asymptotically exact confi-

dence intervals for the survivor function is based on the normal approximation to the binomial distri-

bution. Recall that a binomial random variable X models the number of successes in n independent

Bernoulli trials, each with probability of success p. The expected value and population variance of

the number of successes are E[X ] = np and V [X ] = np(1− p). The fraction of successes, X/n, on

the other hand, has expected value E[X/n] = p and population variance V [X/n] = p(1− p)/n.

Survival to a fixed time t can be considered a Bernoulli trial for each of the n items on test. An

item either survives to time t or it does not. Thus, the number of items that survive to time t, which is

n(t), has the binomial distribution with parameters n and probability of success S(t), where success

is defined to be survival to time t. The empirical survivor function introduced earlier, Ŝ(t) = n(t)/n,

is the fraction of successes, which has expected value

E
[
Ŝ(t)

]
= S(t)

and population variance

V
[
Ŝ(t)

]
=

S(t)
(
1−S(t)

)

n
.

So Ŝ(t) is an unbiased and consistent estimator of S(t) for all values of t. Furthermore, when the

number of items on test n is large and S(t) is not too close to 0 or 1, the binomial distribution assumes

a shape that is closely approximated by a normal probability density function and thus can be used to

find an interval estimate for S(t). Notice that such an interval estimate is most accurate, in terms of

coverage, around the median of the distribution because the normal approximation to the binomial

distribution works best when the probability of success is about 1/2, where the binomial distribution

is symmetric. Replacing S(t) by Ŝ(t) in the population variance formula, an asymptotically exact

two-sided 100(1−α)% confidence interval for the probability of survival to time t is

Ŝ(t)− zα/2

√
Ŝ(t)

(
1− Ŝ(t)

)

n
< S(t)< Ŝ(t)+ zα/2

√
Ŝ(t)

(
1− Ŝ(t)

)

n
.

This confidence interval is also appropriate when there are tied observations, although it becomes

more approximate as the number of ties increases. Confidence limits greater than 1 or less than 0

are typically truncated, as illustrated in the following example.

Example 6.1 For the ball bearing data set from Example 5.5 with n = 23 bearings

placed on test until failure, find a nonparametric survivor function estimator and an

approximate two-sided 95% confidence interval for the probability that a ball bearing

will survive 50,000,000 cycles.

Recall that the ball bearing failure times in 106 revolutions are
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17.88 28.92 33.00 41.52 42.12 45.60 48.48 51.84 51.96

54.12 55.56 67.80 68.64 68.64 68.88 84.12 93.12 98.64

105.12 105.84 127.92 128.04 173.40.

The nonparametric survivor function estimate Ŝ(t) is shown as the solid line in Fig-

ure 6.1. In this figure and others, the downward steps in Ŝ(t) have been connected by

vertical lines. Many analysts find this useful when visually comparing a nonparametric

estimator of S(t) to a fitted parametric model. The empirical survivor function takes

a downward step of size 1/23 at each data value, with the exception of the tied value,

68.64, where it takes a downward step of 2/23. By convention, the survivor function

estimate cuts off after the largest observed failure time. Since the data is given in 106

revolutions, a point estimate for the survivor function at t = 50 is

Ŝ(50) =
16

23
= 0.6957,

and an approximate two-sided 95% confidence interval for the survivor function at

t = 50 is

Ŝ(50)−1.96

√
Ŝ(50)

(
1− Ŝ(50)

)

23
< S(50)< Ŝ(50)+1.96

√
Ŝ(50)

(
1− Ŝ(50)

)

23
,

which reduces to

0.5076 < S(50)< 0.8837.

This process can be performed for all t values, yielding the approximate two-sided 95%

confidence bands for S(t) given by the dashed lines in Figure 6.1. The confidence bands

are truncated at 0 and 1. Also, the lower confidence band appears to be absent prior to

the first observed failure at t(1) = 17.88. This is due to the fact that Ŝ(t) is 1 for t values

between 0 and the first failure time, so the upper and lower confidence limits are both

equal to 1.
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Figure 6.1: Nonparametric survivor function estimate for the ball bearing data set.
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Even though the confidence interval for S(t) from a complete data set of n lifetimes used in the

previous example is intuitive and easy to compute, its performance in terms of its actual coverage is

notoriously poor. One particular instance of its poor performance occurs at time t = 10, where the

approximate two-sided 95% confidence interval has lower and upper bounds equal to 1. It is known

as the Wald confidence interval, and its use is generally frowned upon because better alternatives

exist. Four such alternatives are outlined (without derivation) in the next four paragraphs.

The approximate two-sided 100(1−α)% Clopper–Pearson confidence interval for S(t) has bounds

that can be expressed as the fractiles of beta distributions:

Bn(t),n−n(t)+1,1−α/2 < S(t)< Bn(t)+1,n−n(t),α/2,

for n(t) = 0, 1, 2, . . . , n, where the first two values in the subscripts of B are the parameters of the

beta distribution and the third value in the subscripts is a right-hand tail probability. The Clopper–

Pearson confidence interval bounds can also be written as functions of fractiles of the F distribution.

The bounds on the Wilson–score approximate two-sided 100(1−α)% confidence interval for

S(t) are

1

1+ z2
α/2

/n


 Ŝ(t)+

z2
α/2

2n
± zα/2

√
Ŝ(t)

(
1− Ŝ(t)

)

n
+

z2
α/2

4n2


 ,

where zα/2 is the 1−α/2 fractile of the standard normal distribution. The center of the Wilson–score

confidence interval is
Ŝ(t)+ z2

α/2/(2n)

1+ z2
α/2

/n
,

which is a weighted average of the point estimator Ŝ(t) = n(t)/n and 1/2, with more weight on Ŝ(t)
as n increases.

The Jeffreys approximate two-sided 100(1−α)% interval estimate for S(t) is a Bayesian credible

interval that uses a Jeffreys non-informative prior distribution for S(t). As was the case with the

Clopper–Pearson confidence interval, the bounds of the Jeffreys interval for S(t) are fractiles of beta

random variables:

Bn(t)+1/2,n−n(t)+1/2,1−α/2 < S(t)< Bn(t)+1/2,n−n(t)+1/2,α/2

for n(t) = 1, 2, . . . , n− 1. When n(t) = 0, the lower bound is set to zero and the upper bound

calculated using the formula above; when n(t) = n, the upper bound is set to one and the lower

bound calculated using the formula above.

The bounds of the Agresti–Coull approximate two-sided 100(1−α)% confidence interval for

S(t) are

S̃(t)± zα/2

√
S̃(t)

(
1− S̃(t)

)

ñ
,

where ñ = n+ z2
α/2 and S̃(t) =

(
n(t)+ z2

α/2/2
)
/ñ. In the special case of α = 0.05, if one is willing

to round zα/2 = 1.96 to 2, this interval can be interpreted as “add two successes and add two failures

and use the Wald confidence interval formula.”

Example 6.2 Find the Clopper–Pearson, Wilson–score, Jeffreys, and Agresti–Coull

approximate two-sided 95% confidence intervals for S(50) for the ball bearing lifetimes

from Example 5.5.
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As in the previous example, the point estimator for S(50) is Ŝ(50) = 16/23 = 0.6957.

Using the parameters n = 23, n(50) = 16, α = 0.05, the approximate two-sided 95%

Clopper–Pearson, Wilson–score, Jeffreys, and Agresti–Coull confidence intervals for

S(50) are given in Table 6.1. The R code to compute these confidence intervals is given

below. All confidence intervals are calculated using the binomTest function from the

conf package.

library(conf)

binomTest(23, 16, alpha = 0.05, intervalType = "Wald")

binomTest(23, 16, alpha = 0.05, intervalType = "Clopper-Pearson")

binomTest(23, 16, alpha = 0.05, intervalType = "Wilson-Score")

binomTest(23, 16, alpha = 0.05, intervalType = "Jeffreys")

binomTest(23, 16, alpha = 0.05, intervalType = "Agresti-Coull")

Method 95% confidence interval

Wald 0.508 < S(50)< 0.884

Clopper–Pearson 0.471 < S(50)< 0.868

Wilson–score 0.491 < S(50)< 0.844

Jeffreys 0.493 < S(50)< 0.852

Agresti–Coull 0.489 < S(50)< 0.846

Table 6.1: Approximate 95% confidence intervals for S(50) for the ball bearing data.

The confidence interval bounds vary significantly between the techniques. The narrow-

est confidence interval is the Wilson–score and the widest confidence interval is the

Clopper–Pearson. Some analysts prefer the Clopper–Pearson confidence interval be-

cause it is conservative in the sense that its actual coverage always exceeds the stated

coverage (which is 95% in this example) for all values of S(t). This implies that you will

never claim more precision with your confidence interval than is implied by the stated

coverage. The Clopper–Pearson 95% confidence intervals for S(t) for all values of t are

plotted as confidence bands in Figure 6.2. Unlike the Wald confidence bands depicted

in Figure 6.1, these confidence intervals are not symmetric about the associated point

estimators given by the solid lines, and this non-symmetry is particularly pronounced

at the extremes.

There are dozens of confidence interval procedures for calculating an approximate confidence

interval for S(t). The intervals illustrated in the previous example were selected because of (a) their

popularity with statisticians, (b) their availability in statistical software packages, and (c) their sta-

tistical properties, particularly their actual coverage. The four confidence interval procedures illus-

trated in the previous example all possess the following properties.

• For a fixed number of items on test n, the confidence intervals are complementary for any

particular n(t) and n−n(t) values.

• The confidence intervals are asymptotically exact for 0 < S(t)< 1.

• The confidence intervals do not degenerate to a confidence intervals of width zero for n(t) = 0

or n(t) = n as was the case with the Wald confidence interval.
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Figure 6.2: Clopper–Pearson confidence bands for the ball bearing data set.

This concludes the discussion concerning finding point and interval estimators for S(t) from

a complete data set of lifetimes. We now introduce techniques for estimating S(t) from a right-

censored data set.

6.1.2 Survivor Function Estimation for Right-Censored Data Sets

The general case in which there are both ties and right-censored data values is now considered.

Some new notation must be established in order to derive the nonparametric estimator for S(t). As

before, assume that n items are on test. Let y1 < y2 < · · ·< yk denote the k distinct observed failure

times, and let d j denote the number of observed failures at y j, for j = 1, 2, . . . , k. Let n j = n(y j)
denote the number of items on test just before time y j, for j = 1, 2, . . . , k, and it is customary to

include any values that are right censored at y j in this count.

The search for a survivor function estimator begins by assuming that the data arose from a

discrete distribution with mass values y1 < y2 < · · · < yk. For a discrete distribution, h(y j) is a

conditional probability with interpretation h(y j) = P(T = y j |T ≥ y j). The survivor function can be

written in terms of the hazard function at the mass values as

S(t) = ∏
j |y j≤ t

[
1−h(y j)

]
t ≥ 0.

Thus, a reasonable estimator for S(t) is ∏ j |y j< t

[
1− ĥ(y j)

]
, which reduces the problem of estimating

the survivor function to that of estimating the hazard function at each mass value. An appropriate

element in the likelihood function at mass value y j is

h(y j)
d j
[
1−h(y j)

]n j−d j

for j = 1, 2, . . . , k. The above expression is correct because d j is the number of failures at y j, h(y j)
is the conditional probability of failure at y j, n j−d j is the number of items on test not failing at y j,
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and 1−h(y j) is the probability of failing after time y j conditioned on survival to time y j. Thus, the

likelihood function for h(y1), h(y2), . . . , h(yk) is

L
(
h(y1), h(y2), . . . , h(yk)

)
=

k

∏
j=1

h(y j)
d j
[
1−h(y j)

]n j−d j

and the log likelihood function is

ln L
(
h(y1), h(y2), . . . , h(yk)

)
=

k

∑
j=1

{
d j ln h(y j)+(n j−d j) ln

[
1−h(y j)

]}
.

The ith element of the score vector is

∂ ln L
(
h(y1), h(y2), . . . , h(yk)

)

∂h(yi)
=

di

h(yi)
− ni−di

1−h(yi)

for i = 1, 2, . . . , k. Equating this element of the score vector to zero and solving for h(yi) yields the

maximum likelihood estimate

ĥ(yi) =
di

ni

,

for i = 1, 2, . . . , k. This estimate for ĥ(yi) is sensible because di of the ni items on test at time yi fail,

so the ratio of di to ni is an appropriate estimate of the conditional probability of failure at time yi.

This derivation may strike a familiar chord because at each time yi, estimating h(yi) with di divided

by ni is equivalent to estimating the probability of success (that is, failing at time yi) for each of the

ni items on test. Thus, this derivation is equivalent to finding the maximum likelihood estimators for

the probability of success for k binomial random variables.

Using this particular estimate for the hazard function at yi, the survivor function estimate be-

comes

Ŝ(t) = ∏
j |y j≤ t

[
1− ĥ(y j)

]
= ∏

j |y j≤ t

[
1− d j

n j

]
,

for t ≥ 0, commonly known as the Kaplan–Meier or product–limit estimator. When the largest

data value recorded corresponds to a failure, the product–limit estimator drops to zero; when the

largest data value recorded corresponds to a right-censored observation, a common convention is

to cut off the product–limit estimator at the current positive value of Ŝ(t). The original journal

article by American mathematician Edward Kaplan and American statistician Paul Meier in 1958

that established the product–limit estimator is one of the most heavily cited papers in the statistics

literature. The following example illustrates the process of calculating the product–limit estimate.

Example 6.3 Use the product–limit estimator to calculate a point estimate of the proba-

bility that a remission time in the treatment group in the 6–MP clinical trial described in

Example 5.6 exceeds 14 weeks. In other words, estimate S(14) using the Kaplan–Meier

estimator.

The data set contains n= 21 patients on test, r = 9 observed failures (leukemia relapses),

and k = 7 distinct observed failure times. The data values, in weeks, are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗.
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Table 6.2 gives the values of y j, d j, n j, and 1−d j/n j for j = 1, 2, . . . , 7. The product–

limit survivor function estimate at t = 14 weeks is

Ŝ(14) = ∏
j |y j≤14

[
1− d j

n j

]

=

[
1− 3

21

][
1− 1

17

][
1− 1

15

][
1− 1

12

]

=
176

255

= 0.69.

The product–limit survivor function estimate for all t values is plotted in Figure 6.3.

Downward steps occur at the k = 7 observed failure times. Some software packages

place a vertical hash mark on the Kaplan–Meier estimate to highlight censored values

that occur between observed failure times; these occur at times 9, 11, 17, 19, 20, 25,

32, and 34 in Figure 6.3. The effect of censored observations in the survivor function

estimate is a larger downward step at the next subsequent observed failure time. If there

is a tie between an observed failure time and censoring time (as there is at time 6 in this

example) the standard convention of including the censored value(s) in the risk set when

computing the number of items at risk means that there will be a larger downward step

in the survivor function estimate following the tied value. Since the last observed data

value, 35*, corresponds to a right-censored observation, the survivor function estimate

is truncated at time 35 and is assumed to be undefined for t > 35.

The R code to generate this plot uses the survfit function from the survival pack-

age. The failure and censoring times x1, x2, . . . , xn are held in the vector named time.

The indicator variables δ1, δ2, . . . , δn are held in the vector named status. The Surv

function creates a survival object, which is used in the left-hand side of the formula ar-

gument passed to survfit. The right-hand side of the formula argument to survfit

contains just 1 to indicate that there are no covariates being considered when comput-

ing the product–limit estimator for just the remission times in the treatment group. The

summary function reveals the calculations used in estimating the product–limit estimate

j y j d j n j 1− d j

n j

1 6 3 21 1− 3
21

2 7 1 17 1− 1
17

3 10 1 15 1− 1
15

4 13 1 12 1− 1
12

5 16 1 11 1− 1
11

6 22 1 7 1− 1
7

7 23 1 6 1− 1
6

Table 6.2: Product–limit calculations for 6–MP treatment case.
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and the plot function generates a graph of the product–limit estimate, which is given

in Figure 6.3.

library(survival)

time = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22,

23, 25, 32, 32, 34, 35)

status = c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0)

kmest = survfit(Surv(time, status) ~ 1, conf.type = "none")

summary(kmest)

plot(kmest)
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Figure 6.3: Product–limit survivor function estimate for the 6–MP treatment group.

There is a second and perhaps more intuitive way of deriving the product–limit estimator, of-

ten referred to as the “redistribute-to-the-right” algorithm. This technique begins by defining an

initial probability mass function that apportions equal probability to each of the n data values. In

subsequent passes through the data, this probability mass function estimate is modified as the prob-

ability is redistributed to the right, with special treatment given to right-censored observations. The

algorithm is illustrated next on the 6–MP treatment group data set from Example 5.6.

Example 6.4 Implement the redistribute-to-the-right algorithm for calculating the

Kaplan–Meier product–limit estimate of the survivor function for the remission time

in the treatment group in the 6–MP clinical trial from Example 5.6.

For the n = 21 individuals in the treatment group for the 6–MP experiment, each failure

or censoring time is initially assigned a mass value of 1/n as follows:

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1

21
1

21
1

21
1

21
1

21
1
21

1
21

1
21

1
21

1
21 . . .
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If there were no censored observations, the fractions would be the appropriate estima-

tors for the probability mass function values. This probability mass function corre-

sponds to the empirical survivor function described earlier in this section. Combining

the three tied observed failures at t = 6 yields

6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7

1
21

1
21

1
21

1
21

1
21

1
21

1
21 . . .

As indicated earlier, there are mass values in the product–limit estimator only at ob-

served failure times. Since the random censoring model is assumed, the mass associ-

ated with the individual whose remission time is right censored at 6 weeks can be split

evenly among each of the 17 subsequent failure/censoring times:

6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7 0 6

119
6

119
6

119
6

119
6

119
6

119 . . .

because 1
21 +

1
17 · 1

21 = 6
119 . The probability mass function estimates at t = 6 and t = 7

have now been determined. The mass value 6
119 associated with the right censored

observation at time 9 can be allocated among the 15 subsequent failure/censoring times

as
6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7 0 6

119 0 32
595

32
595

32
595

32
595 . . .

because 6
119 +

1
15 · 6

119 = 96
1785 = 32

595 . After allocating the mass at 10∗ to the subsequent

13 data values and the mass at 11∗ to the subsequent 12 data values, the estimator

becomes
6 6∗ 7 9∗ 10 10∗ 11∗ 13 . . .
1
7 0 6

119 0 32
595 0 0 16

255 . . .

When this process is continued through all the data values, the resulting probability

mass function defined on the observed failure times corresponds to the product–limit

estimator. To check this for one specific time value, the survivor function estimate at

time 14 is

Ŝ(14) = 1− 1

7
− 6

119
− 32

595
− 16

255
=

176

255
= 0.69,

which matches the result from the previous example.

Since we now have a point estimate for the survivor function, our attention turns to estimating its

population variance in order to construct confidence intervals and conduct hypothesis tests. To find

an estimate for the population variance of the product–limit estimate is significantly more difficult

than for the uncensored case. The Fisher and observed information matrices require the following

partial derivative of the score vector:

∂2 ln L
(
h(y1), h(y2), . . . , h(yk)

)

∂h(yi)∂h(y j)
=− di

h(yi)2
− ni−di(

1−h(yi)
)2

when i = j and 0 otherwise, for i = 1, 2, . . . , k and j = 1, 2, . . . , k. Both the Fisher and observed

information matrices are diagonal. Replacing h(yi) by its maximum likelihood estimate, the diagonal

elements of the observed information matrix are
[
−∂2 ln L

(
h(y1), h(y2), . . . , h(yk)

)

∂h(yi)2

]

h(yi)=di/ni

=
n3

i

di(ni−di)
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for i= 1, 2, . . . , k. Using some approximations, an estimate for the variance of the estimated survivor

function is

V̂
[
Ŝ(t)

]
=
[
Ŝ(t)

]2
∑

j |y j≤ t

d j

n j(n j−d j)
,

commonly referred to as Greenwood’s formula. The formula can be used to find an asymptotically

exact two-sided confidence interval for S(t) by using the normal critical values as in the uncensored

case:

Ŝ(t)− zα/2

√
V̂
[
Ŝ(t)

]
< S(t)< Ŝ(t)+ zα/2

√
V̂
[
Ŝ(t)

]
.

As was the case with the Wald confidence interval for S(t) in the case of a complete data set, the

confidence interval bounds should be truncated when they are greater than 1 or less than 0, as

illustrated in the next example.

Example 6.5 Use Greenwood’s formula to construct an approximate two-sided 95%

confidence interval for the probability that a remission time in the treatment group in

the 6–MP clinical trial described in Example 5.6 exceeds 14 weeks.

The point estimator for the probability of survival to time 14 from the previous two

examples is Ŝ(14) = 176/255 = 0.69. The estimated variance of the survivor function

estimator at time 14 via Greenwood’s formula is

V̂
[
Ŝ(14)

]
=
[
Ŝ(14)

]2
∑

j |y j≤14

d j

n j(n j−d j)

=

(
176

255

)2 [
3

21(21−3)
+

1

17(17−1)
+

1

15(15−1)
+

1

12(12−1)

]

= 0.011.

Thus, an estimate for the standard deviation of the survivor function estimate at t = 14

is
√

0.011 = 0.11. An approximate two-sided 95% confidence interval for S(14) is

Ŝ(14)− z0.025

√
V̂
[
Ŝ(14)]< S(14)< Ŝ(14)+ z0.025

√
V̂
[
Ŝ(14)]

0.69−1.96
√

0.011 < S(14)< 0.69+1.96
√

0.011

0.48 < S(14)< 0.90.

Using this confidence interval procedure for all values of t, Figure 6.4 shows the 95%

confidence bands for the survivor function. These confidence intervals have also been

cut off after t = 35 because the last observation corresponds to a right-censored indi-

vidual. The bounds are particularly wide because there are only r = 9 observed failure

times.

The R code to calculate this confidence interval for S(14) and plot confidence bands

around the product–limit estimate is given below. Setting the conf.type argument

to "plain" in the call to survfit results in the calculations for the 95% confidence

interval for S(14) presented here. These are displayed in the two right-hand columns in

the call to the summary function. Setting the mark.time argument to TRUE in the call

to plot results in hash marks on the estimated survivor function.
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Figure 6.4: Confidence bands for the product–limit estimate for the 6–MP treatment group.

library(survival)

time = c(6, 6, 6, 6, 7, 9, 10, 10, 11, 13, 16, 17, 19, 20, 22,

23, 25, 32, 32, 34, 35)

status = c(1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,

1, 0, 0, 0, 0, 0)

kmest = survfit(Surv(time, status) ~ 1, conf.type = "plain")

summary(kmest)

plot(kmest, mark.time = TRUE)

6.1.3 Comparing Two Survivor Functions

This subsection introduces a nonparametric statistical test for determining whether samples of life-

times from two populations arose from the same probability distribution. This test is nonparametric

in the sense that it places no assumptions on the lifetime distribution of either population. The log-

rank test (also known as the Mantel–Cox test, named after American biostatistician Nathan Mantel

and British statistician David Cox or the Mantel–Haenszel test, named after American epidemiolo-

gist William Haenszel) is a nonparametric statistical test that can be used to test the equality of two

survivor functions based on two randomly right-censored data sets collected from the two popula-

tions.

The null and alternative hypotheses for the log-rank test are

H0 : S1(t) = S2(t)

H1 : S1(t) 6= S2(t),

where S1(t) is the survivor function of the lifetimes of items from population 1 and S2(t) is the

survivor function of the lifetimes of items from population 2. A randomly right-censored data set

is collected from each population. The notation established below is similar to that used in the
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Kaplan–Meier product–limit estimator. Let y1 < y2 < · · · < yk be the observed failure times in the

combined data set. Let

• n1 j be the number of items from data set 1 at risk just prior to time y j,

• n2 j be the number of items from data set 2 at risk just prior to time y j,

• n j = n1 j +n2 j,

• d1 j be the number of items from data set 1 that fail at time y j,

• d2 j be the number of items from data set 2 that fail at time y j,

• d j = d1 j +d2 j,

for j = 1, 2, . . . , k.

Just before time y j, there are n j items in the combined sample that are at risk and subject to

potential failure, for j = 1, 2, . . . , k. Of the n j items at risk just before time y j, there are n1 j items

from population 1 and n2 j items from population 2 that are at risk, for j = 1, 2, . . . , k. Under H0,

each of the n j items at risk has an identical conditional time to failure (conditioned on survival to

time y j), for j = 1, 2, . . . , k. Under H0, the random number of failures from population 1 at time

y j, d1 j, is equivalent to sampling d j items without replacement from n j items, n1 j of which are

type 1 and n j−n1 j of which are type 2. Thus, d1 j has the hypergeometric distribution under H0 with

parameters n j, n1 j, and d j, for j = 1, 2, . . . , k.

The population mean of the hypergeometric random variable d1 j under H0 is

E[d1 j] =
d jn1 j

n j

for j = 1, 2, . . . , k. The population variance of d1 j under H0 is

V [d1 j] =
d j(n1 j/n j)(1−n1 j/n j)(n j−d j)

n j−1

for j = 1, 2, . . . , k. So the random variables d11, d12, . . . , d1k are marginally hypergeometric with

population means and variances given above. Standardizing and summing, the log-rank test statistic

Z =
∑k

j=1

(
d1 j−E[d1 j]

)
√

∑k
j=1 V [d1 j]

is asymptotically standard normal in k under H0. Large and small values of the test statistic Z

correspond to departures from H0.

Example 6.6 Perform a log-rank test to compare the survivor functions of the remis-

sion times in the treatment and control groups in the 6–MP clinical trial data from

Example 5.6.

Recall from Example 5.6 that the remission times (in weeks) for the treatment group

(population 1) are

6 6 6 6∗ 7 9∗ 10 10∗ 11∗ 13 16

17∗ 19∗ 20∗ 22 23 25∗ 32∗ 32∗ 34∗ 35∗



Section 6.1. Nonparametric Methods 331

and the remission times for the control group (population 2) are

1 1 2 2 3 4 4 5 5 8 8

8 8 11 11 12 12 15 17 22 23.

The estimated survivor functions for the control and treatment groups are displayed in

Figure 6.5. The use of 6–MP appears to be effective in prolonging remission times,

but is the difference between the two survivor functions statistically significant? The

log-rank test will answer this question.

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

t

S(t)

control

treatment

Figure 6.5: Estimated survivor functions for the 6–MP control and treatment and groups.

The k = 17 distinct observed failure times y1 < y2 < · · ·< y17 in the combined sample

are given in the second column of Table 6.3. The next three columns give the number

of patients at risk just prior to time y j in the combined data set (n j), the number of

patients at risk just prior to time y j from population 1 (n1 j), and number of patients

at risk just prior to time y j from population 2 (n2 j). The final three columns give the

number of overall observed remission times at time y j in the combined data set (d j), the

number of observed remission times at time y j from population 1 (d1 j), and the number

of observed remission times at time y j from population 2 (d2 j).

The null and alternative hypotheses for the test are

H0 : S1(t) = S2(t)

H1 : S1(t) 6= S2(t),

and the test statistic is

Z =
∑17

j=1

(
d1 j−E[d1 j]

)
√

∑17
j=1 V [d1 j]

=−4.1.

This test statistic is negative because the observed d1 j values are smaller than their

expected values. Fewer remissions occur in sample 1 (those patients treated with 6–MP)
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j y j n j n1 j n2 j d j d1 j d2 j

1 1 42 21 21 2 0 2

2 2 40 21 19 2 0 2

3 3 38 21 17 1 0 1

4 4 37 21 16 2 0 2

5 5 35 21 14 2 0 2

6 6 33 21 12 3 3 0

7 7 29 17 12 1 1 0

8 8 28 16 12 4 0 4

9 10 23 15 8 1 1 0

10 11 21 13 8 2 0 2

11 12 18 12 6 2 0 2

12 13 16 12 4 1 1 0

13 15 15 11 4 1 0 1

14 16 14 11 3 1 1 0

15 17 13 10 3 1 0 1

16 22 9 7 2 2 1 1

17 23 7 6 1 2 1 1

Table 6.3: Data for calculating the log-rank test statistic.

than expected if the remission time distributions in the two populations were identical.

Since the test statistic is 4.1 standard deviation units from its population mean under

H0, we expect a small p-value, and a rejection of the null hypothesis H0. The p-value is

p = 2 ·P(Z <−4.1) = 0.00004,

so the conclusion is to reject H0. There is statistical evidence that the survivor functions

for the control and treatment groups differ. Figure 6.5 shows that the patients taking

6–MP have longer remission times.

Here are three final observations on the log-rank test. First, the test has been extended from

testing the equality of two populations to testing the equality of several populations. Second, the

Peto log-rank test statistic (named after British statistician Julian Peto) gives differing weights to

the observed failure times. Third, there are several competitors to the log-rank test which should be

considered when using this test.

6.2 Competing Risks

In competing risks models, several causes of failure compete for the lifetime of an item. These

models are also useful for analyzing the relationships between the causes of failure. In addition,

competing risks models are one way of combining several distributions to achieve a lifetime distri-

bution with, for example, a bathtub-shaped hazard function.

In some situations, causes of failure can be grouped into k classes. An electrical engineer, for

instance, might use failure by short and failure by open as a two-element competing risks model for
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the lifetime of a diode. Likewise, an actuary might use heart disease, cancer, accidents, and all other

causes as a four-element competing risks model for human lifetimes. In competing risks analysis, an

item is assumed to be subject to k competing risks (or causes) denoted by C1,C2, . . . ,Ck. Competing

risks, often called multiple decrements by actuaries, can be viewed as a series system of components.

Each risk can be thought of as a component in a series system in which system failure occurs when

any component fails. Analyzing problems by competing risks might require the modeler to include

an “all other risks” classification in order to study the effect of reduction or elimination of one risk.

The origins of competing risks theory can be traced to a study by Daniel Bernoulli in the 1700s

concerning the impact of eliminating smallpox on mortality for various age groups.

A second and equally appealing use of competing risks models is that they can be used to com-

bine component distributions to form more complicated models. Although a distribution with a

bathtub-shaped hazard function is often cited as an appropriate lifetime model, none of the five most

popular lifetime distribution models (exponential, Weibull, gamma, log normal, and log logistic)

can achieve this shape. Competing risks models are one way of combining several distributions to

achieve a bathtub-shaped lifetime distribution. As shown in Figure 6.6, if a DFR Weibull distribu-

tion is used to model manufacturing defect failures and an IFR Weibull distribution is used to model

wear-out failures, then a competing risks model with k = 2 risks yields a bathtub-shaped hazard

function because the hazard functions are summed. We will formally develop this result later in this

section.

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

t

h(t)

hX1
(t)

hX2
(t)

hT (t)

Figure 6.6: Hazard functions for a competing risks model.

6.2.1 Net Lifetimes

Competing risks theory is complicated by the existence of net and crude lifetimes. When working

with net lifetimes or net probabilities, the causes C1,C2, . . . ,Ck are viewed individually; that is, risk

C j, j = 1, 2, . . . , k, is analyzed as if it is the only risk acting on the population. When working with

crude lifetimes or crude probabilities, the lifetimes are considered in the presence of all other risks.

The random variables associated with net lifetimes are defined next.



334 Chapter 6. Topics in Survival Analysis

Definition 6.1 Let the random variable X j, having probability density function fX j
(t), survivor

function SX j
(t), hazard function hX j

(t), cumulative hazard function HX j
(t), and corresponding risk

C j, be the net life denoting the lifetime that occurs if only risk j is present, for j = 1, 2, . . . , k.

Unless all risks except j are eliminated, X j is not necessarily observed. In this sense, each

net lifetime is a potential lifetime that is observed with certainty only if all the other k− 1 risks

are eliminated. The observed lifetime of an item, T , is the minimum of X1, X2, . . . , Xk. When the

net lives are independent random variables, the hazard function for the observed time to failure is

hT (t) = ∑k
j=1 hX j

(t), because ST (t) = ∏k
j=1 SX j

(t) for a series system of k independent components,

HT (t) =− ln ST (t), and hT (t) = H ′T (t):

hT (t) =
d

dt
HT (t)

=
d

dt

[
− ln ST (t)

]

=
d

dt

[
− ln

(
k

∏
j=1

SX j
(t)

)]

=
d

dt

[
k

∑
j=1

− ln SX j
(t)

]

=
d

dt

[
k

∑
j=1

HX j
(t)

]

=
k

∑
j=1

d

dt
HX j

(t)

=
k

∑
j=1

hX j
(t) t ≥ 0.

The net probability of failure in the time interval [a, b) from risk j, denoted by q j(a, b), is the

probability of failure in [a, b) from risk j if risk j is the only risk present, conditioned on survival to

time a. So

q j(a, b) = P(a≤ X j < b |X j ≥ a)

= 1−P(X j ≥ b |X j ≥ a)

= 1− P(X j ≥ b)

P(X j ≥ a)

= 1−
SX j

(b)

SX j
(a)

= 1− e
−HX j

(b)

e
−HX j

(a)

= 1− e
−(HX j

(b)−HX j
(a))

= 1− e
−∫ b

a hX j
(t)dt

for j = 1, 2, . . . , k.
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6.2.2 Crude Lifetimes

Crude lifetimes are more difficult to work with than net lifetimes because they consider each of the

causes of failure in the presence of all other causes of failure. Crude lifetimes are observed when

lifetime data values are collected in a competing risks model in which all causes of failure are acting

simultaneously in the population.

Definition 6.2 Let the random variable Yj, having probability density function fY j
(t), survivor

function SY j
(t), hazard function hY j

(t), cumulative hazard function HY j
(t), and corresponding risk

C j, be the crude life denoting the lifetime conditioned on risk j being the cause of failure in the

presence of all other risks, for j = 1, 2, . . . , k.

The crude probability of failure in the time interval [a, b) from cause j, denoted by Q j(a, b),
is the probability of failure in [a, b) from risk j in the presence of all other risks, conditioned on

survival of all risks to time a. A well-known result in competing risks theory gives this probability

as

Q j(a, b) = P(a≤ X j < b, X j < Xi for all i 6= j |T ≥ a)

=
∫ b

a
hX j

(x)e−
∫ x

a hT (t)dt dx

for j = 1, 2, . . . , k. Rather than isolating individual risks, as in the case of net lifetimes, this quantity

considers risk j as it works in the presence of the k− 1 other risks. The probability of failure due

to risk j is defined by π j = P(X j = T ), for j = 1, 2, . . . , k. Since failure will occur from one of the

causes,
k

∑
j=1

π j = 1.

A simple example to illustrate some of the concepts in competing risks is given next before the

general theory is developed.

Example 6.7 Consider an item that is subject to k = 2 causes of failure. Let the random

variables X1 and X2 be the net lives for causes C1 and C2. If the item under consideration

is a cell phone, for instance, cause 1 might be dropping the cell phone and cause 2 might

be all other causes (for example, battery or display failure). In this case, X1 is the life of

the cell phone if the only way it can fail is by being dropped. The second net life, X2,

is the lifetime of the cell phone if it is bolted to a desk and cannot be dropped. The

first crude life, Y1, is the failure time of a cell phone that failed due to being dropped in

the presence of the second cause of failure. Likewise, Y2 is the lifetime of a cell phone

that failed by some mode other than being dropped, but was not bolted to a desk to

avoid its being dropped. Let the observed lifetime, T , be the minimum of X1 and X2.

Also, assume that X1 and X2 are independent and have exponential distributions with

population means 1 and 1/2, respectively. Thus,

SX1
(t) = e−t fX1

(t) = e−t hX1
(t) = 1

and

SX2
(t) = e−2t fX2

(t) = 2e−2t hX2
(t) = 2

for t ≥ 0. The net probabilities of failure in the interval [a,b) are

q1(a, b) = 1− e−
∫ b

a 1dt = 1− e−(b−a)
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and

q2(a, b) = 1− e−
∫ b

a 2dt = 1− e−2(b−a)

for 0 < a < b. The crude probability of failure due to the first risk in the interval [a, b),
Q1(a, b), is the integral of the joint probability density function of X1 and X2 over the

shaded area in Figure 6.7 (illustrated for a = 0.5 and b = 1.2), divided by the integral

of the joint probability density function of X1 and X2 over the area to the northeast of

the point (a, a). Thus,

Q1(a, b) = P(a≤ X1 < b and X1 < X2 |T ≥ a)

=
P(a≤ X1 < b and X1 < X2)

P(X1 ≥ a, X2 ≥ a)

=

∫ b

a

∫ ∞

x1

e−w1 2e−2w2 dw2 dw1

∫ ∞

a

∫ ∞

a
e−w1 2e−2w2 dw2 dw1

=
1

3

[
1− e−3(b−a)

]

for 0 < a < b. Similarly,

Q2(a, b) =
2

3

[
1− e−3(b−a)

]

for 0< a< b. The Q j(a, b) expressions have been determined by using their definitions.

Alternatively, the formula given earlier,

Q j(a, b) =
∫ b

a
hX j

(x) e−
∫ x

a hT (t)dt dx,

for j = 1, 2, can be used to determine these quantities. For this particular example,

Q1(a, b) =
∫ b

a
e−

∫ x
a 3dt dx =

1

3

[
1− e−3(b−a)

]
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Figure 6.7: Numerator integration region for Q1(a, b) for a = 0.5 and b = 1.2.
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and

Q2(a, b) =
∫ b

a
2e−

∫ x
a 3dt dx =

2

3

[
1− e−3(b−a)

]

for 0 < a < b because hT (t) = hX1
(t)+ hX2

(t) = 1+ 2 = 3 for t ≥ 0. The probability

of failure due to risk 1, π1, can be found by integrating the joint density of the net lives

f (x1, x2) over the area X1 < X2 or, equivalently, using a = 0 and b = ∞ as arguments in

Q1(a, b), yielding π1 = 1/3. Similarly, π2 = 2/3.

The focus now shifts to the determination of the distribution of the crude lives, Y1 and Y2.

What is the survivor function for items that fail from one risk in the presence of the other

risk? This survivor function is important because data collected in competing risks

models often come in pairs: the cause of failure and the time of failure. The observed

time of failure is typically a crude lifetime because it is observed in the presence of the

other cause(s). The survivor function for the first crude lifetime, SY1
(y1), corresponds

to a cell phone that fails by being dropped in the presence of risk C2. If an analyst had

a large data set of cell phone failure times for those cell phones that failed by being

dropped, an empirical survivor function will converge to SY1
(y1) as the sample size

increases. The survivor function for Y1 is

SY1
(y1) = P(T ≥ y1 |X1 = T )

=
P(T ≥ y1, X1 = T )

π1

=

∫ ∞

y1

∫ ∞

x1

e−w1 2e−2w2 dw2 dw1

1/3

= e−3y1 y1 ≥ 0.

Similarly,

SY2
(y2) = e−3y2 y2 ≥ 0.

This surprising result, that both Y1 and Y2 have the same exponential distribution with

population mean 1/3, can be attributed to the definition of a crude lifetime. Since the

two crude lifetimes are the minimum of two exponential random variables (the expo-

nential net lifetimes), each will have an exponential distribution with a parameter being

the sum of the rates. The crude lifetime Y1, for example, consists of only those expo-

nential(1) random variables that are smaller than another independent exponential(2)

random variable. Likewise, the crude lifetime Y2 consists of only those exponential(2)

random variables that are smaller than another independent exponential(1) random vari-

able. Theorem 4.4 provides the basis for the fact that the minimum of independent

exponential random variables is also exponentially distributed.

As a result, there are two valid ways to generate a random lifetime T for use in Monte

Carlo simulation. First, taking the net lifetime perspective, generate an exponential(1)

random variate and an exponential(2) random variate and choose the minimum as T .

Second, taking the crude lifetime perspective, generate an exponential(3) random vari-

ate T and indicate this is failure from risk 1 with probability 1/3 and failure from risk 2

with probability 2/3.
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6.2.3 General Case

A general theory for competing risks is now developed based on the definitions for net and crude life-

times given previously. Let X1, X2, . . . , Xk be the k continuous net lives and T = min{X1, X2, . . . , Xk}
be the observed failure time of the item. The X j’s are not necessarily independent as they were in

Example 6.7. Letting the net lives have joint probability density function f (x1, x2, . . . , xk), the joint

survivor function is

S(x1, x2, . . . , xk) = P(X1 ≥ x1, X2 ≥ x2, . . . , Xk ≥ xk)

=
∫ ∞

xk

· · ·
∫ ∞

x2

∫ ∞

x1

f (t1, t2, . . . , tk)dt1 dt2 . . . dtk

and the marginal net survival function is

SX j
(x j) = P(X j ≥ x j) = S(0, . . . , x j, . . . , 0)

for j = 1, 2, . . . , k. The survivor function for the observed lifetime T is

ST (t) = P(T ≥ t) = S(t, t, . . . , t).

The probability of failure from risk j can be determined from the joint survivor function because

− ∂

∂x j

S(x1, . . . , x j, . . . , xk) = lim
∆x→0

S(x1, . . . , x j, . . . , xk)−S(x1, . . . , x j +∆x, . . . , xk)

∆x

for j = 1, 2, . . . , k by the definition of the derivative. Thus,

π j =

∫ ∞

0
−
[

∂

∂x j

S(x1, . . . , x j, . . . , xk)

]

x1=x2=···=xk=x

dx

for j = 1, 2, . . . , k. To derive a survivor function for the crude lifetimes, let the random variable J

be the index of the cause of failure so that

P(T ≥ t, J = j) = P(X j ≥ t, X j < Xi for all i 6= j)

=
∫ ∞

t

[∫ ∞

x j

· · ·
∫ ∞

x j

∫ ∞

x j

f (x1, x2, . . . , xk)∏
i 6= j

dxi

]
dx j

for j = 1, 2, . . . , k, where the survivor function for T is obtained by conditioning:

ST (t) = P(T ≥ t)

=
k

∑
j=1

P(T ≥ t |J = j)P(J = j)

=
k

∑
j=1

P(T ≥ t, J = j).

When t = 0, each term in the last summation is one of the π j’s because

π j = P(J = j) = P(T ≥ 0, J = j)

for j = 1, 2, . . . , k. Thus, the distribution of the jth crude life, Yj, is the distribution of T conditioned

on J = j:

SY j
(y j) = P(T ≥ y j |J = j) =

P(T ≥ y j, J = j)

P(J = j)

for j = 1, 2, . . . , k.
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Example 6.8 The competing risks model from Example 6.7, which considered two

independent, exponentially distributed risks, is used to illustrate the use of the formulas

developed thus far. As before, let the net lives have marginal survivor functions

SX1
(t) = e−t SX2

(t) = e−2t

for t ≥ 0. Since the risks are independent, the joint survivor function is

S(x1, x2) = SX1
(x1) ·SX2

(x2) = e−x1−2x2 x1 ≥ 0, x2 ≥ 0.

The probability of failure from the first risk is

π1 =

∫ ∞

0
−
[

∂

∂x1
S(x1, x2)

]

x1 =x2 =x

dx

=

∫ ∞

0
−
[
− e−x1−2x2

]
x1 =x2 =x

dx

=
∫ ∞

0
e−3x dx

=
1

3
.

Since π2 = 1−π1,

π2 =
2

3
.

The probability of survival to time t and risk 1 being the cause of failure is

P(T ≥ t, J = 1) = P(X1 ≥ t, X1 < X2)

=
∫ ∞

t

[∫ ∞

x1

f (x1, x2)dx2

]
dx1

=
∫ ∞

t

∫ ∞

x1

2e−x1−2x2 dx2 dx1

=
∫ ∞

t
e−3x1 dx1

=
1

3
e−3t t ≥ 0.

Similarly,

P(T ≥ t, J = 2) =
2

3
e−3t t ≥ 0.

Thus, the survival function for the first crude lifetime is

SY1
(y1) =

P(T ≥ y1, J = 1)

P(J = 1)
= e−3y1 y1 ≥ 0

and the survival function for the second crude lifetime is

SY2
(y2) =

P(T ≥ y2, J = 2)

P(J = 2)
= e−3y2 y2 ≥ 0.

These results are identical to those derived from first principles in the previous example.

Both crude lifetimes have an exponential(3) distribution.
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To this point, it has been shown how the distribution of the net lives X1, X2, . . . , Xk determines

the distribution of the crude lives Y1, Y2, . . . , Yk. Net lives can be interpreted as potential lifetimes,

while crude lives are the observed lifetimes. When lifetime data for the known cause of failure are

collected, the observed values are Yj’s. An important question is whether the distribution of each Yj

contains enough information to determine the distribution of the X j’s. In general, the answer is

no, but under the assumption of independence of the net lives, the answer is yes. The following

discussion considers results under the assumption of independent net lives. This independence can

often be attained by grouping the k risks so that dependencies occur within, but not between, risks.

Theorem 6.1 Let X1, X2, . . . , Xk be independent net lifetimes. Let Y1, Y2, . . . , Yk be the associated

crude lifetimes with known marginal probability density functions fY1
(t), fY2

(t), . . . , fYk
(t). The

probability of failure from risk j, π j = P(J = j), is known. Then the hazard function for the net

lifetime j is

hX j
(t) =

π j fY j
(t)

k

∑
i=1

πiSYi
(t)

t ≥ 0

for j = 1, 2, . . . , k.

The proof of this result is given in a reference listed in the preface. This result is useful for

determining the effect of removing one or more risks when the distributions of the crude lives are

determined from a data set, as illustrated in the next example.

Example 6.9 Consider again the competing risks model from Example 6.8 in which

the k = 2 risks were assumed to be independent. If a large number of failure times

are collected, and the cause of failure is identifiable (that is, both the failure time and

the index of the risk that caused failure are known), it might be possible to determine

the distribution of the two crude lifetimes. If both are well fitted with an exponential

distribution with failure rate λ = 3, and approximately one-third of the failures are from

cause 1, then

π1 = P(J = 1) =
1

3
π2 = P(J = 2) =

2

3

and

SY1
(t) = e−3t SY2

(t) = e−3t

for t ≥ 0. Therefore, by Theorem 6.1 the hazard functions for the net lives are

hX1
(t) =

1
3 ·3e−3t

1
3 e−3t + 2

3 e−3t
= 1 t ≥ 0

and

hX2
(t) =

2
3 ·3e−3t

1
3 e−3t + 2

3 e−3t
= 2 t ≥ 0.

This result is consistent with the previous two examples.

The previous three examples have considered competing risks models with k = 2 risks and expo-

nentially distributed net and crude lifetimes. This section concludes with an example of a competing

risks model with k = 3 risks and non-exponential net lifetimes.
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Example 6.10 An item is subject to k = 3 competing risks C1, C2, and C3 with the

three associated independent net lifetimes: X1 ∼Weibull(1, 2), X2 ∼ exponential(1),
and X3 ∼Weibull(1, 3).

(a) What is the population mean time to failure of the item?

(b) If one of the risks could be eliminated, the elimination of which risk results in the

greatest increase in the population mean time to failure of the item?

(a) The hazard function associated with a Weibull(λ, κ) random variable is

h(t) = κλκtκ−1 t ≥ 0.

The hazard functions for the three net lifetimes are

hX1
(t) = 2t hX2

(t) = 1 hX3
(t) = 3t2

for t ≥ 0. The hazard function for the time to failure of the item T is the sum of

the hazard functions for the three net lifetimes:

hT (t) = 3t2 +2t +1 t ≥ 0.

The associated cumulative hazard function is

HT (t) =
∫ t

0
hT (τ)dτ

=

∫ t

0

(
3τ2 +2τ+1

)
dτ

=
[
τ3 + τ2 + τ

]t
0

= t3 + t2 + t t ≥ 0.

The associated survivor function is

ST (t) = e−HT (t) = e−t3−t2−t t ≥ 0.

So the population mean time to failure of the item is

E[T ] =
∫ ∞

0
ST (t)dt =

∫ ∞

0
e−t3−t2−t dt ∼= 0.4630,

where the integral must be evaluated numerically.

(b) The same procedure given in part (a) can be used to assess the effect of removing

risks. The results are given in Table 6.4. Removing risk 2 makes the greatest

improvement on the population mean lifetime of the item.

Risk eliminated Risk 1 Risk 2 Risk 3

E[T ] 0.5689 0.6637 0.5456

Table 6.4: Mean lifetimes associated with eliminated risks.
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To summarize this section, competing risks models are appropriate when there are k causes

of failure and the occurrence of failure due to any risk causes the item to fail. These k risks can

be thought of conceptually as a k-component series system. The probabilities of failure from the

various causes are denoted by π1, π2, . . . , πk. The net lifetimes X1, X2, . . . , Xk occur if only one risk

is evident at a time in the population. The crude lifetimes Y1, Y2, . . . , Yk occur in the presence of all

other risks. If the net lives are independent, once the distributions of Y1, Y2, . . . , Yk and π1, π2, . . . , πk

are determined, the distribution of the net lives X1, X2, . . . , Xk can be determined.

6.3 Point Processes

So far, the focus has been on a single random variable T , generically referred to as a lifetime, and

methods for estimating its probability distribution. In a reliability setting, T might be the lifetime

of a light bulb. In a biostatistical setting, T might be the post-surgery remission time for a patient

having a particular type of cancer. In an actuarial setting, T might be the time of death for a insured

individual having a life insurance policy. In all of these examples, there is only a single random

variable T that is of interest.

Occasions arise, however, when there are multiple events of interest. In a reliability setting,

the sequence of events might be the repair times for an automobile. In a biostatistical setting, the

sequence of events might be the times at which a cortisone injection is administered to a patient.

In an actuarial setting, the sequence of events might be the times of insurance claims on an insured

dwelling. In all of these examples, the probability mechanism governing the sequence of observa-

tions is of interest.

Point process models are often used to describe the probability mechanism governing a series

of event times. The three elementary point process models considered in this section are Poisson

processes, renewal processes, and nonhomogeneous Poisson processes.

Point process models can be applied to more than just failure times of repairable systems. Point

processes have been used to describe arrival times to queues, earthquake times, hurricane landfall

times, pothole positions on a highway, and other physical phenomena. They have also been used to

describe the occurrence times of sociological events such as crimes, strikes, bankruptcies, and wars.

The examples in this section use reliability jargon, leaving it to the reader to extend the models

to other disciplines. The reliability-centric term “failure” is used instead of the more generic term

“event” for all of the point processes described in this section. The object of interest will continue

to be referred to generically as an “item.”

When the time to repair or replace an item is negligible, point processes are appropriate for

modeling the probabilistic mechanism underlying the failure times. This would be the case for

an automobile that works without failure for months, and then is in the shop for one hour for a

repair in which no mileage is accrued while the maintenance is being performed. These models

would not be appropriate, for example, for an aircraft that spends several months having its engine

overhauled before being placed back into service if availability is of interest. The down time needs

to be explicitly modeled in this case.

A small but important bit of terminology is used to differentiate between nonrepairable items,

which were considered in the previous chapters, and repairable items, which are considered here. A

nonrepairable item, such as a light bulb, has one failure, and the term burn in is used if its hazard

function is decreasing and the term wear out is used if its hazard function is increasing. Figure 6.8

shows hazard functions for an item that undergoes burn in and another that wears out. The × on the

time axis denotes a realization of one possible failure time. The lifetimes of nonrepairable items are

described by the distribution of a single nonnegative random variable, usually denoted by T .
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Figure 6.8: Hazard functions for nonrepairable items in the DFR and IFR classes.

In contrast, a repairable item, such as an automobile, typically fails at several points in time. In

many situations, a nonhomogeneous Poisson process, which is governed by the intensity function

λ(t) that reflects the rate of occurrence of failures, might be the appropriate probabilistic mecha-

nism for modeling the failure history of the item. The intensity function is analogous to the hazard

function in the sense that higher levels of λ(t) indicate an increased probability of failure. The term

improvement is used if the intensity function is decreasing, and the term deterioration is used if the

intensity function is increasing. Figure 6.9 shows intensity functions for an item that improves and

another that deteriorates. Each× on the time axis denotes a failure time associated with a realization.

The improving item has failures that tend to be less frequent as time passes; the deteriorating item

has failures that tend to be more frequent as time passes. The failure times of repairable items are

described by the probability mechanism underlying a sequence of random variables, often denoted

by T1, T2, . . . . These terms are summarized in Table 6.5.
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Figure 6.9: Intensity functions for a repairable improving and deteriorating items.
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Nonrepairable Repairable

Item gets better as time passes Burn in, h′(t)≤ 0 Improving, λ′(t)≤ 0

Item gets worse as time passes Wear out, h′(t)≥ 0 Deteriorating, λ′(t)≥ 0

Table 6.5: Terminology for nonrepairable and repairable items in the reliability setting.

The notation that applies to all three point process models surveyed in this section is presented

next.

In the point processes discussed in this section, failures occur at times T1, T2, . . . , and the time

to replace or repair an item is assumed to be negligible. The origin is defined to be T0 = 0. The

times between the failures are X1, X2, . . . , so Tk = X1 +X2 + · · ·+Xk, for k = 1, 2, . . . . The counting

function N(t) is the number of failures that occur in the time interval (0, t]. In other words,

N(t) = max{k |Tk ≤ t}

for t > 0. The nondecreasing, integer-valued stochastic process described by {N(t), t > 0} is often

called a counting process and satisfies the following two properties.

1. If t1 < t2, then N(t1)≤ N(t2).

2. If t1 < t2, then N(t2)−N(t1) is the number of failures in the time interval (t1, t2].

Let Λ(t) = E[N(t)] be the expected number of failures that occur in the interval (0, t]. The

derivative of Λ(t), which is λ(t) = Λ′(t), is the rate of occurrence of failures. Figure 6.10 shows

one realization of a point process, where N(t) is shown as a step function and the ×s denote the

failure times on the horizontal axis. The curve for the expected number of events by time t, Λ(t),
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Figure 6.10: Point process realization.
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is also on the same axis as N(t). It should be kept in mind that N(t) on this axis is a realization

that will change from one item to another item, but Λ(t) is the underlying population probabilistic

mechanism describing the sequence of events and does not change from one item to another item.

The behavior of the interevent times X1, X2, . . . is always of interest in analyzing a repairable

item. If the interevent times tend to increase with time, the item is improving; if the interevent times

tend to decrease with time, the item is deteriorating. Other variables, such as a new untrained oper-

ator or repairman, must be considered when analyzing the failure times of a repairable item. These

variables are ignored in the presentation of the point process models, but can result in erroneous

conclusions if not considered along with the observed times between failures.

There are two properties that are important to discuss before introducing specific point processes.

The first property is called independent increments. A point process has independent increments if

the number of failures in mutually exclusive intervals are independent. As shown in the realiza-

tion depicted in Figure 6.11, this property implies that the number of failures (the failure times are

depicted by ×s) between times t1 and t2 are independent of the number of failures between times

t3 and t4 because the intervals (t1, t2] and (t3, t4] are nonoverlapping. A second property is called

stationarity. A point process is stationary if the distribution of the number of failures in any time

interval depends only on the length of the time interval. Equivalently, failures are no more or less

likely to occur at one time than another for an item. This is a rather restrictive assumption for an

item because the item can neither deteriorate nor improve.

( ] ( ] t

0 t1 t2 t3 t4

××××

Figure 6.11: Independent increments illustration.

The three point process models, Poisson processes, renewal processes, and nonhomogeneous

Poisson processes, are introduced in separate subsections.

6.3.1 Poisson Processes

The well-known Poisson process is a popular model due to its mathematical tractability, although

it applies only to limited situations. These limited situations include replacement models with ex-

ponential standby items and repairable items with exponential times to failure and negligible repair

times.

Definition 6.3 A counting process N(t) is a Poisson process with rate parameter λ > 0 if

• N(0) = 0,

• the process has independent increments, and

• the number of failures in any interval of length t has the Poisson distribution with mean λt.

There are several implications of this definition of a Poisson process. First, by the last condition

for a Poisson process, the distribution of the number of failures in the interval (t1, t2] has the Poisson

distribution with parameter λ(t2− t1). Therefore, the probability mass function of the number of
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failures in the interval (t1, t2] is

P
(
N(t2)−N(t1) = x

)
=

[
λ(t2− t1)

]x
e−λ(t2−t1)

x!
x = 0, 1, 2, . . . .

Second, the number of failures by time t, denoted by N(t), has the Poisson distribution with popula-

tion mean

Λ(t) = E[N(t)] = λt t > 0,

where λ is often called the rate of occurrence of failures. The intensity function is therefore given

by λ(t) = Λ′(t) = λ for t > 0. Third, if X1, X2, . . . are independent and identically distributed expo-

nential random variables, then N(t) corresponds to a Poisson process.

Example 6.11 Consider a socket model in which an infinite supply of light bulbs is

used in a single-component standby system composed of a single socket. As each bulb

fails, it is immediately replaced by a new bulb, and each bulb has an exponential(λ)

time to failure. Find the probability that there are n or fewer failures by time t.

Since the light bulb failure time distributions are each exponential, and the replacement

time is negligible, a Poisson process is the appropriate model here. The probability that

there are n or fewer failures by time t is therefore

P
(
N(t)≤ n

)
=

n

∑
k=0

(λt)ke−λt

k!
n = 0, 1, 2, . . .

for t > 0. When n = 0, this solution reduces to the survivor function for an exponential

distribution (the nonrepairable case). It is easily recognized here that the time of the nth

failure has the Erlang distribution with scale parameter λ and shape parameter n because

Tn = X1 +X2 + · · ·+Xn and X1, X2, . . . , Xn are independent and identically distributed

exponential(λ) random variables.

This model is sometimes also called a homogeneous Poisson process because the failure rate

λ does not change with time (that is, the model is stationary). The next two models are general-

izations of homogeneous Poisson processes. In a renewal process, the assumption of exponentially

distributed times between failures is relaxed; in a nonhomogeneous Poisson process, the stationarity

assumption is relaxed.

6.3.2 Renewal Processes

A renewal process is a natural extension of a Poisson process in which the times between failure are

assumed to have any lifetime distribution, rather than just the exponential distribution.

Definition 6.4 A point process is a renewal process if the times between failures X1, X2, . . . are

independent and identically distributed nonnegative random variables.

The term renewal is appropriate for these models because an item is assumed to be renewed to

its original state after it fails. This is typically not the case for a repairable system consisting of

many components, because only a few of the components are typically replaced upon failure. The

remaining components that did not fail will only be as good as new if they have exponential lifetimes.

Renewal processes are often used, for example, to determine the number of spare components to take

on a mission or to determine the timing of a sequence of repairs.
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One classification of renewal processes that is useful in the study of socket models concerns the

coefficient of variation γ = σ/µ of the distribution of the times between failures. This classification

divides renewal processes into underdispersed and overdispersed processes.

Definition 6.5 A renewal process is underdispersed (overdispersed) if the coefficient of variation

of the distribution of the times between failures is less than (greater than) 1.

Figure 6.12 displays realizations of three different renewal process. The first process is under-

dispersed because the coefficient of variation of the distribution of the time between failures is less

than 1. An extreme case of an underdispersed process is one in which the coefficient of variation of

the distribution of the time between failures is 0 (that is, a deterministic failure time for each item

because σ/µ = 0 implies that σ = 0), which would yield a deterministic renewal process. The un-

derdispersed process is much more regular in its failure times; hence, it is easier to determine when

it is appropriate to replace an item if failure is catastrophic or expensive. A design engineer’s goal

might be to reduce the variability of the lifetime of an item, which in turn decreases the coefficient

of variation. Reduced variation with increased mean is desirable for most items. The second axis

in Figure 6.12 corresponds to a realization of a renewal process that has a coefficient of variation of

the distribution of the time between failures equal to 1. This case sits in between the underdispersed

and overdispersed cases. There is more clumping of failures than in the underdispersed case. The

third axis corresponds to a realization of an overdispersed distribution. There is extreme clumping

of failures here, and many failures occur soon after an item is placed into service. Fortunately, the

overdispersed case occurs less often in practice than the underdispersed case.

t

t

t

0
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0 γ < 1

γ = 1

γ > 1
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Figure 6.12: Classifying renewal processes based on the coefficient of variation.

Example 6.12 Consider a renewal process with Weibull(λ, κ) time between failures.

Classify the renewal processes into the underdispersed and overdispersed cases.

The shape parameter κ partitions the renewal process into the various cases. When

κ > 1, the process is underdispersed; when κ < 1, the process is overdispersed; when

κ = 1, the process reduces to a Poisson process because the time between failures is

exponential(λ). The sequence of failures depicted on the time axes in Figure 6.12 were

generated by Monte Carlo simulation using Weibull(λ, κ) times between failures. The
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top axis corresponds to κ= 5 (an IFR time between failures distribution) and the pattern

of failures reflects the relatively small standard deviation of the time between failures

distribution. The middle axis corresponds to κ = 1 (the exponential special case of

the Weibull distribution), so this is a realization of a Poisson process. This case is the

dividing line between an underdispersed renewal process and an overdispersed renewal

process. There is more clumping of failures than in the underdispersed case because

the mode of the exponential distribution is zero. A replacement policy is ineffective

in this case because of the memoryless property of the exponential distribution. The

bottom axis corresponds to κ = 1/2 (a DFR time between failures distribution), and

the clumping of failures becomes even more extreme. On all three axes, there are nine

failures, but the pattern of failures differs significantly for the various values of κ.

Two measures of interest that often arise when using a renewal process are the distribution of Tn,

the time of the nth failure, and the distribution of the number of failures by time t. In terms of

the distribution of Tn, there are simple results for the expected value and population variance of

Tn, but the tractability of the distribution of Tn depends on the tractability of the distribution of the

times between failures. Since Tn = X1 +X2 + · · ·+Xn, and the Xi’s are mutually independent and

identically distributed, the expected value and population variance of Tn are

E[Tn] = nE[X ] and V [Tn] = nV [X ],

where E[X ] and V [X ] are the expected value and population variance of the time between failures.

The survivor function for the time of the nth failure, STn(t) = P(Tn ≥ t), can be found as a function

of the distribution of the Xi’s and is tractable only for simple time between failure distributions.

The distribution of the number of failures by time t can be calculated by finding the values of

the mass function P
(
N(t) = n

)
for all values of n. Since exactly n failures occurring by time t is

equivalent to Tn being less than or equal to t and Tn+1 being greater than t,

P
(
N(t) = n

)
= P(Tn ≤ t < Tn+1)

= P(Tn+1 ≥ t)−P(Tn ≥ t)

= STn+1
(t)−STn(t)

for n = 0, 1, 2, . . . and t > 0, and continuous time between failures distribution. Although using the

exponential distribution as the time to failure for each item reduces a renewal process to a Poisson

process, it will be used in the next example because it is one of the few distributions for which these

measures can easily be calculated.

Example 6.13 Consider again a socket model for which the time to failure of each light

bulb inserted in the socket has an exponential distribution with failure rate λ. Find the

expected value and the population variance of Tn, the survivor function of Tn, and the

probability mass function of the number of failures by time t.

First, since each item has population mean time to failure E[X ] = 1/λ, and population

variance of the time to failure V [X ] = 1/λ2, the expected value and the population

variance of the time of failure n are

E[Tn] = nE[X ] =
n

λ
and V [Tn] = nV [X ] =

n

λ2

for n = 0, 1, 2, . . . . Since Tn is the sum of independent and identically distributed

exponential random variables, it has the Erlang distribution with survivor function

STn(t) =
n−1

∑
k=0

(λt)k

k!
e−λt t > 0
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for n = 1, 2, . . . . To find the probability mass function for the number of failures by

time t,

P
(
N(t) = n

)
= STn+1

(t)−STn(t)

=
n

∑
k=0

(λt)k

k!
e−λt −

n−1

∑
k=0

(λt)k

k!
e−λt

=
(λt)n

n!
e−λt

for n = 0, 1, 2, . . . , and t > 0, which is recognized as the Poisson distribution with rate

parameter λt. This simplest case of a renewal process corresponds to a Poisson process.

A more mathematically complicated situation occurs when the gamma distribution is used to

model the time between failures.

Example 6.14 Consider a socket model with a single socket in which the lifetime of

each light bulb to be placed in the socket has the gamma distribution with scale param-

eter λ = 0.001 and shape parameter κ = 5.2, where time is measured in hours. Find the

probability that three light bulbs are sufficient to light the system for 8760 hours (one

year).

Since the mean of the gamma distribution is κ/λ, each light bulb has mean time to

failure µ = 5.2/0.001 = 5200 hours. Thus, the expected time of failure number n = 3

is E [T3] = 3E[X ] = 3(5200) = 15,600 hours, or almost two years. This preliminary

analysis indicates that the probability that three bulbs will be sufficient for one year of

operation should be fairly high.

A result that can be used to determine the exact probability is that the sum of n indepen-

dent and identically distributed gamma random variables also has a gamma distribution.

This result is most easily derived by using the moment generating function approach to

determine the distribution of the sum of independent random variables. Let the random

variable X have a gamma distribution with parameters λ and κ. The moment generating

function of X is

MX (s) = E
[
esX
]

=
∫ ∞

0
esx λ

Γ(κ)
(λx)κ−1e−λx dx

=
λκ

Γ(κ)

∫ ∞

0
xκ−1e−x(λ−s) dx

=
λκ

Γ(κ)

∫ ∞

0

(
u

λ− s

)κ−1

e−u 1

λ− s
du

=

(
λ

λ− s

)κ
1

Γ(κ)

∫ ∞

0
uκ−1e−u du

=

(
λ

λ− s

)κ

for all s < λ. Since X1, X2, . . . , Xn are mutually independent and identically distributed

gamma random variables, the moment generating function of Tn = X1 +X2 + · · ·+Xn is
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the product of n of these moment generating functions:

MTn(s) =
n

∏
i=1

MXi
(s) =

(
λ

λ− s

)nκ

for all s < λ. Thus, if X1, X2, . . . , Xn are independent and identically distributed gamma

random variables with parameters λ and κ, then the probability distribution of their sum

has the gamma distribution with parameters λ and nκ. For the problem at hand, the

time to the third failure, T3, has a gamma distribution with scale parameter λ = 0.001

and shape parameter nκ= (3)(5.2) = 15.6. To find the probability that T3 exceeds 8760,

P(T3 ≥ 8760) = ST3
(8760) = 1− I(15.6, 8.76) = 0.9771,

where I is the incomplete gamma function. The R statement below computes this prob-

ability using the pgamma function, which returns the cumulative distribution function of

a random variable having the gamma distribution.

pgamma(15.6, 8.76)

This completes the brief introduction to renewal processes. The final subsection introduces

nonhomogeneous Poisson processes.

6.3.3 Nonhomogeneous Poisson Processes

The third and final point process introduced here is the nonhomogeneous Poisson process. There are

at least four reasons that a nonhomogeneous Poisson process should be considered for modeling the

sequence of failures of a repairable item.

1. A homogeneous Poisson process is a special case of a nonhomogeneous Poisson process.

2. The probabilistic model for a nonhomogeneous Poisson process is mathematically tractable.

3. The statistical methods for a nonhomogeneous Poisson process are mathematically tractable.

4. Unlike a homogeneous Poisson process or a renewal process, a nonhomogeneous Poisson

process is able to model the failure times of improving and deteriorating items.

One disadvantage with both Poisson processes and renewal processes is that they assume that

the distribution of the time to failure for each item in a socket model with a single socket is identical.

This means that it is not possible for the item to improve or deteriorate. A nonhomogeneous Poisson

process is another generalization of the homogeneous Poisson process for which the stationarity

assumption is relaxed. Instead of a constant rate of occurrence of failures λ, as in a homogeneous

Poisson process, this rate varies over time according to λ(t), which is often called the intensity

function. The cumulative intensity function is defined by

Λ(t) =
∫ t

0
λ(τ)dτ

and is interpreted as the expected number of failures by time t. These two functions are generally

used to describe the probabilistic mechanism governing the failure times of the item, as opposed to

the five distribution representations used to describe the time to failure of nonrepairable items.
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Definition 6.6 A counting process is a nonhomogeneous Poisson process with intensity function

λ(t)≥ 0 defined on t > 0 if

• N(0) = 0,

• the process has independent increments, and

• the probability of exactly n events occurring in the interval (t1, t2] is given by

P
(
N(t2)−N(t1) = n

)
=

[∫ t2

t1

λ(t)dt

]n

e
−
∫ t2

t1

λ(t)dt

n!

for n = 0, 1, 2, . . . .

Thus, if the intensity function is decreasing, the item is improving; if the intensity function is

increasing, the item is deteriorating. For nonhomogeneous Poisson processes, the times between

failures are neither independent nor identically distributed. The time to the first failure in a non-

homogeneous Poisson process has the same distribution as the time to failure of a nonrepairable

item with hazard function h(t) = λ(t). Subsequent failures follow a conditional version of the inten-

sity function that does not depend on previous values of λ(t). The times between these subsequent

failures do not necessarily follow any of the probability distributions (for example, the Weibull dis-

tribution) used in survival analysis.

Since the independent increments property has been retained from the definition of a homoge-

neous Poisson process, this model assumes that previous failure times do not affect the future failure

times of the item. Although this may not be exactly true in practice, the nonhomogeneous Poisson

process model is still valuable because it is mathematically tractable and allows for improving and

deteriorating systems. In addition, parameter estimation for the nonhomogeneous Poisson process

model is simple, which is another attractive feature.

Example 6.15 Consider a nonhomogeneous Poisson process with intensity function

λ(t) = κλκtκ−1 t > 0,

where λ and κ are positive parameters. This intensity function can be recognized as the

same functional form as the hazard function for a Weibull random variable with scale

parameter λ and shape parameter κ, and is often referred to as a power law process. For

this intensity function, if κ < 1, the item is improving because the intensity function is

decreasing, if κ > 1, the item is deteriorating because intensity function is increasing,

and if κ = 1, it reduces to a homogeneous Poisson process with rate parameter λ. Find

the probability that there will be exactly n failures by time t. Also, if failure n occurs at

time tn, find the conditional survivor function for the time to the next failure.

Using Definition 6.6, the number of failures by time t, N(t), has probability mass func-

tion

P
(
N(t) = n

)
=

[∫ t

0
λ(τ)dτ

]n

e
−
∫ t

0
λ(τ)dτ

n!
n = 0, 1, 2, . . .
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for t > 0. Using the fact that Λ(t) =
∫ t

0
κλκτκ−1dτ = (λt)κ for t > 0,

P
(
N(t) = n

)
=

(λt)κn e−(λt)κ

n!
n = 0, 1, 2, . . .

for t > 0. Finding the survivor function for the time to the next failure involves con-

ditioning. Using independent increments, the fact that S(t) = e−H(t), and conditioning,

the conditional survivor function for the time to the next failure is

ST |T> tn(t) = e−(Λ(t)−Λ(tn)) = e−((λt)κ−(λtn)
κ) = e−λκ(tκ−tκ

n ) t > tn.

It was stated earlier that point process models are used in applications outside of reliability.

Figure 6.13 provides an example in which the event of interest is an arrival of a car to a drive-up

window at a fast food restaurant rather than the usual failure time of a repairable item. The intensity

function λ(t) models the arrival rate to the drive-up window, which has peaks at breakfast, lunch,

and dinner times. The highest peak is at lunch when the intensity function is about 6 cars per hour.

Each × along the time axis denotes an arrival time of a car to the drive-up window, and the clusters

during the three meal times are apparent in the realization. The height of the intensity function is

proportional to the probability of an arrival rate in the next instant. As was the case before, the arrival

time values will vary from one realization to the next for the fixed intensity function illustrated in

Figure 6.13.

The renewal process and the nonhomogeneous Poisson process are the two most popular point

process models for modeling the underlying probability mechanism associated with the failure times

of a repairable item. The two models are at the extremes of the repair action associated with a

repairable item with a negligible repair time. One can think of the failures and repairs in a renewal

process as perfect repairs, in which the item is completely restored to a new item. One can think of

the failures and repairs in a nonhomogeneous Poisson process as minimal repairs, in which the item

continues along the same intensity function track that was in play prior to the failure. The terms

perfect repair and minimal repair for an item (that is, a component or a system) are defined next.
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Figure 6.13: Intensity function for arrivals to a fast food restaurant drive-up window.
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Definition 6.7 A perfect repair corresponds to a repair action that returns a failed item to a like

new state in terms of its lifetime distribution.

There are two ways to think about a perfect repair. One way to perform a perfect repair is to

discard the failed item and simply replace it with a new item. This is the case with replacement or

socket model. A second way to perform a perfect repair is to perform the repair in a manner which

makes the item as good as new with respect to its lifetime distribution. Regardless of which of these

options occurs in practice, a renewal process is the appropriate probabilistic model to capture the

time evolution of the repairable item. If all repairs on an item are perfect, then the times between

failure are mutually independent and identically distributed random variables.

Definition 6.8 A minimal repair corresponds to a repair action that restores a failed item to the

same condition as it was just prior to the failure in terms of its future risk of failure.

A nonhomogeneous Poisson process model can provide a reasonable underlying probability

model for the failure sequence for a series system comprised of hundreds, or even thousands of

components with roughly equal reliabilities. A component which fails and is replaced or repaired

leaves the system in nearly the same condition as it was just prior to the failure. The failed compo-

nent is such a small part of the overall system that using a minimal repair is appropriate.

Figure 6.14 shows the relationship between the three point process models that have been pre-

sented in this section. A renewal process is defined by the probability distribution of the time be-

tween events. These events are failures in reliability modeling. This probability distribution can be

defined by any of the five lifetime distribution representations defined in Section 4.1. Figure 6.14

uses the hazard function to define the probability distribution of the time between failures. A renewal

process collapses to a homogeneous Poisson process with positive rate λ when

h(t) = λ t > 0.

A nonhomogeneous Poisson process can be defined by the intensity function λ(t) or the cumulative

intensity function Λ(t). Figure 6.14 uses the intensity function λ(t) to define the probabilistic mech-

anism governing the failure times. A nonhomogeneous Poisson process collapses to a homogeneous

Poisson process with positive rate λ when

λ(t) = λ t > 0.

Renewal
Process

h(t)
Perfect Repairs

Nonhomogeneous
Poisson Process

λ(t)
Minimal Repairs

Homogeneous
Poisson Process

λ

h(t) = λ λ(t) = λ

Figure 6.14: Relationships between point processes.
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The hazard function was introduced in Section 4.1 as a rate of failure using limits. The condi-

tional intensity function can be defined in a similar fashion. Let H t− represent the history of an item

from time zero until just prior to time t. The most informative way to think of H t− is to consider it

a record of the failure times associated with the counting process N(t) for all time values from zero

until just prior to t. Given this history, we can define the conditional intensity function as

λ(t |H t−) = lim
∆t→0

P(failure in the interval (t, t +∆t] |H t−)

∆t
.

The conditional intensity function for an item having independent and identically distributed

times to failure in the IFR class and perfect repairs is illustrated in Figure 6.15. This corresponds

to the risk profile associated with one realization of a renewal process. Each × on the time axis

corresponds to a failure and repair. Each failure and repair restores the item to a like new state, so

the conditional intensity function evolves after the failure like that of a new item.

The opposite extreme in terms of repair action is illustrated in Figure 6.16. This corresponds to

the risk profile associated with one realization of a nonhomogeneous Poisson process. Each × on

the time axis corresponds to a failure and a minimal repair which occurs in a negligible period of

time. Each failure and minimal repair takes the item to the same condition as it was just prior to

the failure in terms of its future risk. So each failure does not change the trajectory of λ(t), which

corresponds to a deteriorating item in this illustration.

There have been several schemes proposed for interpolating between renewal processes (to

model perfect repairs) and nonhomogeneous Poisson processes (to model minimal repairs). One

such scheme assigns a probability p to replacement of the entire item with a new item, which cor-

responds to a perfect repair, so that replacement or repair of just one of many components, which

corresponds to a minimal repair, occurs with probability 1− p. The extreme case of p = 0 corre-

sponds to a nonhomogeneous Poisson process; the extreme case of p = 1 corresponds to a renewal

process.

One final topic, superpositioning, can be applied to any of the three point process models con-

sidered thus far. Poisson, renewal, and nonhomogeneous Poisson processes are useful for modeling
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Figure 6.15: Conditional intensity function for perfect repairs.
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Figure 6.16: Conditional intensity function for minimal repairs.

the failure pattern of a single repairable item. In some situations it is important to model the failure

pattern of several items simultaneously. Examples include a job shop with k machines, a military

mission with k weapons, or an item failing from one of k causes of failure. Figure 6.17 shows a super-

position of the failure times of k = 3 items. The bottom axis contains the superposition of the three

point process realizations on the top three axes. The superposition of several point processes is the

ordered sequence of all failures that occur in any of the individual point processes. An important re-

sult that applies to superpositions of nonhomogeneous Poisson processes is: if λ1(t), λ2(t), . . . , λk(t)
are the intensity functions for k independent items, then the intensity function for the superposition

is λ(t) = ∑k
i=1 λi(t) for t > 0. This result is similar to the result concerning the hazard functions for

net lives in competing risks.

t

t

t

t

0

××× ×××××× ×××××

×××
××××××
×××××

Figure 6.17: Superposition of three point processes.

This ends the presentation of the three point process models considered here: Poisson processes,

renewal processes, and nonhomogeneous Poisson processes. The first two models are only capable

of modeling socket models for which the time between failures has a common distribution, whereas

nonhomogeneous Poisson processes are capable of modeling improving and deteriorating systems,

which are more common in practice. All three of these models are appropriate when there is a

negligible down time (that is, failure and return to service occur at essentially the same point in

time).
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6.4 Exercises

6.1 The failure times of n = r = 20 electric generators (in hours) placed on an accelerated life

test are

7.5 121.5 279.8 592.1 711.5 848.2 1051.7 1425.5 1657.2

1883.6 2311.1 2951.2 5296.6 5637.9 6054.3 6303.9 6853.7

7201.9 9068.5 10,609.7,

as given on page 101 of Zacks, S., Introduction to Reliability Analysis: Probabilistic Models

and Statistical Methods, Springer–Verlag, Inc., New York, 1992.

(a) Assuming that the time to failure of the population of generators at the accelerated

conditions has the exponential distribution, find a point and 95% confidence interval

estimate for the probability of survival to 6000 hours.

(b) Using nonparametric methods, find a point and 95% confidence interval estimate for

the probability of survival to 6000 hours under the accelerated conditions.

6.2 Show that the product–limit estimate reduces to the survivor function estimate for a complete

data set when the failure times are distinct.

6.3 Show that the diagonal elements of the observed information matrix associated with the

product–limit estimate are

[
−∂2 ln L

(
h(y1), h(y2), . . . , h(yk)

)

∂h(yi)2

]

h(yi)=di/ni

=
n3

i

di(ni−di)

for i = 1, 2, . . . , k.

6.4 Find a point estimate and an approximate two-sided 95% confidence interval estimate for the

probability that the remission times exceed 20 weeks for the control and treatment groups of

the 6–MP data set from Example 5.6. Are there any conclusions that can be drawn from the

two confidence intervals concerning the drug 6–MP’s influence on remission times exceeding

20 weeks?

6.5 Thirteen aircraft components are placed on a life test that is discontinued after the tenth

failure. The failure times, in hours, are

0.22 0.50 0.88 1.00 1.32 1.33 1.54 1.76 2.50 3.00,

as given on page 43 of Crowder, M.J., Kimber, A.C., Smith, R.L., and Sweeting, T.J., Statis-

tical Analysis of Reliability Data, Chapman and Hall, New York, 1991.

(a) Assuming that the time to failure of the components in the population has the exponen-

tial distribution, find a point and 95% confidence interval estimate for the probability

of survival to 1.6 hours.

(b) Using nonparametric methods, find a point and 95% confidence interval estimate for

the probability of survival to 1.6 hours.
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6.6 The survival times (in weeks) of patients with acute myelogenous leukemia in the nonmain-

tained group are

5, 5, 8, 8, 12, 16∗, 23, 27, 30, 33, 43, 45,

where the ∗ superscript signifies a right-censored observation, as given on page 49 of Miller,

R., Survival Analysis, John Wiley & Sons, Inc., New York, 1981. Give a nonparametric

estimator of the expected survival time of a patient with acute myelogenous leukemia in the

nonmaintained group.

6.7 The failure times (in minutes) of electrical insulating fluid subjected to constant voltages

below are from Nelson, W. B., “Graphical Analysis of Accelerated Life Test Data with the

Inverse Power Law Model,” IEEE Transactions on Reliability, Vol. R–21, pp. 2–11, 1972.

Voltage Failure time

(kV) (minutes)

28 68.85 426.07 110.29 108.29 1067.6

30 17.05 22.66 21.02 175.88 139.07 144.12 20.46 43.40 194.90

47.30 7.74

32 0.40 82.85 9.88 89.29 215.10 2.75 0.79 15.93 3.91

0.27 0.69 100.58 27.80 13.95 53.24

(a) Plot a nonparametric survivor function estimate for each of the three voltage levels on

a single set of axes.

(b) Fit the accelerated life model with an exponential baseline to the failure times. Re-

port the maximum likelihood estimators and 95% confidence intervals (based on the

observed information matrix) for all unknown parameters. Also, predict the mean time

to failure at 26 kV voltage.

6.8 The lifetimes, in days, on n = 10 identical pieces of equipment are

2 72∗ 51 60∗ 33 27 14 24 4 21∗,

as given in Lawless, J.F., Statistical Models and Methods for Lifetime Data, 2nd ed., John

Wiley & Sons, Inc., Hoboken, NJ, 2003. The asterix denotes a right-censored observation.

Assume that a random right censoring scheme is appropriate.

(a) Find a nonparametric point estimate for S(25).

(b) Find a nonparametric 95% confidence interval for S(25).

(c) Use the relationship H(t) = − ln S(t) to determine a point estimate for H(25) using

your solution to part (a).

(d) One other most popular technique for estimating H(t) is the Nelson–Aalen estimator

Ĥ (t) = ∑
j |y j≤t

d j

n j

,

where y j, d j, and n j have the same meaning as in the Kaplan–Meier product–limit

estimate. Give a point estimate for H(25) using the Nelson–Aalen estimator.

(e) Give a point estimate for S(25) using the Nelson–Aalen estimator.
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6.9 Find all possible values of the Kaplan–Meier product–limit estimate for the survivor function

for n distinct failure and censoring values for n = 1, 2, . . . , 10 and display these values in a

graphic. Research in this area has been conducted by Qin, Y., Sasinowska, H., Leemis, L.,

“The Probability Mass Function of the Kaplan–Meier Product–Limit Estimator,” Forthcom-

ing, The American Statistician, 2023.

6.10 One nonparametric technique for estimating the cumulative hazard function H(t) is the

Nelson–Aalen estimator:

Ĥ (t) = ∑
j |y j≤t

d j

n j

,

where y j, d j, and n j have the same meaning as in the Kaplan–Meier product–limit estimate.

The observed failure times (in hours) of n = 4156 integrated circuits placed on a test that

was terminated at 1370 hours given on page 5 of Meeker, W.Q., Escobar, L.A., Pascual,

F.G., Statistical Methods for Reliability Data, 2nd ed., John Wiley & Sons, Inc., New York,

2022 are given in the table below. The ordered observed failure times are arranged in a

row-wise fashion.

0.10 0.10 0.15 0.60 0.80 0.80 1.20

2.50 3.00 4.00 4.00 6.00 10.00 10.00

12.50 20.00 20.00 43.00 43.0 48.00 48.00

54.00 74.00 84.00 94.00 168.00 263.00 593.00

Give a point estimate for H(0.5) using the Nelson–Aalen estimator.

6.11 Calculate the test statistic and the p-value for the log-rank test associated with the leukemia

remission times in the control and treatment groups for the clinical trial involving 6–MP.

6.12 The remission times (in weeks) for 40 leukemia patients, with 20 patients selected at random

and assigned to treatment A:

1, 3, 3, 6, 7, 7, 10, 12, 14, 15, 18, 19, 22, 26, 28∗, 29, 34, 40, 48∗, 49∗

and the other 20 patients assigned to treatment B:

1, 1, 2, 2, 3, 4, 5, 8, 8, 9, 11, 12, 14, 16, 18, 21, 27∗, 31, 38∗, 44.

are given on page 346 of Lawless, J.F., Statistical Models and Methods for Lifetime Data,

2nd ed., John Wiley & Sons, Inc., Hoboken, N.J., 2003. Conduct the log-rank test to compare

the survivor functions for the two populations and report the appropriate p-value.

6.13 Three independent risks act on a population. The net lives, X j, are exponential(λ j), for

j = 1, 2, 3. Find

(a) q j(a, b),

(b) Q j(a, b),

(c) π j,

for j = 1, 2, 3.
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6.14 A component can fail from one of two identifiable causes. Ken collects a large number of

failures of both types and determined that

π1 = 0.73 π2 = 0.27

and the crude lives have probability density functions

fY1
(t) = 1 0≤ t ≤ 1

and

fY2
(t) = θtθ−1 0≤ t ≤ 1

for a positive parameter θ. Find the hazard functions of the net lives, X1 and X2, assuming

that the risks are independent.

6.15 In a competing risks model, the distributions of the k crude lifetimes are exponential with

identical parameter λ. In addition, the probabilities of failure from each of the risks (the π j’s)

are known. Assuming that the net lives are independent, find

(a) the mean lifetime of the item,

(b) the mean lifetime of the item if risk j is eliminated, for j = 1, 2, . . . , k.

6.16 Assume that the following are known in a competing risks model with two causes of failure:

π1 =
1

4
π2 =

3

4
SY1

(t) = e−αt SY2
(t) = e−(λt)κ

for t ≥ 0. Assuming that the risks are independent, find

(a) the hazard function for the first net lifetime,

(b) an expression for E[T ],

(c) an expression for the expected time to failure if risk 2 is removed.

The solutions to some parts of this problem might not be closed form.

6.17 If X1, X2, . . . , Xk are independent net lives and X j ∼ exponential (λ j) for j = 1, 2, . . . , k, find

π j = P
(
X j = min{X1, X2, . . . , Xk}

)
for j = 1, 2, . . . , k.

6.18 Beth considers independent net lives X1 and X2, where X j ∼Weibull(λ j, κ) for j = 1, 2. Find

π1 = P
(
X1 = min{X1, X2}

)
.

6.19 Rick uses a competing risks model with two independent risks C1 and C2. The net lifetime

for risk 1 has a log logistic distribution with parameters λ1 and κ1. The net lifetime for risk

2 has a log logistic distribution with parameters λ2 and κ2. Write expressions for π1 and π2.

6.20 Let T be the lifetime of an item that is subject to three independent competing risks, for

which the hazard functions for the crude lives are

hY1
(t) =

a

t +α
t ≥ 0,

hY2
(t) = bt t ≥ 0,

and

hY3
(t) = λ t ≥ 0

for positive parameters a, α, b, and λ. Given the values of π1, π2, and π3, give an expression

for the hazard function for the first net lifetime.
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6.21 Consider a competing risks model with k = 2 independent risks. The first net lifetime, X1,

has a Weibull distribution with parameters λ1 and κ1. The second net lifetime, X2, has a

Weibull distribution with parameters λ2 and κ2. Find the expected remaining lifetime for an

item that is operating at time t0. Simplify your answer as much as possible.

6.22 Consider a competing risks model with k = 2 risks. Let X1 be the net lifetime associated

with risk 1 and let X2 be the net lifetime associated with risk 2. The joint probability density

function of X1 and X2 is

f (x1, x2) = 1 (x1, x2) ∈ A,

where A is the triangular region determined by connecting the points (1, 2), (3, 2), and (3, 1)
in the (x1, x2) plane with lines.

(a) Find π1.

(b) Find the survivor function of T = min{X1, X2}.
6.23 In a competing risks model with k = 2 independent risks, give an expression for Q2(a, b),

where both net lives have Weibull distributions, that is, X1 has a Weibull distribution with

parameters λ1 and κ1 and X2 has a Weibull distribution with parameters λ2 and κ2. Evaluate

Q2(a, b) to four decimal places when a = 1, b = 2, λ1 = 3, κ1 = 1/3, λ2 = 4, and κ2 = 1/4.

6.24 Consider the lifetime T having the bi-Weibull distribution with survivor function

S(t) = e−(λ1t)κ1−(λ2t)κ2
t ≥ 0,

where λ1, λ2, κ1, and κ2 are positive parameters. The distribution has a bathtub-shaped

hazard function if min{κ1, κ2}< 1 < max{κ1, κ2}. Find the time value where h′(t) = 0 for

a bi-Weibull distribution with a bathtub-shaped hazard function.

6.25 Bonnie models the lifetime of an automobile using two dependent competing risks. The first

risk is from accidents and the second risk is from all other causes. The joint survivor function

of the two net lives associated with the two risks on their support is

S(x1, x2) = (1− x1/2)(1− x2/2)
(
1+ x2

1x2/8
)

0 < x1 < 2, 0 < x2 < 2,

where x1 and x2 are the odometer readings measured in hundreds of thousands of miles.

(a) Find the marginal survivor function for X1.

(b) Find the joint probability density function of the net lifetimes.

(c) Find π2.

(d) Find Q2(0.5, 1.2).

(e) Find the expected lifetime of the automobile.

(f) Perform a Monte Carlo experiment to support your solution to part (e).

6.26 The formula for the hazard function of the ith net life in a competing risks model is

hXi
(t) =

1

S(t, t, . . . , t)

[−∂S(x1, x2, . . . , xk)

∂xi

]

x1 =x2 = ···=xk = t

for t ≥ 0 and i = 1, 2, . . . , k. Find hX1
(t) for k = 2 risks and joint survivor function

S(x1, x2) = e−λ1x1−λ2x2−λ3x1x2 x1 ≥ 0, x2 ≥ 0,

for λ1 > 0, λ2 > 0, and λ3 > 0.
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6.27 An item is subject to three competing risks with the associated three independent net life-

times: X1 ∼Weibull(1, 2), X2 ∼ exponential(1), and X3 ∼Weibull(1, 3). Write computer

code in a language of your choice to provide the numerical methods necessary to compute

(a) the mean time to failure of the item,

(b) the mean time to failure of the item with each of the risks eliminated individually.

In addition, calculate the mean of each net lifetime and provide a plausible explanation of

why the net lifetime with the largest mean corresponds to the risk that has the greatest impact

on E[T ] when it is eliminated.

6.28 An item can fail from one of two competing risks. The first net lifetime is associated with

accidents and is modeled by X1 ∼ exponential(λ). The second net lifetime is associated with

wear out and is modeled by the random variable X2 with hazard function

hX2
(t) = βt t ≥ 0,

for β > 0. The net lifetimes are independent random variables.

(a) Give an expression for the mean time to failure of the item; that is, find E[T ], where

T = min{X1, X2}. This expression will not be in closed form.

(b) Give an expression for π1. This expression will also not be in closed form.

(c) Use numerical methods to calculate the two quantities given in parts (a) and (b) to seven

digits when λ = 2 and β = 1.

(d) Use Monte Carlo simulation to support your solutions in part (c).

6.29 A repairable item with negligible repair time fails according to a Poisson process with rate

λ = 0.001 failures per hour. Find the probability of two or fewer failures between 3000 and

6000 hours.

6.30 A repairable item with negligible repair time fails according to a renewal process with inter-

failure time having the gamma distribution with parameters λ and κ. Find the probability of

n or fewer failures between times 0 and c.

6.31 Verify that the derivative of the renewal equation is satisfied when the items in a socket model

have exponential lifetimes.

6.32 Consider a renewal process for which the times between failures have the Weibull distribu-

tion with scale parameter λ and shape parameter κ. Find the expected value and population

variance of the time of failure n for n = 1, 2, . . . .

6.33 A repairable item with negligible repair time fails according to a nonhomogeneous Poisson

process with intensity function λ(t) = 0.001+ 0.000001t failures per hour, for t > 0. Find

the probability of two or fewer failures between 3000 and 6000 hours.

6.34 For a nonhomogeneous Poisson process with power law intensity function

λ(t) = λκ(λt)κ−1 t > 0,

find the probability mass function for the number of events between times a and b.
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6.35 Consider an age replacement policy model for which items are replaced at failure or at time c,

whichever comes first. Assuming that the time to failure has the Pareto distribution with

parameters λ and κ, find the expected number of failures by time b. Assume that λ≪ c≪ b.

6.36 Two different maintenance procedures are to be compared for a repairable item: age replace-

ment and block replacement. Assume that the item has a lifetime that is a mixture of three

distributions: a Weibull distribution with λ= 0.01 and κ= 0.6 (with p1 = 0.05), an exponen-

tial distribution with λ = 0.002 (with p2 = 0.45), and a Weibull distribution with λ = 0.001

and κ = 3.0 (with p3 = 0.50). Assume that time is measured in hours.

(a) Calculate the theoretical mean lifetime of the item.

(b) Use Monte Carlo simulation to compare the age replacement and block replacement

maintenance strategies for the item with c = 1000 hours.

6.37 Georgie drives a car whose failure times are governed by a nonhomogeneous Poisson process

with power law cumulative intensity function

Λ(t) = (λt)κ t > 0,

where t is measured in miles. If the car has 100,000 miles on the odometer, find the proba-

bility that Georgie can make a 1000-mile trip without a failure.

6.38 Bedrock Motors, Inc. is introducing their new “Tyrano-Taurus Rex” automobile, complete

with a three-year warranty. Each Rex has a failure mechanism governed by a nonhomoge-

neous Poisson process with power law intensity function

λ(t) = λκκtκ−1 t > 0,

where t is time (in years), and λ and κ are positive parameters. If Fred, Wilma, Barney,

and Betty each buy a Rex, find the expected number of failures under warranty that Bedrock

Motors will experience for these four Rexes.

6.39 Cynthia is going camping. She takes along a flashlight which requires two batteries in order

to operate. Cynthia’s batteries each have an exponential time to failure with a mean of 1/λ. If

Cynthia takes five batteries with her (two batteries in the flashlight and three spare batteries),

what is the distribution of time that she will be able to use her flashlight? You may assume

that (a) her battery replacement time is negligible, (b) her flashlight bulb never fails, and

(c) she has a battery tester that allows her to determine which of the two batteries in the

flashlight has failed. Write a short paragraph on the reasonableness of the assumption of

exponential battery lifetimes.

6.40 The event times T1, T2, . . . in a nonhomogeneous Poisson process with cumulative intensity

function Λ(t) can be simulated with

Ti = Λ−1(Ei)

for i = 1, 2, . . . , where E1, E2, . . . are the event times in a unit homogeneous Poisson pro-

cess. Use this result to simulate the event times in a nonhomogeneous Poisson process with

cumulative intensity function Λ(t) = t2 for 0< t < 2. Provide convincing numerical evidence

that you have correctly implemented the algorithm by conducting a Monte Carlo simulation

experiment to estimate the number of events that have occurred by time t = 1.5.
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6.41 Consider a nonhomogeneous Poisson process with intensity function λ(t) and cumulative

intensity function Λ(t) defined on the time interval 0 < t < s, where s is a prescribed, fixed,

positive real number. Define the scaled intensity function as

λ⋆(t) =
λ(t)

Λ(s)
0 < t < s.

(a) Show that

∫ s

0
λ⋆(t)dt = 1.

(b) Find the functional forms of λ⋆(t) for the following intensity functions:

• λ(t) = λ for 0 < t < s,

• λ(t) = κλκtκ−1 for 0 < t < s,

• λ(t) = λκ(λt)κ−1

1+(λt)κ for 0 < t < s,

for positive parameters λ and κ.

6.42 Barbara models the failure times of a digital camera by a nonhomogeneous Poisson process.

Previous data has revealed that the intensity function for the times of warranty claims is

well-modeled by the intensity function

λ(t) = 0.124t t > 0,

where time is measured in years. The camera company is considering offering three consec-

utive one-year term warranties: one upon purchase of the camera, a second after one year

of use, and the third after two years of use. In order to be competitive, the camera company

has decided to make no profit on their warranty policies. Give the three revenue-neutral pre-

miums that a customer has to pay for these warranties. Make the following assumptions to

make your calculations simpler.

• Each repair costs exactly $100.

• A repair is instantaneous.

• Ignore the effect of the time value of money.

• Each repair is a minimal repair in the sense that the repair to the camera does not reset

the intensity function to t = 0 but rather the camera’s age and intensity function are

unaltered by the repair.

6.43 A truck requires a particular nonrepairable electrical component that has an exponential life-

time with a positive failure rate λ failures per hour. A site supports a large fleet of n trucks,

each operating 24 hours a day, 7 days a week. A parts manager can make an order for spare

parts once a week. Assuming that the lead time is 0 (that is, immediate delivery), what is the

minimum number of parts that should be ordered up to each week to ensure that there is a

probability of at least 0.9999 that a truck is not down for lack of this particular nonrepairable

electrical component?

(a) Write a paragraph describing an algorithm that the parts manager should select an order

quantity.

(b) Apply the algorithm from part (a) for n = 20 trucks and λ = 0.001 failures per hour.

(c) Support your solution to part (b) via Monte Carlo simulation.
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6.44 Natasha models power failures in the state of Virginia during the month of March with a

Poisson process with rate λ = 7 failures per month. Given that there have been a total of

4 failures during the first 10 days of March, what is the probability that Virginia will have

more than 12 power outages during the entire month of March?

6.45 The number of annual failures of a particular brand of carburetor is X1 ∼ Poisson(λ1). The

number of annual failures of a second brand of carburetor is X2 ∼ Poisson(λ2). Assuming

that the number of annual failures of the two types of carburetors are independent and that

there are n annual failures observed for both types of carburetors (that is, X1 +X2 = n), what

is the probability distribution of the number of failures of the first carburetor during that

particular year?

6.46 Which repairable system described below is the best candidate for being an improving sys-

tem?

(a) Automobile.

(b) Wooden chair.

(c) Blender.

(d) Operating system.

(e) Lawn mower.

6.47 Consider the three-component series system of repairable components with four cold-standby

spares depicted below. All components are identical with failure rates 0.005 failure per hour.

In this particular system, the failure detection and switching times are negligible. There is a

repair facility with two repairmen. The repair rate is 0.01 repair per hour, and only one re-

pairman can work on a failed component at a time. Find the expected time to system failure

(that is, the expected time when there are fewer than three operating components) assuming

all components are new at t = 0.

series systemqueue for spares repair facility

failed components
queue for

three−component

repaired component flow
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TIME SERIES ANALYSIS



Chapter 7

Time Series Basics

This chapter defines a time series, describes where a time series falls with respect to other stochastic

processes, introduces some basic properties of time series, and introduces some basic operations that

can be applied to a time series. The presentation given here does not replace a full-semester class

on time series analysis, but does provide an elementary introduction to the topic. Each section ends

with a brief review of the computational tools available in R for time series analysis.

7.1 The Big Picture

A time series is a sequence of observed data values that are collected over time. The analysis of

a time series is an important sub-discipline of statistics and data science that has applications in a

variety of areas, including economics, business, science, and engineering.

Classical statistical methods rely on the assumption that the data values collected constitute a

simple random sample, which implies that data values are realizations of mutually independent

and identically distributed random variables. This is nearly universally not the case in time series

analysis because nearby observations collected over time tend to be correlated. Special probability

models and associated statistical methods have been developed to account for this correlation. When

the focus is on the correlation between observations in the time series, analysis tools from the time

domain are employed. When the focus is on the periodic behavior in the time series, analysis tools

from the frequency domain are employed. We begin our exploration of time series with a subsection

containing examples.

7.1.1 What is a Time Series?

The essence of a time series is best captured in a sequence of examples. The first example is the

monthly number of kilowatt hours required for powering the utilities in my home from 2011 through

2018. The second example is the monthly number of international airline passengers between 1949

and 1960. The third example is a realization of what is known as Gaussian white noise. The fourth

example is a realization of what is known as a random walk.

Example 7.1 The monthly number of kilowatt hours to power my home in Williams-

burg, Virginia between 2011 and 2018 are given in Table 7.1. Scan the table carefully

to see if you can determine any patterns in the time series. To provide more context,

here is a little more information about the house that my family lived in between 2011
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Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

2011 2731 1822 1189 1229 1260 2204 2518 1960 1032 788 1508 2279

2012 1667 1695 1220 872 1189 1164 1851 1789 1370 962 1716 1678

2013 2254 2362 1916 1293 1253 1635 1809 1562 1348 872 1290 2619

2014 3089 2217 2072 1270 1543 1642 1892 1688 1658 984 1609 2577

2015 2712 3363 1887 1494 1260 1127 1865 1741 1430 1588 1535 1626

2016 3004 2344 1969 1431 1456 2029 2294 2036 2173 1132 1834 1713

2017 2583 1810 1728 1145 1253 1696 1936 1875 956 1010 1751 1506

2018 3698 1767 1871 1270 966 1141 1463 1452 1484 1043 1378 1499

Table 7.1: Number of kilowatt hours to power a home.

and 2018. There were no additions made to the home during these years, nor were there

any new windows or insulation installed. The two-zone heat pump system that cools

the house in the summer and heats the house in the winter did not change during these

years. The smallest value in the series occurred in October 2011, when 788 kilowatt

hours were consumed. The largest value in the series occurred in January 2018, when a

spectacular 3698 kilowatt hours were consumed. January 2018 was one of the coldest

Januarys on record in Virginia, which caused the spike in kilowatt hours consumed. The

pipes in my neighbor’s house burst on one cold night in January. Viewed in table form,

the data just looks like a mass of numbers. But plotting the data on a time axis reveals

some of the patterns associated with the data values over time.

We use R to plot the observations over time. The first step is to get the time series

observations into an R vector. This can be done for a small data set with the c function.

The R statement below places the time series into the vector kwh in chronological order.

kwh = c(2731, 1822, 1189, ... , 1499)

Alternatively, if the data set is large and is contained in an external file, the scan func-

tion can be used to read the time series observations from the external file as

kwh = scan("kwh.d")

where kwh.d is a file in the current working directory that contains the energy con-

sumption values in kilowatt hour values, one per line.

The next step is to use the ts function to convert the data values in the vector kwh

to a time series object, which will allow us to use many of the R time series analysis

operators included in the base language.

kwh.ts = ts(kwh, frequency = 12, start = c(2011, 1))

Setting the frequency argument in ts to 12 lets R know that the data is collected

monthly. If the time series consisted of quarterly observations, for example, then

frequency would be set to 4. Setting the start argument to c(2011, 1) lets R know

that the time series starts in January of 2011. If the first observation in the time series

was sampled in March of 2013, for example, then start would be set to c(2013, 3).

The next step is to plot the time series, which can be done with the plot.ts function.
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plot.ts(kwh.ts)

The time series plot is shown in Figure 7.1. The horizontal axis is the time t, measured

in years. The tick marks on the horizontal axis correspond to the January observation

from each year. The vertical axis is the observed number of kilowatt hours consumed

at time t, denoted by xt . The points in the time series are connected with lines, but this

is largely a matter of personal taste.

Plotting the time series in this fashion is a critical initial step in the analysis of an

observed time series. Carefully examining this plot often informs the analyst of the type

of probability model that might be appropriate. Unusually small and large observations

should be carefully assessed to determine whether the xt value was recorded properly.

Shifts in the heights of the xt values might correspond to events associated with the

time series, such as installing a more efficient heat pump or adding a new room to

the house for kwh.ts. The plot also allows the analyst to inspect the time series for

any trends which correspond to gradual increases or decreases in the mean level of the

process. In addition, the plot allows the analyst to identify any seasonal components,

that is, fluctuations which are periodic in nature, that might be present in the time series.

Some time series have a change in the variability of the observations that may also be

identified in the plot.

There are some preliminary conclusions that can be drawn from the time series plot in

Figure 7.1. First, there does appear to be a 12-month cyclical pattern, that is surely

influenced by the annual outdoor temperature cycles. The peak energy consumption

typically occurs in January. This is consistent with the fact that heat pumps have diffi-

culty during the winter months because there is not much heat to pump, making them

inefficient. Second, after accounting for the annual cycle, there does not seem to be

any systematic increase or decrease to the amount of energy consumed over the 8-year

period. This is consistent with the fact that no energy improvements were made to the

home during the 8-year period. There is, of course, short-term change in the mean value

of the time series due to the seasonal component of the time series, but there does not
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Figure 7.1: Single home energy consumption (in kilowatt hours) 2011–2018.
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appear to be any long-term change in the mean value of the series. Third, there is signif-

icant random sampling variability associated with the time series. Although forecasts

could be made from this data set for values of the time series into the future, they would

be fairly imprecise predictions because of the random sampling variability. Some of

the variability could be explained by the average outdoor monthly temperature during

a particular month, with hot summer months and cold winter months requiring more

energy to cool and heat the home. Some of the variability could also be explained by

the fact that all months do not have the same number of days, which is easily accounted

for. Time series analysts refer to the random sampling variability that remains after all

of the signal has been accounted for as noise. The terms signal and noise are familiar

terms in fields such as statistics, data science, astrophysics, and electrical engineering.

The term noise is analogous to error from regression theory.

The home energy consumption example has shown that significant insight concerning a time

series can be gleaned by an understanding of the context associated with the time series and the

crucial step of making a simple plot of the data values over time. We will return to the home energy

consumption time series later for further analysis. The next time series illustrates the increase in

international airline travel between 1949 and 1960.

Example 7.2 The number of monthly international airline passengers, in thousands,

between January 1949 and December 1960 resides in an R built-in data set named

AirPassengers. All that is necessary to see the observations is to type the name

of the data set. (Notice that all R commands are case sensitive.)

AirPassengers

The output is shown below.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1949 112 118 132 129 121 135 148 148 136 119 104 118

1950 115 126 141 135 125 149 170 170 158 133 114 140

1951 145 150 178 163 172 178 199 199 184 162 146 166

1952 171 180 193 181 183 218 230 242 209 191 172 194

1953 196 196 236 235 229 243 264 272 237 211 180 201

1954 204 188 235 227 234 264 302 293 259 229 203 229

1955 242 233 267 269 270 315 364 347 312 274 237 278

1956 284 277 317 313 318 374 413 405 355 306 271 306

1957 315 301 356 348 355 422 465 467 404 347 305 336

1958 340 318 362 348 363 435 491 505 404 359 310 337

1959 360 342 406 396 420 472 548 559 463 407 362 405

1960 417 391 419 461 472 535 622 606 508 461 390 432

Again, scan these data values and look for patterns. The lowest number of international

air travelers was 104,000 in November 1949. The highest number of international air

travelers was 622,000 in July 1960. Unlike the previous example, it is not necessary to

convert AirPassengers from a vector to a time series object. Typing

str(AirPassengers)



370 Chapter 7. Time Series Basics

shows that AirPassengers is already a time series object, as shown below, by using

the str (structure) function in R.

Time-Series [1:144] from 1949 to 1961: 112 118 132 129 121 135 ...

This useful function tells you that there are 12×12= 144 observations in the time series

and lists the first few observations. By using the help function

help(AirPassengers)

additional information about the time series reveals that the observations are the number

of international airline passengers (in thousands) per month during 1949–1960. Using

the plot.ts function as in the previous example gives a graph of the time series over

time, which is given in Figure 7.2.

Unlike the previous time series, this time series displays a trend. The number of inter-

national airline passengers is increasing over time. Although the number of passengers

is increasing over time, it is not clear whether the increase is linear, quadratic, or ex-

ponential, and this would require further analysis to determine which functional form

provides the best model for the increase. As was the case with the time series from the

first example, there is also a 12-month cycle that is apparent in the data. The months of

July and August–when school is typically not in session–tend to be the busiest months.

The cyclic variation appears to be less sinusoidal in nature than the energy consumption

time series because there is not a sinusoidal external time series (outdoor temperature)

driving the international airline travel time series.
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Figure 7.2: International airline passengers (in thousands) 1949–1960.

Before describing a third example of a time series, we define some notation. A common conven-

tion in probability theory is to use uppercase letters, such as X and Y , to denote random variables.

When encountering a time series, it is often helpful to subscript the random variable denoting the

time series observations with t, for time, as Xt . So a time series consisting of the time-ordered ob-

servations X1, X2, . . . , Xn can be referred to in the abstract as {Xt}, which is more compact. But
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when referring to a specific realization of a time series (either collected as data or generated by a

computer via simulation) consisting of the time-ordered observations x1, x2, . . . , xn, we switch to the

lowercase version {xt}. This is why the vertical axes in Figures 7.1 and 7.2 were labeled xt for the

n = 96 home energy consumption observations from Example 7.1 and the n = 144 airline passenger

counts from Example 7.2. The notation developed in this paragraph will be apparent in the formal

definition of noise, which is defined next.

Instead of analyzing a realization of a time series as in the previous two examples, time series

analysts often formulate and fit a probability model for a time series. This process is roughly the

time series equivalent of fitting a univariate probability distribution, such as the normal distribution,

to a data set. We will again refer to the time series as {Xt} when constructing such a time series

model, but when the index values for t are not obvious by context, we add the additional parameter

T , which is the set of allowable values for t using {Xt , t ∈ T}. The set T will almost universally be

either the set of all integers (when it is necessary to consider observations with negative t values) or

the set of all nonnegative integers (when a time origin is necessary).

Most time series cannot be described by a deterministic function. In order to inject randomness

into the time series model, it has become common practice to define noise, which consists of random

shocks that will make a time series model stochastic rather than deterministic. Three varieties of

noise used by time series analysts are defined next. In some application areas, noise might be

referred to as error or disturbance.

Definition 7.1 The time series {Zt} that is a sequence of mutually independent random variables

Z1, Z2, . . . , Zn, each with population mean 0 and finite population variance σ2
Z , is known as white

noise, and is denoted by

Zt ∼WN
(
0, σ2

Z

)
.

The time series {Zt} that is a sequence of mutually independent and identically distributed random

variables Z1, Z2, . . . , Zn, each with population mean 0 and finite population variance σ2
Z , is known

as iid noise, and is denoted by

Zt ∼ IID
(
0, σ2

Z

)
.

The time series {Zt} that is a sequence of mutually independent and identically normally dis-

tributed random variables Z1, Z2, . . . , Zn, each with population mean 0 and finite population vari-

ance σ2
Z , is known as Gaussian white noise, and is denoted by

Zt ∼ GWN
(
0, σ2

Z

)
.

It is clear from Definition 7.1 that the three varieties of noise were defined from the more general

case to the more specific case so that

GWN ⊂ IID⊂WN.

All three varieties share common population means and variances:

E [Zt ] = 0 and V [Zt ] = σ2
Z .

These three probability models are, in some sense, the simplest possible time series models, although

time series that are well-modeled by the three models are very rare in practice. Rather than approx-

imating a real-world time series, they serve as building blocks for more realistic models. They are

often used to describe the probability distribution of error terms in a probability model for a time

series. In the next example, you will see a plot of a realization of Gaussian white noise.
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Example 7.3 White noise, iid noise, and Gaussian white noise are just sequences of

mutually independent observations centered around zero. A time series of n = 100

Gaussian white noise observations with population variance σ2
Z = 1, for example, can

be generated and placed in the vector x with the R command

x = rnorm(100)

The choice of n = 100 was arbitrary. Defining x after an optional call to set.seed(8)

to establish the random number stream, the values contained in the vector x can be

converted to a time series with the ts function and then plotted as in the two previ-

ous examples with the plot.ts function. The resulting plot is given in Figure 7.3.

The time series that consists of Gaussian white noise values has a minimum value of

x90 = −3.015 and a maximum value of x79 = 2.376. Of the 100 Gaussian white noise

values, 46 are positive and 54 are negative. Since the time series consists of mutually

independent and identically distributed random variables, x1, x2, . . . , x100 are of no use

in predicting the next value in the time series, x101.
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Figure 7.3: Time series plot of n = 100 Gaussian white noise observations.

Most time series that are encountered in practice do not behave in a fashion that approximates

white noise, iid noise, or Gaussian white noise. It is more often the case that the value of the

observation in the time series at time t will depend on the values of one or more of the previous

observations in the time series. One time series model that exhibits this dependency is known as a

random walk, which is defined and illustrated next.

Example 7.4 A time series that is a random walk {Xt} is generated by the recursive

equation

Xt = Xt−1 +Zt ,

where {Zt} is Gaussian white noise. This is to say that the current value of the time

series is the previous value of the time series plus a Gaussian white noise term. An

algorithm for generating a random walk {Xt} using Gaussian white noise is given in the
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pseudocode below. Indentation denotes nesting. In the second step, the initial observa-

tion, X1, is arbitrarily set to 0. This step could instead have been X1← µ, where µ is the

mean value of the time series. Alternatively, this start-up condition could instead have

been X1 ← Z1, which starts the time series at a random position rather than 0. These

two alternatives can be combined into X1← µ+Z1.

t← 1

X1← 0

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← Xt−1 +Zt

This algorithm for generating a random walk can be implemented in R using the code

given below. It is assumed that the population variance of the Gaussian white noise is

σ2
Z = 1.

set.seed(8)

n = 100

x = numeric(n)

time = 1

x[1] = 0

while (time < n) {

time = time + 1

z = rnorm(1)

x[time] = x[time - 1] + z

}

x = ts(x)

plot.ts(x)

The realization of the random walk stored in the vector x is plotted in Figure 7.4. The

time series associated with the random walk takes on a decidedly different pattern than

that of the Gaussian white noise from Figure 7.3. This realization of a random walk

looks quite a bit like some graphs of economic data, such as the daily closing price of a

stock or a stock market average. This makes sense because it might be the case that the

probability model for the value of the closing price of the stock might be expressed as

[today’s closing price] = [yesterday’s closing price]+ [noise]

which is equivalent to the random walk model

Xt = Xt−1 +Zt .

The random walk model does such a good job of approximating certain economic data

that it can be difficult to distinguish a real set of economic data from a realization of a

random walk generated by simulation.

As an illustration, Figure 7.5 contains graphs of three time series. One of these time

series is the first n = 100 closing values of the Dow Jones Industrial Average during the
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Figure 7.4: Time series plot of n = 100 observations from a random walk.

year 2000. The other two are random walks of length n = 100 with mutually indepen-

dent standard normal noise terms generated by simulation. Spend some time looking

the three graphs over and try to determine which of the three is the real time series val-

ues and which are the random walks generated in R via simulation. In order to make

your task of identifying the Dow Jones Industrial Averages more difficult, the labels on

the vertical axes have been suppressed, and the scales have been set to stretch from the

smallest value to the largest value in the time series.

If you are having a difficult time identifying the stock market average values, it is be-

cause the random walk, which is a very simple time series model, is adequately ap-

proximating the time evolution of the stock market average values. The real data corre-

sponding to the stock market average closes is in the top graph. The two lower graphs

in Figure 7.5 are random walks generated by Monte Carlo simulation.

In this section, we have encountered four examples of time series:

• a time series of n = 96 monthly home energy consumption observations,

• a time series of n = 144 monthly international airline passenger counts,

• a time series of n = 100 observations of Gaussian white noise, and

• two time series of n = 100 observations generated from a random walk, which were compared

to a time series consisting of n = 100 closing values for the Dow Jones Industrial Average.

R has built-in data structures and functions that are useful in the analysis of a time series. Additional

tools beyond just the plotting of a time series will be introduced subsequently.

It is often the case that we want to formulate a hypothetical population probability model for a

time series from observed values of a time series, such as using the random walk model to model the

Dow Jones Industrial Average closing values. This notion of formulating a population probability

model is completely analogous to using the normal distribution to approximate the adult heights of

Swedish women, for example. Once a tentative model has been identified, any unknown parameters
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Figure 7.5: Which time series of length n = 100 consists of real data?
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are estimated and goodness-of-fit tests are conducted. After a fitted probability model is accepted

as a reasonable population probability model to describe a time series, a wide variety of statistical

inference procedures can be employed. Broad categories of these statistical inference procedures

are listed and described in the next subsection.

7.1.2 Why Analyze a Time Series?

There is not one universal purpose for conducting a time series analysis. Some of the more common

purposes for conducting a time series analysis include description, explanation, prediction, simu-

lation, control, signal estimation, and segmentation. This list is not comprehensive, but certainly

covers the vast majority of the applications of time series analysis.

• Description. Time series analysis is often useful for describing the time evolution of the

observations in a time series. Plotting the values in the time series, as we have done in the four

examples, is a critical first step for observing trends, seasonal effects, extreme observations,

etc. The time series plot also allows an analyst to easily identify outliers in a time series and

decide whether these outliers were due to a coding error that occurred when inputting the time

series or just random extreme observations. More sophisticated techniques that are helpful in

describing a time series, such as the sample autocorrelation function to detect and quantify

serial dependence in the values of a time series, or the periodogram to detect and quantify

cyclic variation in the values of a time series, will be introduced subsequently.

• Explanation. It is often the case that one time series can be used to explain another time

series. The home energy consumption time series from Example 7.1, for instance, might be

partially explained by a time series of monthly average outdoor temperatures in Williamsburg,

Virginia in 2011–2018. Another time series that might partially explain the home energy

consumption values is the average number of hours of daylight in Williamsburg in a particular

month.

• Prediction. Certain application areas, such as quantitative finance and seismology, engage

in the analysis of a time series for the purpose of forecasting. The prediction of the next

value of the time series, or perhaps the value of the time series h time units into the future,

is often of interest. In quantitative finance, predicting the future value of a particular stock

based on its history to date might be of interest. In seismology, predicting the time of the next

earthquake might be of interest. Forecasted values are typically given by a point estimate and

an associated confidence interval that measures the precision of the point estimate.

• Simulation. Simulating a time series in a discrete-event simulation might be the ultimate goal.

A time series model that adequately mimics the real-world time series is critical in building a

valid simulation model. As an example of such a simulation, financial planners often turn to

simulation to estimate the probability that an individual or a married couple will have enough

money to pay their expenses in retirement. This simulation requires, among other elements,

a time series model that is capable of generating the annual inflation rate over the lifetimes

of the individual or couple. The generation of simulated future annual inflation rates is based

on building a time series model from previous annual inflation rates. Other elements, such as

annual stock market returns or interest rates, would require a separate time series model. The

values in these various time series are often correlated.

• Control. Time series analysis can be performed with the goal of controlling a particular vari-

able. Examples include keeping ball bearing diameters between two prescribed thresholds,
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keeping delivery times below a prescribed threshold, and keeping unemployment in an econ-

omy between two thresholds. A branch of quality control known as statistical process control

refers to the time series plots given earlier as control charts.

• Signal estimation. Certain application areas, such as astrophysics and electrical engineering,

are particularly interested in separating signal from noise. The techniques using spectral anal-

ysis, which is presented subsequently, are particularly adept at detecting cyclic variation in a

time series. Sometimes a very weak signal can be detected in a very noisy time series using

these techniques.

• Segmentation. Economists often find it useful to classify a period of economic activity as a

period of expansion or a period of contraction. They do so by breaking a time series into a

sequence of segments. The challenge here is to identify the boundary points at which times

the economy switches from expansion to contraction and then back again. Determining these

points in time in which the changes in the time series model occur is one of the goals of

segmentation.

A time series is just one instance of a process that evolves randomly over time known as a

stochastic process. The next section classifies stochastic processes based on whether time passes in

a discrete or continuous fashion, and whether the variable of interest at each time step is discrete or

continuous.

7.1.3 Where Does Time Series Analysis Fall in the Modeling Matrix?

The purpose of this subsection is to step back and consider where time series analysis fits in the

larger arena of stochastic processes. The common elements between the four time series we have

encountered so far are that time is measured as an integer (representing months for the first two time

series, the first 100 positive integers for the Gaussian white noise, and trading days for the stock

market averages) and the values of the time series observations are measured on a continuous scale.

So a time series is a sequence of observed data values, measured on a continuous scale, which are

collected over time. In most instances, the observations are taken at equally-spaced points in time.

The observations in the time series are denoted generically by

X1, X2, . . . , Xn,

and can be referred to more compactly as just {Xt}. Table 7.2 shows the position that time series

analysis resides in the 2× 2 table in which the nature of time (discrete or continuous) defines the

rows and the nature of the observed variable (discrete or continuous) defines the columns. Time

series analysis occupies the discrete-time, continuous-state entry in the table. Popular stochastic

time

state

discrete continuous

discrete Markov chains a time series model

continuous continuous-time Markov chains Brownian motion

Table 7.2: Four types of stochastic models in the modeling matrix.
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process models, such as Markov chains which are often used to model discrete-time and discrete-

state stochastic processes, occupy the other three positions in the table.

The defining characteristic of a time series model is that time is measured on a discrete scale and

the observations are measured on a continuous scale. You have seen four examples of time series.

Here are examples of applications of stochastic models in the other three boxes in Table 7.2.

• The classic example of a discrete-time, discrete-state stochastic process with two states is the

weather on a particular day. If the two states are “rainy” and “sunny” (actually “not rainy”

should be the second state so as to partition the state space so that a cloudy day with no rain

is classified as “not rainy”), then a Markov chain is a potential model for the evolution of the

weather from one day to the next.

• A continuous-time, discrete-state stochastic process that we have all encountered is that of

a single-server queueing system. The state of the system is the number of customers in the

system. If the number of customers in the system can either go up by one (via a customer

arrival) or down by one (via a customer departure), then the state of the system is discrete.

Furthermore, since customer arrivals and departures can occur at any instant, time is measured

on a continuous scale.

• One well-known example of a continuous-time, continuous-state stochastic process is Brown-

ian motion, which is named after Scottish botanist Robert Brown (1753–1858). He described

the motion in 1827 while observing the pollen of the plant Clarkia pulchella immersed in wa-

ter through a microscope. Physicist Albert Einstein (1879–1955) explained that the motion

of the pollen was caused by individual water molecules in 1905. Brownian motion can be

thought of as a random walk in which the time between subsequent observations approaches

zero.

Figure 7.6 contains a 2×2 array of graphs that are analogous to the 2×2 array of stochastic process

models in Table 7.2. The values plotted are one particular realization, also known as a sample

path, of a stochastic process. A stochastic process can be thought of as a probability model which

evolves over time. The dashed lines indicate that time or state is measured discretely. In this sense,

the techniques for analyzing a time series represent 25% of the techniques for analyzing all of the

stochastic processes.

7.1.4 Computing

We review some of the R functions that have been used in this section and also introduce some addi-

tional functions that are useful in time series analysis. All of these functions are available in the base

distribution of R, so they are immediately available upon initiating an R session. These functions

will typically be illustrated here for the built-in time series of monthly international air passenger

counts from 1949 to 1960 named AirPassengers which was first encountered in Example 7.2, but

they could be applied to any time series.

The time series function ts is used to convert data to the internal time series data structure in R.

It takes arguments for the time series observations, the time of the first observation, the time of the

last observation, the number of observations per unit of time, etc. As an illustration, the quarterly

time series observations contained in the vector named data which begin in the second quarter of

1984 is converted to a time series named x via the ts function with the R command

x = ts(data, start = c(1984, 2), frequency = 4)
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Figure 7.6: Graphs of realizations of four classes of stochastic processes.

Once a time series is in the R time series data structure, the plot.ts function can be used to provide

a plot of the time series, for example,

plot.ts(AirPassengers)

The ts.plot command can be used to plot several time series on a single set of axes, for example,

ts.plot(ldeaths, mdeaths, fdeaths)

where the three time series that are built into R being plotted are monthly total deaths, male deaths,

and female deaths from bronchitis, emphysema, and asthma in the United Kingdom from 1974 to

1979.

The next group of time series functions can be thought of as utilities, which are used to extract

information about a time series. Illustrations of the application of these utility functions on the

AirPassengers time series are given below.

length(AirPassengers)
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start(AirPassengers)

end(AirPassengers)

frequency(AirPassengers)

deltat(AirPassengers)

time(AirPassengers)

cycle(AirPassengers)

The length function returns the length of a time series, which in this case is 144 observations. The

start function returns the time associated with the first observation in the time series, which in

this case is a vector comprised of the two elements 1949 and 1. The end function returns the time

associated with the last observation in the time series. The frequency function shows the period

length of a time series, which in this case is 12 because AirPassengers consists of monthly data.

The deltat function returns the time increment associated with the time series, which in this case

is 1/12. The time function returns the time values for each observation as a time series, which in

this case is 1949, 1949 1
12 , 1949 2

12 , . . . , 1960 11
12 . The cycle function returns integers indicating the

position of each observation in a cycle, which in this case is 12 iterations of the first 12 integers.

7.2 Basic Properties of a Time Series

A time series has some unique properties that will require some special tools to aid in its modeling

and analysis. Central to these properties is the notion of stationarity, which is the subject of one of

the subsections that follow. Once stationarity is established for a time series, then the population

autocorrelation function, and its statistical counterpart, the sample autocorrelation function, can be

helpful in characterizing a time series. These autocorrelation functions give the correlation as a

function of the distance between the values in the time series. We begin by defining the population

autocovariance and autocorrelation.

7.2.1 Population Autocovariance and Autocorrelation

Traditional statistical methods rely on the assumption that observations are mutually independent

and identically distributed. In most practical time series applications, this assumption is violated

because adjacent or nearby values in a time series are correlated. Thus, the special analysis tools

for time series known as the population autocovariance function and the population autocorrelation

function are introduced in this subsection. Before motivating and defining these new notions, we

briefly review the definitions of population covariance and correlation from probability theory in the

next paragraph. The link to time series analysis will be made subsequently.

The defining formula for the population covariance between the random variables X and Y is

Cov(X , Y ) = E [(X−µX )(Y −µY )] ,

where µX = E[X ] is the expected value of X and µY = E[Y ] is the expected value of Y . The units on

the population covariance are the units of X times the units of Y . When X and Y are independent

random variables,

Cov(X , Y ) = E [(X−µX )(Y −µY )] = E [X −µX ]E [Y −µY ] = (µX −µX )(µY −µY ) = 0.

Zero covariance does not imply that X and Y are independent. The population correlation between

the random variables X and Y is

ρ = Corr(X , Y ) =
Cov(X , Y )

σX σY

=
E [(X−µX )(Y −µY )]

σX σY

= E

[(
X−µX

σX

)(
Y −µY

σY

)]
,
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where σX is the population standard deviation of X and σY is the population standard deviation

of Y . The population correlation is a measure of the linear association between X and Y . The

population correlation is unitless and satisfies −1 ≤ ρ ≤ 1, where the extremes indicate a perfect

linear association.

A time series {Xt} consists of a sequence of observations X1, X2, . . . , Xn indexed over time. Since

we are working with time series models rather than time series data values, the time series values will

typically be set in uppercase in this subsection. The observations are continuous random variables

that have been drawn from some population probability distribution. This probability distribution

can be described by a joint probability density function

f (x1, x2, . . . , xn)

or an associated joint cumulative distribution function

F(x1, x2, . . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn).

The most well-known probability distribution for modeling n random variables X1, X2, . . . , Xn is the

multivariate normal distribution, which is illustrated in the next example.

Example 7.5 Consider an n×1 vector of random variables X = (X1, X2, . . . , Xn)
′, an

associated n× 1 vector of population means µ = (µ1, µ2, . . . , µn)
′, and an associated

n×n variance–covariance matrix Σ. Matrix notation makes the expression of the joint

probability density function of X1, X2, . . . , Xn much more compact than an entirely al-

gebraic approach. The random vector X has the multivariate normal distribution if its

joint probability density function has the form

f (x1, x2, . . . , xn) =
1

(2π)n/2|Σ|1/2
e−

1
2 (x−µ)′Σ−1(x−µ) (x1, x2, . . . , xn) ∈ A ,

where

• x= (x1, x2, . . . , xn)
′,

• Σ
−1 is the inverse of the variance–covariance matrix,

• |Σ| is the determinant of the variance–covariance matrix,

• the support is

A = {(x1, x2, . . . , xn) | −∞ < xi < ∞, for i = 1, 2, . . . , n} ,

• the parameter space is

Ω = {(µ,Σ) |µ ∈ R n,Σ is an n×n symmetric, positive semi-definite matrix} .

Although the multivariate normal distribution has some very appealing mathematical and sta-

tistical properties, it has one very significant drawback when it comes to being used as a time

series model. That drawback concerns the number of parameters. There are n mean parameters

µ1, µ2, . . . , µn and n(n+1)/2 parameters in the symmetric variance–covariance matrix Σ. If an an-

alyst has collected just a single realization of a time series x1, x2, . . . , xn, then there are many more

parameters to estimate than data values. So one of the goals for the rest of the section is to establish

properties of a time series which allow us to formulate parsimonious models that adequately model a
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particular time series with as few parameters as possible. We begin the process of establishing these

properties by defining the population mean function and the population autocovariance function

associated with a time series {Xt}. As you will see, the focus is on the first two population moments

associated with the time series.

Definition 7.2 A time series {Xt} has a population mean function

µ(t) = E [Xt ]

provided that the expected values exist for all values of the index t.

So as long as the observations in the time series have expected values that are finite, the popu-

lation mean function gives the expected observed value of the time series at time t. In other words,

the mean values

µ(1), µ(2), . . . , µ(n)

are the expected values of X1, X2, . . . , Xn. This defines what is essentially the first moment of the

time series. The second moment of the time series is defined by the population autocovariance

function.

Definition 7.3 A time series {Xt} has a population autocovariance function

γ(s, t) = Cov(Xs, Xt)

provided that the population covariances exist for all values of the indexes s and t.

Notice that the order associated with the arguments in the population autocovariance function is

immaterial, so γ(s, t) = γ(t, s). Notice also that when the two arguments in the population autoco-

variance function are identical, the expression reduces to the population variance, that is,

γ(s, s) = Cov(Xs, Xs) =V [Xs].

The prefix “auto” means “self.” This prefix is attached to covariance to signify that the population

covariance is being taken between two members of the same time series. The value of γ(s, t) is the

population covariance between two snapshots of the same time series at times s and t.

We now consider a sequence of three examples in which we (a) define a time series model,

(b) calculate the population mean function, and (c) calculate the population autocovariance function.

The three examples, which will be in order of increasing complexity, are

• white noise,

• a three-point moving average, and

• a random walk.

We begin with a process that consists of just white noise.

Example 7.6 Recall from Definition 7.1 that the time series {Zt} that is a sequence

of mutually independent random variables Z1, Z2, . . . , Zn, each with population mean 0

and population variance σ2
Z , is known as white noise, and is denoted by

Zt ∼WN
(
0, σ2

Z

)
.
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Assume that our time series of interest {Xt} is just this white noise; that is, Xt = Zt .

Find the population mean function and the population autocovariance function.

The population mean function is

µ(t) = E [Xt ] = E [Zt ] = 0

because each term in the white noise time series has expected value 0. The population

autocovariance function is

γ(s, t) = Cov(Xs, Xt) = Cov(Zs, Zt) =

{
σ2

Z t = s

0 t 6= s

because the observations in the time series are mutually independent random variables

and

γ(s, s) = Cov(Xs, Xs) = Cov(Zs, Zs) =V [Zs] = σ2
Z

when t = s.

So the population mean and population autocovariance functions take on a particularly tractable

form in the case of a time series that consists of white noise terms. We now consider calculating the

population mean and population autocovariance functions for a three-point moving average of white

noise.

Example 7.7 We again let the time series {Zt} denote mutually independent random

variables Z1, Z2, . . . , Zn, each with population mean 0 and population variance σ2
Z . This

is again white noise, and is denoted by

Zt ∼WN
(
0, σ2

Z

)
.

This time, however, our time series of interest {Xt} is a three-point moving average of

the white noise, that is,

Xt =
Zt−1 +Zt +Zt+1

3

for t = 2, 3, . . . , n− 1. Find the population mean function and the population autoco-

variance function.

The population mean function is

µ(t) = E [Xt ] = E

[
Zt−1 +Zt +Zt+1

3

]
=

1

3

(
E [Zt−1]+E [Zt ]+E [Zt+1]

)
= 0

because each term in the white noise time series has expected value 0. The population

autocovariance function is more difficult than in the previous example because identical

white noise terms are used in adjacent three-point moving averages. Assuming that all

appropriate expected values exist, we rely on the formula

Cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jYj

)
=

n

∑
i=1

m

∑
j=1

aib jCov(Xi, Yj)
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to help with the calculations. The population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= Cov

(
Zs−1 +Zs +Zs+1

3
,

Zt−1 +Zt +Zt+1

3

)

=
1

9
Cov(Zs−1 +Zs +Zs+1, Zt−1 +Zt +Zt+1) .

It is clear that γ(s, t) = 0 when |t− s|> 2 because there is no overlap in the white noise

terms. The mutual independence of Z1, Z2, . . . , Zn implies Cov(Zi, Z j) = 0 when i 6= j.

So let’s check the other cases individually using the formula concerning the population

covariance between sums of random variables. First, the case of t = s:

γ(s, s) =
1

9
Cov(Zs−1 +Zs +Zs+1, Zs−1 +Zs +Zs+1)

=
1

9

[
Cov(Zs−1, Zs−1)+Cov(Zs, Zs)+Cov(Zs+1, Zs+1)

]

=
1

9

(
V [Zs−1]+V [Zs]+V [Zs+1]

)

=
1

9

(
σ2

Z +σ2
Z +σ2

Z

)

=
1

9
·3σ2

Z

=
σ2

Z

3

based on the mutual independence of Z1, Z2, . . . , Zn. Next, consider the case of t = s+1:

γ(s, s+1) =
1

9
Cov(Zs−1 +Zs +Zs+1, Zs +Zs+1 +Zs+2)

=
1

9

[
Cov(Zs, Zs)+Cov(Zs+1, Zs+1)

]

=
1

9

(
V [Zs]+V [Zs+1]

)

=
1

9

(
σ2

Z +σ2
Z

)

=
1

9
·2σ2

Z

=
2σ2

Z

9
.

Finally, consider the case of t = s+2:

γ(s, s+2) =
1

9
Cov(Zs−1 +Zs +Zs+1, Zs+1 +Zs+2 +Zs+3)

=
1

9
Cov(Zs+1, Zs+1)

=
1

9
V [Zs+1]

=
σ2

Z

9
.
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So to summarize, using the symmetry of the population autocovariance function in its

arguments, the population autocovariance function is

γ(s, t) =





σ2
Z/3 |t− s|= 0

2σ2
Z/9 |t− s|= 1

σ2
Z/9 |t− s|= 2

0 |t− s|> 2.

The effect of using common terms from the time series Zt consisting of white noise in

constructing the three-point moving average time series Xt is apparent in the positive

values in the population autocovariance function. There is positive population auto-

covariance at lag 0 (t = s), slightly weaker positive population autocovariance at lag 1

(|t−s|= 1), still slightly weaker positive population autocovariance at lag 2 (|t−s|= 2),

and zero population autocovariance at lags greater than 2. The decreasing magnitude of

the population autocovariance function is due to the fewer common terms in the three-

point moving average as the distance between values in {Xt} increases. The diagram in

Figure 7.7 conveys the intuition associated with the values in the population autocovari-

ance function. The brackets show the mutually independent values of the white noise

terms Z1, Z2, . . . , Zn used in each term in the three-point moving average time series.

Terms in the three-point moving average that are three time units apart, such as X2 and

X5, have no white noise terms in common, and hence have population autocovariance

zero.

white noise→ Z1 Z2 Z3 Z4 Z5 Z6 Z7 . . .

X2

X3

X4

X5

X6

︸ ︷︷ ︸
︸ ︷︷ ︸

︸ ︷︷ ︸
︷ ︸︸ ︷

︷ ︸︸ ︷

Figure 7.7: Relationship between white noise and three-point moving average.

The third and final example concerns the calculation of the population mean function and the

population autocovariance function for a random walk.

Example 7.8 We now return to the random walk model first introduced in Example 7.4.

The time series model for a random walk {Xt} is the recursive equation

Xt = Xt−1 +Zt ,

where {Zt} is white noise. A graph of a realization of a random walk was given in Fig-

ure 7.4. Find the population mean function and the population autocovariance function.

The first step is to write the model in a slightly different fashion. The random walk

model can be written as a summation of the white noise terms:

Xt =
t

∑
i=1

Zi.
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This formula can be verified by plugging it back into the original random walk model,

yielding
t

∑
i=1

Zi =
t−1

∑
i=1

Zi +Zt .

This alternative formulation of the random walk model aids in the derivation of the pop-

ulation mean function and the population autocovariance function. Using the alternative

formulation, the population mean function is

µ(t) = E [Xt ] = E

[
t

∑
i=1

Zi

]
=

t

∑
i=1

E [Zi] = 0

because each term in the white noise time series has expected value 0. Again using

the alternative formulation of the random walk model and the result from the previ-

ous example concerning the population covariance of sums of random variables, the

population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= Cov

(
s

∑
i=1

Zi,
t

∑
j=1

Z j

)

=
s

∑
i=1

t

∑
j=1

Cov(Zi, Z j)

=
min{s, t}

∑
i=1

V [Zi]

= min{s, t}σ2
Z .

The population autocovariance function γ(s, t) is the smaller of the arguments s and t

multiplied by the population variance of the white noise.

The three examples have illustrated how to find the population mean function and the population

autocovariance function for a time series model. Sometimes the population autocorrelation function

is also of interest because population correlation is unitless and always lies between −1 and 1. The

population autocorrelation function is defined next.

Definition 7.4 A time series {Xt} has a population autocorrelation function

ρ(s, t) = Corr(Xs, Xt) =
Cov(Xs, Xt)√

V [Xs]V [Xt ]
=

γ(s, t)√
γ(s, s)γ(t, t)

provided that the population covariance exists for all indexes s and t.

We now revisit the previous three examples to compute the population autocorrelation function

for the white noise, three-point moving average, and random walk models.

Example 7.9 The white noise model used

Zt ∼WN
(
0, σ2

Z

)
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and a time series {Xt} which was just white noise, that is, Xt = Zt . Find the population

autocorrelation function.

The population autocovariance function for the white noise time series from Exam-

ple 7.6 was

γ(s, t) =

{
σ2

Z t = s

0 t 6= s.

Since γ(s, s) = σ2
Z , the population autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
=

{
1 t = s

0 t 6= s.

There is perfect positive population correlation between each observation in the time

series and itself because ρ(s, s) = 1. Furthermore, there is zero population correlation

between distinct terms in the time series because ρ(s, t) = 0 for all t 6= s.

Although it lacks practical application in most real-world settings, the population autocorrela-

tion function in the case of white noise is one of the most fundamental population autocorrelation

functions possible. Since iid noise and Gaussian white noise are subsets of white noise, they also

share this same population autocorrelation function. The next example considers the three-point

moving average.

Example 7.10 Find the population autocorrelation function ρ(s, t) for the three-point

moving average time series model

Xt =
Zt−1 +Zt +Zt+1

3
,

where

Zt ∼WN
(
0, σ2

Z

)
.

The population autocovariance function for the three-point moving average time series

from Example 7.7 was

γ(s, t) =





σ2
Z/3 |t− s|= 0

2σ2
Z/9 |t− s|= 1

σ2
Z/9 |t− s|= 2

0 |t− s|> 2.

Since γ(s, s) = σ2
Z/3, the population autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
=





1 |t− s|= 0

2/3 |t− s|= 1

1/3 |t− s|= 2

0 |t− s|> 2.

There is perfect positive population correlation between each observation in the time

series and itself because ρ(s, s) = 1. The population autocorrelation function is positive

and decreases linearly for lags 1 and 2 because of the common terms in the 3-point

moving average, as illustrated previously in Figure 7.7. There is 0 population autocor-

relation for lags of 3 or more because the moving averages contain no common white

noise terms.
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The third and final example concerns the calculation of the population autocorrelation function

for a random walk model for a time series {Xt}.

Example 7.11 Find the population autocorrelation function ρ(s, t) for the random walk

time series model

Xt = Xt−1 +Zt ,

where

Zt ∼WN
(
0, σ2

Z

)
.

The population autocovariance function for the random walk time series from Exam-

ple 7.8 was

γ(s, t) = min{s, t}σ2
Z .

Since γ(s, s) = sσ2
Z , the population autocorrelation function is

ρ(s, t) =
γ(s, t)√

γ(s, s)γ(t, t)
=

min{s, t}σ2
Z√

sσ2
Z · tσ2

Z

=
min{s, t}√

st
.

Since ρ(s, s) = s/s = 1, this can be written as

ρ(s, t) =

{
1 t = s

min{s, t}/
√

st t 6= s.

Once again, there is perfect positive population correlation between each observation in

the time series and itself because ρ(s, s) = 1. This will be the case with any time series

model.

This ends the introduction to three important functions that are associated with a time series

model:

• the population mean function µ(t) = E [Xt ],

• the population autocovariance function γ(s, t) = Cov(Xs, Xt), and

• the population autocorrelation function ρ(s, t) = Corr(Xs, Xt).

An important property of a time series, known as stationarity, will be defined and illustrated in

the next subsection. A stationary time series is one in which there is no long-term change in the

probability mechanism governing the time series. Knowing that a time series is stationary will have

an important effect on µ(t), γ(s, t), and ρ(s, t).

7.2.2 Stationarity

A time series {Xt} is stationary if the underlying probability mechanism that governs the time series

is independent of a shift in time. In other words, if you select two different time windows in which to

view a number of observations from the time series, the probability distribution of the observations

in those two time windows will be identical.



Section 7.2. Basic Properties of a Time Series 389

Definition 7.5 The time series {Xt} is strictly stationary if

X1, X2, . . . , Xn

and the shifted observations in the time series

Xk+1, Xk+2, . . . , Xk+n

have the same joint probability distribution for all integers k and all positive integers n.

A strictly stationary time series is also known as a strongly stationary or completely stationary

time series. The next two examples contain the type of thought experiment that is appropriate for

determining whether a time series is strictly stationary.

Example 7.12 Strict stationarity implies that the probability mechanism that governs

the time series does not change with a shift in time. Would the time series of monthly

international airline passengers (in thousands) contained in the AirPassengers time

series in R be likely to have been drawn from a strictly stationary time series model?

Here is the thought associated with making such a judgment. Consider a specific in-

stance of the time series from Definition 7.5 with n = 3 and k = 18 in order to develop

a counterexample. So the question is whether

X1, X2, X3

and the shifted observations in the time series

X19, X20, X21

have the same trivariate probability distribution. In the case of the AirPassengers

observed time series, these values correspond to January, February, and March of 1949

versus July, August, and September of 1950. The first three values in the time series are

x1 = 112, x2 = 118, x3 = 132,

and the three time series observations shifted 18 months into the future are

x19 = 170, x20 = 170, x21 = 158.

From a cursory inspection, the three earlier values in the time series appear to be less

than the three later values. In addition, Figure 7.2 showed a significant upward trend

in the time series as time progresses. Furthermore, a careful inspection of the values

in the AirPassengers time series from Figure 7.2 reveals that the annual peak travel

occurs during the months of July and August. Based on this evidence, we conclude that

the AirPassengers time series is not drawn from a strictly stationary time series. The

hypothesis of an underlying stationary time series model can be rejected because of the

trend and seasonal component that are clearly apparent in Figure 7.2. The underlying

probability mechanism governing the time series appears to be changing over time.

The discussion above would indicate that very few time series which occur in practice would

be strictly stationary. The previous example asks whether a realization appears to be drawn from a

stationary time series model. The next example gives a simple time series model which is strictly

stationary.
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Example 7.13 Consider the time series from Example 7.3 which consists of Gaussian

white noise with population variance σ2
Z = 1, that is,

Xt ∼ GWN (0, 1) .

Is this time series strictly stationary?

As in the last example, consider n = 3 and k = 18 from Definition 7.5. If the time series

is strictly stationary, then

X1, X2, X3

and the shifted observations in the time series

X19, X20, X21

have the same trivariate probability distribution. In the case of Gaussian white noise

with σ2
X = σ2

Z = 1, (X1, X2, X3)
′ has a trivariate normal distribution with 3× 1 vector

of population means µ = (0, 0, 0)′, and an associated 3× 3 variance–covariance ma-

trix which is the identity matrix. Using the formulation from Example 7.5, the joint

probability density function of X1, X2, X3 is

f (x1, x2, x3) =
1

(2π)3/2
e−(x2

1+x2
2+x2

3)/2 −∞< x1 <∞,−∞< x2 <∞,−∞< x3 <∞.

Because the values in the time series model are mutually independent and identically

distributed, this is also the joint probability density function of X19, X20, X21. So for this

particular choice of n and k, the conditions of Definition 7.5 are satisfied. The probabil-

ity mechanism governing X1, X2, X3 is exactly the same as the probability mechanism

governing X19, X20, X21, so the realization of such a process in Figure 7.3 displays no

trend, no seasonality, no change in variability, and no change in the marginal distribu-

tions of X1, X2, . . . , Xn. But the choices of n = 3 and k = 18 were arbitrary. The joint

probability distributions would be identical regardless of the choices for n and k, so we

conclude that a time series consisting of Gaussian white noise is strictly stationary.

So the international airline passengers data set, just from observing the time series, is not strictly

stationary. The Gaussian white noise process is strictly stationary. There are several implications of

a strictly stationary time series, some of which are listed below.

• The initial n values of the time series X1, X2, . . . , Xn and their associated observations shifted

k time units to the left or right Xk+1, Xk+2, . . . , Xk+n having the same joint probability distri-

bution implies that each must have the same joint cumulative distribution function, that is,

P(X1 ≤ x1, X2 ≤ x2, . . . , Xn ≤ xn) = P(Xk+1 ≤ x1, Xk+2 ≤ x2, . . . , Xk+n ≤ xn)

for all values of x1, x2, . . . , xn.

• The marginal distribution of each value in the time series is identical. Symbolically,

P(Xs ≤ x) = P(Xt ≤ x)

for all integer time values s and t and all real-valued x.

• The population mean function µ(t) = E [Xt ] is constant in time; that is, there is no trend.
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• The population autocovariance function γ(s, t) = Cov(Xs, Xt) is constant with respect to a

shift; that is,

γ(s, t) = γ(s+ k, t + k).

• Any time series consisting of mutually independent and identically distributed random vari-

ables must be strictly stationary.

Strict stationarity is a lot to ask of a time series, and is difficult to establish based on an observed

realization of a time series. So time series analysts have defined a weaker version of strict stationarity

which we will refer to here as just stationarity. Other terms used for this type of stationarity are

• weakly stationary,

• second-order stationary, and

• covariance stationary.

Whereas a strictly stationary time series required that the entire multivariate distribution remain

the same on any time window, a stationary time series only places requirements on the first and

second moments. The population mean function must be constant over time, and the population

autocovariance function must depend only on the lag between the observations.

Definition 7.6 A time series {Xt} is said to be stationary if the following two conditions are

satisfied.

(a) The population mean function µ(t) = E [Xt ] exists and is constant in t; that is, there is a

real-valued constant c such that E [Xt ] = c for all values of t.

(b) The population autocovariance function γ(s, t) = Cov(Xs, Xt) exists and depends only on

|t− s|; that is, for integers s1, t1, s2, and t2,

γ(s1, t1) = γ(s2, t2)

if |t1− s1|= |t2− s2|.

The first condition implies that the time series has no trend because each observation in the time

series has the same expected value. The second condition implies that the population covariance

between two observations is a function of only the absolute difference between the two time indexes

of the observations. This second condition implies that a stationary time series model only requires

a single argument, which is known as the lag k, when defining the population autocovariance and

autocorrelation function. We will use the same names for these functions, but only use a single

argument when the time series is stationary.

Definition 7.7 For a stationary time series {Xt}, the population autocovariance function is

γ(k) = Cov(Xt , Xt+k) ,

and the population autocorrelation function is

ρ(k) = Corr(Xt , Xt+k) =
γ(k)

γ(0)

for k = 0,±1,±2, . . . .
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The population autocorrelation function for a stationary time series provides an important reflec-

tion of the structure of a time series model. It gives the modeler a view of how observations in the

time series are correlated based on their distance away from one another in the time series. The next

example relates the population correlation matrix and the population autocorrelation function for a

time series model.

Example 7.14 Consider the stationary time series {Xt}with population correlation ma-

trix 


1.0 0.4 −0.2 0.1
0.4 1.0 0.4 −0.2
−0.2 0.4 1.0 0.4
0.1 −0.2 0.4 1.0


 .

There is a population and a sample version of this matrix, but we will refer to this ma-

trix as a population correlation matrix. This particular matrix is a special population

correlation matrix because it corresponds to a stationary time series with equal-valued

elements that are equal distance from the diagonal. The lag 2 population autocorrela-

tions, for example, are all−0.2, and are two positions away from the diagonal elements

in the population correlation matrix. The population autocorrelation function values for

lags 4 and higher are all zero. Some notes on the population correlation matrix for a

stationary time series model are given below.

• The population correlation matrix is symmetric and positive definite, with ones on

the diagonal, and identical elements at a fixed number of entries from the diagonal.

• The population correlation between adjacent observations in the time series is

given by the elements that are just off of the diagonal.

• This particular population correlation matrix has positive eigenvalues λ1 = 1.5,

λ2 = 1.3685, λ3 = 1, and λ4 = 0.1315, which is consistent with the matrix being

positive definite.

Convert this population correlation matrix to a population autocorrelation function.

Figure 7.8 shows the population correlation matrix rotated 45◦ clockwise. With this ro-

tation, the identical elements are now aligned vertically. The vertical dashed lines show

how the elements of the matrix are translated to a population autocorrelation function,

which has nonzero spikes at lags k = −3,−2, . . . , 3. The associated population auto-

correlation function is symmetric. As expected, the lag k population autocorrelation

satisfies −1 ≤ ρ(k) ≤ 1 for k = 0,±1,±2, . . . . There is no information conveyed by

including the population autocorrelation values for negative values of k. It is convention

in time series analysis that the spike of height 1 associated with lag k = 0 is included

in the graph of the population autocorrelation function. Furthermore, we always extend

the vertical axis from−1 to 1 so that all population autocorrelation functions are viewed

on an equal footing. Figure 7.9 shows the format that we will use for the plot of the

population autocorrelation function for nonnegative lags k from this point forward.

You might have noticed that the word population precedes autocorrelation function. This con-

vention is not universal, but we do so in order to distinguish the population autocorrelation function

from its statistical counterpart, the sample autocorrelation function. An analogy in the realm of

univariate probability distributions is the distinction between the population mean µ, which is a con-

stant, and its statistical counterpart, the sample mean X̄ , which is a random variable. In the same
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Figure 7.8: Mapping a correlation matrix to an autocorrelation function.
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Figure 7.9: Population autocorrelation function for nonnegative lag values.
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sense, the population autocorrelation function ρ(k) is a sequence of population correlations, which

are fixed constants that are indexed by the lag k. The sample autocorrelation function, which will

be introduced in a subsequent section as rk, is a sequence of sample correlations, which are random

variables that are indexed by the lag k.

Several properties of the population autocorrelation function for all stationary time series models

are given next.

Theorem 7.1 For a stationary time series {Xt} with population mean µ and population autocorre-

lation function ρ(k),

• ρ(0) = 1,

• −1≤ ρ(k)≤ 1 for k = 0,±1,±2, . . . ,

• ρ(k) = ρ(−k) for k = 0, 1, 2, . . . ,

• ρ(k) is unitless, and

• ρ(k) does not uniquely determine an underlying time series model.

Proof Consider a stationary time series {Xt} with mean µ, population autocovariance

function γ(k), and population autocorrelation function ρ(k).

• The lag zero population autocorrelation is ρ(0) = 1 because

ρ(0) = Corr(Xt , Xt) =
Cov(Xt , Xt)

σXt σXt

=
V [Xt ]

σ2
Xt

=
γ(0)

γ(0)
= 1.

• The lag k population autocorrelation must lie on the closed interval [−1, 1]. In

other words, −1 ≤ ρ(k) ≤ 1, because ρ(k) is defined as a population correlation.

This can also be proved by first principles as follows. The inequality

V [c1Xt + c2Xt+k]≥ 0

holds for any real-valued constants c1 and c2 because all variances are nonnega-

tive. This is equivalent to

c2
1V [Xt ]+ c2

2V [Xt+k]+2c1c2Cov(Xt , Xt+k)≥ 0.

or (
c2

1 + c2
2

)
σ2

Xt
+2c1c2γ(k)≥ 0.

When c1 = c2 = 1, this inequality reduces to σ2
Xt
+ γ(k) ≥ 0, which implies that

ρ(k)= γ(k)/σ2
Xt
≥−1. Similarly, when c1 = 1 and c2 =−1, the inequality reduces

to σ2
Xt
− γ(k) ≥ 0, which implies that ρ(k) = γ(k)/σ2

Xt
≤ 1. Combining these two

inequalities gives −1≤ ρ(k)≤ 1.

• Since the time series {Xt} is stationary,

ρ(k) = Corr(Xt , Xt+k) = Corr(Xt−k, Xt) = ρ(−k)

for k = 0, 1, 2, . . . .
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• The lag k population autocorrelation is unitless because the units of the numerator

of

ρ(k) =
Cov(Xt , Xt+k)

σXt σXt+k

are the square of the units of Xt , and the units of both σXt and σXt+k
are the units

of Xt . Thus, the units cancel and ρ(k) is unitless.

• This final property can be proved by counterexample. Consider two time series

models. The first is Xt ∼ GWN(0, 1) (that is, Gaussian white noise with σXt = 1).

The second is Xt ∼ IID(0, 1), for example, iid noise with σXt = 1 and error terms

U
(
−
√

3,
√

3
)
. These two time series models have identical population autocor-

relation functions but are not identical time series models. Therefore, ρ(k) does

not uniquely determine an underlying time series model. �

These properties of ρ(k) have important implications in time series analysis. The first result from

Theorem 7.1 indicates that there is perfect positive population autocorrelation between an observa-

tion and itself (that is, an observation at lag k = 0). The initial spike in the population autocorrelation

function at ρ(0) = 1 is generally included in a graph of the population autocorrelation function, al-

though it conveys no information. The second result indicates that all population autocorrelation

functions must lie between −1 and 1. Subsequent plots of ρ(k) will always stretch the vertical axis

from −1 to 1 so that they can easily be compared with one another. The third result indicates that

ρ(k) is an even function in k, so although k can be any integer, it is common practice to only graph

ρ(k) for k = 0, 1, 2, . . . because we know that the reflection about the ρ(k) axis is identical. There

is no need to graph the population autocorrelation function for negative lags because no additional

information is conveyed. The fourth result explains why ρ(k) tends to be more popular than γ(k)
because it is free of the units selected for Xt . The fifth result indicates that a time series model cannot

be determined from its population autocorrelation function. Every stationary time series model has

a population autocorrelation function, but knowing the autocorrelation function does not necessarily

determine the underlying time series model.

We can now revisit the three examples from the previous subsection, namely white noise, a

three-point moving average, and a random walk, to see if they are stationary time series models.

In addition, we will make a plot of their population autocorrelation functions if they happen to be

stationary.

Example 7.15 Consider the white noise time series model

Zt ∼WN
(
0, σ2

Z

)
,

and the time series of interest is just {Xt} = {Zt}. Determine whether this time series

model is stationary, and plot the population autocorrelation function if it is stationary.

Recall from Example 7.6 that the population mean function for the white noise time

series was

µ(t) = 0

for all values of t, so the first condition of Definition 7.6 is satisfied. Recall also that the

population autocovariance function was

γ(s, t) =

{
σ2

Z t = s

0 t 6= s.
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Since the value of γ(s, t) depends only on |t− s|, the second condition of Definition 7.6

is satisfied, and we conclude that this time series model is stationary. Because the

time series model is stationary, the population autocovariance function can be written

in terms of the single argument k, the lag, as

γ(k) =

{
σ2

Z k = 0

0 k = 1, 2, . . . .

Since γ(0) = σ2
Z , the population autocorrelation function written in terms of the lag k is

ρ(k) =

{
1 k = 0

0 k = 1, 2, . . . .

It would be perfectly reasonable to consider the range of k to be k = 0,±1,±2, . . . , but

Theorem 7.1 indicates that the population autocorrelation function for a stationary time

series model is always an even function, so we will only report the nonnegative values

of k. A graph of ρ(k) for the white noise process is shown in Figure 7.10. A horizontal

line has been drawn at ρ(k) = 0 for reference. There is a single spike of height 1 at lag

k = 0 which indicates that each observation is perfectly positively correlated with itself.

There are spikes of height 0 at k = 1, 2, . . . , which indicates that distinct observations

in the time series are uncorrelated, as expected from the time series model consisting of

white noise values.

0 1 2 3 4 5

−1.0

−0.5

0.0

0.5

1.0

k

ρ(k)

Figure 7.10: Population autocorrelation function for a white noise time series.

The population autocorrelation function for the white noise time series model is identical to that

for iid noise and Gaussian white noise because those time series models are subsets of the white

noise time series model. We now consider the three-point moving average model.

Example 7.16 Consider the white noise time series model

Zt ∼WN
(
0, σ2

Z

)
,



Section 7.2. Basic Properties of a Time Series 397

and the time series of interest {Xt} is the three-point moving average of the white noise;

that is,

Xt =
Zt−1 +Zt +Zt+1

3
.

Determine whether this time series model is stationary, and plot the population autocor-

relation function if it is stationary.

Recall from Example 7.7 that the population mean function for the white noise time

series was

µ(t) = 0

for all values of t, so the first condition of Definition 7.6 is satisfied. Recall also that the

population autocovariance function was

γ(s, t) =





σ2
Z/3 |t− s|= 0

2σ2
Z/9 |t− s|= 1

σ2
Z/9 |t− s|= 2

0 |t− s|> 2.

Since the value of γ(s, t) depends only on |t− s|, the second condition of Definition 7.6

is satisfied, and we conclude that this time series model is stationary. Because the

time series model is stationary, the population autocovariance function can be written

in terms of the single argument k, the lag, as

γ(k) =





σ2
Z/3 k = 0

2σ2
Z/9 k = 1

σ2
Z/9 k = 2

0 k = 3, 4, . . . .

Since γ(0) = σ2
Z/3, the population autocorrelation function written in terms of the lag k

is

ρ(k) =





1 k = 0

2/3 k = 1

1/3 k = 2

0 k = 3, 4, . . . .

A graph of ρ(k) for the three-point moving average model is shown in Figure 7.11.

As with all population autocorrelation functions, there is a spike of height 1 at lag

k = 0, which indicates that each observation is perfectly positively correlated with itself.

The spikes at k = 1 and k = 2 reflect the effect of the nearby moving averages being

functions of common white noise observations. Observations in {Xt} that are three or

more indexes apart are uncorrelated because they do not contain any common white

noise terms. This corresponds to ρ(k) = 0 for k = 3, 4, . . . .

The previous example concerning a three-point moving average of white noise generalizes to an

m-point moving average of white noise, where m is an odd, positive integer. The more general time

series model is also stationary, and the population autocorrelation function also decreases linearly,

and cuts off at lag m. The derivation of this result is given as an exercise at the end of this chapter.

The third example considers a random walk time series model.
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Figure 7.11: Population autocorrelation function for a three-point moving average time series.

Example 7.17 Consider the white noise time series model

Zt ∼WN
(
0, σ2

Z

)
,

and the time series of interest {Xt} is the random walk model; that is,

Xt = Xt−1 +Zt .

Determine whether this time series model is stationary, and plot the population autocor-

relation function if it is stationary.

Recall from Example 7.8 that the population mean function for the white noise time

series was

µ(t) = 0

for all values of t, so the first condition of Definition 7.6 is satisfied. Recall also that the

population autocovariance function was

γ(s, t) = min{s, t}σ2
Z .

Since the value of γ(s, t) does not depend only on |t− s|, the second condition of Def-

inition 7.6 is not satisfied, so we conclude that this time series model is nonstationary.

Because the time series model is nonstationary, we are not able to write the population

autocovariance function in terms of the single argument k. An example of the popula-

tion autocorrelation function not being a function of the lag is

γ(1, 4) = σ2
Z and γ(2, 5) = 2σ2

Z .

Equivalently,

Cov(X1, X4) = σ2
Z and Cov(X2, X5) = 2σ2

Z .

Since observations that are three time indexes apart have different values of the popula-

tion autocovariance function, γ(s, t) does not depend only on |t− s|.
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The statistical analogs of the population autocovariance and autocorrelation functions are the

sample autocovariance and autocorrelation functions, which are calculated from an observed time

series from a stationary model. These two functions are defined in the next subsection.

7.2.3 Sample Autocovariance and Autocorrelation

This section takes up the estimation of the population autocovariance function and the popula-

tion autocorrelation function from a single realization of a time series denoted by the observations

x1, x2, . . . , xn. In addition to the vital plot of a time series, a plot of the sample autocorrelation

function, which is known as the correlogram, can yield additional insight concerning the underlying

probability model governing the time series. The approach that we will take here is to review the

sample versions of the covariance and correlation in terms of data pairs in the next paragraph, and

then adapt these notions to their associated analogs in time series analysis.

This paragraph reviews the estimation of the population covariance and correlation from a data

set of data pairs (Xi, Yi), for i = 1, 2, . . . , n. The population covariance is estimated by the sample

covariance

Ĉov(X , Y ) =
1

n

n

∑
i=1

(Xi− X̄)(Yi− Ȳ ) ,

where X̄ and Ȳ are the sample means of the associated sample values:

X̄ =
1

n

n

∑
i=1

Xi and Ȳ =
1

n

n

∑
i=1

Yi.

This formula is the statistical analog to the formula

Cov(X , Y ) = E [(X−µX )(Y −µY )]

from probability theory. There are two formulas for estimating the population variance from a

random sample—one with n in the denominator and one with n− 1 in the denominator. Since n is

required to be fairly large in time series analysis, the choice between the two is not critical. The

formula with n−1 in the denominator is more prevalent in statistics because

E

[
1

n−1

n

∑
i=1

(Xi− X̄)
2

]
= σ2

X

for mutually independent and identically distributed observations X1, X2, . . . , Xn; that is, the sample

variance S2 is an unbiased estimator of the population variance σ2
X . We use n in the denominator

here because, in spite of being a biased estimator of the population variance in the non-times-series

setting, it leads to certain terms dropping out of a subsequent formula. The population variances can

be estimated by the maximum likelihood estimators

σ̂2
X =

1

n

n

∑
i=1

(Xi− X̄)
2

and σ̂2
Y =

1

n

n

∑
i=1

(Yi− Ȳ )
2
.

An estimate for the population correlation ρ is given by the sample correlation

r = ρ̂ =
Ĉov(X , Y )

σ̂X σ̂Y

=
∑n

i=1 (Xi− X̄)(Yi− Ȳ )√[
∑n

i=1 (Xi− X̄)
2
][

∑n
i=1 (Yi− Ȳ )

2
] .
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Notice that the 1/n terms in the numerator and the denominator cancel. Had a denominator of n−1,

rather than n, been used in the formulas for Ĉov(X , Y ), σ̂2
X , and σ̂2

Y , the same cancellation would

occur. Table 7.3 summarizes the results from Section 7.2.1 and this paragraph.

covariance correlation

population E [(X−µX )(Y −µY )]
E [(X−µX )(Y −µY )]

σX σY

sample 1

n

n

∑
i=1

(Xi− X̄)(Yi− Ȳ )

∑n
i=1 (Xi− X̄)(Yi− Ȳ )√[

∑n
i=1 (Xi− X̄)

2
][

∑n
i=1 (Yi− Ȳ )

2
]

Table 7.3: Population and sample covariance and correlation.

We now translate the concepts from the previous paragraph into the context of the analysis

of a time series. Consider the estimation of γ(k) and ρ(k) from a realization of observations

x1, x2, . . . , xn, which are assumed to be observed values from a stationary time series model. The

lag k sample autocovariance, which estimates γ(k), is

ck =
1

n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄) ,

where x̄ is the sample mean of the observations in the time series. This is not a universal choice

for ck. Since there are n− k terms in the summation, some time series analysts prefer to divide by

n− k rather than n. Because of the two different options for the denominator, it is important to only

calculate ck for k values that are significantly smaller than n. Generally speaking, there should be

at least 60 to 70 observations in a time series to use the techniques described here. Having a large

value of n means that having n or n− k in the denominator is not critical for small values of k. The

units on ck are the square of the units of the observations in the time series. Notice that when k = 0,

the lag 0 sample autocovariance reduces to

c0 =
1

n

n

∑
t=1

(xt − x̄)2 ,

which is an estimate for γ(0) = σ2
X . The lag k sample autocorrelation, which estimates ρ(k), is

rk =
ck

c0

for integer values of k which are significantly smaller than n. As was the case with ρ(k), the lag k

sample autocorrelation is a unitless quantity. When k = 0, r0 = c0/c0 = 1, as desired. The notation

developed here to calculate γ(k) and ρ(k) for a stationary time series model and to estimate these

functions with ck and rk for an observed time series x1, x2, . . . , xn is summarized in Table 7.4.
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lag k autocovariance lag k autocorrelation

population γ(k) = E [(Xt −µX )(Xt+k−µX )] ρ(k) =
γ(k)

γ(0)

sample ck =
1

n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄) rk =
ck

c0

Table 7.4: Population and sample lag k autocovariance and autocorrelation.

Computing Sample Autocovariance and Autocorrelation

We now consider the estimation of the lag k sample autocovariance ck and the lag k sample

autocorrelation rk in R. We write an R function named autocovariance below that has two ar-

guments: the vector containing the time series x and the lag k. The first statement in the function

uses the length function to determine the number of observations in the time series. The second

statement uses the mean function to calculate the sample mean of the values in the time series. The

third statement uses the formula

ck =
1

n

n−k

∑
t=1

(xt − x̄)(xt+k− x̄)

to calculate the lag k sample autocovariance.

autocovariance = function(x, k) {

n = length(x)

xbar = mean(x)

sum((x[1:(n - k)] - xbar) * (x[(k + 1):n] - xbar)) / n

}

We can now write an R function named autocorrelation below that has the same arguments as

the autocovariance function. It uses the formula

rk =
ck

c0

to calculate the lag k sample autocorrelation.

autocorrelation = function(x, k) {

autocovariance(x, k) / autocovariance(x, 0)

}

Time series analysts typically plot the sample autocorrelation function values for the first few

lags. This plot is known as either the sample autocorrelation function or the correlogram. We

illustrate the calculation and plotting of the correlogram for a simulated time series whose elements

are Gaussian white noise, so σX = σZ . Recall that Gaussian white noise, denoted by

Xt ∼ GWN
(
0, σ2

Z

)
,
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consists of mutually independent N
(
0, σ2

Z

)
observations. Recall from Example 7.15 that the popu-

lation autocovariance function is

γ(k) =

{
σ2

Z k = 0

0 k = 1, 2, . . .

and the population autocorrelation function is

ρ(k) =

{
1 k = 0

0 k = 1, 2, . . . .

We expect the sample autocorrelation function to be similar to the population autocorrelation func-

tion except for random sampling variability. The R code below plots the correlogram for the first

20 lags for a time series that consists of n = 100 observations of a Gaussian white noise time series.

We have assumed here that the population variance of the Gaussian white noise is equal to one (that

is, σZ = 1). The first statement in the R code below uses the set.seed function to set the random

number seed to 8. The second statement uses the rnorm function to generate a time series con-

sisting of 100 mutually independent standard normal random variates. The vector correlogram

is initialized to a vector of length 21. This will hold the lag 0 sample autocorrelation function

value (which is always r0 = 1) and the sample autocorrelation function values for lags 1 to 20. The

autocorrelation function defined previously will compute the sample autocorrelation values. Fi-

nally, the plot function is used to plot the sample autocorrelation function. Using the type = "h"

argument in the call to plot graphs the sample autocorrelation values as spikes. This is largely a

matter of personal taste. Some time series analysts prefer to connect them with a line. We take

the spike approach to emphasize that a non-integer value for the lag has no meaning in the context

described here. The ylim = c(-1, 1) argument is included so that the entire potential range of

the sample autocorrelation values −1 ≤ rk ≤ 1 is included. The abline function is used to draw a

horizontal line at rk = 0, and two other dashed lines that will be described subsequently.

set.seed(8)

n = 100

x = rnorm(n)

correlogram = numeric(21)

for (i in 1:21) correlogram[i] = autocorrelation(x, i - 1)

plot(0:20, correlogram, type = "h", ylim = c(-1, 1))

abline(h = 0)

abline(h = c(-1, 1) * 2 / sqrt(n), lty = 2)

The plot of the time series and the correlogram for the first 20 lags are given in Figure 7.12. The

time series plot displays the typical pattern for Gaussian white noise. The observations are mutually

independent, so equally likely to be positive or negative. There are just a handful of observations

more than 2 units away from the population mean function µ(t) = E[Xt ] = 0. The correlogram

is exactly what we anticipated for a time series consisting of Gaussian white noise based on our

population autocorrelation function ρ(k), which was one at lag zero and zero at all other lags. We

have r0 = 1, as expected, and then small spikes associated with values of rk at other lag values k

that reflect the random sampling variability in the specific time series values that were generated by

the rnorm function. The correlogram has a horizontal line drawn at correlation 0 to make it clearer

which spikes are positive and which are negative. In addition, the correlogram would be identical

if all of the points in the time series were translated to have arbitrary population mean µ rather than

population mean 0. Correlograms are not influenced by a shift in the time series. Since drawing a
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Figure 7.12: Time series plot and correlogram for n = 100 Gaussian white noise observations.

correlogram occurs so frequently in the analysis of a time series, R has automated the process with

the acf function (acf is an abbreviation for autocorrelation function). After a call to set.seed(8),

all of the previous calculations can be performed with the single R statement

acf(rnorm(100), ylim = c(-1, 1), lag.max = 20)

When you make this call to the acf function, you will notice that two dashed lines are drawn just

above and just below the horizontal line rk = 0, as was the case in Figure 7.12. These two lines are

95% confidence limits that are helpful for determining whether the sample autocorrelation function

values are statistically different from zero. Even for a time series consisting of Gaussian white noise,

the probability distribution of rk is complicated because the formula for rk is complicated. However,

when the time series {Xt} consists of mutually independent observations, the population mean and

variance of rk are

E [rk]∼=
1

n

and

V [rk]∼=
1

n
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for k = 1, 2, . . . , and these values are asymptotically normally distributed. This means that an

approximate two-sided 95% confidence interval for rk when n is large and k is significantly less than

n is
1

n
−1.96

1√
n
< rk <

1

n
+1.96

1√
n
,

where 1.96 is the 0.975 fractile of the standard normal distribution. Since n is typically large in time

series analysis, the 1/n term is often assumed to be small enough to ignore. Furthermore, if 1.96 is

rounded to 2, then this approximate 95% confidence interval simplifies to

− 2√
n
< rk <

2√
n
,

The limits at ±2/
√

n are plotted in Figure 7.12 as dashed lines at ±2/
√

100 = ±0.2. We notice

that the spikes in the correlogram in Figure 7.12 fall outside of the confidence interval limits for

lag 2 (just barely) and lag 9. We should not be concerned about this occurring. Since these are

approximate 95% confidence intervals, we would expect to have about 1 in 20 values fall outside of

the limits even if we had mutually independent observations in the time series. Since it appears that

there is little or no pattern to the spikes in Figure 7.12, we conclude that the two spikes that exceeded

the confidence limits are just due to random sampling variability. Significant spikes at lower lags,

for example, lag 1 and lag 2 should be scrutinized more carefully than other lone significant spikes,

such as the one that we saw at lag 9. Furthermore, a significant spike at a lag associated with possible

seasonal variation (for example, lag 12 for monthly data with a suspected annual variation) should

also be scrutinized more carefully than other statistically significant spikes.

Correlogram Examples

Experience is critical in interpreting correlograms. Four examples are given here to illustrate the

recommended thought process associated with the interpretation of a time series and its correlogram.

The four examples are

• a time series with a linear trend illustrated by the population of Australia from 1971–1993,

• a time series of the first 100 Dow Jones Industrial Average closing values in the year 2000,

• a time series of chemical yields, and

• a seasonal time series illustrated by the home energy consumption values from 2011–2018.

For all four time series, we (a) plot the time series, (b) plot the associated correlogram, (c) interpret

the statistically significant spikes in the correlogram, and (d) interpret the shape of the spikes in the

correlogram.

Example 7.18 This example considers the calculation of the sample autocorrelation

function for a time series with a linear trend. The time series consists of n= 89 quarterly

observations, which are the quarterly number of Australian residents (in thousands)

from the second quarter of 1971 through the second quarter of 1993. This time series is

built into R and has the name austres. Plot the time series and associated correlogram,

and interpret the significance of the spikes and shape formed by the values of rk.

We can view the observations in the time series by just typing the name of the data set.

austres
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The output from this command is given below.

Qtr1 Qtr2 Qtr3 Qtr4

1971 13067.3 13130.5 13198.4

1972 13254.2 13303.7 13353.9 13409.3

1973 13459.2 13504.5 13552.6 13614.3

1974 13669.5 13722.6 13772.1 13832.0

1975 13862.6 13893.0 13926.8 13968.9

1976 14004.7 14033.1 14066.0 14110.1

1977 14155.6 14192.2 14231.7 14281.5

1978 14330.3 14359.3 14396.6 14430.8

1979 14478.4 14515.7 14554.9 14602.5

1980 14646.4 14695.4 14746.6 14807.4

1981 14874.4 14923.3 14988.7 15054.1

1982 15121.7 15184.2 15239.3 15288.9

1983 15346.2 15393.5 15439.0 15483.5

1984 15531.5 15579.4 15628.5 15677.3

1985 15736.7 15788.3 15839.7 15900.6

1986 15961.5 16018.3 16076.9 16139.0

1987 16203.0 16263.3 16327.9 16398.9

1988 16478.3 16538.2 16621.6 16697.0

1989 16777.2 16833.1 16891.6 16956.8

1990 17026.3 17085.4 17106.9 17169.4

1991 17239.4 17292.0 17354.2 17414.2

1992 17447.3 17482.6 17526.0 17568.7

1993 17627.1 17661.5

The plot of the time series and the plot of the sample autocorrelation function are

graphed one above the another using the R plot.ts and acf functions. The par func-

tion called with the argument mfrow = c(2, 1) creates a template for a 2×1 matrix

of graphs.

par(mfrow = c(2, 1))

plot.ts(austres, type = "p", cex = 0.4)

abline(h = mean(austres))

acf(austres)

The default on the plot.ts function is to connect the time series values with lines.

That default is modified here by setting the type argument to "p" in order to just plot

points instead. The cex (character expand) parameter controls the size of the points. A

horizontal line has been added to the time series plot using the abline function at the

sample mean value of the time series, x̄ = 15,273, which will aid in the interpretation

of the values of rk. The plots are displayed in Figure 7.13. The time series is plotted

as just points because of the linear growth in the population. The first 46 of the n = 89

observations are below the sample mean, and the remainder are above the sample mean.

Consider now the calculation of c1, the lag 1 sample autocovariance. The formula for

c1 is

c1 =
1

n

n−1

∑
t=1

(xt − x̄)(xt+1− x̄) .
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Figure 7.13: Time series plot and correlogram for n = 89 quarterly population observations.

Consider adjacent observations in the time series (that is, observations that are just

one lag apart). The first two observations, x1 and x2, are both less than x̄, so the product

(x1− x̄)(x2− x̄) makes a positive contribution to c1. Likewise, x2 and x3 make a positive

contribution to c1. Likewise, x3 and x4 make a positive contribution to c1. In fact, all

of the adjacent observations make a positive contribution to c1 except for x46 and x47,

which are on opposite sides of x̄, so this pair makes a negative contribution. It is for

this reason that c1 will be positive for this particular time series, and the associated

correlation r1 will be positive and statistically significant. The terms in c1 and c0 are

very similar for this time series, so r1 will be close to 1.

Now consider observations in the time series that are two lags apart. There are now n−2

terms in the summation for c2. The first two observations, x1 and x3, are both less than

x̄, so the product (x1− x̄)(x3− x̄) makes a positive contribution to c2. Likewise, x2 and

x4 make a positive contribution to c2. Likewise, x3 and x5 make a positive contribution

to c2. In fact, all of the observations make a positive contribution to c1 except for two

pairs, x45 and x47 and x46 and x48, which are on opposite sides of x̄. These pairs make a
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negative contribution. So there will be a significant positive value for r2, but it will be

slightly smaller in magnitude than r1. This pattern continues for r3, r4, . . . , r32 as the rk

values are a decreasing value of k. Then at lag 33, which is beyond the lags displayed

in Figure 7.13, there is an approximately equal number of positive and negative terms

in the summation to calculate c33. This results in r33 being the first negative value in

the correlogram. So r33 and the sample autocorrelation function values that follow it

are negative. So in conclusion, a time series with a linear trend (either increasing or

decreasing) has a correlogram in which the initial spikes of rk are linearly decreasing

in k. The correlogram for a time series with a linear or nonlinear trend will not have

a traditional interpretation that will be seen in the other examples because the trend

overwhelms the values in the correlogram. It is often the case that the trend is first

removed, and then the correlogram of the detrended series is analyzed. It is a good

exercise to use the acf function with a bigger lag.max argument than the default to

see what the autocorrelation function does for larger values of k.

The next example considers a time series that has statistically significant positive autocorrelation

values at small lags.

Example 7.19 Consider again the time series of the first n = 100 Dow Jones Industrial

Averages during 2000 that was first detailed in Example 7.4. Plot the time series and

associated correlogram, and interpret the significance of the spikes and shape formed

by the values of rk.

The time series (with a horizontal line drawn at the mean value x̄ = 10,766) and the

correlogram are shown in Figure 7.14. Consider the lag 1 sample autocorrelation. Con-

sidering the adjacent observations in the time series plot, the vast majority lie on the

same side of x̄. This results in a statistically significant positive lag 1 sample autocor-

relation r1. Similar thinking should convince you that there will also be a statistically

significant positive lag 2 sample autocorrelation r2. This time series exhibits runs of

significant length above and below the population mean, so it has a dozen statistically

significant initial spikes on the correlogram. So a time series that is well-modeled by a

random walk (as shown in Example 7.4) has a correlogram with statistically significant

early positive sample autocorrelation values.

The next example considers a stationary time series in which adjacent observations tend to be

on opposite sides of the sample mean.

Example 7.20 Consider the time series consisting of n = 70 consecutive yields from

a batch chemical process from page 32 of Box and Jenkins (1976) given in Table 7.5

(read row-wise). Plot the time series and associated correlogram. Interpret the statistical

significance of the spikes and the shape formed by the values of rk.

The time series plot of the yields, along with a horizontal line at x̄ = 51.1, is given in the

top graph in Figure 7.15. The bottom graph contains the associated correlogram. The

time series plot indicates that a large yield is followed by a small yield in a majority of

the observations, so we expect a negative lag 1 sample autocorrelation function value.

The lag 1 sample autocorrelation function value is r1 = −0.390. Since observations

that are two apart tend to be on the same side of the sample mean, the lag 2 sample

autocorrelation function value is r2 = 0.304. So a time series which tends to jump

above and below the sample mean results in a correlogram whose rk values alternate
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Figure 7.14: Time series plot and correlogram for n = 100 DJIA closing prices.

in sign. These are the only two values of the correlogram that show a statistically

significant difference from zero because they lie outside of the 95% confidence limits.

The dashed horizontal lines corresponding to 95% confidence bounds that determine

47 64 23 71 38 64 55 41 59 48 71 35 57 40

58 44 80 55 37 74 51 57 50 60 45 57 50 45

25 59 50 71 56 74 50 58 45 54 36 54 48 55

45 57 50 62 44 64 43 52 38 59 55 41 53 49

34 35 54 45 68 38 50 60 39 59 40 57 54 23

Table 7.5: A time series of n = 70 consecutive yields from a chemical process.
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Figure 7.15: Time series plot and correlogram of n = 70 yields from a chemical process.

statistical significance are drawn on the correlogram at heights

± 2√
70
∼=±0.239.

These two sample autocorrelation function values might be due to overcorrection by the

personnel running the batch chemical process.

The final example illustrates the impact of a time series with a seasonal component on the shape

of the correlogram.

Example 7.21 Consider again the home energy consumption time series from Exam-

ple 7.1 consisting of n = 84 monthly observations (measured in kilowatt hours) col-

lected between 2011 and 2018. Plot the time series and associated correlogram. In-

terpret the statistical significance of the spikes and the shape formed by the values of

rk.
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The time series and correlogram are shown in Figure 7.16, with a horizontal line drawn

at the mean value x̄ = 1703 kilowatt hours. The time series displays a seasonal pattern,

with higher energy consumption during the winter months and the summer months. The

winter months tend to draw more energy than the summer months. The correlogram for

a time series with a seasonal component is also cyclic, with a frequency that matches the

frequency in the time series. Since the summer and winter months draw more energy

from the heat pump, the cycle on the correlogram repeats itself with a wavelength of 6.

The fact that the magnitude of r12 is larger than the magnitude of r6 is due to the fact

that the winter months draw more energy than the summer months. For this particular

time series, the shape of the correlogram does not provide much information beyond

confirming that this is a time series with a seasonal component. The more valuable

information is typically gleaned by first detrending the time series (that is, removing

the seasonal component) and inspecting the correlogram of the detrended time series.

The statistically significant sample autocorrelation function value at lag 3, which is

r3 =−0.397, indicates that energy consumption in months that differ by 3 (for example,
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Figure 7.16: Time series plot and correlogram for n = 84 home energy consumption values.
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February and May), tend to have energy consumptions that lie on the opposite side of

the sample mean.

To summarize the section thus far, the population mean function µ(t) = E [Xt ] is the expected

value of the time series at time t, and indicates whether a trend and/or cyclic variation is present. The

population autocovariance and population autocorrelation functions reflect the linear relationship

between two values, Xs and Xt , in the time series. A time series is stationary if the population

mean function is constant in t and the population autocovariance function γ(s, t) = Cov(Xs, Xt)
depends only on |t− s|. For a stationary time series, the population autocovariance function and the

population autocorrelation function can be written as a function of the lag k = |t − s| as γ(k) and

ρ(k). The sample autocorrelation function estimates the population autocorrelation function.

Occasions arise in time series analysis in which we are also interested in the correlation be-

tween Xt and Xt+k with the linear dependency on the values between these two values, namely

Xt+1, Xt+2, . . . , Xt+k−1, removed. This leads to what is known as the partial autocorrelation func-

tion, which is presented next.

7.2.4 Population Partial Autocorrelation

One key characteristic of nearly all time series is that nearby observations tend to be correlated. This

makes the notion of autocorrelation crucial in time series analysis because it captures the correlation

between observations in a stationary time series that are separated in time by a prescribed number

of lags. The population autocorrelation function was introduced in Section 7.2.1; its statistical

counterpart, the sample autocorrelation function, was introduced in Section 7.2.3.

It is often difficult to distinguish between population autocorrelation functions for two different

competing, tentative stationary time series models in practice because

• the population autocorrelation functions for the two models are nearly identical, and/or

• there is significant sampling variability in the sample autocorrelation functions making it dif-

ficult to determine which of the two models provides a better fitted model.

As will be seen in subsequently, the sample autocorrelation function is particularly helpful for de-

termining the number of terms to include in a popular time series model known as a moving average

model. However, the sample autocorrelation function is much less helpful for determining the num-

ber of terms to include in another popular time series model known as an autoregressive model. A

second type of autocorrelation function, the partial autocorrelation function, is an ancillary diag-

nostic tool to help determine the number of terms to include in an autoregressive model. As was

the case with the autocorrelation function, there is a population and a sample version of the par-

tial autocorrelation function. The population partial autocorrelation function is introduced in this

subsection.

The notion behind partial autocorrelation is intuitive. Before describing the interpretation of

partial autocorrelation in the context of time series analysis, we present a scenario involving just

partial correlation in a more general setting. Let’s say you are interested in the correlation between

a full-time employee’s age, X , and their annual income, Y . Intuition suggests that this correlation

is positive because annual income tends to rise with age. But there are other factors that influence

income, such as the employee’s education level achieved, the number of years on the job, specific

industry of employment, etc. To simplify, let’s consider just one of these factors, say, the employee’s

years of education achieved, Z. The population partial correlation is the population correlation

between age X and annual income Y with the linear relationship associated with the number of
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years of education Z removed. We are effectively controlling for the influence of education as we

measure the correlation between X and Y . We regress X on Z to obtain X̃ . We regress Y on Z to

obtain Ỹ . This regression is in the sense of probability rather than its statistical counterpart (which

typically uses least squares for parameter estimation). Finally, we calculate the population partial

correlation Corr
(
X− X̃ ,Y − Ỹ

)
, which is the population correlation between X and Y with the linear

influence of Z removed. Like the ordinary population correlation, the population partial correlation

falls in the closed interval [−1, 1]. The extreme values on this interval correspond to perfect negative

population correlation and perfect positive population correlation, respectively. To summarize, the

partial correlation measures the degree of linear association between two variables, with the linear

association of one or more other variables removed.

Returning to the time series context, the partial autocorrelation reflects the relationship between

observations at a particular lag in a time series with the linear relationship associated with inter-

vening observations removed. The variables whose influence is being removed are the observations

between the two values of the time series of interest. Stated in another fashion, the partial autocor-

relation at lag k is the population correlation between two observations in the time series that are

k time units apart after the removal of the linear influence of the time series observations at lags

1, 2, . . . , k−1. As was the case with autocorrelation, we want to find the population and sample

versions of the partial autocorrelation. We will then have an inventory of possible population partial

autocorrelation shapes that we can match to sample partial autocorrelation functions, which will

help determine the number of terms to include in a time series model. The main role of the sample

partial autocorrelation function is to determine the number of terms to include in an autoregressive

model.

We now develop some general notation concerning partial autocorrelation. Although many au-

thors use φkk to denote the population lag k partial autocorrelation, we will instead use ρ∗(k) to

emphasize that this quantity is still a correlation and to use the symbol φ exclusively for the coeffi-

cients in an autoregressive time series model. The superscript ∗ is used to distinguish the population

partial autocorrelation function from the population autocorrelation function ρ(k). Likewise, we will

use r∗k to denote the sample lag k partial autocorrelation in the next subsection. The superscript ∗ is

used here to distinguish the sample partial autocorrelation function from the sample autocorrelation

function rk.

The next example illustrates the calculation of a population partial autocorrelation for a station-

ary time series model.

Example 7.22 Consider the stationary time series model

Xt = 0.8Xt−1 +Zt ,

where {Zt} ∼WN
(
0, σ2

Z

)
. The current value in the time series is 0.8 times the previous

value in the time series, plus a random shock of white noise Zt . This time series model

is similar to the random walk time series model that was introduced in Example 7.4

and analyzed in Examples 7.8, 7.11, and 7.17. The random walk time series model

was determined to be nonstationary. The one small difference between this time series

model and the random walk is the 0.8 coefficient associated with the Xt−1 term. This

small alteration makes this time series model stationary. What is the population lag 2

partial autocorrelation?

The population lag 2 partial autocorrelation is the population correlation between Xt

and Xt−2 with the linear effect of the intervening observation Xt−1 removed. This is the

population correlation between Xt −0.8Xt−1 and Xt−2−0.8Xt−1, which can be written



Section 7.2. Basic Properties of a Time Series 413

as

ρ∗(2) = Corr(Xt −0.8Xt−1, Xt−2−0.8Xt−1)

=
Cov(Xt −0.8Xt−1, Xt−2−0.8Xt−1)√

V [Xt −0.8Xt−1]V [Xt−2−0.8Xt−1]

=
Cov(Zt , Xt−2−0.8Xt−1)√

V [Zt ]V [Xt−2−0.8Xt−1]

=
0√

V [Zt ]V [Xt−2−0.8Xt−1]

= 0

because the population covariance between the white noise term at time t, which is

Zt , and the linear combination of the two previous values of the time series, which is

Xt−2−0.8Xt−1, is zero.

We now pivot from the calculation of population partial autocorrelation for a specific time series

model to the calculation of the population partial autocorrelation for a general stationary time series

model. Let’s begin with the calculation of the lag 1 population partial autocorrelation ρ∗(1) for a

stationary time series model. By definition, this is the population correlation between Xt and Xt−1

after removing the linear effect of any observations between Xt and Xt−1. But there aren’t any

observations between Xt and Xt−1, so the lag 1 population partial autocorrelation is simply the lag 1

population autocorrelation: ρ∗(1) = ρ(1). The population partial autocorrelation for higher lags

uses the best linear estimate of each of the two values of interest as a function of the intervening

values. Minimizing the associated mean square error, the population partial autocorrelation can be

determined by solving a set of linear equations. Using Cramer’s rule to solve these equations, the

population lag 2 partial autocorrelation function value is given by the ratio of determinants

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
.

Notice that the denominator is the determinant of the correlation matrix of any two adjacent obser-

vations. The numerator is the determinant of this same matrix with the last column replaced by the

first two population autocorrelation values. This pattern continues for the population lag 3 partial

autocorrelation function value, which is

ρ∗(3) =

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

.

Again, the denominator is the determinant of the correlation matrix of any three sequential obser-

vations. The numerator is the determinant of this same matrix with the last column replaced by the

first three population autocorrelation values (where the lag number matches the row number). This

pattern continues for higher lag values, which leads to the following definition.
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Definition 7.8 For a stationary time series model, the lag 0 population partial autocorrelation is 1,

the lag 1 population partial autocorrelation is ρ(1), and the lag k population partial autocorrelation

is

ρ∗(k) =

∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2) · · · ρ(1)
ρ(1) 1 ρ(1) · · · ρ(2)
ρ(2) ρ(1) 1 · · · ρ(3)

...
...

...
. . .

...

ρ(k−1) ρ(k−2) ρ(k−3) · · · ρ(k)

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

1 ρ(1) ρ(2) · · · ρ(k−1)
ρ(1) 1 ρ(1) · · · ρ(k−2)
ρ(2) ρ(1) 1 · · · ρ(k−3)

...
...

...
. . .

...

ρ(k−1) ρ(k−2) ρ(k−3) · · · 1

∣∣∣∣∣∣∣∣∣∣∣

,

for k = 2, 3, . . . .

The next example illustrates the calculation of the population partial autocorrelation function for

a stationary time series model.

Example 7.23 Consider the time series model for {Xt} described by

Xt = Zt −Zt−1 +
1

2
Zt−2,

where {Zt} ∼WN
(
0, σ2

Z

)
. The current value of the time series is a linear combina-

tion of the current and two previous shock values. Find the population autocorrelation

function and the population partial autocorrelation function for the first eight lags.

The population mean function is

µ(t) = E [Xt ] = E

[
Zt −Zt−1 +

1

2
Zt−2

]
= E [Zt ]−E [Zt−1]+

1

2
E [Zt−2] = 0.

The population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= E
[
(Xs−E [Xs]) (Xt −E [Xt ])

]

= E [XsXt ]

= E

[(
Zs−Zs−1 +

1

2
Zs−2

)(
Zt −Zt−1 +

1

2
Zt−2

)]

= E [ZsZt ]−E [ZsZt−1]+
1

2
E [ZsZt−2]−E [Zs−1Zt ]+E [Zs−1Zt−1]−

1

2
E [Zs−1Zt−2]+

1

2
E [Zs−2Zt ]−

1

2
E [Zs−2Zt−1]+

1

4
E [Zs−2Zt−2] .

When t = s,

γ(t, t) = E
[
Z2

t

]
+E

[
Z2

t−1

]
+

1

4
E
[
Z2

t−2

]
=V [Zt ]+V [Zt−1]+

1

4
V [Zt−2] =

9

4
σ2

Z
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because of the mutual independence of the white noise terms and the fact that the ex-

pected value of each white noise term is zero. When |t − s| = 1, for example, when

t = s−1,

γ(s, t) =−E [Zs−1Zt ]−
1

2
E [Zs−2Zt−1] =−

3

2
σ2

Z .

When |t− s|= 2, for example, when t = s−2,

γ(s, t) =
1

2
E [Zs−2Zt ] =

1

2
σ2

Z .

When |t− s| = 3, 4, . . . , the population autocovariance is γ(s, t) = 0 because each ex-

pected value in the expansion of γ(s, t) contains independent random variables. Since

the population mean function is constant in time and the population autocovariance is a

function of the lag k = |t− s| (as required by Definition 7.6), we have established that

the time series model is stationary with population autocovariance function

γ(k) =





9σ2
Z/4 k = 0

−3σ2
Z/2 k = 1

σ2
Z/2 k = 2

0 k = 3, 4, . . . .

Since ρ(k) = γ(k)/γ(0), the population autocorrelation function is

ρ(k) =





1 k = 0

−2/3 k = 1

2/9 k = 2

0 k = 3, 4, . . . ,

Notice that the population autocorrelation function is independent of the population

variance of the white noise σ2
Z .

We now turn to calculation the population partial autocorrelation function. The lag 0

population partial autocorrelation is ρ∗(0) = 1. From Definition 7.8, the lag 1 pop-

ulation partial autocorrelation is ρ∗(1) = ρ(1) = −2/3. The lag 2 population partial

autocorrelation is the ratio of the determinants of two 2×2 matrices:

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
=

∣∣∣∣
1 −2/3

−2/3 2/9

∣∣∣∣
∣∣∣∣

1 −2/3

−2/3 1

∣∣∣∣
=
−2/9

5/9
=−2

5
=−0.4.

The lag 3 population partial autocorrelation is the ratio of the determinants of two 3×3

matrices:

ρ∗(3)=

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1 −2/3 −2/3

−2/3 1 2/9

2/9 −2/3 0

∣∣∣∣∣∣
∣∣∣∣∣∣

1 −2/3 2/9

−2/3 1 −2/3

2/9 −2/3 1

∣∣∣∣∣∣

=
−8/243

7/27
=− 8

63
∼=−0.1270.
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Computing determinants by hand gets more tedious as the size of the matrices grows.

The R code below automates this process, using the det function to calculate the deter-

minants. After executing the code, the vector rhostar contains the first eight popula-

tion partial autocorrelation values. Examine the subscripts carefully because there is a

lag zero autocorrelation but R begins its subscripts at 1.

rho = c(1, -2 / 3, 2 / 9, 0, 0, 0, 0, 0, 0)

rhostar = rho

for (k in 2:(length(rho) - 1)) {

a = matrix(1, k, k)

for (i in 1:(k - 1)) a[abs(row(a) - col(a)) == i] = rho[i + 1]

denominator = det(a)

a[ , k] = rho[2:(k + 1)]

numerator = det(a)

rhostar[k + 1] = numerator / denominator

}

rhostar

The calculations in this example have been automated in the ARMAacf function in R.

The ar and ma parameters will be described in a subsequent chapter, but notice that

the elements in the ma vector are the coefficients of Zt−1 and Zt−2 in the original time

series model. The first R command below calculates the values of ρ(1), ρ(2), . . . , ρ(8),
and the second R command calculates the values of ρ∗(1), ρ∗(2), . . . , ρ∗(8) because the

pacf argument in the call to ARMAacf is set to TRUE.

ARMAacf(ar = 0, ma = c(-1, 1 / 2), lag.max = 8)

ARMAacf(ar = 0, ma = c(-1, 1 / 2), lag.max = 8, pacf = TRUE)

The resulting population autocorrelation and partial autocorrelation functions are plot-

ted in Figure 7.17. The population autocorrelation function cuts off at lag 2 and the

population partial autocorrelation function has correlations that appear to behave in a

0 1 2 3 4 5 6 7 8

−1

0

1

0 1 2 3 4 5 6 7 8

−1

0

1

kk

ρ(k) ρ∗(k)

Figure 7.17: Population autocorrelation and partial autocorrelation functions.
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damped sinusoidal fashion. Time series analysts refer to this type of population partial

autocorrelation function as one that “tails off.”

7.2.5 Sample Partial Autocorrelation

We now transition from considering the population partial autocorrelation function to considering

its statistical counterpart, the sample partial autocorrelation function. Calculating the sample partial

autocorrelation function is just a matter of replacing the population values with the sample values in

the determinants given in Definition 7.8.

Definition 7.9 For a stationary time series model, the lag 0 sample partial autocorrelation is 1, the

lag 1 sample partial autocorrelation is r1, and the lag k sample partial autocorrelation is

r∗(k) =

∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2 · · · r1

r1 1 r1 · · · r2

r2 r1 1 · · · r3

...
...

...
. . .

...

rk−1 rk−2 rk−3 · · · rk

∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣

1 r1 r2 · · · rk−1

r1 1 r1 · · · rk−2

r2 r1 1 · · · rk−3

...
...

...
. . .

...

rk−1 rk−2 rk−3 · · · 1

∣∣∣∣∣∣∣∣∣∣∣

,

for k = 2, 3, . . . .

Given an observed time series, the R code from the previous example that used the det function

to calculate the determinants could be used to perform these calculations. The sample partial auto-

correlation function can be calculated much more efficiently, however, by using the built-in pacf

function in R, as illustrated in the next example. The lag in which the sample partial autocorrelation

function values become statistically indistinguishable from zero can be determined by using the ap-

proximate result that for a time series of white noise values, r∗k ∼ N (0, 1/n), for k = 1, 2, . . . . For

this reason, the pacf function in R plots dashed lines at the approximate 95% bands at ±1.96/
√

n.

These dashed lines are useful to a time series analyst in determining which sample partial autocor-

relation values differ significantly from zero.

Example 7.24 Plot the time series, sample autocorrelation function, and sample par-

tial autocorrelation function for the n = 70 chemical yield values from Example 7.20,

repeated in Table 7.6 for convenience. The values in the time series should be read

row-wise.

It would be reasonable to simply use the code from the previous example to compute

the sample partial autocorrelation function, but we instead illustrate the use of R’s built-

in pacf function here. In addition, the layout function can be used to stretch the

time series plot from left-to-right on the graphic, but yet compress the plots of the

sample autocorrelation function and the sample partial autocorrelation function. The

elements in the matrix given as the first argument to layout indicate the plot number

being displayed. Stretching the time series plot is important in order to visually detect
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47 64 23 71 38 64 55 41 59 48 71 35 57 40

58 44 80 55 37 74 51 57 50 60 45 57 50 45

25 59 50 71 56 74 50 58 45 54 36 54 48 55

45 57 50 62 44 64 43 52 38 59 55 41 53 49

34 35 54 45 68 38 50 60 39 59 40 57 54 23

Table 7.6: A time series of n = 70 consecutive yields from a chemical process.

patterns in the time series. Nothing is lost by horizontally compressing the sample

autocorrelation function and the sample partial autocorrelation function as long as the

spike values rk and r∗k are distinct on the plots.

chemical = scan("chemical.d")

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(chemical)

acf(chemical)

pacf(chemical)

If you prefer confidence limits other than the default 95% limits, both acf and pacf

accept a ci argument that accepts any argument between 0 and 1, but defaults to 0.95.

The resulting plots are displayed in Figure 7.18. There are two statistically significant

spikes in the sample autocorrelation function and one statistically significant spike in

the sample partial autocorrelation function.

There will be more examples of computing the partial autocorrelation function and its interpre-

tation subsequently.

7.2.6 Computing

The R plot.ts function generates a plot of a realization of a time series, which is an important ini-

tial step in formulating an appropriate stochastic model for the time series. Many time series analysts

prefer to also see the sample autocorrelation and partial autocorrelation functions along with the plot

of the time series. The layout function can be used to stretch the plot of the time series horizontally,

while horizontally compressing the plots of the sample autocorrelation and partial autocorrelation

functions. The acf function computes the sample autocorrelation function and has arguments that

control the number of lags to display, whether to suppress the plot, etc. The pacf function computes

the sample partial autocorrelation function and has similar arguments. Notice that the acf function

includes the lag 0 sample autocorrelation, which is always 1, but the pacf function does not include

the lag 0 sample partial autocorrelation. The statements below apply these functions to the built-in

R AirPassengers time series.

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(AirPassengers)

acf(AirPassengers)

pacf(AirPassengers)

The vertical axes on all three plots are autoscaled. Use the ylim = c(-1, 1) argument in the acf

and pacf functions in order to stretch the vertical axis from −1 to 1. Finally, the ARMAacf function

can be used to compute the population autocorrelation and partial autocorrelation function values

for a prescribed time series model.
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Figure 7.18: Time series plot, rk, and r∗k for n = 70 yields from a chemical process.

7.3 Operations on a Time Series

This section considers operations that can be performed on a time series. The first subsection in-

troduces filters that can be applied to a time series. We have already encountered an example of

a filter when we considered a three-point moving average of a time series consisting of Gaussian

white noise. The second subsection introduces decomposition, which is the process of breaking an

observed time series into its component parts. The AirPassengers time series that is built into

R, for example, can be decomposed into an trend, a seasonal component, and any remaining noise

in the process once the trend and seasonal components have been removed. The third subsection

concerns R functions that can be helpful in implementing these operations.

7.3.1 Filtering

This section takes up the important topic of filtering, which can be thought of as the process of

converting one observed time series {xt} to another time series {yt}. The mathematical operations

required to convert one time series to another can be abstractly depicted as
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{xt} {yt}
filter

It is often the case that several of these filters can be applied sequentially to a particular observed

time series. Filter 1, for example, converts {xt} to {yt}, and then Filter 2 converts {yt} to {zt}.

{xt} {yt}
filter 1

{zt}
filter 2

The resultant time series {zt} is not associated with the white noise terms Zt from Definition 7.1.

The purpose of such a series of filters applied to a time series might be to remove the trend with the

first filter, and then to remove some seasonal variation with the second filter. If the resulting time

series {zt} looks like random noise values, then the two filters applied in series have successfully

removed the trend and the seasonal variation.

Three different general classes of filters will be considered: transformations, detrending, and

linear filters. These classes of filters allow for the manipulation of a times series for a particular

purpose, such as smoothing or variance stabilization.

Transformations

One simple filter that can be applied to a time series is to apply a transformation to each ele-

ment of the time series. Two transformations that are commonly applied to a time series are the

logarithmic and square root transformations, which are

yt = ln xt

and

yt =
√

xt .

Some common purposes of applying such a transformation are to

• stabilize the variance of the time series (for example, when larger values of xt tend to have

greater variability than smaller values of xt ),

• make the trend and seasonal components of a time series appear to be additive, rather than

multiplicative, in nature, and

• make the values in the filtered time series appear to be similar to white noise, iid noise, or

Gaussian white noise (see Definition 7.1). The advantage to having values of the fitted time

series be approximately mutually independent and normally distributed is to enable the use of

easier statistical inference procedures concerning, for example, forecasted values.

The transformation of the values in a time series given in the next example is a variance-

stabilizing transformation which makes significant improvement to a time series in terms of its

visualization and interpretation.

Example 7.25 The Dow Jones Industrial Average (DJIA), also known as the Dow 30,

was devised by Charles Dow and was initiated on May 26, 1896. The average bears

Dow’s name and that of statistician and business associate Edward Jones. The DJIA is

the average stock price of 30 U.S.-based, publicly traded companies, adjusted for stock

splits and the swapping of companies in and out of the average so that it adequately

reflects the composition of the domestic stock market. These adjustments are made by

altering the average’s denominator for historical continuity, which is now much less

than 30.
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The evolution of the DJIA is not a true reflection of the yield of the 30 stocks because

two important factors are not incorporated into the average. First, the average does not

factor in dividends that are paid by some of the 30 companies. Second, the average does

not factor in inflation, which erodes the true return that a stock investment provides. If

dividends were factored into the calculation, the DJIA would be much higher than it is

presently; if inflation were factored into the calculation, the DJIA would be much lower

than it is presently.

This example considers the time series plot of the average annual DJIA closing values

during the 20th century. This plot is generated with the R code given below.

x = 1901:2000

y = ts(scan("dow.d"))

plot.ts(x, y)

The file dow.d contains the 100 annual average closing values. The resulting graph is

shown in Figure 7.19.

The DJIA had a sample mean closing value of 69.52 during 1901 and a sample mean

closing value of 10731.15 during 2000. The linear scale that is used in Figure 7.19 ob-

scures most of the variability of the DJIA during the first half of the century. The graph

can be made more meaningful by using a logarithmic scale on the vertical axis. This is

accomplished by calling the plot.ts function as plot.ts(x, y, log = "y"), re-

sulting in the graph shown in Figure 7.20. This is equivalent to plotting the filtered time

series

yt = log10 xt
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Figure 7.19: Dow Jones Industrial Average (1901–2000).
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Figure 7.20: Dow Jones Industrial Average (1901–2000) with logarithmic scale.

on a linear vertical scale. An equal percent change now covers the same vertical distance

with the logarithmic vertical scale. Labels have been added to help highlight events that

might have influenced the DJIA.

The stock market crash in October of 1929 is much more pronounced in Figure 7.20.

The DJIA had peaked with a close of 381.20 on September 3, 1929. The market bot-

tomed out on July 8, 1932 when it closed at 41.20, which corresponds to a loss of almost

90%. Each of the two World Wars fought during the twentieth century was followed

by a sustained bull market in the DJIA. The top marginal income tax rate was lowered

from 70% to 28% and the federal budget was brought into balance in the 1980s and

1990s, resulting in a prolonged growth in the DJIA.

Detrending Filters

When a consistent trend in a time series is apparent, as was the case with the international airline

passengers time series from Example 7.2, an analyst typically would like to estimate the trend. Once

the trend has been estimated, the residual time series remaining after detrending can often be fitted

to a time series model. There are two popular types of filters that can be used to detrend a time

series: curve fitting and differencing. These will be considered individually. Time series analysts

often use the term secular trend to describe a long-term, non-periodic trend, but we will refer to it

as just a trend here.

One way to detrend a time series is to fit a curve that approximates the mean value of the time

series. As a simple example, consider a time series that appears to have a linear trend. In this case a

simple linear regression statistical model

Xt = β0 +β1t + εt
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can be fitted to the time series in order to estimate the slope β0 and intercept β1 of the regression

line. The time t plays the role of the predictor in the regression model; the time series observations

Xt play the role of the response in the regression model. It is also possible to have a non-linear trend

in a time series. A quadratic trend in time, for example, could be modeled via

Xt = β0 +β1t +β2t2 + εt .

Note that this model is linear in the β parameters. The statistical models used to detrend a time series

are not limited to just polynomials in time. It is also possible to have an exponential model such as

Xt = β0eβ1t + εt .

This model is not linear in the β parameters. The potential statistical models are endless. A working

knowledge of regression modeling is helpful in constructing an appropriate model for formulating,

estimating, and assessing a model for the trend in a time series.

Example 7.26 This example considers the simplest case of detrending a data set, which

is a linear trend. The data set consists of n = 89 quarterly observations which are the

quarterly number of Australian residents (in thousands) from March 1971 to March

1993 which was first encountered in Example 7.18. This time series is built into R and

has the name austres. Use simple linear regression to estimate the trend in the data

set and calculate the detrended time series.

The raw data values and the time series plot are given in Example 7.18. The time

series plot is repeated in Figure 7.21 for convenience, plotting individual points but not

connecting them with lines. It is clear that the population of Australia is increasing in a

linear fashion over this time period.

The next step is to fit a simple linear regression model to the time series model

Xt = β0 +β1t + εt .

This can be accomplished in R using the lm (for linear model) function.
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Figure 7.21: Quarterly population of Australia (in thousands) 1971–1993.
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plot.ts(austres, type = "p", cex = 0.4)

fit = lm(austres ~ seq(1971.25, 1993.25, by = 0.25))

abline(fit$coefficients)

coef(fit)

The fitted slope and intercept of the least square regression line are

β̂0 =−399,861 and β̂1 = 209.426.

The interpretation of the estimated intercept is that in the year 0 the population of Aus-

tralia was negative 400 million. (This is a good illustration that the model should not

be extrapolated significantly outside of the range of the time values in the time series.)

The interpretation of the estimated slope is that the population of Australia increases

by an estimated 209,426 each year over the time window 1971–1993. The plot that in-

cludes the regression line plotted via the abline function is given in Figure 7.22. The

regression line reveals some very slight nonlinear trends in the time series that were not

immediately apparent in the original time series plot in Figure 7.21.

The final step in the analysis is to examine the residual time series after detrending.

Viewing that residual series as a filter, the new time series after detrending is

yt = xt −
(
β̂0 + β̂1t

)
.

The time series {yt} can be calculated and plotted with the additional R statements

austres.detrend = austres - fit$fitted

plot.ts(austres.detrend)

This residual series is plotted in Figure 7.23. The residual series is connected by lines.

In addition, a horizontal dashed line is added at yt = 0. Clearly, the residual series does

not consist of mutually independent noise terms. Its shape might have been influenced

by Australian immigration policies or the Australian economy between 1971 and 1993.
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Figure 7.22: Quarterly population of Australia (in thousands) 1971–1993 with regression line.
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Figure 7.23: Residual time series after detrending for the quarterly population of Australia.

A second way to detrend a time series is to use differencing. The difference operator ∇, is

defined as a filter by

yt = ∇xt = xt − xt−1 = (1−B)xt ,

where B is the backshift operator defined by Bxt = xt−1. Differencing a time series is the discrete

analog of taking a derivative of a continuous function. So a time series that exhibits a linear trend,

for example, will pass through the differencing filter ∇ and result in a time series without a trend.

Notice that there will be one fewer observation in the new time series after applying this filter. If the

original time series observations are x1, x2, . . . , xn, then the differenced series will be y2, y3, . . . , yn.

Likewise, a time series with a quadratic trend can be detrended by applying the differencing operator

∇ twice to the original time series:

yt = ∇2xt = ∇
(
∇xt

)
= ∇

(
xt − xt−1

)
=
(
xt − xt−1

)
−
(
xt−1− xt−2

)
= xt −2xt−1 + xt−2.

This detrending filter can be written with the backshift operator as yt = (1−2B+B2)xt . There will

be two fewer observations in the new time series after applying this filter. If the original time series

observations are x1, x2, . . . , xn, then the twice differenced series will be y3, y4, . . . , yn.

A time series that exhibits a seasonal component can have a seasonal differencing filter applied.

Monthly observations from a time series with an annual seasonal component, for example, can have

the seasonal differencing filter

yt = ∇12xt = xt − xt−12 =
(
1−B12

)
xt

applied to eliminate the seasonal effects. There will be 12 fewer observations in the new time series

after applying this filter. If the original time series observations are x1, x2, . . . , xn, then the time series

observations that result from applying the filter associated with the ∇12 operator are y13, y14, . . . , yn.

We now illustrate the application of a differencing filter. The next example applies a single

difference filter to the Australian population time series.

Example 7.27 Consider again the quarterly population of Australia between 1971 and

1993 from Example 7.26 given in the R built-in data set austres. Apply the single
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difference filter yt = ∇xt = xt−xt−1 and make a time series plot of the differenced time

series.

The filter

yt = ∇xt = xt − xt−1

is appropriate for detrending because the time series {xt} is approximately linear, as

seen in Figure 7.22. The diff function in R differences the time series. So the differ-

enced time series {yt} can be plotted with the single R statement

plot.ts(diff(austres))

The plot of the differenced time series is given in Figure 7.24. A dashed horizontal line

has height equal to the slope of the line (with respect to quarters) connecting the first

and last points in the time series [that is, a horizontal line at (xn− x1)/(n− 1) = 52.2]

can be added with the abline function with an h (for horizontal) and lty = 2 (for a

dashed line) arguments.

n = length(austres)

abline(h = (austres[n] - austres[1]) / (n - 1), lty = 2)

The original time series increases by 4 · 52.2 = 208.8, or 208,800 residents annually.

This is roughly equal to the slope of the regression line β̂1 = 209.4, or an increase

of 209,400 residents annually from Example 7.26. The filtered time series {yt} does

not appear to exhibit any long-term trend, which was the original purpose of using the

differencing filter.
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Figure 7.24: Filtered time series after differencing the quarterly population of Australia.

So far, two classes of filters have been introduced. The first class is known as a transformation;

the second class is known as a detrending filter. Two types of detrending filters were introduced:

curve fitting and differencing. We now turn to a third class of filter which is known as a linear filter.

Differencing is a special case of a linear filter.
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Linear Filters

Linear filters provide a wide array of options for converting the original time series {xt} to

another time series {yt}. The general form of a linear filter is

yt =
t1

∑
s= t0

csxt+s,

where the coefficients cs are real-valued constants. It is often the case that t0 < 0 and t1 > 0, which

means that the time series {yt} is a linear combination of the chronological current, previous, and

future values of {xt} in time.

One purpose of a linear filter is smoothing the original time series by using what is known as a

moving average. When the coefficients sum to one, written symbolically as

t1

∑
s= t0

cs = 1,

this linear filter is a moving average. One elementary example of a symmetric moving average is

when t0 =−t1 with identical weights

cs =
1

2t1 +1
.

In this case, the smoothed time series {yt} is the arithmetic mean of

• the current value of the time series {xt},

• the t1 previous values of the time series {xt},

• the t1 future values of the time series {xt},

for a total of 2t1 + 1 values averaged. The symmetric moving average {yt} will have 2t1 fewer

observations than the original time series {xt} because the average cannot be computed for the first

and last t1 observations in {xt}. The smoothed values of the first 100 Dow Jones Industrial Average

closing values during the year 2000, introduced in Example 7.4, will be illustrated next.

Example 7.28 Consider the time series {xt} consisting of the first n = 100 closing

values of the Dow Jones Industrial Average during the year 2000 that appeared in the

top graph of Figure 7.5. Graph the original time series {xt} and the linear filter which

is a symmetric moving average of five adjacent values (that is, t1 = 2)

yt =
xt−2 + xt−1 + xt + xt+1 + xt+2

5
.

Notice that the coefficients in this linear filter are all 1/5. This symmetric moving

average is sometimes known as a five-point moving average.

The first step is to write an R function to compute the five-point moving average. The

R function movingAverage5 given below calculates the five-point moving average.

movingAverage5 = function(x) {

n = length(x)

(x[1:(n - 4)] + x[2:(n - 3)] + x[3:(n - 2)] + x[4:(n - 1)] + x[5:n]) / 5

}



428 Chapter 7. Time Series Basics

The original time series of Dow Jones Industrial Averages and the five-point moving

average are plotted in Figure 7.25. The original time series {xt} is plotted as a solid

black line connecting the points. The linear filter {yt} smooths the original time series

and is given by the thicker gray curve, which is a piecewise linear function that connects

the five-point moving average points, given as dots within the gray curve. The original

time series consists of n = 100 points. The five-point moving average loses two points

at the beginning and two points at the end, resulting in just the points y3, y4, . . . , y98.

The moving average successfully smooths the original time series. By averaging the

current value, two previous values, and two future values, the significant variations in

the original time series are damped, and the trend of the Dow Jones Industrial during

the year 2000 is more apparent with the five-point moving average.
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Figure 7.25: The first n = 100 DJIA closes in 2000 and a five-point moving average.

We now illustrate the case in which filters are applied to a time series in a serial fashion as

illustrated below.

{xt} {yt}
filter 1

{zt}
filter 2

Let the values in the original time series be

x1, x2, . . . , xn.

Consider the linear filter which is a three-point moving average (in which t1 = 1)

yt =
xt−1 + xt + xt+1

3
.

This linear filter results in the time series {yt} consisting of the observations

x1 + x2 + x3

3
,

x2 + x3 + x4

3
, . . . ,

xn−2 + xn−1 + xn

3
.

Now consider applying this same linear filter again, but this time to {yt}:

zt =
yt−1 + yt + yt+1

3
.
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The second linear filter results in the time series {zt} consisting of the observations

x1 +2x2 +3x3 +2x4 + x5

9
,

x2 +2x3 +3x4 +2x5 + x6

9
, . . . ,

xn−4 +2xn−3 +3xn−2 +2xn−1 + xn

9

when written in terms of the original time series {xt}. Notice that the serial application of the two

linear filters is the same as the application of a single linear filter with the coefficients

1

9
,

2

9
,

3

9
,

2

9
,

1

9
.

The R convolve function calculates the coefficients of the linear filter associated with two linear

filters applied to a time series. In the example described here, the coefficients can be determined

with the R statements

a = c(1 / 3, 1 / 3, 1 / 3)

b = c(1 / 3, 1 / 3, 1 / 3)

convolve(a, b, type = "open")

The application of two linear filters in sequence is illustrated in the next example.

Example 7.29 Consider again the time series {xt} consisting of the first n = 100 clos-

ing values of the Dow Jones Industrial Average during the year 2000. Graph the original

time series {xt} and two serial applications of the five-point moving average

yt =
xt−2 + xt−1 + xt + xt+1 + xt+2

5
.

As in the case of the three-point moving average, we can use the R convolve function

to calculate the coefficients in the convolution of the two linear filters.

a = rep(1 / 5, 5)

convolve(a, a, type = "open")

The convolve function results in the coefficients

1

25
,

2

25
,

3

25
,

4

25
,

5

25
,

4

25
,

3

25
,

2

25
,

1

25

associated with the two linear filters applied in series. These coefficients sum to one as

expected. The convolution of the two moving average filters remains a moving average.

The application of the two linear filters in series has two potential benefits over the

five-point moving average alone:

• the serial application of the two linear filters provides more smoothing than in the

previous example because more observations are used in the moving average, and

the coefficients are all smaller than in the five-point moving average, and

• the serial application of the two linear filters provides a mechanism in which more

distant observations get less weight than nearby observations.

The result of applying this moving average to the Dow Jones Industrial Average closes

is shown in Figure 7.26. As expected, this filter provides more smoothing than the

five-point moving average from the previous example.
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Figure 7.26: The first n = 100 DJIA closes in 2000 and a nine-point moving average.

Some experimentation is often necessary to achieve a moving average that provides the appro-

priate amount of smoothing. The amount of smoothing desired is problem specific. Another type

of symmetric moving average that places the most weight on the current value xt and decreasing

weight to more distant observations is to use the terms in the expansion of

(
1

2
+

1

2

)2t1

as coefficients in a weighted moving average. When t1 = 2, for example, the coefficients are

1

16
,

4

16
,

6

16
,

4

16
,

1

16
.

The numerators can be recognized as one row in Pascal’s triangle. The weights must sum to 1

because 1/2+1/2 = 1.

For a time series without a trend that contains a seasonal component, a special linear filter can

be applied. Consider a time series of monthly observations with seasonal variation. A common way

to eliminate the seasonal component is the linear filter

yt =
1
2 xt−6 + xt−5 + xt−4 + · · ·+ xt+4 + xt+5 +

1
2 xt+6

12
.

This linear filter has 13 coefficients

1

24
,

1

12
,

1

12
, . . . ,

1

12
,

1

12
,

1

24
,

which places a weight of 1/12 on the current observation xt and each observation within five months

of xt and splits the weight between the two months that are six months before and six months after

the current observation. Notice that the filtered time series {yt} will have 12 fewer observations than

the original time series {xt} because the moving average loses six points at the beginning of the time

series and six points at the end of the time series. This seasonal weighted average will be illustrated

in the next example for the monthly home energy consumption time series.
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Example 7.30 Consider the time series {xt} of n = 96 monthly home energy consump-

tion observations, in kilowatt hours, from Example 7.1. Compute the seasonal moving

average

yt =
1
2 xt−6 + xt−5 + xt−4 + · · ·+ xt+5 + xt+6 +

1
2 xt+6

12

and plot the original time series and the seasonal moving average on the same set of

axes.

The original time series and the seasonal moving average are graphed in Figure 7.27.

The seasonal moving average effectively removes the seasonal component, revealing

a slight upward trend in the first half of the time series and a slight downward trend

toward the end of the time series. Since the time series was collected over an eight-year

period, there are a total of 8 ·12−12 = 84 observations in the seasonal moving average.

An observation from each of the 12 months plays a role in every value calculated in the

seasonal moving average {yt}.
The R code below calculates the seasonal moving average of the energy consumption

values, which are stored in the file named kwh.d. The coefficients of the seasonal

moving average which control the weights allocated to each value in the time series are

stored in the w vector. The seasonal moving average values are stored in the y vector.

x = scan("kwh.d")

w = c(1 / 24, rep(1 / 12, 11), 1 / 24)

n = length(x)

y = numeric(n - 12)

for (i in 1:(n - 12)) y[i] = sum(w * x[i:(i + 12)])

print(y)
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Figure 7.27: Home energy consumption time series and seasonal moving average.

All of the linear filters we have encountered so far have been symmetric moving averages. Each

of them has reached as far into the past as they have into the future. One weakness of these filters is
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that in many settings we often do not have any future observations. So in many practical problems

the linear filter

yt =
t1

∑
s= t0

csxt+s

is rewritten to avoid any observations in the future as

yt =
0

∑
s= t0

csxt+s

for some negative integer index t0. The most well-known of these filters is known as the exponentially-

weighted moving average, often abbreviated EWMA, which can be written as

yt =
0

∑
s=−∞

csxt+s,

where the weights cs are given by

cs = α(1−α)−s

for 0 < α < 1 and s = −∞, . . . ,−2,−1, 0. The weights in the exponentially-weighted moving

average must sum to one because they form a geometric series:

0

∑
s=−∞

cs =
0

∑
s=−∞

α(1−α)−s = α
∞

∑
s=0

(1−α)s =
α

1− (1−α)
= 1.

The exponentially-weighted moving average gives weight α to the current observation, and then

geometrically declining weights to previous observations. So the parameter α can be thought of as a

dial or tuning parameter which controls the amount of smoothing. Large values of α mean very little

smoothing; small values of α mean significant smoothing. While it is daunting to think about values

of a time series {xt} running back in time to −∞, it is possible to avoid the infinite summation. The

exponentially-weighted moving average filter can be rewritten as

yt = αxt +α(1−α)xt−1 +α(1−α)2xt−2 + · · ·
= αxt +(1−α) [αxt−1 +α(1−α)xt−2 + · · · ]
= αxt +(1−α)yt−1;

that is, the exponentially-weighted moving average is α times the current value in the time series xt

plus 1−α times the previous value in the moving average. Arbitrarily setting y1 = x1 to initiate this

recursive relationship, the initial terms in the moving average are

y2 = αx2 +(1−α)y1

y3 = αx3 +(1−α)y2

...
...

Notice that the extreme case of α = 1 is possible in this recursive equation, and this corresponds to

a moving average that is identical to the original time series: y1 = x1, y2 = x2, y3 = x3, etc. This

extreme case corresponds to no smoothing at all.

The next example applies the exponentially-weighted moving average to the first n = 100 Dow

Jones Industrial Average closing observations during the year 2000.
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Example 7.31 Consider yet again the time series {xt} consisting of the first n = 100

closing values of the Dow Jones Industrial Average during the year 2000. Graph the

original time series {xt} and the exponentially-weighted moving average with α = 0.2
on the same set of axes.

The original time series {xt} and the exponentially-weighted moving average {yt} are

plotted in Figure 7.28. The exponentially-weighted moving average values are gener-

ated by

yt = αxt +(1−α)yt−1 = 0.2xt +0.8yt−1

for t = 2, 3, . . . , n. The first point in the exponentially-weighted moving average, y2, for

example, is a convex combination of x1 and x2 with coefficients 0.8 and 0.2. Unlike the

symmetric moving averages shown in the previous examples, Figure 7.28 shows that

the exponentially-weighted moving average smooths the original time series, but also

lags the original time series because it is not a symmetric moving average. Adjusting α
can make this exponentially-weighted moving average respond more quickly or more

slowly than that shown in Figure 7.28.
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Figure 7.28: The first n = 100 DJIA closes in 2000 and an exponentially-weighted moving average.

This concludes the discussion of filters that can be applied to a time series. The three classes of

filters that were presented in this section are

• transformations,

• detrending filters, and

• linear filters.

Filters can be applied for several different purposes, including: (a) to stabilize the variance of a time

series whose variance increases with time, (b) to stabilize the variance of a time series in which

larger values are more variable than smaller values, (c) to make error terms look approximately

normally distributed, (d) to express a time series with a seasonal component as an additive model,

(e) to detrend a time series containing a trend, ( f ) to estimate and eliminate a seasonal component
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in a time series without a trend, and (g) to smooth a time series. Many of these reasons for using a

filter on a time series will be discussed subsequently.

The next section uses two filters in series in order to decompose a time series into trend and

seasonal components. Decomposition will be applied to the international air travel time series and

the home energy consumption time series from the first two examples in this chapter.

7.3.2 Decomposition

The time series plots on the four examples from Section 7.1.1 have revealed certain types of patterns

that appear in many time series. The partial list below contains the most common types of variation

in time series. One common approach to decomposing a time series into these various types of

variation is to remove the detected types of variation one-by-one until only noise (that is, random

variation) remains.

• Trend. The time series consisting of the number of international airline passengers between

1949 and 1961 from Example 7.2 had a clear and obvious long-term systemic increase in its

mean value as air travel became more popular over that time period. Detecting trends and

including them in a time series model is an important part of the analysis of a time series that

will be illustrated in the next example.

• Seasonal variation. Both the home energy consumption time series from Example 7.1 and the

international airline passenger time series from Example 7.2 exhibit seasonal variation. The

period associated with the seasonal variation in both cases was one year. A single time series

is capable of having multiple seasonal variation cycles. Outdoor temperature, for example,

has both an annual cycle (warmer during the summer and cooler during the winter) and a

daily cycle (warmer during the day and cooler during the night). The frequency of the daily

cycle is 365 times greater than the frequency of the annual cycle. (To be more careful, the

frequency is actually 365.2422 times greater.)

• Other cyclical variation. There are other types of cyclical variation that have an unknown pe-

riod that might be included in a mathematical model that describes the time series. Economists,

for example, often refer to business cycles that might influence the values in a time series.

Business cycles typically have a varying and unknown period generally ranging from a few

years to decades.

• Remaining variation. Once the trend, seasonal variation, and other cyclical variation have

been removed from the original time series, a time series with no trend, seasonal, or cyclic

variation is obtained. Once this new time series is obtained, it is common practice to plot these

values to see how closely they approximate noise terms. The final step in constructing a time

series model for the original process is often fitting a time series model to the residual time

series, which reflects the noise terms in the time series model.

We now consider mathematical models for decomposing a time series into these constituent

parts. Just as a probability model like the normal or exponential distribution is used to approximate

the probability distribution from which a data set is drawn in classical statistics, we want to develop

a probability model for the time series {Xt}. This probability model will be more complicated than

the random walk model because we would like it to include both trends and seasonal variation. An

additive model to describe {Xt} is

Xt = mt + st + εt ,



Section 7.3. Operations on a Time Series 435

where the mt term models the trend, the st term models the seasonal variation with fixed period,

and the εt term models the noise. In an ideal probabilistic modeling sequence, once the trend and

seasonality terms have been estimated and removed from the time series, only random variation

remains. We have ignored other cyclic variation (for example, business cycles) in this particular

mathematical model. Notice that the trend term mt and the seasonal variation term st are set in

lowercase because these are assumed to be deterministic functions of t in the model. The stochastic

element of the time series model comes from the εt term. A multiplicative model to describe {Xt} is

Xt = mt · st · εt .

The multiplicative model is often appropriate in the case in which the variance of the time series

increases with time. This is because taking the natural logarithm of both sides of this model yields

ln Xt = ln mt + ln st + ln εt ,

which is an additive model for the time series {ln Xt}.
Decomposing a time series into its constituent parts can be preformed in R with the decompose

function. The additive model is the default. The next example applies the decompose function to

the time series consisting of the international airline passengers.

Example 7.32 Consider again the time series of the number of international airline

passengers (in thousands) between 1949 and 1961 from Example 7.2. Decompose this

time series into its trend, seasonal, and random components using the R decompose

function.

Since the plot of the time series in Figure 7.2 shows that the variance of the time series

is increasing with time, we elect to use the multiplicative model

Xt = mt · st · εt .

The call to the decompose function applied to the AirPassengers built-in data set is

fit = decompose(AirPassengers, type = "multiplicative")

The fitted model that extracts the trend and seasonal components, and calculates the

residual time series once those two components are extracted, is held in a list named

fit. The type argument in the call to the decompose function is used to invoke the

multiplicative model. A plot of the original time series and its decomposition into its

component parts is obtained by the additional R statement

plot(fit)

The associated plot is given in Figure 7.29, which gives four time series stacked one

above the another. The first time series, labeled observed, is the original time series

{xt}, the number of monthly international airline passengers (in thousands). The lower-

case variable name xt is used here because these are observed values of the time series.

The second time series, labeled trend, is the estimate of the trend {mt} returned by the

decompose function. The third time series, labeled seasonal, is the estimate of the sea-

sonal component of the multiplicative model {st} returned by the decompose function.

The seasonal component is identical from one year to the next with period 12 extracted
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Figure 7.29: Decomposition of the international airline passengers time series.

from the AirPassengers time series. Finally, the fourth time series, labeled random,

is the remaining time series {et} once the trend and seasonal components of the model

have been removed.

A call to the str (structure) function

str(fit)

reveals that the object named fit is a list that consists of six components. One of these

components is named seasonal, which contains the seasonal components of the time

series. This means that fit$seasonal is a time series, which is identical over every

year in the time series. In order to investigate the seasonal component, Figure 7.30

contains one cycle of the seasonal component of the decomposed model. The additional

R statement which can be used to plot the first cycle of the seasonal component is given

below. The subscripts 1:12 extract the values in the first annual cycle.

plot.ts(fit$seasonal[1:12])
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The resulting graph displayed in Figure 7.30 shows that the largest number of interna-

tional airline passengers during the years from 1949 through 1960 occurs in the months

of July and August when school is typically not in session. It also shows a local max-

imum in March which might correspond to families traveling over spring break week.

The global minimum occurs in the month of November.
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Figure 7.30: Seasonal component of the international airline passengers time series.

The international airline passengers data set had its own distinct signature for its seasonal compo-

nent. The next example plots the analogous seasonal component for the home energy consumption

data.

Example 7.33 Consider the home energy consumption data from Example 7.1. Using

similar code to the previous example, we can plot the seasonal component of the time

series with the R statements below.

kwh = scan("kwh.d")

kwh.ts = ts(kwh, frequency = 12, start = c(2011, 1))

fit = decompose(kwh.ts)

plot.ts(fit$seasonal[1:12])

The first statement reads the monthly energy consumption observations into a vector

named kwh. The second statement uses the R ts function to convert the observations

into a time series. The third statement uses the R decompose function to decompose

the time series into its constituent trend, seasonal, and remaining variation components

using an additive model (the default). The last statement uses the R plot.ts function to

plot the first 12 elements of the seasonal component of the decomposed time series. The

resulting graph shown in Figure 7.31 reveals a distinctly different seasonal pattern than

the associated graph for the international airline passengers data set. The peak energy

consumption is clearly in January. This peak is consistent with the intuition for the time

series because (a) the outdoor temperature in the winter in Williamsburg is further from

a comfortable indoor temperature than the outdoor in the summer in Williamsburg, and



438 Chapter 7. Time Series Basics

−800
−600
−400
−200

0
200
400
600
800

1000

t

st

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 7.31: Seasonal component of the home energy consumption time series.

(b) the heat pumps are more energy efficient in the summer than they are in the winter

because there is more heat available to capture. Not surprisingly, the two peaks in the

time series occur in the winter and summer when demand on the heat pumps is the

greatest. Since an additive model was selected, the units on the vertical axis are in

kilowatt hours. The energy consumption bump associated with the number of kilowatt

hours consumed in January, for example, is about 1000 kilowatt hours above the average

monthly energy consumption over the entire eight-year period.

Recall that the additive model is

Xt = mt + st + εt

and the decompose function has provided a fitted time series for the trend component

mt , the seasonal component st , and the error component εt . This indicates that the

original time series can be reconstructed with the R statement

fit$trend + fit$seasonal + fit$random

which yields the original time series fit$x, with the exception of some NA values at

the extreme values, which will be investigated next.

It is important to not treat a function like decompose as a just a black box that decomposes

a time series without knowing the internal workings of the function. It is crucial to know exactly

what is going on inside of decompose for (a) proper interpretation of the output of the function,

and (b) the ability to modify the function. In that light, we now show the intermediate steps that

occurred in decompose using the object names in decompose that resulted in the values plotted in

Figure 7.31.

kwh = scan("kwh.d")

kwh.ts = ts(kwh, frequency = 12, start = c(2011, 1))

l = length(kwh.ts)
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f = frequency(kwh.ts)

trend = filter(kwh.ts, c(0.5, rep(1, f - 1), 0.5) / f)

season = kwh.ts - trend

periods = l / f

index = seq(1, l, by = f) - 1

figure = numeric(f)

for (i in 1:f) figure[i] = mean(season[index + i], na.rm = TRUE)

figure = figure - mean(figure)

seasonal = ts(rep(figure, periods + 1)[seq(l)], start = start(kwh.ts),

frequency = f)

Try typing these statements into R and viewing the resulting objects. The bullet points below give a

line-by-line explanation of the algorithm associated with this R code.

• The first statement reads the home energy consumption time series into the vector kwh.

• The second statement converts the vector named kwh to a time series named kwh.ts with

monthly values beginning in January of 2011 via the ts function.

• The third statement calculates the length of the time series as l = 96.

• The fourth statement extracts the frequency of the time series as f = 12.

• The fifth statement uses the filter function to apply a 13-point moving average to the origi-

nal time series, which results in a time series named trend. The extreme values in this moving

average are identical months separated by one year, each getting weight 1/24, and the interior

11 months each get weight 1/12. Notice that the first six and last six values of the resulting

time series trend are NA, as expected. The 13-point moving average is first reported in July

of 2011, using the 13 values from the original time series from January 2011 to January 2012.

Each value in trend is effectively an annual average of energy consumption, so this is a fairly

flat time series for the energy consumption time series data because there does not appear to

be any significant trend. The values in trend are plotted in Figure 7.27.

• The sixth statement creates a time series named season which is the difference between

the original time series kwh.ts and the time series trend. In time series analysis, this step is

known as detrending. This new time series season isolates the empirical seasonal component,

which will change from one year to the next. The remaining R statements are designed to

average these seasonal components.

• The seventh statement calculates the number of periods in the original time series: l/ f =
96/12 = 8.

• The eighth statement creates a vector named index that will be used in the calculation of the

seasonal component averages. For the energy consumption data, the eight elements of index

are 0, 12, 24, . . . , 84.

• The ninth statement uses the numeric function to initialize the 12-element vector named

figure, which will contain the seasonal component averages.

• The tenth statement contains a for loop which uses the mean function to calculate the seasonal

component averages for each of the 12 months.

• The eleventh statement centers these seasonal component averages around zero.
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• The twelfth statement uses the ts function to create a time series named seasonal which

contains 8 periods of the seasonal component averages with a frequency of f = 12 and a start

time of January of 2011. These are the values that are plotted in Figure 7.31.

View the decompose function by simply typing

decompose

In addition to the R statements described above, you will see (a) error trapping at the top of the

function, (b) several conditional statements to account for the additive and the multiplicative models,

and (c) code that will adjust to a time series consisting of incomplete periods.

The figures that we have seen so far have plotted a time series {xt} or a filter applied to create

another time series {yt}. The critical initial step of plotting the time series and making a careful

examination of the plot should never be skipped.

7.3.3 Computing

Regression can be used to fit a model to a time series using the built-in lm (linear model) function

in R. This is illustrated for the AirPassengers time series below.

fit = lm(AirPassengers ~ time(AirPassengers))

plot.ts(AirPassengers)

abline(fit$coefficients)

fitted(fit)

The first statement sets the object fit to a list that contains the results of a simple linear regression

of time(AirPassengers) as the independent variable (the predictor) and AirPassengers as the

dependent variable (the response). The second statement plots the time series in the usual fashion

using the plot.ts function. The third statement appends the plot with the regression line using the

abline function. Finally, the fitted values can be extracted by the call to fitted(fit) as shown

above or by using fit$fitted.values.

A second way to remove a trend from a time series x1, x2, . . . , xn is differencing. The difference

operator ∇ defined by

∇xt = xt − xt−1 = (1−B)xt

(where B is the backshift operator defined by Bxt = xt−1) can be used to remove a linear trend. The

R function diff can be used to difference a time series. The following statement creates a time

series that contains the differences between adjacent values in the AirPassengers time series.

diff(AirPassengers)

There will be one fewer observation in the differenced time series than in the original time series. A

quadratic trend in a time series can be detrended by applying the differencing operator ∇ twice to

the original time series:

∇2xt = ∇
(
∇xt

)
= ∇

(
xt − xt−1

)
=
(
xt − xt−1

)
−
(
xt−1− xt−2

)
= xt −2xt−1 + xt−2.

This detrending filter can be written with the backshift operator as (1− 2B+B2)xt . Second-order

differences, denoted by ∇2xt , can be calculated by applying the diff function twice:

diff(diff(AirPassengers))

or by using the differences argument in the diff function:
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diff(AirPassengers, differences = 2)

Monthly observations from a time series with an annual seasonal component, for example, can have

the seasonal differencing filter

∇12xt = xt − xt−12 =
(
1−B12

)
xt

applied to eliminate the seasonal effects. The lag argument is added to the diff function in order

to do this type of seasonal differencing.

diff(AirPassengers, lag = 12)

There will be 12 fewer observations in the new time series after applying this filter.

The backshift operator B, which is useful in writing differencing operations compactly, is defined

by Bxt = xt−1, or more generally as Bmxt = xt−m. A single application of the B operator can be

achieved by a call to the lag function.

lag(AirPassengers)

The first observation in the resulting time series is December of 1948. The time series has simply

been shifted back in time by one month. To apply the B operator twice, denoted by B2, the second

argument should be set to 2.

lag(AirPassengers, 2)

The first observation in the resulting time series is November of 1948. In order to shift a time series

forward in time, a negative value for the second argument is used.

lag(AirPassengers, -3)

The first observation in the resulting time series is April of 1949.

The intersection of several time series can be achieved with the ts.intersect function, which

is illustrated below.

ts.intersect(lag(AirPassengers), AirPassengers, lag(AirPassengers, -1))

The elements of the resulting intersection of the three time series will only be defined on common

time values. A related function named ts.union, will take the union of the constituent time series,

appending an NA to positions in any of the constituent time series without observations.

Occasions arise in which only a subset of a time series is of interest. The window function shown

below extracts the portion of the AirPassengers time series between January of 1951 and June of

1957.

window(AirPassengers, start = c(1951, 1), end = c(1957, 6))

A linear filter can also be applied to a time series using the filter function. The example below

calculates a 12-point moving average of the AirPassengers time series.

filter(AirPassengers, filter = rep(1 / 12, 12), sides = 1)

A time series can be decomposed into trend, seasonal, and random components using the decompose

function.

decompose(AirPassengers)
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These components can be viewed by embedding this command into the plot function.

plot(decompose(AirPassengers))

This provides only a graph of the four components. The decompose function provides a rather el-

ementary way of decomposing time series. A more sophisticated approach using the loess (locally

estimated scatterplot smoothing) method is the stl (which is an abbreviation for seasonal decom-

position of a time series by loess) function.

stl(AirPassengers, s.window = "periodic")

7.4 Exercises

7.1 White noise (WN), iid noise (IID), and Gaussian white noise (GWN) were introduced in

Definition 7.1. The three classes are related by

GWN ⊂ IID⊂WN.

Indicate the strongest class of noise associated with the following three time series.

(a) X1, X2, . . . , Xn are mutually independent and identically distributed N(0, 1) random

variables.

(b) X1, X2, . . . , Xn are mutually independent random variables with Xt ∼ N(0, 1) when t is

even and Xt ∼U
(
−
√

3,
√

3
)

when t is odd.

(c) X1, X2, . . . , Xn are mutually independent and identically distributed U(−2, 2) random

variables.

7.2 Let X1, X2, . . . , Xn be n observations from the random walk model described in Example 7.4.

Find V
[
X̄
]
, where X̄ is the sample mean.

7.3 The realization of the random walk in Example 7.4 was generated by using a while loop in

R. Write R code to generate the same time series values without using a loop.

7.4 The time series of the number of monthly accidental deaths in the United States from 1973

to 1978 is given in USAccDeaths in R. Make a plot of the time series values and comment

on any features you can glean from the plot.

7.5 Classify each of the following stochastic processes by time (discrete or continuous) and state

(discrete or continuous).

(a) The number of eastbound cars stopped at a particular stoplight over time.

(b) The location of a taxi cab (classified as city, airport, or suburbs) at the end of each

passenger’s ride.

(c) The temperature of a puppy measured at 20-minute intervals.

(d) A person’s internal body temperature over time.

(e) The number of goldfish on inventory at a local pet shop.
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7.6 Consider the random variables X1, X2, . . . , Xn and Y1, Y2, . . . , Ym with associated finite popu-

lation means, population variances, and population covariances. Show that

Cov

(
n

∑
i=1

aiXi,
m

∑
j=1

b jYj

)
=

n

∑
i=1

m

∑
j=1

aib jCov(Xi, Yj)

for real-valued constants a1, a2, . . . , an and b1, b2, . . . , bm.

7.7 The time series {Xt} consists of the number of spots on the up face of sequential rolls of a

fair die.

(a) Is this time series strictly stationary?

(b) What is the population mean function?

(c) What is the population autocovariance function?

(d) What is the population autocorrelation function?

7.8 Consider the (tiny) time series X1, X2, X3, whose values are the cumulative number of spots

showing in three rolls of a fair die. More specifically, if R1, R2, and R3 denote the outcomes

of the three rolls, then X1 = R1, X2 = R1 +R2, and X3 = R1 +R2 +R3.

(a) What is the population mean function?

(b) Is this time series strictly stationary?

(c) Is this time series stationary?

(d) What is the population variance–covariance matrix of X1, X2, X3?

(e) Perform a Monte Carlo simulation which provides convincing numerical evidence that

the population variance–covariance matrix from part (d) is correct.

7.9 Argue whether the time series of monthly home energy consumption observations from Ex-

ample 7.1 is a stationary time series.

7.10 Consider the time series {Xt} consisting of white noise terms defined by

Xt ∼
{

N(0, 1) t odd

U
(
−
√

3,
√

3
)

t even.

(a) Is this time series strictly stationary?

(b) Is this time series stationary?

7.11 The energy consumption time series introduced in Example 7.1 was given in number of

kilowatt hours per month. The varying number of days per month was not taken into account

in the analysis performed on this data set in this chapter. Adjust the time series so that the

varying month length has been taken into account and answer the following.

(a) The original time series had the maximum monthly energy consumption in January of

2018. Which month has the maximum monthly energy consumption in the adjusted

time series?

(b) Make a plot of the time series using the units average daily number of kilowatt hours.

(c) Use the R acf function to calculate the sample autocorrelation at lag 3. Interpret the

sign of the sample lag 3 autocorrelation.
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7.12 The R built-in data set nhtemp contains the average annual temperatures in New Hampshire

from 1912 to 1971. Plot the time series and correlogram.

7.13 Consider a time series of n = 100 observations which are Gaussian white noise with σZ = 1.

Use Monte Carlo simulation to estimate the probability that the lag 3 sample autocorrelation

falls between −zα/2/
√

100 and zα/2/
√

100, where α = 0.05. Report your estimate to 3-digit

accuracy.

7.14 The sojourn time of a customer in a single-server queue is defined as the waiting time plus

the service time. Consider 100 consecutive sojourn times for customers in a single-server

queue with exponential times between arrivals with population mean 1 and exponential ser-

vice times with population mean 0.9. (This is a special case of what is known in queueing

theory as an M/M/1 queue. The first M is for Markov, and indicates that the times between

arrivals is exponentially distributed. The second M is also for Markov, and indicates that the

service times are exponentially distributed. The 1 indicates that there is a single server.) Also

assume that the first 1000 customer sojourn times have been discarded so that the system has

“warmed up.” A realization of these 100 consecutive sojourn times can be generated in R

and placed into the vector x with the statements

install.packages("simEd")

library(simEd)

x = ssq(maxArrivals = 1100, saveSojournTimes = TRUE,

showProgress = FALSE, seed = 12345)$sojournTimes[1001:1100]

(a) Write a paragraph that outlines whether or not the stationarity assumption is appropriate

in this setting.

(b) Before running a simulation, predict whether the sample lag 3 autocorrelation will be

positive, zero, or negative.

(c) Make three runs of this simulation with three different seeds and plot the three sample

autocorrelation functions on the same set of axes (plot them as points connected by

lines rather than spikes) for the first 20 lags.

7.15 Consider a stationary time series {Xt}. For k = 1, 2, . . . , the lag k population partial autocor-

relation ρ∗(k) can be written as the last component of the vector defined by

Γ−1
k γk,

where Γk is the k× k variance–covariance matrix of any k elements of the time series and

γk =
(
γ(1), γ(2), . . . , γ(k)

)′
. Show that this way of calculating the lag k population partial

autocorrelation is equivalent to that given in Definition 7.8 for k = 1 and k = 2.

7.16 Consider a three-point moving average.

(a) What are the coefficients associated with three of these moving averages applied in

series.

(b) Check your solution using the R convolve function.

(c) Apply this series of three filters to the AirPassengers data set and plot the smoothed

series.
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7.17 The logarithm and square root transformations are commonly used on a time series whose

variability increases with time. Propose a transformation for a time series whose variability

decreases with time.

7.18 Find the population autocorrelation function for an m-point moving average of a white noise

time series, where m is an odd, positive integer.

7.19 The R decompose function can be used to decompose a time series. Another R function

named stl is a more sophisticated function for decomposing a time series. Apply this func-

tion to the built-in R time series JohnsonJohnson, which contains the quarterly earnings,

in dollars, for one share of stock in Johnson & Johnson from 1960 to 1980. Plot the trend

and seasonal components of the decomposed time series. Which quarter tends to have the

highest quarterly earnings? Considering the seasonal part of the decomposed model, what is

the difference between the best and worst quarter’s earnings to the nearest penny?



Chapter 8

Time Series Modeling

This chapter presents several popular probability models for describing a time series, along with

the associated statistical methods. Analogous to using the univariate normal distribution to model a

quantitative variable which has a bell-shaped probability distribution, no time series model will pro-

vide a perfect fit to the data. The goal is to identify a probability model which provides a reasonable

approximation to the time series, fit the model to an observed time series, and then use the fitted

model for statistical inference, which is often forecasting.

8.1 Probability Models

A suite of probability models for time series known as linear models are introduced in this section.

The unifying characteristic of these models is that they express the current value of the time series as

a linear function of (a) the current noise term, (b) previous noise terms, and (c) previous values of

the time series. We begin by taking a birds-eye view of these linear time series models by introducing

general linear models (often abbreviated glm) and some of their properties. This is followed by a

section that introduces a suite of time series models that are special cases of general linear models

that are known as ARMA (autoregressive moving average) models. ARMA models are parsimonious

in the sense that they are able to specify a wide variety of underlying probability models that govern

a stationary time series with only a few parameters. With both general linear models and ARMA

models, you will see a great deal of symmetry and some mathematics that works out beautifully on

the road to developing time series models that can be implemented in real-world applications.

8.1.1 General Linear Models

General linear models provide an important way of thinking about how to define a time series model

in a simple and general manner. Working with general linear models also provides some practice

with using the backshift operator B, which was defined in Section 7.3.1. We also consider the causal

and invertible form of general linear models. The causal form is important for establishing station-

arity. The invertible form is important for ensuring a one-to-one relationship between parameter

values and the associated population autocorrelation function.

The concepts of white noise from Definition 7.1 and linear filters from Section 7.3.1 are tied

together in this section to define general linear models. White noise is a time series of mutually

independent random variables denoted by {Zt}. Each element in the white noise time series has

common population mean 0 and common population variance σ2
Z . Time series analysts often refer
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to the Zt values as random shocks whose purpose is to inject randomness into a time series model.

Without these shocks, the time series model would be purely deterministic. Linear filters are a

general way of expressing one time series as a linear combination of the values in another time

series. White noise and linear filters are the key concepts in the definition of general linear models.

As you will see in the next paragraph, there are two distinctly different ways of defining general

linear models.

More specifically, one way to describe a general linear model is to define the current value in

the time series Xt as the current white noise term Zt plus a linear combination of the previous white

noise terms:

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,
where the coefficients ψ1, ψ2, . . . in the infinite series are real-valued constants. This time series

model is stationary when appropriate restrictions are placed on the ψ1, ψ2, . . . values. Since this

description of a general linear model is valid at time t, it is also valid at other time values, for

example,

Xt−1 = Zt−1 +ψ1Zt−2 +ψ2Zt−3 + · · · ,
or

Xt−2 = Zt−2 +ψ1Zt−3 +ψ2Zt−4 + · · · .
Solving these equations for the current white noise value and sequentially substituting into the first

formulation of the general linear model, you can see that there is a second way to formulate a general

linear model:

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · ,
where the coefficients π1, π2, . . . are real-valued constants and appropriate restrictions are placed on

the π1, π2, . . . values in order to achieve stationarity. In this second formulation of a general linear

model, the current value of the time series is a linear combination of the previous values of the time

series plus the current white noise term. This formulation is analogous to that of a multiple linear

regression model with an infinite number of predictor variables.

A reasonable question to ask at this point is why there is no coefficient associated with Zt in both

formulations of the general linear model. Although some authors associate a coefficient ψ0 with Zt ,

we avoid this practice and simply assume that ψ0 = 1. Including a ψ0 parameter is redundant because

a nonzero constant multiplied by a white noise term is still a white noise term. The population

variance of the white noise σ2
Z is essentially absorbed into the ψ0 parameter. Also, some authors use

a − rather than a + between terms on the right-hand side of the second formulation of the general

linear model.

The two formulations for the general linear model involve a random variable on the left-hand

side of the model and random variables on the right-hand side of the model. In some settings, this

might be viewed as a transformation of random variables, but this is not the correct interpretation of

the model in the time series setting. The general linear model formulations define a hypothesized

relationship between the random variable on the left-hand side of the model and the random variables

on the right-hand side of the model. In the first formulation of the general linear model, the current

value of the time series Xt is hypothesized to be a linear combination of the current and previous

noise values. In the second formulation of the general linear model, the current value of the time

series Xt is hypothesized to be a linear combination of the previous values in the time series plus

a noise term. This probability model is hypothesized to govern the process over time. The goal in

constructing a time series model is to write a formula for a model which adequately captures the

probabilistic relationship that governs the time series. Estimation of the model parameters will be

followed by assessments to see if the model holds in an empirical sense.
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The coefficients in the two formulations of a general linear model are related. To make these

two formulations of the general linear model more concrete, we will now look at a specific instance.

Example 8.1 Consider the special case of the first formulation of the general linear

model

Xt = Zt +ψ1Zt−1.

This model only has one coefficient ψ1. The subsequent coefficients are ψ j = 0 for

j = 2, 3, . . . . Find the equivalent form of the general linear model using the second

formulation.

Recall from Section 7.3.1 that the backshift operator B shifts a time series value back

one unit in time, for example,

BXt = Xt−1.

When the backshift operator includes a superscript, the superscript accounts for multiple

backshifts, for example,

B4Zt = Zt−4.

The special case of the general linear model considered here can be converted from its

original form,

Xt = Zt +ψ1Zt−1,

to a form using the backshift operator,

Xt = Zt +ψ1BZt

or

Xt = (1+ψ1B)Zt .

Although it might seem like an unusual operation involving B, both sides of this equa-

tion can be divided by 1+ψ1B, which gives

Xt

1+ψ1B
= Zt .

For ψ1 values on the interval −1 < ψ1 < 1, this can be expanded as a geometric series

with common ratio −ψ1B:

(
1−ψ1B+ψ2

1B2−·· ·
)

Xt = Zt

or

Xt −ψ1Xt−1 +ψ2
1Xt−2−·· ·= Zt

or

Xt = Zt +ψ1Xt−1−ψ2
1Xt−2 + · · · .

This is the second formulation of the general linear model with coefficients π j =(−1) j−1ψ
j
1

for j = 1, 2, . . . and −1 < ψ < 1.

A sleight of hand has occurred in the previous example with respect to the use of the backshift

operator B, first as an operator and then as a variable. This paragraph concerns that dual use. When

B is used as an operator, it has a domain or input, for instance, Xt , and a range or output, for instance,

BXt = Xt−1. In this case, the effect of the operator B on a time series value is to go back in the time
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series one unit of time. The input to B is the value of the time series at time t, and the output from B

is the value of the time series at time t−1. The full domain of the operator B is the entire sequence

of time series values. Why is it acceptable to take an operator like the backshift operator B and use it

as a variable? It can be demonstrated that the backshift operator B functions like a linear map in the

sense of allowing the standard multiplication and addition operations in its domain. In addition to

the standard operations such addition, multiplication, and inversion, we may thus treat polynomials

in B as polynomials in real variables.

For the particular case of the general linear model considered in the previous example, there was

a relationship between the coefficients in the two formulations of the general linear model. We now

consider whether there is a relationship between the coefficients ψ1, ψ2, . . . and π1, π2, . . . in the

general setting. We continue with our use of the backshift operator B. The first formulation of the

general linear model is

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,
which can be rewritten using the backshift operator as

Xt = Zt +ψ1BZt +ψ2B2Zt + · · ·

or

Xt =
(
1+ψ1B+ψ2B2 + · · ·

)
Zt .

The polynomial in B in this formulation of the model is denoted by ψ(B), so the first formulation of

the general linear model can be written compactly as

Xt = ψ(B)Zt ,

where ψ(B) = 1+ψ1B+ψ2B2 + · · · .
Now consider the second formulation of the general linear model:

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · .

Separating the time series terms on the left-hand side of the equation and the white noise term on

the right-hand side of the equation results in

Xt −π1Xt−1−π2Xt−2−·· ·= Zt ,

which can be rewritten using the backshift operator as

Xt −π1BXt −π2B2Xt −·· ·= Zt

or (
1−π1B−π2B2−·· ·

)
Xt = Zt .

The polynomial in B in this formulation of the model is denoted by π(B), so the second formulation

of the general linear model can be written compactly as

π(B)Xt = Zt ,

where π(B) = 1−π1B−π2B2−·· · .
Definition 8.1 gives the two formulations of the general linear model expressed in purely alge-

braic form and in terms of polynomials in the backshift operator.
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Definition 8.1 A time series {Xt} can be expressed as a general linear model as

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,

where ψ1, ψ2, . . . are real-valued constants and Zt ∼WN
(
0, σ2

Z

)
, or, equivalently, as

Xt =
(
1+ψ1B+ψ2B2 + · · ·

)
Zt = ψ(B)Zt .

Alternatively, the general linear model for a time series can be written as

Xt = Zt +π1Xt−1 +π2Xt−2 + · · ·

for certain values of the real-valued constants π1, π2, . . . , or, equivalently, as

(
1−π1B−π2B2−·· ·

)
Xt = π(B)Xt = Zt .

In the previous example, we were able to perform algebraic steps to determine the relationship

between the coefficients in the first formulation of the general linear model (that is, ψ1, ψ2, . . .)
and the coefficients in the second formulation (that is, π1, π2, . . .). This can also be done in the

more general setting. The equations that define the two formulations of the general linear model in

Definition 8.1 written in terms of the backshift operator are

Xt = ψ(B)Zt and π(B)Xt = Zt .

Applying the ψ(B) polynomial to both sides of the second equation gives

ψ(B)π(B)Xt = ψ(B)Zt

or

ψ(B)π(B)Xt = Xt

or

ψ(B)π(B) = 1

for nonzero Xt . Since the product of the polynomials ψ(B) and π(B) is one, they are inverses. For

suitable values of the coefficients, this allows us to calculate the coefficients ψ1, ψ2, . . . from the

coefficients π1, π2, . . . and vice versa. The inverse relationship between ψ(B) and π(B) will now be

confirmed for the polynomials identified in the previous example.

Example 8.2 Verify that ψ(B)π(B) = 1 for the time series model for {Xt} from the

previous example:

Xt = Zt +ψ1Zt−1,

where −1 < ψ1 < 1 and {Zt} is a time series of white noise.

From Example 8.1, the polynomials in the backshift operator are

ψ(B) = 1+ψ1B

and

π(B) = 1−ψ1B+ψ2
1B2−·· · .
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The product of ψ(B) and π(B) is

ψ(B)π(B) = (1+ψ1B)
(
1−ψ1B+ψ2

1B2−·· ·
)

=
(
1−ψ1B+ψ2

1B2−·· ·
)
+
(
ψ1B−ψ2

1B2 +ψ3
1B3−·· ·

)

= 1

as expected.

The previous discussion constitutes a proof of the following theorem concerning writing the

two forms of the general linear model in terms of polynomials in the backshift operator and the

relationship between the two polynomials ψ(B) and π(B).

Theorem 8.1 The two formulations of the general linear model from Definition 8.1 associated

with the two polynomials ψ(B) and π(B) are equivalent time series models and are related by

ψ(B)π(B) = 1

for certain values of the coefficients.

We will toggle between the purely algebraic formulations of the general linear model and the

associated formulations using the backshift operator B based on which is more convenient and ef-

fective for the mathematics in a particular setting. Definition 8.1 gives two different ways of writing

a general linear model, but is vague concerning any constraints placed on the coefficients. Some

constraints on the coefficients that give the general linear model certain important characteristics

are outlined next. Stationarity will play a central role in these constraints. The stationarity property

implies that the time series is stable over time; this stability allows us to predict how the time series

will behave in the future.

Causality and Invertibility

The general linear model is formulated in two different fashions in Definition 8.1. But we have

not yet defined any general constraints on the coefficients in the two different formulations of the

general linear model. We begin the consideration of appropriate constraints on the coefficients with

some calculations on the first formulation of the general linear model.

The first formulation of the general linear model from Definition 8.1 using the purely algebraic

form is

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · .
We would like to determine constraints on the coefficients ψ1, ψ2, . . . that will result in a stationary

model and also find expressions for quantities associated with the stationary version of this model,

such as E [Xt ], V [Xt ], γ(k), and ρ(k). Taking the expected value of both sides of the defining formula

results in

E [Xt ] = E [Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ]
= E [Zt ]+E [ψ1Zt−1]+E [ψ2Zt−2]+ · · ·
= E [Zt ]+ψ1E [Zt−1]+ψ2E [Zt−2]+ · · ·
= 0

because each of the white noise terms has expected value 0. This is a promising first step toward

achieving stationarity. So far, no constraints are needed on the coefficients ψ1, ψ2, . . . . That will
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change when we compute the population variance of Xt . Taking the population variance of both

sides of the defining formula results in

V [Xt ] =V [Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ]
=V [Zt ]+V [ψ1Zt−1]+V [ψ2Zt−2]+ · · ·
=V [Zt ]+ψ2

1V [Zt−1]+ψ2
2V [Zt−2]+ · · ·

=
(
1+ψ2

1 +ψ2
2 + · · ·

)
σ2

Z

because the white noise terms are mutually independent random variables with common finite popu-

lation variance σ2
Z (see Definition 7.1). Not all values of ψ1, ψ2, . . . will result in a finite population

variance of Xt . Setting ψ1 = ψ2 = · · ·= 1, for example, results in an infinite population variance

of Xt . In order to get a finite population variance, the ψ values must decrease in magnitude rapidly

enough so that

ψ2
1 +ψ2

2 + · · ·< ∞.

One way to achieve this condition is to have finite values for the first q coefficients ψ1, ψ2, . . . , ψq

then zeros thereafter. Any general linear model of the first formulation with coefficients that “cut

off” in this fashion will satisfy the constraint. Another way of considering this constraint is to write

this model using the backshift operator. Using Definition 8.1, the first formulation of the general

linear model is

Xt = ψ(B)Zt =
(
1+ψ1B+ψ2B2 + · · ·

)
Zt .

The polynomial in the backshift operator

ψ(B) = 1+ψ1B+ψ2B2 + · · ·

will be considered for B values that can assume complex values. So B can have the form B = a+bi.

The constraint on the coefficients ψ1, ψ2, . . . is equivalent to ψ(B) converging for all B values falling

on or inside the unit circle. In other words, |B| ≤ 1.

The population autocovariance function for the general linear model stated in the form

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · ·

with coefficients ψ1, ψ2, . . . satisfying the constraint can be calculated by using the definition of the

population covariance:

γ(k) = Cov(Xt , Xt+k)

= Cov(Zt +ψ1Zt−1 +ψ2Zt−2 + · · · , Zt+k +ψ1Zt+k−1 +ψ2Zt+k−2 + · · ·)
= Cov(Zt , ψkZt+k−k)+Cov

(
ψ1Zt−1, ψk+1Zt+k−(k+1)

)
+ · · ·

= ψkσ2
Z +ψ1ψk+1σ2

Z +ψ2ψk+2σ2
Z + · · ·

= (ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·)σ2
Z

for k = 1, 2, . . . because of the mutual independence of the terms in the white noise time series. As

expected from the previous derivation, the autocovariance at lag 0 is the population variance of Xt :

γ(0) =V [Xt ] =
(
1+ψ2

1 +ψ2
2 + · · ·

)
σ2

Z ,

where ψ0, the coefficient of Zt , equals 1. The associated autocorrelation function is

ρ(k) =
γ(k)

γ(0)
=

σ2
Z (ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·)

σ2
Z

(
1+ψ2

1 +ψ2
2 + · · ·

) =
ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·

1+ψ2
1 +ψ2

2 + · · ·
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for k = 1, 2, . . . . Notice that ρ(0) = 1 as expected.

The derivation so far has been general, so when specific values of the coefficients ψ1, ψ2, . . .
are specified, we now have formulas to determine the population autocovariance function and the

population autocorrelation function. Computing these two functions will be illustrated in the next

example.

Example 8.3 Consider a time series model {Xt} described by

Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2,

where {Zt} ∼WN
(
0, σ2

Z

)
. Determine whether this time series is stationary and calcu-

late the population autocovariance function and autocorrelation function.

This time series model is a special case of the first formulation of the general linear

model from Definition 8.1 which expresses Xt as a linear combination of the white

noise terms with coefficients ψ1 = −3/2, ψ2 = 3/4 and ψ j = 0 for j = 3, 4, . . . . The

time series is stationary because

ψ2
1 +ψ2

2 + · · ·=
(
−3

2

)2

+

(
3

4

)2

=
45

16
< ∞.

The population autocovariance function is

γ(k) = (ψk +ψ1ψk+1 +ψ2ψk+2 + · · ·)σ2
Z

=





(
1+(−3/2)2 +(3/4)2

)
σ2

Z k = 0(
−3/2+(−3/2)(3/4)

)
σ2

Z k = 1

(3/4)σ2
Z k = 2

0 k = 3, 4, . . .

=





61σ2
Z/16 k = 0

−21σ2
Z/8 k = 1

3σ2
Z/4 k = 2

0 k = 3, 4, . . . ,

where ψ0 = 1 is the coefficient of Zt . The associated population autocorrelation function

ρ(k) = γ(k)/γ(0) is

ρ(k) =





1 k = 0

−42/61 k = 1

12/61 k = 2

0 k = 3, 4, . . . ,

which is graphed in Figure 8.1. The population autocorrelation function “cuts off” after

spikes at lags 1 and 2.

The constraint that has been placed on the values of ψ1, ψ2, . . . can be formalized in this defini-

tion of the causal representation of the general linear model.
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Figure 8.1: Population autocorrelation function for Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2.

Definition 8.2 A time series {Xt} is causal if it can be written as

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,

where ψ1, ψ2, . . . are real-valued coefficients that satisfy

ψ2
1 +ψ2

2 + · · ·< ∞.

A time series model that can be written in the causal form is stationary.

The next example illustrates how to convert a general linear model into the causal form in order

to establish stationarity.

Example 8.4 Consider the special case of the general linear model

(
1− 2

5
B

)
Xt = Zt .

Convert this time series model to the causal representation.

The causal form from Definition 8.2 is

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · .

So for the specific case given here,

(
1− 2

5
B

)
(Zt +ψ1Zt−1 +ψ2Zt−2 + · · ·) = Zt .

Expanding the left-hand side of this equation gives

Zt +

(
ψ1−

2

5

)
Zt−1 +

(
ψ2−

2

5
ψ1

)
Zt−2 +

(
ψ3−

2

5
ψ2

)
Zt−3 + · · ·= Zt .
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Equating the coefficients on the left-hand side and right-hand side of this equation as

illustrated in Table 8.1 allows us to solve for ψ1, ψ2, . . . . So the causal form of the time

series model is

Xt = Zt +

(
2

5

)
Zt−1 +

(
2

5

)2

Zt−2 +

(
2

5

)3

Zt−3 + · · · ,

which has coefficients ψ j = (2/5) j, for j = 1, 2, . . . . Notice that

ψ2
1 +ψ2

2 +ψ2
3 + · · ·=

(
2

5

)2

+

(
2

5

)4

+

(
2

5

)6

+ · · ·= 4/25

1−4/25
=

4

21
< ∞,

so the time series is causal because Definition 8.2 is satisfied. Since the time series is

causal, this implies that it is also stationary.

term equation solution

Zt−1 ψ1−
2

5
= 0 ψ1 =

2

5

Zt−2 ψ2−
2

5
ψ1 = 0 ψ2 =

(
2

5

)2

Zt−3 ψ3−
2

5
ψ2 = 0 ψ3 =

(
2

5

)3

...
...

...

Table 8.1: Matching coefficients.

When the second formulation of the general linear model that uses the coefficients π1, π2, . . . is

used, there is an analogous property known as invertibility which is defined next. In this case the

coefficients π1, π2, . . . need to decrease in magnitude rapidly enough so that

π2
1 +π2

2 + · · ·< ∞.

Loosely speaking, a time series model is invertible if there is a one-to-one correspondence between

the coefficients π1, π2, . . . and the associated population autocorrelation function.

Definition 8.3 A time series {Xt} is invertible if it can be written as

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · ,

where π1, π2, . . . are real-valued coefficients that satisfy

π2
1 +π2

2 + · · ·< ∞.

An invertible time series model has a one-to-one correspondence between the coefficients and the

autocorrelation function.

So causality and invertibility are dual properties. Causality indicates that a time series model can

be written in the first formulation of the general linear model from Definition 8.1 with coefficients



456 Chapter 8. Time Series Modeling

that result in a stationarity model. Invertibility indicates that a time series model can be written in

the second formulation of the general linear model from Definition 8.1 with coefficients that ensure

a one-to-one correspondence between the coefficients and the population autocorrelation function.

There are three unsettling aspects to the general linear model. First, it only considers linear

relationships between the X’s and the Z’s. Situations might arise in which a quadratic term, for ex-

ample, might be appropriate. Second, the general linear model has an infinite number of parameters:

the coefficients ψ1, ψ2, . . . for the first formulation and the coefficients π1, π2, . . . for the second

formulation. ARMA (autoregressive moving average) models, which are special cases of general

linear models that are introduced in the next section, limit the number of parameters in the model.

The third shortcoming concerns the population mean. Taking the expected value of both sides of the

first formulation of the general linear model

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · · ,

for example, gives E [Xt ] = 0. But the vast majority of real-world time series are not centered around

zero. These problems associated with an infinite number of parameters and nonzero mean value will

be overcome by the ARMA models introduced in the next section.

8.1.2 An Introduction to ARMA Models

The autoregressive moving average time series model, universally known as the ARMA model,

provides two twists on the general linear model. First, the ARMA model limits the number of terms,

and therefore limits the number of parameters. Second, the ARMA model includes both types of

terms in the two formulations of the general linear model given in Definition 8.1.

There are several reasons for the popularity of the ARMA time series model. First, the popula-

tion autocorrelation function ρ(k) for an ARMA model can take on a wide variety of shapes, which

makes it an appropriate time series model in a wide variety of applications. Second, the ARMA

model is parsimonious in the sense that it typically requires only a small number of parameters to

achieve an adequate representation of the probability model governing a time series. The notion

of parsimony appears in all branches of statistics in which there is interest in finding an approxi-

mate probability model using the smallest number of parameters. Third, the ARMA model has been

around for several decades, which means that dozens of software packages have been developed

over the years for model identification, parameter estimation, forecasting, etc. Although the empha-

sis here will be on the R language, there are many other software packages that support time series

modeling.

The general linear model from Definition 8.1 used the parameters ψ1, ψ2, . . . for the first for-

mulation and π1, π2, . . . for the second formulation. Of course both of these formulations have the

additional parameter σ2
Z , which is the population variance of the white noise. Tradition dictates that

in the conversion from the first formulation of the general linear model to the ARMA model, the

Greek letter ψ used for coefficients in the general linear model is replaced by θ, and there are q of

these coefficients: θ1, θ2, . . . , θq. Likewise, in the conversion from the second formulation of the

general linear model to the ARMA model, the Greek letter π used for the coefficients in the general

model is replaced by φ, and there are p of these coefficients: φ1, φ2, . . . , φp.

So two key parameters in specifying an ARMA model are p and q, which are both nonnegative

integers. The parameter p is the number of coefficient parameters in the autoregressive portion of

the model; the parameter q is the number of coefficient parameters in the moving average portion of

the model. The format for specifying the orders p and q of an ARMA model with p autoregressive

terms and q moving average terms is ARMA(p, q).
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Definition 8.4 The ARMA(p, q) time series model is

Xt =

autoregressive portion︷ ︸︸ ︷
φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q︸ ︷︷ ︸

moving average portion

,

where {Xt} is the time series of interest, {Zt} is a time series of white noise, φ1, φ2, . . . , φp are real-

valued parameters associated with the AR portion of the model, and θ1, θ2, . . . , θq are real-valued

parameters associated with the MA portion of the model.

The autoregressive portion of this time series model is aptly named because the current value

of the time series Xt is regressed on the p previous values of itself. White noise is injected into the

model through {Zt} because it is the widest class of the three noise processes from Definition 7.1

which gives the probabilistic properties that are derived in this chapter.

If an ARMA model only involves, for example, the autoregressive portion of the model with two

terms (that is, no moving average terms because θ1 = θ2 = · · · = θq = 0), then this ARMA(2, 0)

model is specified as an AR(2) model. Likewise, if an ARMA model only involves, for example, the

moving average portion of the model with four terms (that is, no autoregressive terms because φ1 =
φ2 = · · ·= φp = 0), then this ARMA(0, 4) model is specified as an MA(4) model. An ARMA(0, 0)

model is just a time series of white noise, which was analyzed in Examples 7.9 and 7.15.

The ARMA(p, q) time series model from Definition 8.4 can also be written in terms of the

backshift operator B. Taking the original form of the ARMA(p, q) model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

and separating the autoregressive terms on the left-hand side of the equation and the moving average

terms on the right-hand side of the equation results in

Xt −φ1Xt−1−φ2Xt−2−·· ·−φpXt−p = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q.

This can be written in terms of the backshift operator as

Xt −φ1BXt −φ2B2Xt −·· ·−φpBpXt = Zt +θ1BZt +θ2B2Zt + · · ·+θqBqZt

or (
1−φ1B−φ2B2−·· ·−φpBp

)
Xt =

(
1+θ1B+θ2B2 + · · ·+θqBq

)
Zt

or more compactly as

φ(B)Xt = θ(B)Zt ,

where the polynomials in B are

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp

and

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq,

and these are often referred to as the characteristic polynomials. This algebra constitutes a proof of

the alternative representation of the ARMA(p, q) time series model using polynomials.
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Theorem 8.2 The ARMA(p, q) time series model can be written using the backshift operator B

as

φ(B)Xt = θ(B)Zt ,

where the characteristic polynomials in B are

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp

and

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.

Being able to convert between the purely algebraic formulation of an ARMA(p, q) model and the

backshift operator formulation is an important skill in time series analysis. The next three examples

illustrate how to perform these conversions.

Example 8.5 For the ARMA time series model

Xt = 5Xt−1−2Xt−2 +Zt −4Zt−1 +2Zt−2−Zt−3,

(a) identify the time series model, and

(b) write the time series model in terms of the backshift operator B.

(a) Since there are two terms in the autoregressive portion of the time series model

with coefficients

φ1 = 5 and φ2 =−2

and three terms in the moving average portion of the time series model with coef-

ficients

θ1 =−4, θ2 = 2, and θ3 =−1,

this is an ARMA(2, 3) model.

(b) The time series model

Xt = 5Xt−1−2Xt−2 +Zt −4Zt−1 +2Zt−2−Zt−3

can be separated into autoregressive and moving average portions as

Xt −5Xt−1 +2Xt−2 = Zt −4Zt−1 +2Zt−2−Zt−3.

This can be written in terms of B as

Xt −5BXt +2B2Xt = Zt −4BZt +2B2Zt −B3Zt

or (
1−5B+2B2

)
Xt =

(
1−4B+2B2−B3

)
Zt .

So the polynomials in B that define the coefficients for the ARMA(2, 3) time series

model written in the form φ(B)Xt = θ(B)Zt are

φ(B) = 1−5B+2B2 and θ(B) = 1−4B+2B2−B3.
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The previous example converted an ARMA time series model from a purely algebraic formula-

tion to a formulation that uses the backshift operator. The next example goes in the other direction.

Example 8.6 For the ARMA time series model

φ(B)Xt = θ(B)Zt ,

where φ(B) = 1−0.3B and θ(B) = 1,

(a) identify the time series model, and

(b) write the time series model in purely algebraic form.

(a) Since φ(B) is a first degree polynomial, p = 1. Since θ(B) is a zero degree polyno-

mial, q = 0. So this is an ARMA(1, 0) model, which is more commonly referred

to as an AR(1) model.

(b) The time series model is

(1−0.3B)Xt = 1 ·Zt

or

Xt −0.3BXt = Zt

or

Xt −0.3Xt−1 = Zt .

Isolating Xt on the left-hand side of the equation, the purely algebraic formulation

of this AR(1) model with φ1 = 0.3 is

Xt = 0.3Xt−1 +Zt .

The third and final example of converting between the purely algebraic formulation and backshift

formulation of the ARMA(p, q) model would certainly be classified as a trick question. The example

emphasizes the importance of looking for common factors between the φ(B) and θ(B) polynomials.

Example 8.7 For the ARMA time series model

Xt =−3Xt−1 +Xt−2 +3Xt−3 +Zt −3Zt−1−4Zt−2,

(a) identify the time series model, and

(b) write the time series model using the backshift operator.

(a) Since there are three terms in the autoregressive portion of the model and two

terms in the moving average portion of the model, one might be temped to con-

clude that this is an ARMA(3, 2) model with autoregressive coefficients

φ1 =−3, φ2 = 1, and φ3 = 3,

and moving average coefficients

θ1 =−3 and θ2 =−4.

But that conclusion is wrong. It is actually an ARMA(2, 1) model because φ(B)
and θ(B) have a common factor, as will be seen in part (b). Writing the time series

model using the backshift operator B makes it easier to recognize this common

factor.
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(b) The time series model

Xt =−3Xt−1 +Xt−2 +3Xt−3 +Zt −3Zt−1−4Zt−2

can be separated into autoregressive and moving average portions as

Xt +3Xt−1−Xt−2−3Xt−3 = Zt −3Zt−1−4Zt−2

or

Xt +3BXt −B2Xt −3B3Xt = Zt −3BZt −4B2Zt

or (
1+3B−B2−3B3

)
Xt =

(
1−3B−4B2

)
Zt

or

φ(B)Xt = θ(B)Zt ,

where

φ(B) = 1+3B−B2−3B3 and θ(B) = 1−3B−4B2.

The model still looks like an ARMA(3, 2) model. But factoring φ(B) and θ(B)
reveals that both polynomials contain a common factor:

φ(B) = 1+3B−B2−3B3 = (1+B)
(
1+2B−3B2

)

and

θ(B) = 1−3B−4B2 = (1+B)(1−4B).

The common factor (1+B) in the two polynomials cancels, which means that the

ARMA model can be reduced to

φ(B)Xt = θ(B)Zt ,

where

φ(B) = 1+2B−3B2 and θ(B) = 1−4B,

which is an ARMA(2, 1) model. Written in purely algebraic form, this ARMA(2, 1)

model is

Xt +2Xt−1−3Xt−2 = Zt −4Zt−1,

or

Xt =−2Xt−1 +3Xt−2 +Zt −4Zt−1,

so the autoregressive coefficients are φ1 =−2 and φ2 = 3, and the moving average

coefficient is θ1 =−4.

Based on this example involving a common factor in the φ(B) and θ(B) polynomials, we will

henceforth assume that the modeler has removed any redundant factors in an ARMA(p, q) time

series model. So any ARMA(p, q) model you see going forward will in this sense be presented in

lowest terms with no common factors between φ(B) and θ(B).
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Since an AR(p) model has a finite number of coefficients φ1, φ2, . . . , φp in the autoregressive

portion of the model, they always satisfy

φ2
1 +φ2

2 + · · ·+φ2
p < ∞,

so AR(p) models are always invertible per Definition 8.3. Likewise, since an MA(q) model has a

finite number of coefficients θ1, θ2, . . . , θq in the moving average portion of the model, they always

satisfy

θ2
1 +θ2

2 + · · ·+θ2
q < ∞,

so MA(q) models are always stationary per Definition 8.2. In an advanced class in time series, you

will prove that an AR(p) model is stationary when all of the p complex roots of the polynomial

φ(B) = 0 lie outside of the unit circle in the complex plane. Likewise, an MA(q) model is invertible

when all of the q complex roots of the polynomial θ(B) = 0 lie outside of the unit circle in the

complex plane. An ARMA(p, q) model is stationary when all of the p complex roots of φ(B) = 0

lie outside of the unit circle in the complex plane. An ARMA(p, q) model is invertible when all of

the q complex roots of θ(B) = 0 lie outside of the unit circle in the complex plane. These results are

summarized below.

Theorem 8.3 The AR(p) model φ(B)Xt = Zt is

• always invertible, and

• stationary when the p roots of φ(B) = 0 lie outside the unit circle in the complex plane.

The MA(q) model Xt = θ(B)Zt is

• always stationary, and

• invertible when the q roots of θ(B) = 0 lie outside the unit circle in the complex plane.

The ARMA(p, q) model φ(B)Xt = θ(B)Zt is

• stationary when the p roots of φ(B) = 0 lie outside the unit circle in the complex plane, and

• invertible when the q roots of θ(B) = 0 lie outside the unit circle in the complex plane.

We now revisit the first numeric example of a time series model that we encountered earlier in

this chapter to check and see if it is both stationary and invertible.

Example 8.8 Consider the time series model for {Xt} that first appeared in Example 8.3

described by

Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2,

where {Zt} ∼WN
(
0, σ2

Z

)
. Identify this time series model and determine whether it is

stationary and invertible.

Since the current and two previous white noise values included in this time series model,

this is an MA(2) model. By Theorem 8.3, all MA(2) models are stationary. To see

whether this model is invertible, we want to calculate the roots of θ(B) = 0 and see if

they lie outside of the unit circle in the complex plane. The purely algebraic form of the

time series model

Xt = Zt −
3

2
Zt−1 +

3

4
Zt−2,
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can be written in terms of the backshift operator as

Xt = Zt −
3

2
BZt +

3

4
B2Zt

or

Xt =

(
1− 3

2
B+

3

4
B2

)
Zt ,

so θ(B) = 1− 3
2 B+ 3

4 B2. To find the values of B that solve θ(B) = 0 requires solving

3

4
B2− 3

2
B+1 = 0,

which is equivalent to the quadratic equation

3B2−6B+4 = 0.

Using the quadratic formula, the roots of this quadratic equation are

B =
6±
√

36−48

6

or

B = 1±
√

3

3
i.

Since θ(B) is a second-order polynomial, the complex roots are necessarily complex

conjugates. We now need to determine whether these two roots lie outside of the unit

circle in the complex plane. There are two ways to proceed. The first is to simply

plot these two roots in the complex plane and see if they fall outside of the unit circle.

Figure 8.2 shows that the two roots do indeed fall outside of the unit circle. The second

way to determine whether the roots fall outside the unit circle is to take the sum of

squares of the real and imaginary parts of the roots and see if they exceed 1. In this

case,

(1)2 +

(√
3

3

)2

= 1+
1

3
=

4

3
> 1.

real

imaginary

unit circle

Figure 8.2: Unit circle in the complex plane and the roots of θ(B) = 0.
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Both techniques draw the same conclusion: the two roots of θ(B) = 0 fall outside of the

unit circle in the complex plane, which means that the time series model is invertible.

In conclusion, this MA(2) time series model is both stationary and invertible.

We will get some further practice with these calculations involving the polynomials φ(B) and

θ(B) when we investigate special cases of the ARMA(p, q) model in more detail in the sections that

follow.

Shifted ARMA models

We now address a major shortcoming of the ARMA(p, q) model that–fortunately–is easily over-

come. For a stationary ARMA(p, q) model as it has been defined in Definition 8.4, the expected

value of Xt is E [Xt ] = 0. But most real-world stationary time series are not centered about 0; they

are typically centered about some nonzero constant value. The reason that we have waited this long

to bring up the topic of a time series centered around a value other than zero is that when we shift the

time series, there will be no change in the population autocovariance and autocorrelation functions

because population covariance and correlation are unaffected by shifting the time series. The math-

ematics involved with determining these important functions is much cleaner if you assume that the

time series model is centered about zero. There are two ways to tweak the ARMA(p, q) model to

allow for it to be centered about some constant value. These two alterations are presented next.

The first way to introduce a nonzero central value for an ARMA(p, q) time series model is to

subtract µ from all of the values in the time series. In other words, transform the usual ARMA(p, q)

time series model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q

to the shifted ARMA(p, q) time series model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q.

This can be written compactly in terms of the backshift operator B as

φ(B)(Xt −µ) = θ(B)Zt ,

where φ(B) is the usual polynomial of degree p in B associated with the autoregressive portion of

the model:

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp,

and θ(B) is the usual polynomial of degree q in B associated with the moving average portion of the

model:

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.

In this particular formulation of a shifted ARMA(p, q) model, the population mean of the process

is E [Xt ] = µ when the model is stationary. This can be established by taking the expected value of

both sides of the shifted ARMA(p, q) time series model.

A second way to formulate a shifted ARMA(p, q) time series model with a nonzero population

mean is to simply add a constant, denoted by µ̃, to the right-hand side of the model:

Xt = µ̃+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q

This can be written in terms of the backshift operator as

φ(B)Xt = µ̃+θ(B)Zt .
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The reason that a tilde has been placed above µ in this formulation is that µ̃ is not the population

mean of the time series model. The two ways of formulating a shifted ARMA(p, q) time series

model in these two fashions are summarized as follows.

Definition 8.5 A shifted ARMA(p, q) time series model with a nonzero population mean µ can

be written in purely algebraic form as

Xt−µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

or equivalently using the backshift operator B as

φ(B)(Xt −µ) = θ(B)Zt .

A second way to formulate a shifted ARMA(p, q) time series model with a nonzero population

mean can be written in purely algebraic form as

Xt = µ̃+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

or equivalently using the backshift operator B as

φ(B)Xt = µ̃+θ(B)Zt ,

where φ(B) and θ(B) are the usual polynomials in the backshift operator B given in Theorem 8.2.

The example that follows illustrates how to convert a shifted time series model from one of these

forms to the other.

Example 8.9 The shifted ARMA(1, 1) model defined by

Xt = 8+0.6Xt−1 +Zt −0.1Zt−1

is written in the second form from Definition 8.5 with µ̃ = 8. Convert it to the first form.

Moving all autoregressive terms and the constant term to the left-hand side of the equa-

tion results in

Xt −0.6Xt−1−8 = Zt −0.1Zt−1.

Using the backshift operator, this can be written as

(1−0.6B)Xt −8 = (1−0.1B)Zt .

We would like to fold the constant 8 into position on the left-hand side of the equation to

match the first formulation from Definition 8.5. We multiply and divide 8 by (1−0.6B),
keeping in mind that the backshift operator applied to a constant is just the constant:

(1−0.6B)Xt −8 · 1−0.6B

1−0.6B
= (1−0.1B)Zt

or

(1−0.6B)Xt − (1−0.6B) · 8

0.4
= (1−0.1B)Zt

or

(1−0.6B)(Xt −20) = (1−0.1B)Zt .



Section 8.1. Probability Models 465

So this shifted ARMA(1, 1) time series model is now written in the first formula-

tion from Definition 8.5, which is φ(B)(Xt − µ) = θ(B). The expected value of Xt is

µ = E [Xt ] = 20. One way to check that we have done all of the algebra correctly is to

use µ = 20 as an argument in the first formulation of the model from Definition 8.5 and

perform the algebra to see whether it is equivalent to the second formulation.

The previous example can be generalized from the shifted ARMA(1, 1) model to the shifted

ARMA(p, q) model. The following theorem gives the relationship between µ and µ̃ for the two

formulations of the shifted ARMA(p, q) models in Definition 8.5.

Theorem 8.4 The parameters µ = E[Xt ] and µ̃ for the two shifted ARMA(p, q) models from Def-

inition 8.5 are related by

µ =
µ̃

1−φ1−φ2−·· ·−φp

when the coefficients φ1, φ2, . . . , φp correspond to a stationary model.

Proof The second shifted ARMA(p, q) model from Definition 8.5 is

Xt = µ̃+φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q.

Taking the expected value of both sides of this equation yields

E [Xt ] = µ̃+φ1E [Xt−1]+φ2E [Xt−2]+ · · ·+φpE [Xt−p]+0

because all of the white noise terms have expected value zero. Since the time series is

assumed to be stationary, E [Xt ] =E [Xt−1] =E [Xt−2] = · · ·=E [Xt−p], and this equation

becomes

E [Xt ] = µ̃+φ1E [Xt ]+φ2E [Xt ]+ · · ·+φpE [Xt ] .

Solving for µ = E[Xt ] gives

µ =
µ̃

1−φ1−φ2−·· ·−φp

. �

In the previous example, the value of µ = E [Xt ] could have been calculated by appealing to

Theorem 8.4 with µ̃ = 8 and φ1 = 0.6, which gives

µ = E [Xt ] =
8

1−0.6
= 20.

This provides an illustration of how Theorem 8.4 provides a mechanism for converting between the

two forms of the shifted ARMA(p, q) models given in Definition 8.5.

This section has provided an introduction to linear models. The first subsection surveyed the two

formulations of the general linear model and introduced the causality and invertibility properties.

The second subsection introduced a special case of the general linear model known as the ARMA

(autoregressive moving average) model. These time series models are inherently probabilistic in

nature. The next section introduces some of the associated statistical topics in time series analysis:

parameter estimation, forecasting, model assessment, and model selection.
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8.2 Statistical Methods

The previous section introduced two linear probability models for time series: the general linear

model and the ARMA model. These models contain parameters which can be used to tune the

model to a particular application. This chapter introduces the statistical methods that are used to

estimate these parameters and assess whether the model with its fitted parameters provides an ade-

quate representation of the probabilistic mechanism governing the time series. As you read the rest

of this book, you should be continually asking yourself whether the new material is associated with

a probability model or presents a statistical method. The statistical methods are presented here in

a somewhat generic manner; the specific implementations on a time series of observations occurs

subsequently. The first subsection in this section introduces three methods for estimating the param-

eters in an ARMA model: the method of moments, least squares, and maximum likelihood. This is

followed by a subsection that considers the important topic of forecasting future observations in a

time series. Subsections on model assessment and model selection complete the section.

8.2.1 Parameter Estimation

The emphasis now shifts from a time series model, which is developed using probability theory, to

statistical questions associated with a realization of a time series. The observed values of this realiza-

tion are denoted by X1, X2, . . . , Xn when considered abstractly; when specific values are considered,

they are denoted by x1, x2, . . . , xn.

Before considering parameter estimation, we consider the topic of model identification. Since p

and q are nonnegative integers, there are an infinite number of ARMA(p, q) models from which to

choose. Which model is appropriate for a particular application? Most statistical software packages

that perform the analysis of a time series have functions that estimate parameters and forecast future

values of the time series. So those two aspects of time series analysis are largely automated. The

part of the process that requires some insight from the modeler is the specification of an appropriate

time series model for a particular application. By what criteria do we decide whether an MA(1),

AR(2), or ARMA(2, 1) is a tentative or a final time series model? The two steps associated with

model identification for an ARMA(p, q) model are given next.

1. Inspect the time series plot. The process of identifying a time series model always begins

with a careful inspection of a plot of the time series. Take a few minutes to look for cyclic

variation, trends, step changes, outliers, and nonconstant variance in the plot of the time series.

Visually assess the time series for any serial correlation. The human eye can spot subtleties

that an algorithm might miss. Only you can perform this step. We assume for now that no

trends, step changes, outliers, cyclic variation, or nonconstant variance in the time series have

been identified, so a stationary model for the time series is sought. Modeling cyclic variation,

trends, and nonconstant variance will be taken up subsequently.

2. Inspect the plots of rk and r∗k . Inspecting plots of the sample autocorrelation function and

the sample partial autocorrelation function is an attempt to conduct a visual pattern match

between the sample autocorrelation patterns with a known inventory of population autocor-

relation patterns for the various ARMA(p, q) models. The minimum length of a time series

in order to make meaningful visual comparisons between the sample and population auto-

correlation functions is about n = 60 or n = 70 observations. As will be seen in subsequent

chapters, the shape of the sample autocorrelation function and the sample partial autocorre-

lation function can provide clues as to an appropriate time series model. In some cases, the

values of p and q in the ARMA(p, q) model become immediately apparent upon viewing these
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three plots. In other cases, the situation is murky, and there might be two or three potential

ARMA(p, q) models that seem to be plausible. Since we have assumed that the time series is

stationary in the previous paragraph, there is no need to transform or difference the data based

on these plots in the current setting. The p and q values for the ARMA time series model

identified from this step will be known as the tentative model. Once a tentative model has

been identified, the next step is to estimate the parameters, which accounts for the remainder

of this section.

We would like to estimate the parameters of a stationary and invertible tentative ARMA(p, q)

model. It is assumed that the number of autoregressive terms p and the number of moving av-

erage terms q have been established for a tentative ARMA(p, q) time series model based on an

inspection of the sample autocorrelation and sample partial autocorrelation functions. There are a

total of p+ q+ 1 unknown parameters in a standard ARMA(p, q) model from Definition 8.4: the

autoregressive coefficients φ1, φ2, . . . , φp, the moving average coefficients θ1, θ2, . . . , θq, and the

population variance of the white noise σ2
Z . The shifted ARMA(p, q) model from Definition 8.5 has

the additional parameter µ.

Consistent with conventional notation in statistics, hats on unknown parameters denote their

point estimators. The point estimator of the unknown parameter φ1, for example, is φ̂1. The point

estimators developed here are random variables that take on one particular value for an observed time

series x1, x2, . . . , xn. Point estimators are typically paired with a 100(1−α)% confidence interval

that gives a sense of the precision of the point estimator. A confidence interval for the unknown

parameter φ1, for example, is typically expressed in the form L < φ1 < U , where L is the random

lower bound of the confidence interval and U is the random upper bound of the confidence interval.

In most practical problems involving a time series model, a shifted ARMA(p, q) model is used

because very few time series are centered around zero. Since the ARMA(p, q) time series model

is generally assumed to be stationary and invertible, it is common practice in time series analysis

to estimate the population mean parameter µ with the sample mean X̄ . This is justified by the fact

that E [Xt ] = µ for a stationary and invertible shifted ARMA(p, q) model. This is consistent with the

method of moments approach. Once µ has been estimated, the new time series which is shifted by

µ̂ = X̄ is

x1− x̄, x2− x̄, . . . , xn− x̄.

This time series can be fitted to a standard ARMA(p, q) model from Definition 8.4. This new time

series has a sample mean value of zero because

1

n

n

∑
i=1

(xi− x̄) =
1

n

n

∑
i=1

xi−
1

n

n

∑
i=1

x̄ = x̄− 1

n
·n · x̄ = 0.

So for now we dispatch with the parameter µ and assume that it will typically be estimated by x̄

for a stationary and invertible ARMA(p, q) model by centering the time series as described above.

Both the original time series and the centered time series will be denoted by as {Xt} or {xt} in order

to avoid introducing a new letter (Yt or yt) into the notation. The parameter estimation techniques

that follow will be applied to a standard ARMA(p, q) model centered around zero, which assumes

that µ has been estimated in the shifted model. This will make the notation somewhat more com-

pact. The population variance of X̄ for mutually independent and identically distributed observations

X1, X2, . . . , Xn is the well-known formula

V
[
X̄
]
=

σ2
X

n
.
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But for a stationary ARMA(p, q) time series model with population autocovariance function γ(k)
and population autocorrelation function ρ(k), the population variance of the sample mean is

V
[
X̄
]
=V

[
1

n
(X1 +X2 + · · ·+Xn)

]

=
1

n2
V [X1 +X2 + · · ·+Xn]

=
1

n2

n

∑
i=1

n

∑
j=1

Cov(Xi, X j)

=
1

n2

[
n

∑
i=1

V [Xi]+2
n−1

∑
i=1

n

∑
j= i+1

Cov(Xi, X j)

]

=
1

n2

[
nγ(0)+2

n−1

∑
k=1

(n− k)γ(k)

]

=
σ2

X

n

[
1+2

n−1

∑
k=1

(
1− k

n

)
ρ(k)

]
.

Notice that this formula collapses to V
[
X̄
]
= σ2

X/n when ρ(1) = ρ(2) = · · · = ρ(n− 1) = 0 as

expected. This formula should be kept in mind whenever statistical inferences, such as confidence

intervals or hypothesis tests, are made concerning the population mean from a realization of a time

series. The sample mean is a meaningful summary statistic for a time series only when appropriate

transformations have been applied to the time series in order to reduce it to a stationary time series.

Three techniques for the estimation of parameters in a time series model will be introduced here:

the method of moments, least squares, and maximum likelihood estimation. There are three reasons

why just one parameter estimation technique is not adequate. First, an AR(3) model, for example,

might be well fitted with one estimation technique, but an MA(2) model, on the other hand, might be

more compatible with another estimation technique. Second, it is often the case that one technique

will provide initial estimates for a numerical method associated with a second technique. Third,

some of the estimation techniques provide estimators which have degraded statistical properties

near the boundaries of the stationarity or invertibility regions. The three techniques will be discussed

generally below, and then will be illustrated with examples subsequently using real time series data.

Method of Moments

The essence of the method of moments technique is to equate low-order population and sample

moments and solve for all unknown parameters. This method was developed by English mathemati-

cian and biostatistician Karl Pearson. This approach often seems arresting to those encountering it

for the first time because population moments are constants and sample moments are random vari-

ables. Equating constants and random variables is simply a device that is used to get a perfect match

between low-order population and sample moments.

In a non-time-series context with data values X1, X2, . . . , Xn and m unknown population param-

eters, the m equations

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t
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...

E [Xm
t ] =

1

n

n

∑
t=1

Xm
t

can be solved to arrive at the m method of moments estimators of the unknown parameters. In some

settings this can be done analytically, but in other settings numerical methods are required.

Returning to a time-series context, the stationarity assumption (see Definition 7.6) places re-

quirements on only the first two population moments E [Xt ] and E
[
X2

t

]
. Stationarity places no

requirements on the third and higher order moments. But stationarity does imply that the autocorre-

lation between two observations depends only on the lag, and this can be exploited to generate the

necessary number of equations to employ the method of moments technique. Consider a stationary

and invertible ARMA(p, q) model, for example, that has four unknown parameters. Solving the set

of four equations in the four unknown parameters

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

ρ(2) = r2

yields the method of moments estimators for the four unknown parameters. The usual approach to

fitting a time series model to a realization of a time series by the method of moments technique is

to use the first two of these equations, and then equate population and sample autocorrelations at

enough low-order lags in order to account for all unknown parameters. In this way the population

and the sample autocorrelations will match at lower-order lags.

Least Squares Estimation

The least squares estimation technique is used nearly universally in regression analysis. This

method developed by German mathematician Carl Friedrich Gauss. The essence of the least squares

technique is to find the values of the unknown parameters that minimize the sum of squares of the

error terms in a model. In the time series setting, we want to find the values of the parameters that

minimize

S =
n

∑
t=1

Z2
t .

The use of least squares for ARMA(p, q) models requires two steps. First, solve the target model

for Zt , and then substitute that expression into the equation above. At this point, S is written in terms

of the unknown parameters. Second, take the partial derivatives of S with respect to all unknown

parameters and solve for the unknown parameters. The set of equations to solve is often referred to

as the orthonormal equations. The solution to these equations yields the least squares estimates of

the unknown parameters. In some cases these equations can be solved analytically; in other cases

numerical methods are required.

Maximum Likelihood Estimation

Maximum likelihood estimation is the most prevalent technique for estimating unknown param-

eters from a data set in the field of statistics, particularly outside of regression. The method was
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popularized by English statistician Sir Ronald Fisher. The essence of the maximum likelihood esti-

mation technique, whether applied in time series analysis or otherwise, is to select the parameters in

a hypothesized model that are the most likely ones to have resulted in the observed data values. The

maximum likelihood estimators of the unknown parameters are found by maximizing the likelihood

function, which is the joint probability density function of the data values evaluated at their observed

values. The likelihood function is a function of the unknown parameters in the model with the data

values fixed at their observed values. We begin by using maximum likelihood estimation on an

ARMA(0, 0) model in order to establish some of the issues associated with the use of the maximum

likelihood estimation technique to estimate the parameters in a time series model.

Example 8.10 Let x1, x2, . . . , xn be a realization of observations from an ARMA(0, 0)

time series model that is simply white noise:

Xt = Zt ,

where Zt ∼ WN
(
0, σ2

Z

)
. Find the maximum likelihood estimator of σ2

Z , determine

whether the maximum likelihood estimator is unbiased and consistent, and derive an

exact two-sided 100(1−α)% confidence interval for σ2
Z .

The ARMA(0, 0) time series model has just a single unknown parameter σ2
Z , the popu-

lation variance of the white noise, that needs to be estimated. The likelihood function

is the joint probability density function of the observations:

L
(
σ2

Z

)
= f (x1, x2, . . . , xn).

The x1, x2, . . . , xn arguments on L and the σ2
Z argument on f are suppressed for brevity.

We are lucky with the ARMA(0, 0) model because we can exploit the fact that the

observations in the time series are mutually independent, which means that the joint

probability density function of the observed values x1, x2, . . . , xn is the product of the

marginal probability density functions:

L
(
σ2

Z

)
= f (x1, x2, . . . , xn) = f (x1) f (x2) . . . f (xn),

where f (x) is the probability density function of a single observation in the time series,

which is just white noise. We won’t be so lucky for general ARMA(p, q) models. The

assumption of white noise is vague in the sense that we do not know the functional

form of f (x). We only know that it is a probability distribution with population mean 0

and population variance σ2
Z . In order to apply the maximum likelihood estimation tech-

nique, we must make an additional assumption about the distribution of X1, X2, . . . , Xn.

So at this point we make the additional assumption that the white noise terms are in fact

Gaussian white noise terms:

f (xi) =
1√

2πσ2
Z

e−x2
i /(2σ2

Z) −∞ < xi < ∞,

for i = 1, 2, . . . , n, which is the probability density function of a N
(
0, σ2

Z

)
random vari-

able. The assumption of normally-distributed error terms in order to use the maximum

likelihood estimation technique is nearly universal in time series analysis. The associ-

ated likelihood function is

L
(
σ2

Z

)
=

n

∏
i=1

f (xi) =
(
2πσ2

Z

)−n/2
e−∑n

i=1 x2
i /(2σ2

Z).
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The maximum likelihood estimator of σ2
Z is the value of σ2

Z that maximizes the likeli-

hood function:

σ̂2
Z = argmax

Ω
L
(
σ2

Z

)
,

where Ω is the parameter space Ω =
{

σ2
Z |σ2

Z > 0
}

. It is often the case that the math-

ematics associated with maximizing the natural logarithm of the likelihood function is

easier than the mathematics of maximizing the likelihood function. Both functions are

maximized at the same value because the natural logarithm is a monotonic transforma-

tion. The log likelihood function is

ln L
(
σ2

Z

)
=−n

2
ln
(
2πσ2

Z

)
− 1

2σ2
Z

n

∑
i=1

x2
i .

The derivative of the log likelihood function with respect to the unknown parameter σ2
Z

is
∂ ln L

(
σ2

Z

)

∂σ2
Z

=− n

2σ2
Z

+
1

2σ4
Z

n

∑
i=1

x2
i .

Equating this derivative to zero and solving for σ2
Z gives the maximum likelihood esti-

mator

σ̂2
Z =

1

n

n

∑
i=1

x2
i .

The maximum likelihood estimator is an unbiased estimator of σ2
Z because

E
[
σ̂2

Z

]
= E

[
1

n

n

∑
i=1

X2
i

]
=

1

n
E

[
n

∑
i=1

X2
i

]
=

1

n

n

∑
i=1

E
[
X2

i

]
=

1

n

n

∑
i=1

V [Xi] =
1

n
·n ·σ2

Z = σ2
Z

based on the shortcut formula for the population variance and the fact that E[Xi] = 0.

This means that although the maximum likelihood estimator might miss the true pa-

rameter value σ2
Z on the low side or on the high side, it is pointing at the correct target

because its expected value (long-run average) is the true parameter value.

By standardizing the Xi values, we find that a function of the maximum likelihood

estimator has the chi-square distribution because it can be written as the sum of squares

of mutually independent standard normal random variables:

nσ̂2
Z

σ2
Z

=
n

∑
i=1

(
Xi−0

σZ

)2

=
n

∑
i=1

(
Xi

σZ

)2

∼ χ2(n).

The population variance of the maximum likelihood estimator is

V
[
σ̂2

Z

]
=

σ4
Z

n2
·V
[

nσ̂2
Z

σ2
Z

]
=

σ4
Z

n2
·2n =

2σ4
Z

n

because the population variance of a chi-square random variable with n degrees of free-

dom is 2n. The maximum likelihood estimator is a consistent estimator of σ2
Z because

it is unbiased and limn→∞ V
[
σ̂2

Z

]
= 0. The maximum likelihood estimator σ̂2

Z will ap-

proach the true parameter value σ2
Z in the limit as n increases. In other words, for any

positive constant ε,

lim
n→∞

P
(∣∣σ̂2

Z−σ2
Z

∣∣< ε
)
= 1.
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The unbiased and consistent point estimator σ̂2
Z does not convey any sense of the preci-

sion of the point estimator, however. That information is best conveyed in this setting

by a confidence interval. An appropriate pivotal quantity is

nσ̂2
Z

σ2
Z

∼ χ2(n),

which implies that

χ2
n,1−α/2 <

nσ̂2
Z

σ2
Z

< χ2
n,α/2

with probability 1−α. The second subscript on the quantile of the chi-square distribu-

tion is a right-hand tail probability. Performing the algebra required to isolate σ2
Z in the

center of the inequality results in the exact two-sided 100(1−α)% confidence interval

nσ̂2
Z

χ2
n,α/2

< σ2
Z <

nσ̂2
Z

χ2
n,1−α/2

.

Common values for α are 0.1, 0.05, and 0.01, which are known as 90%, 95%, and 99%

confidence intervals, respectively. The proper interpretation of a confidence interval

like this one is critical. An incorrect interpretation of this exact confidence interval for,

say, α = 0.05, is:

“The probability that this confidence interval contains σ2
Z is 0.95”

because once the data has been collected and the interval is calculated, it either contains

the unknown parameter σ2
Z or it does not. A probability statement like this one does not

make sense because there are no random variables after the data values are collected.

The correct interpretation of this exact confidence interval for σ2
Z with nominal coverage

0.95 is as follows.

“The confidence interval I have calculated might contain σ2
Z or it might

not. However, if (a) all of the assumptions that I have made concerning

the ARMA(0, 0) time series model with Gaussian white noise are correct,

(b) many realizations of the time series of size n are collected, and (c) the

same procedure was used for calculating a confidence interval for each of the

realizations, then 0.95 is the expected fraction of these confidence intervals

that will contain the true parameter σ2
Z .”

Obviously, one would not want to repeat this tedious explanation every time a confi-

dence interval is calculated. So statisticians shorten this by simply saying:

“I am 95% confident that my confidence interval contains the unknown pa-

rameter σ2
Z .”

The brevity and avoidance of the use of “probability” in this statement aids the proper

interpretation of the confidence interval.

Finally, we consider an application area in which the ARMA(0, 0) might be appro-

priate. The ARMA(0, 0) model has industrial applications in quality control. When

formulating a model for a continuous measurement associated with a product (such as

a ball bearing diameter or the pre-cooked weight of a quarter-pound hamburger) that
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is produced repeatedly over time, management prefers a stationary time series model

with mutually independent consecutive observations. In this particular setting, a shifted

ARMA(0, 0) is appropriate and justified. This model is used in practice to help de-

tect when the continuous measurement trends away from the mean value in a shifted

ARMA(0, 0) time series model in what is known in quality control as a control chart.

Applying the maximum likelihood estimation technique to the ARMA(0, 0) time series model

was ideal in that the point estimator for σ2
Z could be expressed in closed form and an exact two-sided

confidence interval for σ2
Z could be derived to give an indication of the precision of the point estima-

tor. There are three key take-aways from the ARMA(0, 0) example involving maximum likelihood

estimation.

• We needed to narrow the assumption of white noise error terms to Gaussian white noise error

terms in order to implement the maximum likelihood estimation technique.

• We were fortunate that the likelihood function could be factored into the product of the

marginal probability density functions because of the mutual independence of the observa-

tions. This will not be the case with the ARMA(p, q) model with p > 0 and/or q > 0.

• We were fortunate in the sense that we could establish an exact two-sided 100(1−α)% con-

fidence interval for σ2
Z based on a pivotal quantity. For ARMA(p, q) models with p > 0

and/or q > 0 we will generally have only approximate confidence intervals which are based

on asymptotic results.

We now address the third take-away concerning confidence intervals for parameters in ARMA

models that go beyond the ARMA(0, 0) model illustrated in the previous example. The mathematics

associated with deriving the exact distribution of some pivotal quantity becomes too difficult once

autocorrelation is injected into a model, so we use asymptotic results concerning the parameter esti-

mates in order to arrive at approximate confidence intervals. To frame the conversation concerning

these asymptotic results, some notation must be established. Let

β = (β1, β2, . . . , βr)
′

be a vector that denotes the r unknown parameters in a time series model. In the case of a shifted

ARMA(p, q) model, for example, the elements of β are the p+q+2 unknown parameters φ1, φ2, . . . ,

φp, θ1, θ2, . . . , θq, µ, and σ2
Z . Let x1, x2, . . . , xn denote a realization of the time series observations.

The likelihood function is

L(β) = f (x1, x2, . . . , xn)

and the associated log likelihood function is

ln L(β) = ln f (x1, x2, . . . , xn).

The jth element of the score vector is
∂ ln L(β)

∂β j

for j = 1, 2, . . . , r. Equating the elements of the score vector to zero and solving for the unknown pa-

rameters yields the maximum likelihood estimators β̂1, β̂2, . . . , β̂r. The ( j, k) element of the Fisher

information matrix I(β) is

E

[
−∂2 ln L(β)

∂β j∂βk

]
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for j = 1, 2, . . . , r and k = 1, 2, . . . , r, when the expected values exist. The Fisher information matrix

is estimated by the observed information matrix O
(
β̂
)
, whose ( j, k) element is

[
−∂2 ln L(β)

∂β j∂βk

]

β= β̂

for j = 1, 2, . . . , r and k = 1, 2, . . . , r. The inverse of the observed information matrix is the asymp-

totic variance–covariance matrix of the parameter estimates. If one is willing to ignore the off-

diagonal elements of this matrix, the square roots of the diagonal elements are estimates of the

standard errors of the point estimators. The asymptotic normality of maximum likelihood estima-

tors allows one to construct approximate confidence intervals for the unknown parameters.

We were able to obtain an exact two-sided confidence interval for σ2
Z for the ARMA(0, 0) model

in the previous example; the next example goes through the appropriate steps for the model had

we not been so lucky. We return to the analysis of the standard ARMA(0, 0) time series model

because it is the only ARMA(p, q) model with a single unknown parameter and associated tractable

mathematics.

Example 8.11 Find an asymptotically exact two-sided 100(1−α)% confidence interval

for σ2
Z for an ARMA(0, 0) model based on the asymptotic normality of the maximum

likelihood estimator σ̂2
Z . Estimate the actual coverage of this confidence interval for

n = 100, σ2
Z = 1, and α = 0.05. What is the impact of n on the actual coverage?

Although we know that there is an exact confidence interval for σ2
Z from the previous

example, we pretend that we are unaware of such an interval and try to find an asymp-

totically exact interval based on the inverse of the observed information matrix. This

is done to illustrate the mechanics of constructing the asymptotically exact confidence

interval. From Example 8.10, the maximum likelihood estimator of σ2
Z is

σ̂2
Z =

1

n

n

∑
i=1

x2
i .

Once again treating σ2
Z as a unit, the second partial derivative of the log likelihood

function with respect to σ2
Z is

∂2 ln L
(
σ2

Z

)

∂
(
σ2

Z

)2
=

n

2σ4
Z

− 1

σ6
Z

n

∑
i=1

x2
i .

The single entry in the 1× 1 Fisher information matrix is the expected value of the

negative of this partial derivative:

I
(
σ2

Z

)
= E

[
−∂2 ln L

(
σ2

Z

)

∂
(
σ2

Z

)2

]
=− n

2σ4
Z

+
1

σ6
Z

n

∑
i=1

V [Xi] =
n

2σ4
Z

.

Since σ2
Z is an unknown parameter, the Fisher information matrix cannot be determined

from the observations from a time series. The 1× 1 observed information matrix pro-

vides an estimate of the Fisher information matrix from the data values:

O
(
σ̂2

Z

)
=

[
−∂2 ln L

(
σ2

Z

)

∂
(
σ2

Z

)2

]

σ2
Z = σ̂2

Z

=− n

2σ̂4
Z

+
1

σ̂6
Z

n

∑
i=1

x2
i =

n3

2
(
∑n

i=1 x2
i

)2
.
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The inverse of this 1×1 matrix is just the reciprocal of the single entry:

O−1
(
σ̂2

Z

)
=

2
(
∑n

i=1 x2
i

)2

n3
.

For large values of n, this quantity converges to the variance of σ̂2
Z . So since

σ̂2
Z

D→ N

(
σ2

Z ,
2
(
∑n

i=1 x2
i

)2

n3

)
,

an asymptotically exact 100(1−α)% confidence interval for σ2
Z is

σ̂2
Z− zα/2

√
2
(
∑n

i=1 x2
i

)2

n3
< σ2

Z < σ̂2
Z + zα/2

√
2
(
∑n

i=1 x2
i

)2

n3
.

We know that the actual coverage of this two-sided confidence interval converges to the

exact coverage as n→∞. But how does the confidence interval perform for finite values

of n? This can only be assessed by a Monte Carlo simulation experiment.

The Monte Carlo simulation given by the R code below simulates four million time

series of length n = 100 generated from an ARMA(0, 0) model with Gaussian white

noise having variability σ2
Z = 1 and estimates the actual coverage of the approximate

95% confidence interval by printing the fraction of the simulated confidence intervals

that contain the arbitrarily-assigned true parameter value σ2
Z = 1.

nrep = 4000000

count = 0

n = 100

alpha = 0.05

crit = qnorm(1 - alpha / 2)

for (i in 1:nrep) {

x = rnorm(n)

ssq = sum(x ^ 2)

mle = ssq / n

std = sqrt(2 * ssq ^ 2 / n ^ 3)

lo = mle - crit * std

hi = mle + crit * std

if (lo < 1 && hi > 1) count = count + 1

}

print(count / nrep)

After a call to set.seed(3) to establish the random number stream, five runs of this

simulation yield the following estimated confidence interval coverages:

0.9402 0.9399 0.9400 0.9401 0.9401.

Although the stated (or nominal) coverage for this confidence interval is 0.95, the Monte

Carlo simulation reveals that the actual coverage is 0.940.

The final question concerns the impact of n on the actual coverage. The Monte Carlo

simulation experiment given above is executed for several other values of n. The actual
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coverage values are shown in Figure 8.3. These values confirm what we suspect about

an asymptotic confidence interval: the actual coverage asymptotically approaches the

stated coverage (indicated by the dashed horizontal line in Figure 8.3). This behavior is

typical of asymptotic confidence intervals.

8 16 32 64 128 256

0.85

0.90

0.95

n

actual
coverage

Figure 8.3: Asymptotic 95% confidence interval actual coverage for n = 8, 16, 32, . . . , 256.

This ends the discussion of the important topic of parameter estimation. The time series model

that emerges from this step is known as a fitted tentative model. Three techniques for parameter

estimation have been introduced: the method of moments, least squares, and maximum likelihood

estimation. In time series analysis, exact confidence intervals for the unknown parameters are typi-

cally mathematically intractable, so we must settle for asymptotically exact confidence intervals.

The next section introduces another important statistical topic that arises frequently in time series

analysis: the prediction of future values in a time series based on a realization of n observations of a

time series, which is typically known as forecasting.

8.2.2 Forecasting

The purpose of forecasting is to predict one or more future values of a time series based on observed

values of a time series x1, x2, . . . , xn. Forecasting future values of a time series often plays a critical

role in policy decisions. The closing price of the Dow Jones Industrial Average tomorrow, the

number of oysters in the Chesapeake Bay next year, the high temperature in Tuscaloosa on Saturday,

and a company’s profit next quarter are examples of applications of forecasting.

The term “forecasting” is synonymous with “prediction” and the two terms will be used inter-

changeably. Forecasting is a slightly more popular term in the time series literature. Both terms can

be interpreted as “telling before.”

Forecasting involves extrapolation of the time series model outside of the time frame associated

with the observed values x1, x2, . . . , xn, typically into the future. The notion of backcasting, which

is predicting values in the past, will not be considered here. Care must be taken to ensure that

the fitted probability model still applies in the time range in which the extrapolation occurs. If

future observations are governed by the same probability model as previous observations, then a

forecasted value is meaningful. Furthermore, if an ARMA(p, q) model is used, it is subject to errors

in identification (for example, the wrong values of p and q or perhaps an ARMA model is used
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when a non-ARMA model is appropriate) and estimation (for example, due to random sampling

variability or choosing an inferior parameter estimation procedure).

There are several choices for forecasting notation. We assume that the values of a time series

{Xt} are given by the observed values x1, x2, . . . , xn. We would like to predict the value of the time

series h (for “horizon”) time units into the future, given that we know the values of x1, x2, . . . , xn

and our forecast is being made at time n. The notation that we will use for this future value of the

time series will be the random variable Xn+h. Its associated predicted value will be denoted by X̂ n+h.

This predicted value is defined as the conditional expected value of the future value given the values

of the n observed values:

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We will use the alternative notation X̂ n(h) for the forecast whenever there might be some ambiguity

associated with the origin of the forecast. The default assumption for forecasting in this book is

that we are making a forecast based on n observed values, and the forecast is being made at time

origin n for h time units into the future. The forecasted value at time n+ h can be thought of as

the average of all future possibilities given the history up to time n. But why use the conditional

expectation? Might a quantile of the probability distribution of Xn+h, for example, the population

median, provide a better forecast? The rationale behind using the conditional expectation is that it

minimizes the mean square error of the predicted value, which is defined as

E
[(

Xn+h− X̂ n+h

)2
]
,

among all linear functions of the observed values x1, x2, . . . , xn. For this reason, the forecasted value

given by the conditional expectation is often known as the best linear predictor of Xn+h in the sense

of minimizing the mean square error of the predicted value.

Figure 8.4 illustrates the case of a (tiny) time series of just n = 4 observations: x1, x2, x3, x4.

(Recall that n = 60 or n = 70 is the minimum value of n in practice. This example with a tiny value

of n is for illustrative purposes only.) The observed values of the time series are indicated by points

which are connected by lines. Each of the three forecasted values, X̂ 5, X̂ 6, X̂ 7, is indicated by a ◦.

1 2 3 4 5 6 7

t

xt

x1

x2

x3

x4

X̂ 5

X̂ 6
X̂ 7

Figure 8.4: Forecasting three future values from n = 4 observations.
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The three forecasts, associated with h = 1, h = 2, and h = 3, are made at time t = n = 4. In addition,

there are three probability density functions, each rotated clockwise 90◦, which indicate the prob-

ability distributions of the random future observations X5, X6, X7. There are three key observations

associated with this figure.

• The time series values x1, x2, x3, x4 increase over time, and the associated forecasted values

X̂ 5, X̂ 6, X̂ 7 continue this trend.

• The population variance of the probability distributions of X5, X6, X7 increases as the forecast-

ing time horizon increases. This is consistent with weather prediction, for example, in that the

weather prediction three days from now is less precise than the weather prediction tomorrow.

• The random sampling variability that is apparent in the four observed values x1, x2, x3, x4 is

not apparent in the forecasted values X̂ 5, X̂ 6, X̂ 7. Observed time series values typically exhibit

random sampling variability; forecasted values tend to be smooth.

Our goal in this subsection is to discuss forecasting generally and to introduce techniques for

determining point estimates and interval estimates for future values in a time series. The example

that follows assumes that a valid ARMA model has been specified and the parameters in a time series

model are known, rather than estimated from a realization of the time series. For a long realization

(large n) or significant amounts of previous history associated with a particular time series, this

assumption might not pose any problem. In order to derive a prediction interval for Xn+h, the white

noise terms are assumed to be Gaussian white noise for mathematical tractability. The reason for

this assumption will be apparent in the following example.

Example 8.12 Consider the shifted stationary AR(1) time series model

Xt −µ = φ(Xt−1−µ)+Zt ,

where {Zt} is Gaussian white noise and −1 < φ < 1, µ, and σ2
Z > 0 are fixed, known

parameters. Let x1, x2, . . . , xn be one realization of the time series.

(a) Find a point estimate and an exact two-sided 100(1−α)% prediction interval for

Xn+1.

(b) Find a point estimate and an exact two-sided 100(1−α)% prediction interval for

Xn+2.

Notice that φ is a constant here and should not be confused with the polynomial φ(B).
This is an unusual case because the three parameters φ, µ, and σ2

Z are known. In addi-

tion, it is assumed that the AR(1) model is a perfect stochastic model to govern the time

series. Neither of these assumptions are typically satisfied perfectly in practice.

(a) Writing the AR(1) time series model with Xn+1 on the left-hand side:

Xn+1−µ = φ(xn−µ)+Zn+1

or

Xn+1 = µ+φ(xn−µ)+Zn+1.

Notice that Xn+1 and Zn+1 are random future values which are set in uppercase,

but xn has already been observed, so it is set in lowercase. Taking the conditional

expected value of both sides of this equation yields the one-step-ahead forecast

E [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn] = µ+φ(xn−µ)
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because the expected value of a constant is a constant and the future Gaussian

white noise term has conditional expected value 0. Taking the conditional popu-

lation variance of both sides of the equation yields

V [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn] = σ2
Z

because µ, φ, and xn are all constants and the population variance is unaffected by

a shift. So the point estimate of Xn+1 is

X̂ n+1 = µ+φ(xn−µ) .

Since Xn+1 is a constant, µ+ φ(xn−µ), plus a normal random variable, Zn+1, it

too is normally distributed with conditional mean X̂ n+1 and conditional population

variance σ2
Z . So an exact two-sided 100(1−α)% prediction interval for Xn+1 is

X̂ n+1− zα/2σZ < Xn+1 < X̂ n+1 + zα/2σZ ,

where zα/2 is the 1−α/2 quantile of the standard normal distribution.

(b) Writing the AR(1) time series model with Xn+2 on the left-hand side:

Xn+2−µ = φ(Xn+1−µ)+Zn+2

or

Xn+2 = µ+φ(Xn+1−µ)+Zn+2.

All of the X and Z variables are random future values, so they are set in uppercase.

Taking the conditional expected value of both sides of this equation yields the two-

step-ahead forecast

E [Xn+2 |X1 = x1, X2 = x2, . . . , Xn = xn]

= µ+φ
(
E [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn]−µ

)

= µ+φ
(
φ(xn−µ)

)

= µ+φ2(xn−µ)

because the conditional expected value of Zn+2 is zero. Taking the conditional
population variance of both sides of the equation yields

V [Xn+2 |X1 = x1, X2 = x2, . . . , Xn = xn]

= φ2V [Xn+1 |X1 = x1, X2 = x2, . . . , Xn = xn]+V [Zn+2 |X1 = x1, X2 = x2, . . . , Xn = xn]

=
(
φ2 +1

)
σ2

Z .

So the point estimate of Xn+2 is

X̂ n+2 = µ+φ2 (xn−µ) .

Since Xn+2 is written as a constant, µ, plus the linear combination of two normally

distributed random variables, φ(Xn+1−µ) and Zn+2, which is itself normally dis-

tributed, an exact two-sided 100(1−α)% prediction interval for Xn+2 is

X̂ n+2− zα/2

√
φ2 +1 σZ < Xn+2 < X̂ n+2 + zα/2

√
φ2 +1 σZ .



480 Chapter 8. Time Series Modeling

Notice that for φ 6= 0, the prediction interval for Xn+2 is wider than the prediction

interval for Xn+1 for the same time series values and the same α value. This is

consistent with intuition because we are less certain as we forecast further out

into the future. This is the typical case in practice. On the other hand, the two

prediction intervals have identical width when φ= 0 because the AR(1) time series

model reduces to Gaussian white noise in this case, and each future observation

will have the same precision because of the mutual independence of the Xt values

in this case.

This case was ideal in the sense that all three of the parameters, φ, µ, and σ2
Z , are

fixed and known. When these parameters are replaced by their point estimates, φ̂,

µ̂ , and σ̂2
Z , the prediction intervals become approximate rather than exact.

The previous example has illustrated the process for determining forecasted values and associ-

ated prediction intervals for an AR(1) time series model with known parameters. Consider general-

izing this process for the h-step-ahead forecast. In order to obtain a point estimate for the forecast,

take the conditional expected value of both sides of the model with Xn+h isolated on the left-hand

side, which effectively results in: (a) present and past values of Xt are replaced by their observed

values; (b) future values of Zt are replaced by their conditional expected values, which are zero; and

(c) future values of Xt are replaced by their conditional expected values. After simplification, this

results in the forecast value X̂ n+h.

As is typically the case in statistics, a point estimate is usually accompanied by an interval

estimate which gives an indication of the precision of the point estimate. In a time series setting, a

prediction interval for Xn+h has the generic form

X̂ n+h± zα/2

√
V [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn].

This formula assumes that the random future value at time n+ h, denoted by Xn+h, is normally

distributed. This is usually achieved by assuming that the white noise terms consist of Gaussian

white noise. Unlike confidence intervals, prediction intervals typically do not have widths that

shrink to zero as the sample size n increases.

This ends the important topic of forecasting. Many more examples of forecasting will appear in

subsequent sections in this chapter when special cases of ARMA(p, q) models are introduced. We

now turn to another important statistical topic, which is model assessment.

8.2.3 Model Assessment

It is often the case that we have little or no information concerning the underlying physical mech-

anism governing a time series, so we must resort to an entirely data-driven approach to developing

a time series model that adequately approximates the underlying probability mechanism. The usual

approach to building a times series model consists of iterating through the following steps until a

suitable model is formulated. The model building process is—by design—both iterative and inter-

active, making R an ideal platform for carrying out the process.

1. Identify a tentative time series model.

2. Estimate the unknown parameters of the tentative time series model.

3. Assess the adequacy of the fitted time series model.



Section 8.2. Statistical Methods 481

The third step is considered in this section. As an instance of this approach, let’s say we decide

(based on inspecting plots of the time series, the sample autocorrelation function, and the sample

partial autocorrelation function) that a shifted AR(2) time series model is a strong candidate for

modeling a particular time series. After the parameters µ, φ1, φ2, and σ2
Z are estimated, we hope

that the fitted model adequately models the underlying probability mechanism for the time series.

If this is the case, then the signal associated with the time series has been captured, and all that

should remain is noise. So how do we test whether or not the fitted model provides an adequate

representation of the time series? One common approach taken in time series modeling is to assess

whether the random shocks {Zt} are mutually independent and identically distributed random vari-

ables with population mean zero and common population variance σ2
Z . But these Zt values are not

observed by the modeler, so instead we inspect the residuals, which are estimates of the Zt values. In

time series analysis, this important step is known as diagnostic checking or residual analysis. (This

step is analogous to the similar step in regression analysis.) This process is the rough equivalent of

goodness-of-fit testing from classical statistical theory. A residual value is defined as

[residual] = [observed value]− [predicted value] .

The predicted value is the one-step-ahead forecast from the time t−1. Using the notation from the

forecasting section, the residual at time t can be written as

Ẑ t = Xt − X̂ t .

This is one instance in which a more precise notation for a forecasted value would be helpful; this

is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

The hat is added to Zt in order to indicate that the parameters in the fitted model have been estimated

from the observed time series. Only in a simulated time series with known parameters do we observe

Zt . The residuals are ordered in time, so they can be viewed as a time series in their own right.

If the hypothesized and fitted model are adequate, then the time series plot of the residuals will

approximate a time series of white noise. The question here is how closely the residuals resemble

white noise terms.

The behavior of the residuals is an indicator of whether the time series has been adequately mod-

eled. If the model has been specified correctly and the parameter estimates are near their associated

population values, then the residuals should appear to be white noise values, with common popula-

tion mean zero and common population standard deviation. If this is not the case, then the search

for an adequate time series model should continue.

A plot of the residuals over time is a crucial initial step in assessing whether they resemble white

noise terms. Carefully examine the plot for any signs of trend, seasonality, or serial correlation. An

example of a plot of Gaussian white noise was given in Figure 7.3. This step is just as important in

residual analysis as was the inspection of the plot of the original time series. In addition, a plot of the

sample autocorrelation function and the sample partial autocorrelation function of the residuals can

be helpful in assessing whether the residuals closely approximate white noise. But rather than just a

subjective visual inspection, we also want to confirm our intuition with a formal statistical test. The

next four paragraphs briefly survey four statistical tests to assess the following null and alternative

hypotheses:

H0 : the residuals are mutually independent and identically distributed random variables

versus

H1 : the residuals are not mutually independent and identically distributed random variables.
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If there is no apparent visual trend, seasonality, or serial correlation in the residuals, then any one

of the four hypothesis tests that follow can be conducted to confirm that the residuals do not exhibit

any of these characteristics.

Count the number of significant spikes in the sample autocorrelation function. This test

begins with a plot of the sample autocorrelation function of the residuals. If the residuals are well

approximated by white noise terms, then the time series model can be judged to be adequate. The

sample autocorrelation function values for white noise terms are approximately mutually indepen-

dent and identically distributed N (0, 1/n) random variables. So if the residuals closely approxi-

mate white noise, then any sample autocorrelation function value will fall between −1.96/
√

n and

1.96/
√

n with approximate probability 0.95. We would like to conduct a hypothesis test in which

the null hypothesis is that the sample autocorrelation function values of the residuals are indepen-

dent N (0, 1/n) random variables. A large number of sample autocorrelation values falling outside

of the limits (which serves as the test statistic here) will result in rejecting the null hypothesis. So if

each sample autocorrelation function value can be thought of as a toss of a biased coin in the case

of the residuals being approximately white noise, then for, say, the first m = 40 such values, we

expect 40 ·0.05 = 2 to fall outside of the limits ±1.96/
√

n. (Of course, the lag 0 sample autocorre-

lation r0 = 1 is not included in the count.) In order to achieve an approximate level of significance

α = 0.05, if four or fewer of the 40 sample autocorrelation function values associated with the resid-

uals fall outside of±1.96/
√

n, we fail to reject H0. The time series model is deemed to be adequate.

But if five or more of the 40 sample autocorrelation function values associated with the residuals

fall outside of ±1.96/
√

n, this is evidence against the hypothesized model and we reject H0. The

time series model is deemed to be inadequate. The p-value associated with four or fewer of the

40 sample autocorrelation function values associated with the residuals falling outside of the limits

±1.96/
√

40 can be calculated with the R statement

1 - pbinom(4, 40, 0.05)

This statement returns

[1] 0.04802826

So the exact level of significance for this test is α = 0.048, which is quite close to the desired level

of significance of 0.05. Rather than using trial and error with the pbinom function to determine the

number of lags to use as the critical value, the qbinom function can be used to determine the cutoff.

qbinom(0.95, 40, 0.05)

This statement returns

[1] 4

A similar analysis can be applied to lag counts other than the m= 40 sample autocorrelation function

values illustrated above. This analysis assumes that the sample autocorrelation function values of

the residuals are independent and identically distributed normal random variables. One weakness of

this approach is that it simply counts the number of sample autocorrelation function values falling

outside the 95% confidence interval limits and ignores (a) how far outside of the limits the values

fall or (b) how close to the limits they fall when they lie within the limits. This weakness prompts

us to seek a statistical test that captures all of the sample autocorrelation function values associated

with the residuals and includes their magnitudes.

Box–Pierce test. Let rk be the lag k sample autocorrelation function value associated with the

residuals of the fitted time series. As before, we only consider the first m such sample autocorrelation



Section 8.2. Statistical Methods 483

function values r1, r2, . . . , rm. It is approximately true that for mutually independent and identically

distributed residuals,

rk ∼ N(0, 1/n).

By the transformation technique, this implies that

√
nrk ∼ N(0, 1).

Squaring this random variable gives

nr2
k ∼ χ2(1).

Assuming that the sample autocorrelation function values are uncorrelated, the sum of the first m of

these random variables is

n
m

∑
k=1

r2
k ∼ χ2(m).

In the case in which r unknown model parameters have been estimated, the degrees of freedom are

reduced by r:

n
m

∑
k=1

r2
k ∼ χ2(m− r).

This is the test statistic for the Box–Pierce test for serial correlation. Large values of this test statistic

lead to rejecting H0 and indicate a poor fit. The null hypothesis is rejected at level of significance α
when this test statistic is greater than χ2

m−r,α, where the first subscript is the number of degrees of

freedom and the second subscript is the right-hand tail probability associated with this quantile of the

chi-square distribution. There have been several approximations that occurred in formulating this

statistical test. First, the rk values are only approximately normally distributed. Second, the rk values

have variances which are less than 1/n for small lag values k. To compound this approximation,

these smaller initial variances are dependent on the model under consideration. Third, the rk values

exhibit some serial correlation even when the residuals are mutually independent and identically

distributed. These three weaknesses prompted a modification of the Box–Pierce test which provides

a test statistic whose distribution more closely approximates the χ2(m− r) distribution.

Ljung–Box test. The Box–Pierce test statistic was modified by Ljung and Box as

n(n+2)
m

∑
k=1

r2
k

n− k
,

which is approximately χ2(m− r), where r is the number of parameters estimated in the model.

Comparing the Box–Pierce and Ljung–Box test statistics, since

n+2

n− k
> 1

for k = 1, 2, . . . , m, the Ljung–Box test statistic always exceeds the Box–Pierce test statistic. The

Box–Pierce test is more likely to accept a time series model with a poor fit than the Ljung–Box test

for the same set of residuals. The Ljung–Box test should be used over the Box–Pierce because the

probability distribution of its test statistic is closer to a χ2(m− r) random variable under H0.

Turning point test. As opposed to focusing on the sample autocorrelation function associated

with the residuals, the turning point test considers the number of turning points in the time series of

residuals. A turning point in a time series is defined to be a value associated with a local minimum

or a local maximum. A local minimum occurs when Ẑ t−1 > Ẑ t and Ẑ t < Ẑ t+1. A local maximum
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occurs when Ẑ t−1 < Ẑ t and Ẑ t > Ẑ t+1. The random number of turning points in a time series

of length n comprised of strictly continuous observations is denoted by T . The strictly continuous

assumption is in place to avoid ties in adjacent values. A turning point cannot occur at the first or last

value of the time series. Keep in mind that there might be fewer residuals than original observations.

The n that is used here is the number of residuals. As given in an exercise at the end of this chapter,

if the residuals are mutually independent and identically distributed continuous random variables,

then

E[T ] =
2(n−2)

3
and V [T ] =

16n−29

90
.

Furthermore, even though T is a discrete random variable, it is well approximated by the normal

distribution with population mean E[T ] and population variance V [T ] for a time series of mutually

independent and identically distributed observations and large n. Thus, an appropriate test statistic

for testing H0 is
T −2(n−2)/3√
(16n−29)/90

,

which is approximately standard normal for large values of n. The null hypothesis is rejected in

favor of the alternative hypothesis whenever the test statistic is less than −zα/2 (which indicates

fewer turning points than expected, which is an indicator of positive serial correlation among the

residuals) or the test statistic is greater than zα/2 (which indicates more turning points than expected,

which is an indicator of negative serial correlation among the residuals).

This completes the brief introduction to four statistical tests concerning the mutual independence

of the residuals. There are several other such tests, some of which are introduced in the exercises at

the end of the chapter, but these four are representative of how such tests work. Three questions are

given below concerning issues associated with the analysis of the residuals.

1. What if two time series models are deemed adequate by these statistical tests?

Instances frequently arise in which two or more candidate time series models fail to be rejected

by the statistical tests on residuals that were just surveyed. In these cases, the modeler has

four guiding principles. First, there might be physical considerations that might favor one

model over another. An engineer, for example, might provide some engineering design insight

concerning why one time series model would be favored over another. Second, the model with

the best value of one of the model-selection statistics outlined in the next section, might be

the appropriate choice. Third, if the modeler is torn between two time series models, selecting

the model with the fewer parameters follows the parsimony principle. We would like a time

series model that adequately captures the probabilistic aspects of the time series with the

minimum number of parameters. Fourth, the purpose of the model, for example, description,

explanation, prediction, or simulation, might drive the final choice of the model.

2. If a time series model is deemed inadequate, can the analysis of the residuals guide the modeler

toward a more suitable model?

In some cases, the analysis of the residuals can indeed guide the modeler toward a more

suitable time series model. Here is one instance. Let’s say that a shifted AR(1) model is being

considered as a potential time series model:

Xt −µ = φ(Xt−1−µ)+Zt .

Isolating the white noise term, this model can be written as

Xt −µ−φ(Xt−1−µ) = Zt .
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The parameters µ, φ, and σ2
Z are estimated from the observed time series, and the associated

residuals are calculated and plotted. Rather than appearing as white noise, let’s say that the

residuals appear to look like observations from an MA(1) time series model

Zt =Wt +θWt−1,

where {Wt} is a time series of white noise. Combining the two previous equations, this would

lead us in the direction of considering the model

Xt −µ−φ(Xt−1−µ) =Wt +θWt−1,

which can be recognized as a shifted ARMA(1, 1) time series model. Thus, the ARMA(1, 1)

composite model has been constructed from the two simpler models. We would then revisit

parameter estimation procedures for the parameters µ, φ, θ, and σ2
Z , and perform model ade-

quacy tests on the associated residual values on the fitted ARMA(1, 1) model.

3. If a time series model is deemed adequate, should the noise terms be modeled as white noise

or Gaussian white noise?

The four statistical tests for autocorrelation do not assess the normality of the residuals. Draw-

ing a histogram of the residuals is an important first step in terms of determining whether the

residuals are normally distributed. If the histogram appears to be bell-shaped, then the Gaus-

sian white noise aspect of the model is justified. Some time series analysts prefer to view

a histogram of the standardized residuals, and the vast majority of these values should lie

between −3 and 3. A QQ (quantile–quantile) plot is also useful for visually assessing nor-

mality, which can be graphed with the R function qqnorm. A QQ plot which is linear is an

indication of normality. The behavior at the extremes of a QQ plot is typically more variable

than at the center, so some analysts prefer to focus on the behavior between, say, the first and

third quartiles. Assessing the normality of a histogram or the linearity of a QQ plot is sub-

jective. Objective statistical tests for the normality of the residuals include the Shapiro–Wilk,

Anderson–Darling, Cramer–von Mises, and Kolmogorov–Smirnov tests.

Analyzing the residuals is not the only way to assess the adequacy of a time series model. An-

other technique is known as overfitting. ARMA models with a single additional term are fitted to

the original time series. This approach is analogous to forward selection in the stepwise approach

to multiple regression. We will refer to the time series model under consideration as the tentative

model and the overfitted models as enhanced models. For example, if an MA(1) model is being

contemplated as a tentative time series model, then

• adding an additional moving average term yields the enhanced MA(2) model, and

• adding an autoregressive term yields the enhanced ARMA(1, 1) model.

The parameters for these two enhanced models should be fit to the original time series in the usual

fashion. If both of the following two criteria are met, then the tentative time series model should be

accepted as the final model.

• The parameter estimates in the enhanced models are close to the parameter estimates in the

tentative model.

• The additional parameter in the enhanced models does not differ significantly from zero.
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So in the example given above, the parameters in the tentative MA(1) model, θ1 and σ2
Z , should

be estimated from the original time series. Then the parameters in the enhanced MA(2) model,

θ1, θ2, and σ2
Z , should be estimated from the original time series. If a confidence interval for θ2

contains zero (or you fail to reject the null hypothesis H0 : θ2 = 0 versus the alternative hypothesis

H1 : θ2 6= 0), and the other parameter estimates do not vary significantly between the two models,

then the modeler concludes that the extra parameter in the MA(2) model is not necessary. The

same type of thinking applies to the enhanced ARMA(1, 1) model. So in addition to a careful

examination of the residuals, it is also helpful to overfit the model in the autoregressive and moving

average directions to assess whether the additional term significantly improves the fit.

The model assessment techniques described in this subsection will be applied to actual time

series later in this chapter.

8.2.4 Model Selection

Model-selection statistics are helpful when there are two or more tentative fitted ARMA(p, q) mod-

els for a time series which have been deemed adequate by the model assessment techniques outlined

in the previous subsection. One naive approach to model selection is to just add additional terms to

an ARMA(p, q) model and check the resulting sum of the squared residuals. This approach violates

the parsimony principle because it is typically the case that adding parameters to a model results in

a lower sum of squared residuals. Just blindly adding terms to minimize the sum of squares is likely

to produce time series models with superfluous terms that contain no real explanatory value, which

can potentially cause problems in the application of the model.

We seek some statistical measure that strikes a balance between simplicity and capturing the

essence of the probabilistic mechanism governing the time series model. Some statistical measure

which reflects the benefit of an additional parameter, but extracts a penalty for adding parameters

would be helpful to strike this balance.

In the case in which the analyst is presented with multiple plausible tentative fitted models, a

model-selection statistic such as Akaike’s Information Criterion might prove helpful in determining

the best model. This statistic strikes a harmony between a simple model (which might not capture

certain probabilistic aspects of the mechanism governing the time series) and a more complex model

(which might contain unnecessary terms). This is the notion of a parsimonious model which uses as

few parameters as possible to achieve adequate explanatory power. Akaike’s Information Criterion

(AIC), named after Japanese statistician Hirotugu Akaike (1927–2009), extracts a penalty for each

additional parameter that is added to the model. The AIC is

AIC =−2ln
(
L(·)

)
+2r,

where r is the number of unknown parameters that are estimated and L is the likelihood function

evaluated at the maximum likelihood estimators for the r unknown parameters. Since L(·) is maxi-

mized at the maximum likelihood estimators, the first part of the AIC statistic, namely −2ln
(
L(·)

)
,

is minimized at the maximum likelihood estimator values because of the negative sign. The 2r term

can be thought of as a penalty term for adding additional parameters to the model. Each additional

parameter added to the model will probably decrease the first term in the AIC involving the log

likelihood function, but will also increase the penalty term because r has been increased. The model

with the lowest value of AIC is deemed by this model-selection statistic to be the most appropriate

parsimonious time series model.

There are two variants of the AIC that provide improved ability to correctly identify a time series

model.
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• The AIC estimates the expected value of the Kullback–Leibler divergence of the estimated

model from the true model, and there is a slight bias in the AIC which is significant for small

values of n. The corrected Akaike Information Criterion, usually denoted by AICC, replaces

the 2r penalty term with 2rn/(n− r−1), resulting in

AICC =−2ln
(
L(·)

)
+

2rn

n− r−1
.

Since n/(n− r−1)> 1, the AICC always exceeds the AIC for the same time series, meaning

that the penalty for adding parameters is increased. The AICC will be more stingy than the

AIC when it comes to adding parameters. The AICC model-selection statistic compensates

for the AIC’s tendency to overfit models.

• Another variant to the AIC is the Bayesian Information Criterion (BIC) which replaces the

penalty term 2r with r ln n, resulting in

BIC =−2ln
(
L(·)

)
+ r ln n.

As shown in Figure 8.5 for a time series of length n = 50 and r = 0, 1, 2, . . . , 5 unknown

parameters, the BIC places an even higher penalty on additional terms in the time series model

than the AIC and the AICC, which will result, on average, with time series models with fewer

terms. Since the use of maximum likelihood estimation is required for calculating AIC, AICC,

and BIC because all three are a function of the likelihood function L, the white noise terms

are assumed to be normally distributed (that is, Gaussian white noise). A visual check of

this assumption can be made by looking at a histogram of the residuals or a QQ plot of the

residuals.

The time series analyst should consult with people who are familiar with the time series in order

to glean whether there might be some aspects of the data set that might suggest one particular model

or another. The analyst should also not necessarily assume that one of the models suggested in this
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Figure 8.5: Penalty terms for model-selection statistics AIC, AICC, and BIC.
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chapter might be appropriate for every setting. There are seldom uniquely correct values for p and

q but rather these model-selection statistics are helpful in comparing two fitted tentative models.

In principle, the general linear model and its associated statistical methods are all that is neces-

sary to fit and assess an ARMA(p, q) model. Since each specific ARMA(p, q) model has its own

idiosyncrasies, the first few special cases of the autoregressive and moving average models will be

examined in the next chapter.

8.3 Exercises

8.1 Show that the general linear model

Xt = Zt +ψ1Zt−1 +ψ2Zt−2 + · · ·

can be written in the form

Xt = Zt +π1Xt−1 +π2Xt−2 + · · · .

8.2 For the ARMA time series model

Xt = 4Xt−1−3Xt−2−2Xt−3 +Zt −5Zt−1 +6Zt−2.

(a) identify the time series model, and

(b) write the time series model in terms of the backshift operator B.

8.3 For the ARMA time series model

φ(B)Xt = θ(B)Zt ,

where φ(B) = 1 and θ(B) = 1−0.6B+0.1B2,

(a) identify the time series model, and

(b) write the time series model in purely algebraic form.

8.4 For the ARMA time series model

Xt = 2Xt−1−Xt−2 +Zt −Zt−2,

(a) identify the time series model, and

(b) write the time series model using the backshift operator.

8.5 Consider the special case of the general linear model

Xt =
1

2
Xt−1 +Zt −

1

3
Zt−1.

(a) Write this model in its causal representation.

(b) Write this model in its invertible representation.

8.6 Show that E [Xt ] = µ for the stationary shifted ARMA(p, q) model

Xt−µ= φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt +θ1Zt−1+θ2Zt−2+ · · ·+θqZt−q.
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8.7 Find E[Xt ] for the shifted ARMA(2, 1) model

Xt = 7+0.4Xt−1−0.1Xt−2 +Zt +0.3Zt−1.

8.8 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise. The maximum likelihood estimator of the population variance of the Gaussian

white noise derived in Example 8.10 is

σ̂2
Z =

1

n

n

∑
i=1

X2
i .

An asymptotically exact confidence interval for σ2
Z derived in Example 8.11 is

σ̂2
Z− zα/2

√
2
(
∑n

i=1 X2
i

)2

n3
< σ2

Z < σ̂2
Z + zα/2

√
2
(
∑n

i=1 X2
i

)2

n3
.

Calculate and plot the actual coverage of a 95% confidence interval for σ2
Z as a function of n

for n = 8, 9, . . . , 256. Use analytic methods rather than Monte Carlo simulation.

8.9 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise. Find the probability density function of the maximum likelihood estimator of

the population variance of the Gaussian white noise

σ̂2
Z =

1

n

n

∑
i=1

X2
i .

8.10 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise. As shown in Example 8.10, the maximum likelihood estimator of the population

variance of the Gaussian white noise is

σ̂2
Z =

1

n

n

∑
i=1

X2
i

and a pivotal quantity for developing an exact two-sided 100(1−α)% confidence interval

for σ2
Z is

nσ̂2
Z

σ2
Z

∼ χ2(n).

Find an exact two-sided 100(1−α)% confidence interval for σ2
Z .

8.11 Let X1, X2, . . . , Xn be observations from an ARMA(0, 0) time series model with Gaussian

white noise having finite positive population variance σ2
Z . The maximum likelihood estima-

tor of the population variance of the Gaussian white noise is

σ̂2
Z =

1

n

n

∑
i=1

X2
i .

Conduct a Monte Carlo simulation experiment that provides convincing numerical evidence

that
nσ̂2

Z

χ2
n,α/2

< σ2
Z <

nσ̂2
Z

χ2
n,1−α/2

is an exact 100(1−α)% confidence interval for σ2
Z for one particular set of n, α, and σ2

Z of

your choice.
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8.12 Let X1 and X2 be jointly distributed random variables. The population mean and variance of

X1 are µX1
and σ2

X1
. The population mean and variance of X2 are µX2

and σ2
X2

. The population

correlation between X1 and X2 is ρ = Corr(X1, X2). The value of X2 is to be predicted as a

linear function of X1 with mX1 + b. Find the values of m and b which minimize the mean

square error of the prediction. In other words, find m and b which minimize

E
[
(X2−mX1−b)2

]
.

8.13 Consider an ARMA(0, 0) model with U(−1, 1) white noise terms. Find an exact two-sided

95% prediction interval for Xn+h.

8.14 Suppose an ARMA(2, 1) time series model is a strong candidate for modeling a particular

time series. A long time series is available for analysis, so n is large. The ARMA(2, 1)

model is fitted and residuals are calculated. If the sample autocorrelation function associated

with the residuals is calculated for the first 100 lags, how many values need to fall outside

of ±1.96/
√

n in order to reject the null hypothesis H0, which corresponds to a good fit at a

significance level that is less than α = 0.05?

8.15 Compare the expected p-values for the Box–Pierce and Ljung–Box tests for serial indepen-

dence of a time series consisting of n = 100 mutually independent and identically distributed

standard normal random variables. Consider only the first k = 40 lag values.

8.16 Let Ẑ1, Ẑ2, . . . , Ẑn be residual values associated with a fitted time series model. The Durbin–

Watson test statistic defined by

D =
n

∑
t=2

(
Ẑ t − Ẑt−1

)2
/ n

∑
t=1

Ẑ2
t

is useful for testing the serial independence of the residuals.

(a) Conduct a Monte Carlo simulation experiment to estimate the expected value of D

when Ẑ1, Ẑ2, . . . , Ẑ1000 are n = 1000 mutually independent and identically distributed

standard normal random variables.

(b) Give an explanation for the result that you obtained in part (a).

8.17 The turning point test for serial dependence counts the number of turning points (the number

of local minima and maxima) T in a time series of length n comprised of strictly continuous

observations. A turning point cannot occur at the first or last value of the time series.

(a) Show that E[T ] = 2(n− 2)/3 when the observations in the time series are mutually

independent and identically distributed.

(b) Show that V [T ] = (16n−29)/90 when the observations in the time series are mutually

independent and identically distributed.

(c) Perform a Monte Carlo simulation that supports the values of E[T ] and V [T ] for a time

series of length n = 101.

(d) Argue why T is approximately normally distributed with population mean E[T ] and

population variance V [T ] for a time series of mutually independent and identically

distributed observations and large n. Suggest an appropriate test statistic for testing the

null hypothesis that there is no serial correlation in the time series.
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8.18 Let X1, X2, X3, X4 be a time series of mutually independent and identically distributed con-

tinuous random variables. Let T be the number of turning points. Find the probability mass

function of T .

8.19 The nonparametric difference–sign test for serial dependence counts the number of values

in a time series of strictly continuous observations X1, X2, . . . , Xn in which Xi > Xi−1, for

i = 2, 3, . . . , n. Denote this count by T .

(a) Show that E[T ] = (n− 1)/2 when the observations in the time series are mutually

independent and identically distributed.

(b) Show that V [T ] = (n+ 1)/12 when the observations in the time series are mutually

independent and identically distributed.

(c) Perform a Monte Carlo simulation that supports the values of E[T ] and V [T ] for a time

series of length n = 101.

(d) Argue why T is approximately normally distributed with population mean E[T ] and

population variance V [T ] for a time series of mutually independent and identically

distributed observations and large n. Suggest an appropriate test statistic for testing the

null hypothesis that there is no serial correlation in the time series.

8.20 Suppose an AR(1) model is being considered as a tentative time series model based on a

realization of the time series. A single autoregressive parameter and a single moving average

parameter is added to the tentative model, resulting in an ARMA(2, 1) enhanced model.

Describe any problems that might arise by comparing the AR(1) time series model and the

ARMA(2, 1) time series model.



Chapter 9

Topics in Time Series Analysis

This chapter presents several topics in time series analysis. These include several of the popular time

series models which are special cases of the ARMA(p, q), including the software required for fitting

these models. The first section surveys the probability models and statistical methods associated with

autoregressive models, more specifically the AR(1), AR(2), and AR(p) models. The second section

surveys the probability models and statistical methods associated with autoregressive models, more

specifically the MA(1), MA(2), and MA(q) models. It is important to know the properties of these

special cases of the ARMA(p, q) model in order to successfully fit such a model to a realization

of a time series. This will allow us to build an inventory of population autocorrelation and partial

autocorrelation functions for these models that can be matched to their statistical counterparts for

building a time series model. Time series analysts tend to use the smallest possible p and q values

that adequately describe a time series. For this reason, separate subsections are devoted to the AR(1),

AR(2), MA(1), and MA(2) time series models.

9.1 Autoregressive Models

Autoregressive models for a time series {Xt} will be considered in this section. An autoregressive

model of order p is a special case of an ARMA(p, q) model with no moving average terms (that is,

q = 0), specified as

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt ,

where φ1, φ2, . . . , φp are real-valued parameters and {Zt} is a time series of white noise with pop-

ulation mean zero and population variance σ2
Z . The formulation of the AR(p) time series model

looks quite similar to that of a multiple linear regression model with p independent variables. These

independent variables are also known as predictors, regressors, or covariates in regression analysis.

That is the genesis of the term autoregressive to describe this model. The prefix auto means self,

indicating that this model has the current value of the time series {Xt} written as a linear function

of the p previous versions of itself plus a white noise term Zt . The white noise term is critical to the

model because without it, there would be no randomness in the model.

Rather than diving right into an AR(p) model, we first introduce the AR(1) and AR(2) models

in separate sections because the mathematics are somewhat easier than the general case and some

important geometry and intuition can be developed in these restricted models. In addition, an AR(1)

or AR(2) model is often an adequate time series model in a particular setting. We always want a
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model with the fewest possible number of parameters that adequately approximates the underlying

time series probability model. In the sections that follow, we will

• define the time series model for {Xt},

• determine the values of the parameters associated with a stationary model,

• derive the population autocorrelation and partial autocorrelation functions,

• develop algorithms for simulating observations from the time series,

• inspect simulated realizations to establish patterns,

• estimate the parameters from a time series realization {xt},

• assess the adequacy of the time series model, and

• forecast future values of the time series using both point and interval estimates.

The purpose of deriving the population autocorrelation and partial autocorrelation functions is to

build an inventory of shapes and patterns for these functions that can be used to identify tentative

time series models from their sample counterparts by making a visual comparison between popula-

tion and sample versions. This inventory of shapes and patterns plays an analogous role to knowing

the shapes of various probability density functions (for example, the bell-shaped normal probability

density function or the rectangular-shaped uniform distribution) in the analysis of univariate data

in which the shape of the histogram is visually compared to the inventory of probability density

function shapes.

In each section that follows, a single example of a time series will be carried through the various

statistical procedures given in the list above. Stationarity plays a critical role in time series analysis

because we are not able to forecast future values of the time series without knowing that the prob-

ability model is stable over time. This is why the visual assessment of a plot of the time series is

always a critical first step in the analysis of a time series.

9.1.1 The AR(1) Model

The autoregressive model of order 1 is defined next. It has a closed-form expression for the popula-

tion autocorrelation function and is frequently used in applications.

Definition 9.1 A first-order autoregressive time series model, denoted by AR(1), for the time

series {Xt} is defined by

Xt = φXt−1 +Zt ,

where φ is a real-valued parameter and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

No subscript is necessary on the φ parameter because there is only one φ parameter in the AR(1)

model. So there are two parameters that define an AR(1) model: the coefficient φ and the population

variance of the white noise σ2
Z .

The current value in the time series, Xt , is given by the parameter φ multiplied by the previous

observed value in the time series, φXt−1, plus the current white noise term Zt . This model has the
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form of a simple linear regression model forced through the origin in which Xt is being predicted by

the previous value of the time series Xt−1. The parameter φ plays the role of the slope of the regres-

sion line. Thinking about an AR(1) model as a simple linear regression model suggests a statistical

graphic that can be helpful in determining whether it is an appropriate model for a particular time

series. A plot of xt on the vertical axis against xt−1 on the horizontal axis should be approximately

linear if the AR(1) model is appropriate. The slope of the regression line on this plot corresponds to

φ, and the magnitude of the variability of the points about the regression line is determined by the

population variance of the white noise σ2
Z .

Some authors prefer to parameterize the AR(1) model as

Xt = φ1Xt−1 +φ0Zt ,

where φ0 and φ1 are real-valued parameters. We avoid this parameterization because the φ0 param-

eter is redundant in the sense that the population variance of the white noise σ2
Z is absorbed into the

φ0 parameter. Also, some authors use a − rather than a + between the terms on the right-hand side

of the model.

To illustrate the thinking behind the AR(1) model in a specific context, let Xt represent the

closing price of a particular stock on day t. The AR(1) model indicates that today’s closing price,

denoted by Xt , equals φ multiplied by yesterday’s closing price (φXt−1), plus today’s random white

noise term Zt .

Stationarity

One initial important question concerning the AR(1) model is whether or not the model is sta-

tionary. Consider a thought experiment that determines whether an AR(1) model is stationary for

specific values of φ. For one particular instance, consider φ = 0. In this case the AR(1) time series

model reduces to

Xt = Zt ,

which is a time series model consisting solely of white noise. We know from Example 7.15 that a

time series model of white noise terms is stationary. Now consider another instance, φ = 1. In this

case the AR(1) time series model reduces to

Xt = Xt−1 +Zt ,

which indicates that each value in the time series is the previous value plus the current white noise.

In this case the population variance of the process is increasing with time because the number of

white noise terms accumulate over time (see Example 7.8), so the AR(1) model with φ = 1 violates

one of the stationarity conditions given in Definition 7.6. The AR(1) model with φ = 1 can be

recognized as a random walk model from Example 7.4, and it was determined to be nonstationary

in Example 7.17. So we have established that the AR(1) time series model is stationary for φ = 0

and nonstationary for φ = 1. We now try to determine general restrictions on φ associated with a

stationary AR(1) time series model. We take four different approaches to establishing the values of

the coefficient φ that lead to a stationary model. The four approaches provide a review of several

concepts defined previously.

Approach 1: Causality. In the derivations concerning the AR(1) time series model that follow,

it will be beneficial to write the time series value Xt as a linear combination of the current and

previous white noise values. This will allow us to use the definition of causality in Definition 8.2 to

determine the values of φ associated with a stationary AR(1) model. To begin, recall that the AR(1)

model given by

Xt = φXt−1 +Zt
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can be shifted in time and is equally valid for other t values, for example,

Xt−1 = φXt−2 +Zt−1

Xt−2 = φXt−3 +Zt−2

...

Using successive substitutions into the AR(1) model results in

Xt = φXt−1 +Zt

= φ(φXt−2 +Zt−1)+Zt

= φ2Xt−2 +φZt−1 +Zt

= φ2 (φXt−3 +Zt−2)+φZt−1 +Zt

= φ3Xt−3 +φ2Zt−2 +φZt−1 +Zt

...

= Zt +φZt−1 +φ2Zt−2 +φ3Zt−3 + · · · .

This can be recognized as an MA(∞) time series model. Representing an AR(1) model as an MA(∞)

model is known as duality. We now determine the constraints on the parameter φ which are required

for stationarity. This is the form that is required for causality from Definition 8.2. The coefficients

ψ1, ψ2, . . . for the AR(1) model from Definition 8.2 are

ψ1 = φ, ψ2 = φ2, ψ3 = φ3, . . . ,

or in general, ψ j = φ j, for j = 1, 2, . . . . Definition 8.2 requires that

∞

∑
j=1

ψ2
j =

∞

∑
j=1

φ2 j = φ2 +φ4 +φ6 + · · ·< ∞

for the time series model to be written in causal form. This summation is a geometric series that

converges when |φ| < 1, or equivalently, when −1 < φ < 1, so these are the values of φ for which

the AR(1) model is causal, which also implies that the model is stationary. Expressing the AR(1)

model as an MA(∞) model will also be helpful in the subsequent derivation of the population auto-

covariance and autocorrelation functions.

Approach 2: Backshift operator. Although the purely algebraic derivation of the causal form

of the AR(1) time series model using standard algebra techniques from Approach 1 works fine for

establishing stationarity, there is an alternative approach which is slightly more elegant that exploits

the backshift operator B. The AR(1) model

Xt = φXt−1 +Zt

can be rewritten as

Xt −φXt−1 = Zt ,

which can be expressed using the backshift operator as

(1−φB)Xt = Zt .
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The first-order polynomial φ(B) = 1−φB generalizes to a polynomial in B of order p for an AR(p)

model. Dividing both sides of this equation by 1−φB gives

Xt =
Zt

1−φB
.

For values of φ satisfying −1 < φ < 1, this can be recognized as a geometric series in B:

Xt =
(
1+φB+φ2B2 +φ3B3 + · · ·

)
Zt .

Executing the B operator converts this to the form

Xt = Zt +φZt−1 +φ2Zt−2 +φ3Zt−3 + · · · ,
which is the same form that we encountered using the successive substitutions in the causality ap-

proach.

Approach 3: Unit roots analysis. Theorem 8.3 indicates that all AR(1) models are invertible

and they are stationary when the root of

φ(B) = 1−φB = 0

lies outside of the unit circle in the complex plane. The solution to this equation is

B =
1

φ
.

This root falls on the real axis in the complex plane and lies outside of the unit circle when

−1 < φ < 1,

which is consistent with Approaches 1 and 2.

Approach 4: Definition of stationarity. We can also return to first principles to establish the

values of φ associated with a stationary AR(1) model. This approach also results in the derivation

of the population autocorrelation function. Recall from Definition 7.6 that a time series model is

stationary if (a) the expected value of Xt is constant for all t, and (b) the population covariance

between Xs and Xt depends only on the lag |t − s|. Using the causal formula for the AR(1) time

series model expressed as an MA(∞) time series model from Approach 1, the expected value of Xt

is

E [Xt ] = E
[
Zt +φZt−1 +φ2Zt−2 +φ3Zt−3 + · · ·

]

= E [Zt ]+φE [φZt−1]+φ2E [Zt−2]+φ3E [Zt−3]+ · · ·
= 0

for all values of the parameters φ and σ2
Z , and all values of t. Again using the causal formula for the

AR(1) time series model expressed as an MA(∞) time series model,

γ(s, t) = Cov(Xs, Xt)

= Cov
(
Zs +φZs−1 +φ2Zs−2 + · · · , Zt +φZt−1 +φ2Zt−2 + · · ·

)

= Cov
(
Zs, φ|t−s|Zs

)
+Cov

(
φZs−1, φ|t−s|+1Zs−1

)
+Cov

(
φ2Zs−2, φ|t−s|+2Zs−2

)
+ · · ·

= φ|t−s|σ2
Z +φ|t−s|+2σ2

Z +φ|t−s|+4σ2
Z + · · ·

=
(
φ|t−s|+φ|t−s|+2 +φ|t−s|+4 + · · ·

)
σ2

Z

= φ|t−s|
(

1

1−φ2

)
σ2

Z |t− s|= 0, 1, 2, . . .
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for −1 < φ < 1. Since E [Xt ] = 0 for all values of t and the population autocovariance function

depends only on the lag |t− s|, we conclude that the AR(1) process is stationary when −1 < φ < 1.

So the population autocovariance function can be expressed in terms of the lag k as

γ(k) =

(
φk

1−φ2

)
σ2

Z k = 0, 1, 2, . . . .

Dividing by the population autocovariance function by

γ(0) =

(
1

1−φ2

)
σ2

Z

gives the population autocorrelation function

ρ(k) =
γ(k)

γ(0)
= φk k = 0, 1, 2, . . . .

Based on the four approaches, we now know beyond a shadow of doubt that an AR(1) model is

stationary for values of the parameter φ satisfying −1 < φ < 1. This derivation constitutes a proof

of the following result, which will be stated for just the nonnegative lags. Many authors list the lags

as k = ±1,±2, . . . , but we appeal to Theorem 7.1 to cover the negative lags and only report the

nonnegative lags in all of the population autocorrelation functions given in this chapter.

Theorem 9.1 The AR(1) time series model for {Xt} is stationary for values of the parameter φ
satisfying −1 < φ < 1 and σ2

Z satisfying σ2
Z > 0 with population autocorrelation function

ρ(k) = φk k = 0, 1, 2, . . . .

The derivation of ρ(k) = φk for k = 0, 1, 2, . . . provides still further evidence of the restriction

that −1 < φ < 1. If φ were equal to a value outside of this range, say φ = 2, this would result in

population correlation values outside of the range −1≤ ρ(k)≤ 1.

For all admissible values of φ on the interval−1 < φ < 1, we see from the formula ρ(k) = φk for

k = 0, 1, 2, . . . that there will be a geometric decline in the magnitude of the values in the population

autocorrelation function as the lag k increases. There are two distinct cases for φ, however, which

will result in population autocorrelation functions with distinctly different shapes. The first case is

0 < φ < 1, which gives positive population autocorrelation values at all lags. This is associated with

a time series that lingers on one side of the mean. How long it lingers depends on the magnitude of

φ. Larger values of φ indicate that nearby observations will tend to be more likely to be on the same

side of the mean, and therefore the time series will tend to linger longer on one side of the mean. The

second case is −1 < φ < 0, which gives population autocorrelation function values which alternate

in sign and is associated with a time series that is likely to jump from one side of the mean to the

other for adjacent observations. These two cases are illustrated in Figure 9.1 for the first 8 lags of

the population autocorrelation function for φ = 0.8 and φ =−0.8.

Population Partial Autocorrelation Function

We now determine the population partial autocorrelation function for an AR(1) model. By Def-

inition 7.4, the population lag 0 partial autocorrelation value is ρ∗(0) = 1. The population lag 1
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Figure 9.1: AR(1) population autocorrelation functions for φ = 0.8 (left) and φ =−0.8 (right).

partial autocorrelation value is ρ∗(1) = ρ(1) = φ. The population lag 2 partial autocorrelation is

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
=

∣∣∣∣
1 φ
φ φ2

∣∣∣∣
∣∣∣∣

1 φ
φ 1

∣∣∣∣
= 0.

This is consistent with the result from Example 7.22 from first principles. Notice that the second

column of the matrix in the numerator is a multiple of the first column of the matrix in the numerator.

This is why the determinant of the numerator is zero. The population lag 3 partial autocorrelation is

ρ∗(3) =

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1 φ φ
φ 1 φ2

φ2 φ φ3

∣∣∣∣∣∣
∣∣∣∣∣∣

1 φ φ2

φ 1 φ
φ2 φ 1

∣∣∣∣∣∣

= 0.

Again, the determinant in the numerator is zero because the third column is a multiple of the first

column. This pattern continues for the lag k population partial autocorrelation function, which has a

first column of the numerator matrix
[
1, φ, φ2, . . . , φk−1

]′
and last column

[
φ, φ2, φ3, . . . , φk

]′
. Since

the last column of the numerator matrix is a multiple of the first column of the numerator matrix,

the determinant of the numerator matrix is zero. This constitutes a proof of the following result.

Theorem 9.2 The population partial autocorrelation function for a stationary AR(1) process is

ρ∗(k) =





1 k = 0

φ k = 1

0 k = 2, 3, . . . .

Figure 9.2 shows the first 8 lags of the population partial autocorrelation function for φ= 0.8 and

φ=−0.8. These are the same parameter settings as in Figure 9.1. Unlike the population autocorrela-
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Figure 9.2: Population partial autocorrelation functions for φ = 0.8 (left) and φ =−0.8 (right).

tion function which tails off in magnitude for increasing lags, the population partial autocorrelation

cuts off after lag 1. When plotting the corresponding sample analogs, it is typically easier to visu-

ally assess a function cutting off rather than tailing off, particularly if there is significant random

sampling variability in the observed time series.

The Shifted AR(1) Model

The population mean function for the AR(1) model is E [Xt ] = 0. This model is not of much

use in practice because most real-world time series are not centered around zero. Adding a third

parameter µ overcomes this shortcoming. Since population variance and covariance are unaffected

by a shift, the associated population autocorrelation and partial autocorrelation functions remain the

same as those given in Theorems 9.1 and 9.2. Likewise, the condition for stationarity is unchanged.

Theorem 9.3 A shifted first-order autoregressive model for the time series {Xt} is defined by

Xt −µ = φ(Xt−1−µ)+Zt ,

where φ, µ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of white noise. This

model is stationary when −1 < φ < 1. The expected value of Xt is E [Xt ] = µ. The population

autocorrelation function is

ρ(k) = φk k = 0, 1, 2, . . .

and the population partial autocorrelation function is

ρ∗(k) =





1 k = 0

φ k = 1

0 k = 2, 3, . . . .

Simulation

An AR(1) time series can be simulated by appealing to the defining formula for the AR(1) model.
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Iteratively applying the defining formula for an AR(1) model

Xt = φXt−1 +Zt

results in the simulated values X1, X2, . . . , Xn. The difficult aspect of this algorithm is how to gen-

erate the first value X1 because there is no X0 available. For simplicity, assume that the white noise

terms are Gaussian white noise. Since the expected value of Xt is E [Xt ] = 0, the population variance

of Xt is

V [Xt ] = γ(0) =

(
1

1−φ2

)
σ2

Z ,

and linear combinations of mutually independent normally distributed random variables are normal,

then the first simulated observation

X1 ∼ N

(
0,

(
1

1−φ2

)
σ2

Z

)
.

The algorithm given as pseudocode below generates an initial time series observation X1 as indicated

above, and then uses an additional n− 1 Gaussian white noise terms Z2, Z3, . . . , Zn to generate the

remaining time series values X2, X3, . . . , Xn using the AR(1) defining formula from Definition 9.1.

Indentation denotes nesting in the algorithm.

t← 1

generate Xt ∼ N
(

0,
(

1
1−φ2

)
σ2

Z

)

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← φXt−1 +Zt

The three-parameter shifted AR(1) time series model which includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

The next example implements this algorithm in R.

Example 9.1 Generate a realization of n = 100 observations from an AR(1) time series

model with φ = 0.8 and Gaussian white noise error terms with σ2
Z = 9.

Since φ= 0.8 lies in the interval−1< φ< 1, this is a stationary AR(1) time series model

via Theorem 9.1. The first (optional) statement in the R code below uses the set.seed

function to establish the random number seed. The second statement sets the AR(1)

coefficient to φ = 0.8. The third statement sets the standard deviation of the Gaussian

white noise to σZ = 3. The fourth statement sets the number of simulated values to n =
100. The fifth statement defines the vector x of length n= 100 to hold the simulated time

series values. The sixth statement generates the first simulated time series observation

X1 with a call the rnorm function. Finally, the for loop iterates through the defining

formula for the AR(1) model generating the remaining observations X2, X3, . . . , X100.

set.seed(3)

phi = 0.8

sigz = 3

n = 100

x = numeric(n)

x[1] = rnorm(1, 0, sigz / sqrt(1 - phi ^ 2))

for (t in 2:n) x[t] = phi * x[t - 1] + rnorm(1, 0, sigz)
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Using the plot.ts function to make a plot of the time series contained in x, the acf

function to plot the associated correlogram, the pacf function to plot the associated

sample partial autocorrelation function, and the layout function to arrange the graphs

as in Example 7.24, the resulting trio of graphs are displayed in Figure 9.3. The points

that have been added to the time series plot can be helpful in identifying patterns. Con-

sistent with an AR(1) model with φ= 0.8 the time series plot shows that the observations

tend to have runs of observations that linger above and below the population mean of

0, which is indicated by a horizontal line. The associated sample autocorrelation func-

tion tails off as expected from Figure 9.1. The associated sample partial autocorrelation

function has a statistically significant spike at lag 1 with r∗1 = 0.8187, and then cuts

off after lag 1 as expected from Figure 9.2. The spike at lag 1 on both autocorrelation

graphs is approximately φ = 0.8, as expected. The 95% confidence intervals indicated

by the dashed lines show that the values of the sample partial autocorrelation function

do not significantly differ from zero at lags beyond lag 1.

We recommend running the simulation code from the previous example several dozen times in a
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Figure 9.3: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(1) model.
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loop and viewing the associated plots of xt , rk, and r∗k in search of patterns. A call to the R function

Sys.sleep between the displays of the trio of plots can be used to include an artificial time delay

to allow you to inspect the plots. This will allow you to see how various realizations of a simulated

AR(1) time series model vary from one realization to the next. So when you then view a single

realization of a real-life time series, you will have a better sense of how far these plots might deviate

from their expected patterns.

There is a second way to simulate observations from an AR(1) time series. This second technique

starts the time series at an initial arbitrary value, and then allows the time series to “warm up” or

“burn in” for several time periods before producing the first observation X1. A reasonable initial

arbitrary value for the standard AR(1) model is 0; a reasonable initial arbitrary value for the shifted

AR(1) model is µ. This is the approach taken by the built-in R function named arima.sim (for

autoregressive moving average simulation), which simulates a realization of a time series. Using

the arima.sim function saves a few keystrokes over the approach taken in the previous example, as

illustrated next.

Example 9.2 Generate a realization of n = 100 observations from a shifted AR(1) time

series model with φ = −0.8, Gaussian white noise error terms with σ2
Z = 9, and mean

value µ = 10.

Since there is now a nonzero population mean value, the shifted AR(1) model is

Xt −µ = φ(Xt−1−µ)+Zt ,

where µ = 10, φ = −0.8, and σZ = 3. Since φ = −0.8 lies in the interval −1 < φ < 1,

this is a stationary AR(1) time series model. The model argument in the arima.sim

function is a list containing the value of φ. Although the default probability distribution

for the white noise is normal (that is, Gaussian white noise) with population variance

σ2
Z , the function allows for other distributions. The second argument to arima.sim is

n, the number of time series observations to be generated. The sd argument defines

the standard deviation of the white noise. The n.start argument gives the number

of observations in the warm-up period, which we specify here as 50. The R code to

generate n = 100 values from the shifted AR(1) model is given below.

set.seed(10)

x = 10 + arima.sim(model = list(ar = -0.8), n = 100, sd = 3, n.start = 50)

Figure 9.4 shows the three plots associated with the simulated values using the plot.ts,

acf, and pacf functions. The time series plot shows a radically different pattern than

the time series in the previous example in two manners. First, this simulated time series

is centered around µ = 10 (indicated by a horizontal line) rather than µ = 0. Second, ad-

jacent observations in the time series tend to jump from one side of the population mean

to other side of the population mean, which is consistent with the population autocor-

relation function from the right-hand plot in Figure 9.1. Consistent with the time series

plot, the values in the sample autocorrelation function alternate in sign and decrease

in magnitude. The sample partial autocorrelation function has a statistically significant

spike at lag 1 of r∗1 = −0.8330, and nonsignificant spikes thereafter. This is consistent

with the right-hand plot in Figure 9.2. Type

getAnywhere(arima.sim)
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Figure 9.4: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(1) model.

in order to view the R source code associated with the arima.sim function. This func-

tion can simulate a realization of any ARMA(p, q) time series model, and we will use

it for simulations subsequently.

The remaining topics associated with the AR(1) time series model are statistical in nature: pa-

rameter estimation, model assessment, model selection, and forecasting. A sample time series that

will be revisited throughout these topics will be introduced next.

Example 9.3 The temperature in degrees Celsius of a beaver (Castor canadensis) in

Wisconsin was taken every ten minutes by telemetry on November 3–4, 1990. The re-

sulting time series of n = 100 observations is contained in the built-in data frame named

beaver2 in R. The data frame includes columns that contain the temperatures recorded

in degrees Celsius (beaver2$temp) and an indicator variable (beaver2$activ) that

reports whether or not the beaver was active outside of its lodge at the associated ob-

servation time. The data frame can be viewed by typing beaver2. More information

about the data set can be viewed by typing help(beaver2). The R statement
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plot.ts(beaver2$temp)

generates the time series plot of the temperature readings given in Figure 9.5. A vertical

dashed line has been added between x38 and x39 to signify when the beaver transitioned

from an inactive state to an active state. It is clear that a stationary time series model

is not appropriate for the entire time series because the population mean appears to

increase significantly between the inactive and active periods. So we limit our modeling

effort to just the temperatures that were recorded while the beaver was in the active state.

The n = 62 beaver temperatures during the active period, ordered row-wise, are given

in Table 9.1.

37.98 38.02 38.00 38.24 38.10 38.24 38.11 38.02 38.11

38.01 37.91 37.96 38.03 38.17 38.19 38.18 38.15 38.04

37.96 37.84 37.83 37.84 37.74 37.76 37.76 37.64 37.63

38.06 38.19 38.35 38.25 37.86 37.95 37.95 37.76 37.60

37.89 37.86 37.71 37.78 37.82 37.76 37.81 37.84 38.01

38.10 38.15 37.92 37.64 37.70 37.46 37.41 37.46 37.56

37.55 37.75 37.76 37.73 37.77 38.01 38.04 38.07

Table 9.1: Beaver temperatures at ten-minute intervals in the active state.

The question posed in this example is whether an AR(1) model is appropriate time

series model for the 62 temperatures taken during the active period.

The time series of temperatures of the beaver in the active state, the sample autocorre-

lation function, and the sample partial autocorrelation function can be graphed with the

R statements

x = beaver2$temp[beaver2$activ == 1]

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

1 100
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Figure 9.5: Wisconsin beaver temperatures recorded at 10-minute intervals.
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plot.ts(x)

abline(h = mean(x))

acf(x)

pacf(x)

The trio of graphs is displayed in Figure 9.6. A horizontal line has been added to the

time series plot at x̄ = 37.9. A visual assessment of the n = 62 observations from the

time series indicates that the mean value does not appear to be systematically increas-

ing or decreasing over the time period. From the documentation of the time series, one

can see that the active period for the beaver began at 3:50 PM on November 3, 1990

and ended at 2:00 AM on November 4, 1990. The ambient temperature might have an

effect on the beaver’s temperature, but this will not be pursued further. For now, we

will assume that there is no systematic, secular trend in the mean value. The variance

of the observations in the time series also seems to be stable over time. Based on this

cursory analysis, it appears plausible that the beaver’s temperature during the active pe-

riod could have been drawn from a stationarity time series model. Now we turn to the
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Figure 9.6: Time series plot, rk, and r∗k for n = 62 temperatures of an active beaver.
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interpretation of the sample autocorrelation function and the sample partial autocorrela-

tion function. The sample autocorrelation function has three initial positive statistically

significant spikes which decrease in magnitude. The correlogram tails off. This is con-

sistent with an AR(1) model. We discount the barely significant spikes at lags k = 14

and k = 15, although we could pursue other studies concerning beaver temperatures

over time to see if there might be a cyclic variation component present. Furthermore,

the partial autocorrelation function has a positive statistically significant spike at lag 1,

then cuts off after lag 1. This is also consistent with an AR(1) model. The fact that

r1 = r∗1 = 0.79 is positive is consistent with the time series plot of the beaver’s tem-

perature, which tends to linger above and below the sample mean value x̄ = 37.9 for

significant periods of time. So far, the evidence points to the AR(1) time series model

being a reasonable model for the beaver’s temperature during its active period.

The AR(1) model gives us a secondary manner to visually assess whether or not it is

an appropriate time series model for the beaver temperatures. Since the shifted AR(1)

model is

Xt −µ = φ(Xt−1−µ)+Zt ,

the aforementioned interpretation of this time series model as a simple linear regression

model means that a plot of xt−1− x̄ versus xt − x̄ (or xt−1 versus xt ) should be approxi-

mately linear. The plot displayed in Figure 9.7 contains the n− 1 = 62− 1 = 61 pairs

(xt−1, xt) of adjacent points on a set of axes, which is generated by the R statements

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

plot(x[2:n], x[1:(n - 1)])

37.4 37.6 37.8 38.0 38.2 38.4

37.4

37.6
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Figure 9.7: Scatterplot of adjacent pairs of temperatures of an active beaver.



Section 9.1. Autoregressive Models 507

abline(lm(x[2:n] ~ x[1:(n - 1)]))

The paucity of points in the upper-left and lower-right portions of the scatterplot and

the approximately linear relationship between the adjacent observations lends further

evidence that the AR(1) model might be an appropriate time series model. The lm

function fits a linear model to the data pairs and the abline function plots the associated

regression line. The additional R statement

summary(lm(x[2:n] ~ x[1:(n - 1)]))

indicates that the slope of the regression line differs statistically from 0 with p-value

2 ·10−14, indicating a strong linear relationship between adjacent observations.

In conclusion, a preliminary graphical analysis of the n = 62 temperatures of the beaver

in the active state indicates that an AR(1) time series model should be on the short list of

potential time series models. The next step is to estimate the parameters in the model.

Parameter Estimation

There are two parameters, φ and σ2
Z , to estimate in the standard AR(1) model

Xt = φXt−1 +Zt .

There are three parameters, µ, φ, and σ2
Z , to estimate in the shifted AR(1) model

Xt −µ = φ(Xt−1−µ)+Zt .

The three parameter estimation techniques outlined in Section 8.2.1 are applied to the shifted AR(1)

time series model next.

Approach 1: Method of moments. In the case of the shifted AR(1) model, we match the popu-

lation and sample (a) first-order moments, (b) second-order moments, and (c) lag 1 autocorrelation.

Placing the population moments on the left-hand side of the equation and the associated sample

moments on the right-hand side of the equation results in three equations in three unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

or

µ = X̄

V [Xt ]+E [Xt ]
2 = γ(0)+µ2 =

(
1

1−φ2

)
σ2

Z +µ2 =
1

n

n

∑
t=1

X2
t

φ = r1.

These equations can be solved in closed form for the three unknown parameters µ, φ, and σ2
Z yielding

the method of moments estimators

µ̂ = X̄ , φ̂ = r1, σ̂2
Z =

(
1− φ̂2

)
(

1

n

n

∑
t=1

X2
t − µ̂ 2

)
=
(
1− r2

1

)
(

1

n

n

∑
t=1

X2
t − X̄2

)
.
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This constitutes a proof of the following result.

Theorem 9.4 The method of moments estimators of the parameters in a shifted AR(1) model are

µ̂ = X̄ φ̂ = r1 σ̂2
Z =

(
1− r2

1

)
(

1

n

n

∑
t=1

X2
t − X̄2

)
.

These point estimators are random variables and have been written as a function of the ran-

dom time series values X1, X2, . . . , Xn. For observed time series values x1, x2, . . . , xn, the lowercase

versions of the formulas will be used.

Example 9.4 For the time series of n = 62 temperature observations of the beaver in

the active state, find the method of moments estimators of µ, φ, and σ2
Z for the AR(1)

model.

The R code below calculates and prints the point estimates of the µ, φ, and σ2
Z parame-

ters.

x = beaver2$temp[beaver2$activ == 1]

muhat = mean(x)

phihat = acf(x, plot = FALSE)$acf[2]

sig2hat = (1 - phihat ^ 2) * (mean(x ^ 2) - muhat ^ 2)

print(c(muhat, phihat, sig2hat))

The point estimates for the unknown parameters computed by this code are

µ̂ = 37.90 φ̂ = 0.7894 σ̂2
Z = 0.01734.

These point estimates are reported to four digits because the data values were given to

four-digit accuracy. The positive value for φ̂ is consistent with the fact that the beaver’s

temperature lingers above and below the sample mean in the time series plot in Fig-

ure 9.6. The estimated standard deviation of the white noise error terms,

σ̂Z =
√

0.01734∼= 0.1317,

reflects the dispersion of the observations in Figure 9.7 about the regression line.

Approach 2: Least squares. Consider the shifted stationary AR(1) model

Xt −µ = φ(Xt−1−µ)+Zt .

For least squares estimation, we first establish the sum of squares S as a function of the parameters

µ and φ and use calculus to find the least squares estimators of µ and φ. This will result in a slight

difference between the usual pattern of using the sample mean x̄ to estimate the population mean

µ. Once these least squares estimators have been determined, the population variance of the white

noise σ2
Z will be estimated.

The sum of squared errors is

S =
n

∑
t=2

Z2
t =

n

∑
t=2

[Xt −µ−φ(Xt−1−µ)]2 .
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The partial derivatives of S with respect to µ and φ are

∂S

∂µ
=

n

∑
t=2

2 [Xt −µ−φ(Xt−1−µ)] (−1+φ)

and
∂S

∂φ
=

n

∑
t=2

−2 [Xt −µ−φ(Xt−1−µ)] (Xt−1−µ) .

Equating the first of the partial derivatives to zero yields

n

∑
t=2

[Xt −µ−φ(Xt−1−µ)] = 0

or
n

∑
t=2

Xt −φ
n

∑
t=2

Xt−1− (n−1)µ(1−φ) = 0

or

X̄2−φX̄1−µ(1−φ) = 0

or

µ̂ =
X̄2− φ̂X̄1

1− φ̂
,

where

X̄1 =
1

n−1

n−1

∑
t=1

Xt and X̄2 =
1

n−1

n

∑
t=2

Xt .

Equating the second of the partial derivatives to zero yields

n

∑
t=2

(Xt −µ)(Xt−1−µ)−φ
n

∑
t=2

(Xt−1−µ)2 = 0

or

φ̂ =
∑n

t=2 (Xt − µ̂ )(Xt−1− µ̂ )

∑n
t=2 (Xt−1− µ̂ )2

.

So the ordinary least squares estimators for µ and φ can be determined by numerically solving the

simultaneous equations

µ̂ =
X̄2− φ̂X̄1

1− φ̂
and φ̂ =

∑n
t=2 (Xt − µ̂ )(Xt−1− µ̂ )

∑n
t=2 (Xt−1− µ̂ )2

for µ̂ and φ̂.

The last parameter to estimate is σ2
Z . Since

γ(0) =

(
1

1−φ2

)
σ2

Z

for an AR(1) time series model, the population variance of the white noise can be expressed as

σ2
Z =

(
1−φ2

)
γ(0).
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Replacing φ by the estimator r1 because ρ(1) = φ, and replacing γ(0) = V [Xt ] by the estimator

c0 =
1
n ∑n

t=1 (Xt − X̄)
2

gives the point estimator

σ̂2
Z =

(
1− r2

1

)
c0,

which matches the method of moments estimator from Theorem 9.4. This derivation constitutes a

proof of the following result.

Theorem 9.5 The least squares estimators of the parameters in a shifted AR(1) model are the µ̂

and φ̂ values that satisfy

µ̂ =
X̄2− φ̂X̄1

1− φ̂
and φ̂ =

∑n
t=2 (Xt − µ̂ )(Xt−1− µ̂ )

∑n
t=2 (Xt−1− µ̂ )2

,

where X̄1 =
1

n−1 ∑
n−1
t=1 Xt and X̄2 =

1
n−1 ∑n

t=2 Xt . The least squares estimator of σ2
Z is

σ̂2
Z =

(
1− r2

1

)
c0.

We now apply these techniques to the beaver temperature data set from Example 9.3.

Example 9.5 Find the least squares estimators of µ, φ, and σ2
Z for the time series of

n = 62 beaver temperatures from Example 9.3.

The code below contains a function s which calculates the sum of squares, and then

uses the R optim function to minimize the sum of squares using the method of moments

estimates as initial estimates. The optim function minimizes the objective function by

default.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

s = function(parameters) {

mu = parameters[1]

phi = parameters[2]

sum((x[2:n] - mu - phi * (x[1:(n - 1)] - mu)) ^ 2)

}

optim(c(37.90, 0.7894), s)

r1 = acf(x, plot = FALSE)$acf[2]

sig2hat = (1 - r1 ^ 2) * mean((x - mean(x)) ^ 2)

The point estimates for the unknown parameters computed by this code are

µ̂ = 37.91 φ̂ = 0.7972 σ̂2
Z = 0.01762.

Figure 9.8 shows the sum of squares for fixed µ̂ = 37.91 as a function of φ. The sum

of squares is minimized at φ̂ = 0.7972. The least squares parameter estimates are very

close to the method of moments parameter estimators. We now consider why the two

estimators are so close to one another.
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Figure 9.8: Sum of squares as a function of φ.

Since

X̄1 =
1

n−1

n−1

∑
t=1

Xt and X̄2 =
1

n−1

n

∑
t=2

Xt

contain the n−2 common values X2, X3, . . . , Xn−1, one approximation that can be applied to the least

squares estimates is to assume that X̄1
∼= X̄2

∼= X̄ for large values of n, which allows for closed-form

approximate least squares estimators:

µ̂ = X̄ and φ̂ =
∑n

t=2 (Xt − X̄)(Xt−1− X̄)

∑n
t=2 (Xt−1− X̄)

2
.

As a secondary additional approximation, the denominator of φ̂ with the first approximation in place,

n

∑
t=2

(Xt−1− X̄)
2
,

is approximately equal to
n

∑
t=1

(Xt − X̄)
2

for large values of n. With this additional assumption, the least squares estimate for φ reduces to the

approximate least squares estimate

φ̂ =
c1

c0
= r1,

which is the method of moments estimator of φ because ρ(1) = φ for an AR(1) model. With both ap-

proximations in place, the least squares estimators exactly match the method of moments estimators.

This is why the estimates from the two techniques are so close.

Approach 3: Maximum likelihood estimation. The likelihood function is the joint probability

density function of the observed values in the time series x1, x2, . . . , xn in a shifted AR(1) model is

L
(
µ, φ, σ2

Z

)
= f (x1, x2, . . . , xn),
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where the x1, x2, . . . , xn arguments on L and the µ, φ, and σ2
Z arguments on f have been dropped

for brevity. It is not possible to simply multiply the marginal probability density functions because

the values in the AR(1) time series model are correlated. In order to use maximum likelihood

estimation, we make the additional assumption that the white noise terms Z1, Z2, . . . , Zn are in fact

Gaussian white noise terms:

fZt (zt) =
1√

2πσ2
Z

e−z2
t /(2σ2

Z) −∞ < zt < ∞

for t = 1, 2, . . . , n, which is the probability density function of a N
(
0, σ2

Z

)
random variable. Ignor-

ing Z1 temporarily, the joint probability density function of the mutually independent white noise

random variables Z2, Z3, . . . , Zn is

fZ2,Z3, ...,Zn (z2, z3, . . . , zn) =
(
2πσ2

Z

)−(n−1)/2
e−∑n

t=2 z2
t /(2σ2

Z)

for (z2, z3, . . . , zn) ∈ R n−1. The shifted AR(1) model

Xt −µ = φ(Xt−1−µ)+Zt

applies for all values of t, so

X2−µ = φ(X1−µ)+Z2

X3−µ = φ(X2−µ)+Z3

...

Xn−µ = φ(Xn−1−µ)+Zn.

Solving these equations for X2, X3, . . . , Xn, consider the transformation of the Z2, Z3, . . . , Zn values

X2 = µ+φ(X1−µ)+Z2

X3 = µ+φ(X2−µ)+Z3

...

Xn = µ+φ(Xn−1−µ)+Zn

conditioned on X1 = x1, which is a one-to-one transformation from R n−1 to R n−1 with inverse

transformation

Z2 = X2−µ−φ(X1−µ)

Z3 = X3−µ−φ(X2−µ)

...

Zn = Xn−µ−φ(Xn−1−µ)

and Jacobian

J =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −φ 0 · · · 0 0

0 1 −φ · · · 0 0

0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1 −φ
0 0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1.
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By the transformation technique, the joint probability density function of X2, X3, . . . , Xn conditioned

on X1 = x1 is

fX2,X3, ...,Xn |X1
(x2, x3, . . . , xn |X1 = x1) =

(
2πσ2

Z

)−(n−1)/2
e−∑n

t=2[xt−µ−φ(xt−1−µ)]2/(2σ2
Z)

for (x2, x3, . . . , xn) ∈ R n−1 and x1 ∈ R . The final step in the derivation of the likelihood function

involves determining the marginal distribution of X1. Since

X1 ∼ N

(
µ,

σ2
Z

1−φ2

)
,

the probability density function of X1 is

fX1
(x1) =

√
1−φ2

2πσ2
Z

e−(1−φ2)(x1−µ)2/(2σ2
Z) −∞ < x1 < ∞.

The joint probability density function of X1, X2, . . . , Xn is the product of the conditional probability

density function and the marginal probability density function:

fX1,X2, ...,Xn(x1, x2, . . . , xn) = fX2,X3, ...,Xn |X1
(x2, x3, . . . , xn |X1 = x1) fX1

(x1)

for (x1, x2, . . . , xn) ∈ R n. So the likelihood function is

L
(
µ, φ, σ2

Z

)
=
(
2πσ2

Z

)−n/2
√

1−φ2 e−S(µ,φ)/(2σ2
Z),

where the unconditional sum of squares is

S (µ, φ) =
(
1−φ2

)
(x1−µ)2 +

n

∑
t=2

[(xt −µ)−φ(xt−1−µ)]2 .

The associated log likelihood function is

ln L
(
µ, φ, σ2

Z

)
=−n

2
ln
(
2πσ2

Z

)
+

1

2
ln
(
1−φ2

)
− S (µ, φ)

2σ2
Z

.

The maximum likelihood estimators µ̂ , φ̂, and σ̂2
Z satisfy

∂ ln L
(
µ, φ, σ2

Z

)

∂µ
=

(
1−φ2

)
(x1−µ)+(1−φ)∑n

t=2 [(xt −µ)−φ(xt−1−µ)]

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂φ
=− φ

1−φ2
+

φ(x1−µ)2 +∑n
t=2 [(xt −µ)−φ(xt−1−µ)] (xt−1−µ)

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂σ2
Z

=− n

2σ2
Z

+
S (µ, φ)

2σ4
Z

= 0.

Although the third equation satisfies

σ̂2
Z =

S
(
µ̂ , φ̂

)

n
,

numerical methods are required to solve the equations.
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Theorem 9.6 The maximum likelihood estimators of the parameters in a shifted AR(1) model

with Gaussian white noise are the µ̂ , φ̂, and σ̂2
Z values that satisfy

∂ ln L
(
µ, φ, σ2

Z

)

∂µ
=

(
1−φ2

)
(x1−µ)+(1−φ)∑n

t=2 [(xt −µ)−φ(xt−1−µ)]

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂φ
=− φ

1−φ2
+

φ(x1−µ)2 +∑n
t=2 [(xt −µ)−φ(xt−1−µ)] (xt−1−µ)

σ2
Z

= 0

∂ ln L
(
µ, φ, σ2

Z

)

∂σ2
Z

=− n

2σ2
Z

+
S (µ, φ)

2σ4
Z

= 0.

Maximum likelihood estimation will be illustrated in the next example.

Example 9.6 Find the maximum likelihood estimators of µ, φ, and σ2
Z for the time

series of n = 62 beaver temperatures from Example 9.3.

The R code below again uses the optim function to maximize the likelihood function.

Since the default for optim is to minimize, the likelihood function is negated within the

L function. The method of moments estimators are used as initial estimates. The optim

function uses the Nelder–Mead method by default to maximize the likelihood function.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

L = function(parameters) {

mu = parameters[1]

phi = parameters[2]

sig2 = parameters[3]

-(2 * pi * sig2) ^ (- n / 2) * (1 - phi ^ 2) ^ (1 / 2) *

exp(-((1 - phi ^ 2) * (x[1] - mu) ^ 2 +

sum(((x[2:n] - mu) - phi * (x[1:(n - 1)] - mu)) ^ 2) / (2 * sig2)))

}

optim(c(37.90, 0.7894, 0.01734), L)

The point estimates for the unknown parameters computed by this code are

µ̂ = 37.91 φ̂ = 0.7850 σ̂2
Z = 0.01697.

Table 9.2 summarizes the point estimators that have been calculated in the previous three exam-

ples for the n = 62 beaver temperatures. The point estimators associated with the three methods are

quite close for this particular time series.

Method µ̂ φ̂ σ̂2
Z

Method of moments 37.90 0.7894 0.01734

Ordinary least squares 37.91 0.7972 0.01762

Maximum likelihood estimation 37.91 0.7850 0.01697

Table 9.2: Point estimators for the AR(1) parameters for the n = 62 beaver temperatures.
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The R function ar fits autoregressive models. The parameter estimates from the three previous

examples could have been calculated with the following four R statements.

x = beaver2$temp[beaver2$activ == 1]

ar(x, order.max = 1, aic = FALSE, method = "yule-walker")

ar(x, order.max = 1, aic = FALSE, method = "ols")

ar(x, order.max = 1, aic = FALSE, method = "mle")

Table 9.3 contains the point estimates returned by the ar function. The tiny differences between

some of the entries in Tables 9.2 and 9.3 might be due to slightly different approximations and/or

roundoff in the optimization routines.

Method µ̂ φ̂ σ̂2
Z

Method of moments (Yule–Walker) 37.90 0.7894 0.01792

Ordinary least squares 37.90 0.7972 0.01724

Maximum likelihood estimation 37.90 0.7865 0.01699

Table 9.3: Point estimators for the n = 62 beaver temperatures via the ar function.

We have now derived and illustrated the three point estimation techniques, the method of mo-

ments, least squares, and maximum likelihood estimation, for the parameters in an AR(1) model

from a realization of a time series consisting of n observations. Which of these techniques provides

the best point estimators? This is not an easy question to answer because there are a large number

of factors, such as the sample size n, the values of the parameters in the model, and the fact that

there are three parameters to estimate. There will not necessarily be one universal answer to the

question. We do a focused evaluation on the point estimator for φ because it typically differs for the

three methods of point estimation. The mean square error associated with the point estimate for φ is

E
[(

φ̂−φ
)2
]
.

The following R code conducts a Monte Carlo simulation experiment which estimates the mean

square error of the three point estimators for φ for 40,000 replications. We selected the time series

model with µ = 38, φ = 0.8, σZ = 0.13, and n = 62, which are parameters that are near the estimated

parameters in the last three examples involving the time series of beaver temperatures.

nrep = 40000

mse.mom = 0

mse.ols = 0

mse.mle = 0

for (i in 1:nrep) {

x = 38 + arima.sim(model = list(ar = 0.8, sd = 0.13), n = 62, n.start = 10)

mse.mom = mse.mom + (ar(x, order.max = 1, method = "yw")$ar[1] - 0.8) ^ 2

mse.ols = mse.ols + (ar(x, order.max = 1, method = "ols")$ar[1] - 0.8) ^ 2

mse.mle = mse.mle + (ar(x, order.max = 1, method = "mle")$ar[1] - 0.8) ^ 2

}

print(c(mse.mom, mse.ols, mse.mle) / nrep)

After a call to set.seed(4) to establish the random number stream, three runs of this simulation

yielded the following estimated mean squared error values:

Method of moments : 0.0135 Least squares : 0.0117 Maximum likelihood : 0.0113.



516 Chapter 9. Topics in Time Series Analysis

Furthermore, confidence intervals for the three methods do not overlap. Since small values of the

mean square error are preferred, we conclude that the maximum likelihood estimator is the preferred

estimator for these parameter settings, followed by the least squares estimator, followed by the

method of moments estimator in a distant third place.

The focus on estimation thus far has been on point estimation techniques. We also want to report

some indication of the precision associated with these point estimators. In the previous example, the

sampling distributions of µ̂ , φ̂, and σ̂2
Z in the AR(1) model are too complicated to derive analytically.

As an illustration of a confidence interval for one of the parameters, we use the asymptotic normality

of the maximum likelihood estimator of φ in the result:

φ̂
D→ N

(
φ,

1−φ2

n

)
.

This result leads to an asymptotically exact two-sided 100(1−α)% confidence interval for φ.

Theorem 9.7 For a stationary AR(1) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for φ is given by

φ̂− zα/2

√
1− φ̂2

n
< φ < φ̂+ zα/2

√
1− φ̂2

n
,

where φ̂ is the maximum likelihood estimator of φ and zα/2 is the 1−α/2 fractile of the standard

normal distribution.

This asymptotically exact confidence interval will now be illustrated with the time series of

active beaver temperatures from the three previous examples.

Example 9.7 Find an approximate 95% confidence interval for φ for the AR(1) model

associated with the n = 62 beaver temperature time series values from Example 9.3.

Recall from Table 9.3 that the maximum likelihood estimator returned by the ar func-

tion is φ̂ = 0.7865. The following R code calculates a 95% confidence interval for φ.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

mle = ar(x, order.max = 1, aic = FALSE, method = "mle")$ar

alpha = 0.05

crit = qnorm(1 - alpha / 2)

lo = mle - crit * sqrt((1 - mle ^ 2) / n)

hi = mle + crit * sqrt((1 - mle ^ 2) / n)

print(c(lo, hi))

This code returns the approximate 95% confidence interval

0.6328 < φ < 0.9402

which does not contain φ = 0, giving further evidence that the AR(1) model is justified.

An AR(1) model with φ = 0 reduces to just white noise, and the beaver temperature

time series is clearly not comprised of mutually independent observations.
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Model Assessment

Now that techniques for point and interval estimates for the parameters in the AR(1) model have

been established, we are interested in assessing the adequacy of the AR(1) time series model. This

will involve an analysis of the residuals. Recall from Section 8.2.3 that the residuals are defined by

[residual] = [observed value]− [predicted value]

or

Ẑ t = Xt − X̂ t .

Since X̂ t is the one-step-ahead forecast from the time origin t−1, this is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

Therefore, for the time series x1, x2, . . . , xn and the fitted AR(1) model with parameter estimates µ̂

and φ̂, the residual at time t is

Ẑ t = xt −
[
µ̂ + φ̂(xt−1− µ̂ )

]

for t = 2, 3, . . . , n via Example 8.12. The next example shows the steps associated with assessing

the adequacy of the AR(1) model for the active beaver temperature time series.

Example 9.8 Fit the AR(1) model to the active beaver temperatures from Example 9.3

using the sample mean to estimate µ and the maximum likelihood estimators for φ and

σ2. Assess the fitted AR(1) model by the following five methods.

(a) Calculate and plot the residuals, their sample autocorrelation function, and their

sample partial autocorrelation function.

(b) Conduct a test of independence on the residuals using the number of sample

autocorrelation function values for the first m = 40 lags which fall outside of

±1.96/
√

n.

(c) Conduct the Box–Pierce and Ljung–Box tests for independence of the residuals.

(d) Conduct the turning point test for independence of the residuals.

(e) Plot a histogram and a QQ plot of the standardized residuals in order to assess the

normality of the residuals.

(a) The following R commands calculate the n−1 = 61 residuals and plot them as a

time series, along with the associated sample autocorrelation function and sample

partial autocorrelation function.

x = beaver2$temp[beaver2$activ == 1]

n = length(x)

m = 40

muhat = mean(x)

phihat = ar(x, order.max = 1, aic = FALSE, method = "mle")$ar

zhat = x[2:n] - (muhat + phihat * (x[1:(n - 1)] - muhat))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = m)

pacf(zhat, lag.max = m)
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The results are displayed in Figure 9.9. The residuals do not appear to have any

cyclic variation, trend, or serial correlation.

(b) There is just one sample autocorrelation function value that falls outside of the lim-

its ±1.96/
√

n (at lag 15) in the plot in Figure 9.9 of the first 40 sample autocorre-

lation function values associated with the residuals. Since we expect 40 ·0.05 = 2

values to fall outside of these limits in the case of a good fit, we fail to reject H0 in

this case. The adequacy of the fit of the AR(1) model is not rejected by this test.

(c) The additional R code below calculates the Box–Pierce and Ljung–Box test statis-

tics and the associated p-values.

n = length(zhat)

r = acf(zhat, lag.max = m, plot = FALSE)$acf[2:(m + 1)]

boxpierce = n * sum(r ^ 2)

1 - pchisq(boxpierce, m - 2)

ljungbox = n * (n + 2) * sum(r ^ 2 / seq(n - 1, n - m))

1 - pchisq(ljungbox, m - 2)
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Figure 9.9: Time series plot, rk, and r∗k for n−1 = 61 residuals from AR(1) fitted model.
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The Box–Pierce test statistic is 27.9 and the associated p-value is p = 0.89. The

Ljung–Box test statistic is 41.8 and the associated p-value is p = 0.31. We fail

to reject H0 in both tests based on the chi-square critical value with 40− 2 = 38

degrees of freedom. Some keystrokes can be saved by using the built-in Box.test

function in R as shown below.

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 2)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 2)

The Box.test function delivers identical test statistics and p-values. The ade-

quacy of the fit of the AR(1) model is not rejected by these tests.

(d) The following additional R statements calculate the test statistic and the p-value

for the turning point test applied to the time series consisting of the n− 1 = 61

residual values for the AR(1) fit to the beaver temperatures in the active state.

n = n - 1

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1

}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for

the turning point test. The test statistic s is−0.83 and the p-value is p = 0.41. We

again fail to reject the null hypothesis in this case. The adequacy of the fit of the

AR(1) model is not rejected by this test.

(e) The residuals are standardized by dividing by their sample standard deviation. The

following additional R statements plot a histogram of the standardized residuals

using the hist function and a QQ plot to assess normality using the qqnorm

function.

par(mfrow = c(1, 2))

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.10. The histogram shows that all standardized

residuals fall between −3 and 3 and exhibit a bell-shaped probability distribu-

tion. The horizontal axis on the histogram is the standardized residual and the

vertical axis is the frequency. The QQ plot is approximately linear, indicating a

reasonable approximation to normality based on the n−1 = 61 residuals plotted.

The horizontal axis on the QQ plot is the standardized theoretical quantile and the

vertical axis is the associated normal data quantile. Although a formal statistical

goodness-of-fit test should be conducted, it appears that the assumption of Gaus-

sian white noise is appropriate for the AR(1) time series model based on these two

plots.
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Figure 9.10: Histogram (left) and QQ plot (right) of the fitted AR(1) standardized residuals.

We have seen a number of indicators that the AR(1) time series model is an adequate model for

the active beaver temperatures. But how do we know that there is not a better model with more terms

lurking below the surface that might provide a better fit? The next subsection considers the process

of model selection.

Model Selection

One way of eliminating the possibility of a better time series model is to overfit the tentative

AR(1) time series model with ARMA(p, q) models of higher order. We have not yet surveyed the

techniques for estimating the parameters in these models with additional terms, so for now we will

let the arima function in R estimate their parameters and compare them via their AIC (Akaike’s

Information Criterion) statistics. The AIC statistic was introduced in Section 8.2.4.

Example 9.9 For the n = 62 temperatures of an active beaver given in Example 9.3,

find the ARMA(p, q) model that minimizes the AIC.

The R code below creates a 4× 4 matrix a that will be populated with the AIC statis-

tics for the ARMA(p, q) time series models, for p = 0, 1, 2, 3 and q = 0, 1, 2, 3 using

nested for loops. The arima function is used to fit the models via maximum likelihood

estimation, whose AIC values are placed in the matrix a.

a = matrix(0, 4, 4)

x = beaver2$temp[beaver2$activ == 1]

for (p in 0:3)

for (q in 0:3)

a[p + 1, q + 1] = arima(x, order = c(p, 0, q), method = "ML")$aic

The results of this code are given in Table 9.4. The smallest AIC value (barely!) is set in

boldface type and corresponds to the AR(1) model. This provides further evidence that

the AR(1) model is adequate, and a more complex model is probably not warranted.

Although the AR(2) and ARMA(1, 1) models have nearly identical AIC values, the

additional parameter did not overcome the penalty inflicted by AIC for its inclusion in

the time series model.
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q = 0 q = 1 q = 2 q = 3

p = 0 −10.9 −51.1 −60.9 −64.4
p = 1 −69.7 −69.6 −67.6 −67.0
p = 2 −69.6 −67.6 −65.6 −66.4
p = 3 −67.7 −65.7 −65.1 −64.7

Table 9.4: AIC statistics for ARMA(p, q) models for the n = 62 beaver temperatures.

The $ extractor with the aic argument was used to extract the AIC statistics from the

results of the call to arima. If the coef and sigma2 components are extracted from the

list returned by the call to arima, our final model is the AR(1) model with maximum

likelihood estimates for the parameters given by

µ̂ = 37.9, φ̂ = 0.787, σ̂2
Z = 0.017.

The final model is therefore

Xt −37.9 = 0.787(Xt−1−37.9)+Zt ,

where Zt is a time series of Gaussian white noise values with σ2
Z = 0.017, as established

by the histogram and QQ plot in Example 9.8.

In some applications, just describing the time series model for the beaver temperatures in the

active state with the fitted AR(1) model is adequate. In other applications, simulating the values in

the fitted AR(1) model is the goal. But in many application areas, particularly economics, there is

often an interest in forecasting future values of a time series from a realization. In our setting, we

might be interested in this particular beaver’s future temperature based on the n = 62 temperature

values collected. The next subsection considers forecasting for the AR(1) model.

Forecasting

We now pivot to the development of a procedure to forecast future values of a time series that

is governed by an AR(1) model. To review the notation for forecasting, the observed time series

values are x1, x2, . . . , xn. The forecast is being made at time t = n. The random future value of the

time series that is h time units in the future is denoted by Xn+h. The associated forecasted value is

denoted by X̂ n+h, and is the conditional expected value

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We would like to calculate this forecasted value and an associated prediction interval for the AR(1)

model. As in Section 8.2.2, we assume that all parameters are known in the derivations that follow.

Recall from Example 8.12 that the forecasted value for one time unit into the future for a shifted

AR(1) model is

X̂ n+1 = µ+φ(xn−µ) .

We would like to generalize this so as to find the forecasted value h time units into the future. In

other words, we want to find X̂ n+h. The shifted AR(1) model is

Xt −µ = φ(Xt−1−µ)+Zt .
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Replacing t by n+h, which is the time value of interest, gives

Xn+h−µ = φ(Xn+h−1−µ)+Zn+h.

Taking the conditional expected value of each side of this equation results in

X̂ n+h = µ+φ
(
X̂ n+h−1−µ

)
.

Iterating on this equation for time values that are sequentially one time unit closer to the present

time t = n yields

X̂ n+h = µ+φ
(
X̂ n+h−1−µ

)

= µ+φ
[
µ+φ

(
X̂ n+h−2−µ

)
−µ
]

= µ+φ2
(
X̂ n+h−2−µ

)

...

= µ+φh−1
(
X̂ n+1−µ

)

= µ+φh−1 [µ+φ(xn−µ)−µ]

= µ+φh (xn−µ) .

Notice that the forecasted value is a function of xn, but not a function of x1, x2, . . . , xn−1. This is a

sensible forecast in the sense that for a long time horizon h into the future and a stationary shifted

AR(1) model with −1 < φ < 1,

lim
h→∞

X̂ n+h = µ.

If you were asked to forecast your temperature one year from now, you would probably say 98.6◦

Fahrenheit (or whatever your average temperature might be), regardless of whether you are healthy

or have a fever right now. Long-term forecasts for stationary time series models always tend to the

population mean.

As is typically the case in statistics, we would like to pair our point estimator X̂ n+h with an

interval estimator, which is a prediction interval in this setting. The prediction interval gives us

an indication of the precision of the forecast. In order to derive an exact two-sided 100(1−α)%
prediction interval for Xn+h, it is helpful to write the shifted AR(1) model as a shifted MA(∞) model.

Using successive substitutions, each one time unit prior to the previous substitution,

Xt −µ = φ(Xt−1−µ)+Zt

= φ [φ(Xt−2−µ)+Zt−1]+Zt

= φ2 (Xt−2−µ)+Zt +φZt−1

= φ2 [(φXt−3−µ)+Zt−2]+Zt +φZt−1

= φ3 (Xt−3−µ)+Zt +φZt−1 +φ2Zt−2

...

For −1 < φ < 1 corresponding to a stationary shifted AR(1) model, the limiting expression for Xt is

Xt = µ+Zt +φZt−1 +φ2Zt−2 + · · · ,
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which is a shifted MA(∞) model. Replacing t with n+h results in

Xn+h = µ+Zn+h +φZn+h−1 +φ2Zn+h−2 + · · · ,

Taking the conditional variance of both sides of this equation yields

V [Xn+h | X1 = x1, X2 = x2, . . . , Xn = xn]

=V
[
µ+Zn+h +φZn+h−1 +φ2Zn+h−2 + · · · |X1 = x1, X2 = x2, . . . , Xn = xn

]

= σ2
Z +φ2σ2

Z +φ4σ2
Z + · · ·+φ2h−2σ2

Z

=
(
1+φ2 +φ4 + · · ·+φ2h−2

)
σ2

Z

=
1−φ2h

1−φ2
σ2

Z

because the error terms at time n and prior are observed and can therefore be treated as constants.

Assuming Gaussian white noise terms, an exact two-sided 100(1−α)% prediction interval for Xn+h

is

X̂ n+h− zα/2

√
1−φ2h

1−φ2
σZ < Xn+h < X̂ n+h + zα/2

√
1−φ2h

1−φ2
σZ .

In most practical problems, the parameters in this prediction interval will be estimated from data,

which results in the following approximate two-sided 100(1−α)% prediction interval.

Theorem 9.8 For a stationary shifted AR(1) time series model, the forecasted value of Xn+h is

X̂ n+h = µ̂ + φ̂h (xn− µ̂ ) .

and an approximate two-sided 100(1−α)% prediction interval for Xn+h is

X̂ n+h− zα/2

√
1− φ̂2h

1− φ̂2
σ̂Z < Xn+h < X̂ n+h + zα/2

√
1− φ̂2h

1− φ̂2
σ̂Z .

Example 9.10 For the beaver temperature time series values x1, x2, . . . , x62 from Ex-

ample 9.3, forecast the next six values in the time series and give approximate 95%

prediction intervals for the forecasted values, assuming that the time series arises from

a shifted AR(1) model fitted by maximum likelihood estimation.

The R code below calculates the forecasted values and associated approximate 95%

prediction interval limits. The forecasts are stored in the vector pred, the lower and

upper prediction limits are stored in the vectors lo and hi, respectively.

x = beaver2$temp[beaver2$activ == 1]

model = ar(x, order.max = 1, aic = FALSE, method = "mle")

phihat = model$ar

muhat = model$x.mean

sighat = sqrt(model$var.pred)

n = length(x)

hmax = 6
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alpha = 0.05

crit = qnorm(1 - alpha / 2)

pred = numeric(hmax)

lo = numeric(hmax)

hi = numeric(hmax)

for (h in 1:hmax) {

pred[h] = muhat + phihat ^ h * (x[n] - muhat)

stderr = sqrt((1 - phihat ^ (2 * h)) / (1 - phihat ^ 2)) * sighat

lo[h] = pred[h] - crit * stderr

hi[h] = pred[h] + crit * stderr

}

cat(lo, "\n", pred, "\n", hi, "\n")

Some keystrokes can be saved by using the R built-in generic predict function to

compute the forecasts and the associated standard errors.

x = beaver2$temp[beaver2$activ == 1]

model = ar(x, order.max = 1, aic = FALSE, method = "mle")

predict(model, n.ahead = 6)

The two code segments produce identical results, which are summarized in Table 9.5.

Notice that the forecasts trend monotonically toward x̄ = 37.90 and the standard errors

increase as the time horizon h increases. The increasing standard error is consistent

with having less precision in the forecast as the time horizon h increases.

Time t = 63 t = 64 t = 65 t = 66 t = 67 t = 68

Forecast 38.04 38.01 37.99 37.97 37.96 37.95

Standard error 0.130 0.166 0.184 0.195 0.201 0.205

Lower prediction bound 37.78 37.69 37.63 37.59 37.57 37.55

Upper prediction bound 38.29 38.34 38.35 38.36 38.36 38.35

Table 9.5: Forecasts and 95% prediction intervals for the beaver temperatures.

Figure 9.11 shows (a) the original time series x1, x2, . . . , x62 as points (•) connected by

lines, (b) the first 12 forecasted temperatures X̂ 63, X̂ 64, . . . , X̂ 74 as open circles (◦), and

(c) the 95% prediction intervals as a shaded region. There are three key observations

concerning this figure.

• Even though the last five observations in the time series x58, x59, . . . , x62 show an

increasing trend, the forecasts, which are a function only of xn = x62 = 38.07,

monotonically approach µ̂ = x̄ = 37.90.

• The widths of the prediction intervals increase as the time horizon h increases.

These widths do not increase indefinitely, but rather approach a limit as h→ ∞.

• The random sampling variability which is evident in the observed time series val-

ues x1, x2, . . . , x62 is not apparent in the forecasted values X̂ 63, X̂ 64, . . . , X̂ 74. Ob-

served time series values tend to exhibit the typical random sampling variability;

forecasted values for a shifted AR(1) model with 0 < φ < 1 tend to be smooth.
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Figure 9.11: Wisconsin beaver forecasted temperatures and 95% prediction intervals.

This subsection has introduced the AR(1) time series model. The key results for an AR(1) model

are listed below.

• The standard AR(1) model can be written algebraically and with the backshift operator B as

Xt = φXt−1 +Zt and (1−φB)Xt = Zt ,

where Zt ∼WN
(
0, σ2

Z

)
and σ2

Z > 0.

• The shifted AR(1) model can be written algebraically and with the backshift operator B as

Xt −µ = φ(Xt−1−µ)+Zt and (1−φB)(Xt −µ) = Zt .

• The AR(1) model is always invertible; the AR(1) model is stationary for −1 < φ < 1.

• The stationary shifted AR(1) model can be written as an MA(∞) model for −1 < φ < 1 as

Xt = µ+Zt +φZt−1 +φ2Zt−2 + · · · .

• The AR(1) population autocorrelation function is ρ(k) = φk for −1 < φ < 1 and k = 1, 2, . . . .

• The AR(1) population partial autocorrelation function at lag one is ρ∗(1) = φ for −1 < φ < 1

and ρ∗(k) = 0 for k = 2, 3, . . . .

• The three parameters in the shifted AR(1) model, µ, φ, and σ2
Z , can be estimated from a real-

ization of a time series x1, x2, . . . , xn by the method of moments, least squares, and maximum

likelihood. The point estimators for µ, φ, and σ2
Z are denoted by µ̂ , φ̂, and σ̂2

Z , and are typically

paired with asymptotically exact two-sided 100(1−α)% confidence intervals.

• The forecast value X̂ n+h = µ̂ + φ̂h (xn− µ̂ ) for an AR(1) model approaches µ̂ = x̄ as h→ ∞.

The associated prediction intervals have widths that increase as h increases and approach a

limit as the time horizon h→ ∞.
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If the time series of interest is the daily high temperatures in July in Tuscaloosa, then an AR(1)

model would be appropriate if tomorrow’s daily high temperature (Xt ) can be modeled as a linear

function of

• today’s high temperature (Xt−1), and

• a random shock (Zt ).

But what if weather had more of a memory than just one day? What if tomorrow’s daily high

temperature (Xt ) is better modeled as a linear function of

• today’s high temperature (Xt−1),

• yesterday’s high temperature (Xt−2), and

• a random shock (Zt ).

This is an example of the thinking that lies behind the AR(2) model, which is introduced in the next

section.

9.1.2 The AR(2) Model

The second-order autoregressive model, denoted by AR(2), can be used for modeling a stationary

time series in instances in which the current value of the time series is a linear combination of the

two previous values plus a random shock. The mathematics associated with the AR(2) model is

somewhat more difficult than that associated with the AR(1) model.

Definition 9.2 A second-order autoregressive time series model, denoted by AR(2), for the time

series {Xt} is defined by

Xt = φ1Xt−1 +φ2Xt−2 +Zt ,

where φ1 and φ2 are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

There are three parameters that define an AR(2) model: the real-valued coefficients φ1 and φ2,

and the population variance of the white noise σ2
Z . The AR(2) model can be written more compactly

in terms of the backshift operator B as

φ(B)Xt = Zt ,

where φ(B) is the second-order polynomial

φ(B) = 1−φ1B−φ2B2.

The AR(2) model has the form of a multiple linear regression model with two independent

variables and no intercept term. The current value Xt is modeled as a linear combination of the two

previous values of the time series, Xt−1 and Xt−2, plus a white noise term. The parameters φ1 and φ2

control the inclination of the regression plane in three-dimensional space. The parameter σ2
Z reflects

the magnitude of the dispersion of the time series values from the regression plane.

To illustrate the thinking behind the AR(2) model in a specific context, let Xt represent the annual

return of a particular stock market index in year t. The AR(2) model indicates that the annual return

in year t equals φ1 multiplied by the previous year’s annual return (φ1Xt−1), plus φ2 multiplied by

the annual return two years prior (φ2Xt−2), plus the year t random white noise term Zt .
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Stationarity

Theorem 8.3 indicates that all AR(2) models are invertible, but are stationary when the roots of

φ(B) = 1−φ1B−φ2B2

lie outside of the unit circle in the complex plane. Let B1 and B2 denote these two roots. Using the

quadratic equation, the two roots are

B1 =
φ1−

√
φ2

1 +4φ2

−2φ2
and B2 =

φ1 +
√

φ2
1 +4φ2

−2φ2
.

Since φ(B1) = φ(B2) = 0, the quadratic function φ(B) can also be written in factored form as

φ(B) =
(
1−B−1

1 B
)(

1−B−1
2 B

)
.

Equating the two versions of φ(B) above and matching coefficients results in

φ1 = B−1
1 +B−1

2 and φ2 =−(B1B2)
−1.

These two equations define the mapping from the complex plane, which contains the roots B1 and

B2, to the plane that contains the AR(2) parameters φ1 and φ2. To find the stationary region, we must

find the mapping of the part of the complex plane outside of the unit circle to the (φ1, φ2) plane. The

mapping yields a triangular-shaped stationary region, as specified in the following result.

Theorem 9.9 The AR(2) time series model is stationary when φ1 and φ2 satisfy

φ1 +φ2 < 1, φ2−φ1 < 1, and φ2 >−1.

Proof The three cases considered below are based on whether the discriminant in the

roots of φ(B) = 0 is zero (two identical real roots), positive (two distinct real roots), or

negative (two complex roots).

Case 1: Two identical real roots (φ2
1 + 4φ2 = 0). This is a concave-down parabola

through the origin in the (φ1, φ2) plane. The single real root is

B1 = B2 =−
φ1

2φ2
=

φ1

φ2
1/2

=
2

φ1
.

Since this single real root must lie outside of the unit circle for a stationary model,

∣∣∣∣
2

φ1

∣∣∣∣> 1 ⇒ −2 < φ1 < 2.

This portion of the parabola is the leftmost graph in Figure 9.12.

Case 2: Two distinct real roots (φ2
1 + 4φ2 > 0). This is the region above the parabola

φ2
1 + 4φ2 = 0 in the (φ1, φ2) plane. Since B1 and B2 are real-valued, the conditions

for stationarity |B1| > 1 and |B2| > 1 that correspond to having both B1 and B2 falling

outside of the unit circle are equivalent to

−1 <
1

B1
< 1 and −1 <

1

B2
< 1.
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Figure 9.12: Partitioning the stationary region for the AR(2) time series model.

The reciprocals of the roots of φ(B) = 0 are

1

B1
=


 −2φ2

φ1−
√

φ2
1 +4φ2


 ·


φ1 +

√
φ2

1 +4φ2

φ1 +
√

φ2
1 +4φ2


=

φ1 +
√

φ2
1 +4φ2

2

and

1

B2
=


 −2φ2

φ1 +
√

φ2
1 +4φ2


 ·


φ1−

√
φ2

1 +4φ2

φ1−
√

φ2
1 +4φ2


=

φ1−
√

φ2
1 +4φ2

2
.

Since B1 and B2 are real and distinct, stationarity is achieved when

−1 <
1

B2
<

1

B1
< 1

or

−1 <
φ1−

√
φ2

1 +4φ2

2
<

φ1 +
√

φ2
1 +4φ2

2
< 1.

Writing the leftmost inequality as
√

φ2
1 +4φ2 < φ1 + 2, squaring both sides of this in-

equality, and simplifying gives

φ2−φ1 < 1.

Applying a similar approach to the rightmost inequality gives

φ1 +φ2 < 1.

So for the AR(2) model in the case of φ(B) having two distinct real roots, the model is

stationary when the three inequalities

φ2
1 +4φ2 > 0, φ2−φ1 < 1, and φ1 +φ2 < 1

are satisfied. This region is shaded in the middle graph in Figure 9.12.
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Case 3: Two complex conjugate roots (φ2
1 + 4φ2 < 0). This is the region below the

parabola φ2
1 + 4φ2 = 0 in the (φ1, φ2) plane. For the model to be stationary, B1 and B2

must lie outside of the unit circle in the complex plane. Since the roots are complex

conjugates, |B1|= |B2|, which is calculated as

|B1|=

√√√√√
(

φ1

−2φ2

)2

+




√
−φ2

1−4φ2

−2φ2




2

=

√
−4φ2

4φ2
2

=

√
− 1

φ2
,

which is greater than 1 for −1 < φ2 < 0. (The imaginary part of the discriminant was

negated to avoid taking the square root of a negative number because the discriminant

is negative in Case 3.) The region associated with the inequalities

φ2
1 +4φ2 < 0 and φ2 >−1

is the shaded region in the rightmost graph in Figure 9.12.

The union of these three regions is the interior of the triangular region described by the

three inequalities in Theorem 9.9, which proves the result. �

Population Autocorrelation Function

Now that the stationary region for an AR(2) time series model has been established, we turn to

the derivation of the population autocorrelation function. Assuming that the parameters φ1 and φ2

fall in the stationary region, the AR(2) model

Xt = φ1Xt−1 +φ2Xt−2 +Zt

can be multiplied by Xt−k to give

XtXt−k = φ1Xt−1Xt−k +φ2Xt−2Xt−k +ZtXt−k.

Taking the expected value of both sides of this equation results in the recursive equation

γ(k) = φ1γ(k−1)+φ2γ(k−2)

for k = 1, 2, . . . because Zt has expected value zero and is independent of Xt−k. Dividing both sides

of this equation by γ(0) =V [Xt ] gives the recursive equation

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)

for k = 1, 2, . . . . These linear equations, whether written in terms of γ(k) or ρ(k), are known in

time series analysis as the Yule–Walker equations after British statisticians George Udny Yule and

Sir Gilbert Walker. Once the first two values of γ(k) or ρ(k) are known, these recursive equations

can be used to calculate subsequent values. The next two paragraphs focus on determining the first

two values of γ(k) and ρ(k), respectively.

For a stationary AR(2) time series model, we derive expressions for γ(0) and γ(1). The AR(2)

model is

Xt = φ1Xt−1 +φ2Xt−2 +Zt .

Squaring both sides of this equation and taking the expected value of both sides gives

γ(0) = φ2
1γ(0)+φ2

2γ(0)+σ2
Z +2φ1φ2γ(1).
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Using the symmetry of the population autocovariance function, the Yule–Walker equation with k = 1

is

γ(1) = φ1γ(0)+φ2γ(1) ⇒ γ(1) =
φ1γ(0)

1−φ2
.

Replacing this expression for γ(1) in the previous equation gives

γ(0) = φ2
1γ(0)+φ2

2γ(0)+σ2
Z +2φ1φ2

φ1γ(0)

1−φ2
.

Moving all terms involving γ(0) to the left-hand side of this equation gives

γ(0)

[
1−φ2

1−φ2
2−2φ2

1φ2
1

1−φ2

]
= σ2

Z .

Solving this equation for γ(0),

γ(0) =
(1−φ2)σ

2
Z

(1−φ2)− (1−φ2)φ
2
1− (1−φ2)φ

2
2−2φ2

1φ2

=
(1−φ2)σ

2
Z

1−φ2−φ2
1 +φ2

1φ2−φ2
2 +φ3

2−2φ2
1φ2

=
(1−φ2)σ

2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
.

An expression for γ(1) is

γ(1) =
φ1γ(0)

1−φ2
=

φ1σ2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
.

These two values can be used as arguments in the Yule–Walker equations to obtain subsequent values

for γ(k).
We now turn to the problem of finding ρ(1) and ρ(2). The first two Yule–Walker equations in

terms of ρ(k) are

ρ(1) = φ1ρ(0)+φ2ρ(−1)

ρ(2) = φ1ρ(1)+φ2ρ(0).

Since ρ(0) = 1 and ρ(−k) = ρ(k) via Theorem 7.1, these equations reduce to

ρ(1) = φ1 +φ2ρ(1)

ρ(2) = φ1ρ(1)+φ2,

which are easily solved for ρ(1) and ρ(2):

ρ(1) =
φ1

1−φ2
and ρ(2) =

φ2
1

1−φ2
+φ2.

A general formula for ρ(k) exists, but it can involve complex numbers and is unwieldy. An exercise

concerning its calculation is given at the end of the chapter. These results are summarized in the

following theorem.
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Theorem 9.10 The population autocovariance function for a stationary AR(2) time series model

is calculated by

γ(k) = φ1γ(k−1)+φ2γ(k−2)

for k = 1, 2, . . . , where

γ(0) =
(1−φ2)σ

2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
and γ(1) =

φ1σ2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
.

The population autocorrelation function for a stationary AR(2) time series model is calculated by

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)

for k = 1, 2, . . . , where

ρ(1) =
φ1

1−φ2
and ρ(2) =

φ2
1

1−φ2
+φ2.

We now focus in on the values of ρ(1) and ρ(2). We can solve for φ1 and φ2 in terms of ρ(1)
and ρ(2) as

φ1 =
ρ(1)

(
1−ρ(2)

)

1−ρ(1)2
and φ2 =

ρ(2)−ρ(1)2

1−ρ(1)2
.

These equations can be helpful in the three settings described below.

1. These equations bear some practical use in that the first two sample autocorrelation function

values, r1 and r2, can be calculated from a time series and used as approximations for ρ(1)
and ρ(2), yielding estimates for φ1 and φ2. These can in turn be used as initial estimates for

finding point estimates for φ1 and φ2 by, for example, least squares or maximum likelihood

estimation, should numerical methods be required.

2. Level surfaces (that is, contours) in the triangular-shaped stationary region from Theorem 9.9

can be determined by fixing values of ρ(1) and ρ(2). As an illustration, consider ρ(1) = 0. In

this case, φ1 = 0 and φ2 = ρ(2), which is a line segment in the stationary region. Continuing in

this fashion for several fixed values of ρ(1) [with varying values of ρ(2)] and then for several

fixed values of ρ(2) [with varying values of ρ(1)] results in the graph of the stationary region

with the level surfaces included shown in Figure 9.13. The level surfaces associated with fixed

values of ρ(1) are lines; the level surfaces associated with fixed values of ρ(2) are curves.

3. Since ρ(1) and ρ(2) are population correlations, the obvious constraints on their values for an

AR(2) time series model are −1 < ρ(1)< 1 and −1 < ρ(2)< 1. Additionally, since φ2 >−1

in order to fall into the triangular-shaped stationary region defined in Theorem 9.9 for the

AR(2) time series model,

φ2 >−1 ⇒ ρ(2)−ρ(1)2

1−ρ(1)2
>−1 ⇒ ρ(2)> 2ρ(1)2−1.

The boundary of this third constraint is a parabola in the
(
ρ(1), ρ(2)

)
plane. The shaded re-

gion in Figure 9.14 shows the ρ(1) and ρ(2) values that are associated with stationary AR(2)

time series models. Unlike the AR(1) population autocorrelation function, it is possible to
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Figure 9.14: Values of ρ(1) and ρ(2) associated with a stationary AR(2) model.
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achieve a stationary model with |ρ(2)|> |ρ(1)|. The AR(2) population autocorrelation func-

tion values are not necessarily monotonically decreasing in magnitude as they were in the

AR(1) model.

Population Partial Autocorrelation Function

We now determine the population partial autocorrelation function for an AR(2) model. Using

Definition 7.4, the population lag 0 partial autocorrelation is ρ∗(0) = 1. The population lag 1 partial

autocorrelation is ρ∗(1) = ρ(1) = φ1/(1−φ2). After evaluating the determinants and simplifying,

the population lag 2 partial autocorrelation is

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
=

∣∣∣∣
1 φ1/(1−φ2)

φ1/(1−φ2) (φ2
1−φ2

2 +φ2)/(1−φ2)

∣∣∣∣
∣∣∣∣

1 φ1/(1−φ2)
φ1/(1−φ2) 1

∣∣∣∣
= φ2.

Appealing to the Yule–Walker equations from Theorem 9.10 to define the third column of the deter-

minant of the numerator, the population lag 3 partial autocorrelation is

ρ∗(3) =

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

=

∣∣∣∣∣∣

1 ρ(1) φ1 +φ2ρ(1)
ρ(1) 1 φ1ρ(1)+φ2

ρ(2) ρ(1) φ1ρ(2)+φ2ρ(1)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

= 0.

The determinant in the numerator is zero because the third column is a linear combination of the first

two columns. This pattern continues for the higher lags. When computing ρ∗(k) for k = 3, 4, . . . ,
the first, second, and last columns of the matrix in the numerator are




1

ρ(1)
ρ(2)

...

ρ(k−1)



,




ρ(1)
1

ρ(1)
...

ρ(k−2)



, and




φ1 +φ2ρ(1)
φ1ρ(1)+φ2

φ1ρ(2)+φ2ρ(1)
...

φ1ρ(k−1)+φ2ρ(k−2)



.

The last column of the matrix in the numerator is a linear combination of the first two columns. The

matrix in the numerator of the calculation of ρ∗(k) is singular, which means that its determinant is

zero. This constitutes a proof of the following result.

Theorem 9.11 The population partial autocorrelation function for a stationary AR(2) time series

model is

ρ∗(k) =





1 k = 0

φ1/(1−φ2) k = 1

φ2 k = 2

0 k = 3, 4, . . . .

The population partial autocorrelation function for the AR(2) model cuts off after lag 2. A

graph of the sample partial autocorrelation function (that is, a graph of r∗k for the first few values
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of k), should also cut off after lag 2 if the AR(2) model is appropriate. This sample partial auto-

correlation function shape is easier to recognize than the associated sample autocorrelation function

shape because cutting off is easier to recognize than tailing off in the presence of random sampling

variability.

A careful inspection of Theorem 9.11 reveals that the signs of φ1 and φ2 match the signs of ρ∗(1)
and ρ∗(2), respectively:

sgn(φ1) = sgn
(
ρ∗(1)

)
and sgn(φ2) = sgn

(
ρ∗(2)

)

for φ1 and φ2 falling in the triangular-shaped stationary region. Figure 9.15 shows the stationary

region from Theorem 9.9, along with plots of the representative population autocorrelation function

and population partial autocorrelation function. There are four points, one in each quadrant, that are

plotted. The population autocorrelation function and the population partial autocorrelation function

associated with those four points are plotted in each of the quadrants. As expected, the signs of the

values of φ1 and ρ∗(1) match and the signs of the values of φ2 and ρ∗(2) match. The quadrant in the

stationary region determines the signs of ρ∗(1) and ρ∗(2), as illustrated by the four representative

population partial autocorrelation functions graphed in Figure 9.15. As you can see by inspecting

the shapes of ρ(k) and ρ∗(k) from Figure 9.15, the addition of the parameter φ2 in the transition

from the AR(1) model to the AR(2) model results in significant additional modeling capability. The

following observations can be gleaned from Figure 9.15.

• As expected, all population partial autocorrelation functions cut off after lag two.

• When φ(B) has real roots, the population autocorrelation function consists of mixtures of

damped exponentials.
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ρ(k)ρ(k)
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Quadrant IQuadrant II

Quadrant III Quadrant IV

Figure 9.15: Stationary AR(2) time series model signature ρ(k) and ρ∗(k) shapes.



Section 9.1. Autoregressive Models 535

• When φ(B) has complex roots, the population autocorrelation function has a damped sinu-

soidal shape.

The population autocorrelations on the tiny inset plots of ρ(k) and ρ∗(k) in Figure 9.15 can be

calculated using the recursive relationships from Theorem 9.10 [for ρ(k)] and Theorem 9.11 [for

ρ∗(k)]. They can also be calculated using the R ARMAacf function. Consider the two inset plots

in the fourth quadrant of the graph in Figure 9.15, for example, that correspond to φ1 = 1.5 and

φ2 =−0.7. The graph of the first 20 lags of ρ(k) can be plotted with the R command

plot(ARMAacf(ar = c(1.5, -0.7), ma = 0, lag.max = 20), type = "h")

Likewise, the graph of the first 20 lags of ρ∗(k) can be plotted with

plot(ARMAacf(ar = c(1.5, -0.7), ma = 0, lag.max = 20, pacf = TRUE), type = "h")

The ar argument defines the φ1 and φ2 parameters of the AR(2) model, the ma argument is set to

zero to indicate that there are no moving average terms in the AR(2) model, the lag.max argument

is set to 20 to return the first 20 autocorrelations, and the type argument in the call to plot is set to

"h" in order to graph the autocorrelations as spikes rather than points.

As was the case with the AR(1) time series model, the AR(2) time series can be written as

an MA(∞) time series model. This alternative representation can be useful for deriving certain

quantities associated with the AR(2) model, in particular, standard errors of forecasted values. The

first form of a general linear model, which is equivalent to an MA(∞) model, is

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · · .

Our goal is to determine the values of θ1, θ2, . . . that correspond to fixed parameters φ1 and φ2. Since

the MA(∞) model is valid at time t, it is also valid at times t−1 and t−2:

Xt−1 = Zt−1 +θ1Zt−2 +θ2Zt−3 + · · ·

and

Xt−2 = Zt−2 +θ1Zt−3 +θ2Zt−4 + · · · .
So the AR(2) time series model

Xt = φ1Xt−1 +φ2Xt−2 +Zt

as established in Definition 9.2, can be rewritten as

Zt +θ1Zt−1 +θ2Zt−2 + · · ·= φ1 (Zt−1 +θ1Zt−2 +θ2Zt−3 + · · ·)+φ2 (Zt−2 +θ1Zt−3 +θ2Zt−4 + · · ·)+Zt .

Equating the coefficients of Zt−1 gives

θ1 = φ1.

Equating the coefficients of Zt−2 gives

θ2 = φ1θ1 +φ2 = φ2
1 +φ2.

Equating the coefficients of Zt−k gives the recursive equation

θk = φ1θk−1 +φ2θk−2

for k = 3, 4, . . . .
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Theorem 9.12 A stationary AR(2) model with parameters φ1 and φ2 can be written as an MA(∞)

model

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · · ,
where θ1 = φ1, θ2 = φ2

1 +φ2, and

θk = φ1θk−1 +φ2θk−2

for k = 3, 4, . . . .

An exercise at the end of the chapter highlights other methods for calculating the coefficients θ1,

θ2, . . . in the MA(∞) model which is equivalent to the stationary AR(2) model.

Example 9.11 Calculate the first six coefficients of an MA(∞) model associated with

the stationary AR(2) model with φ1 = 1 and φ2 =−1/2.

The AR(2) model is stationary because the point (φ1, φ2) = (1,−1/2) falls in the

triangular-shaped stationary region defined by the inequalities in Theorem 9.9. Using

Theorem 9.12, the first six coefficients of the MA(∞) model are

θ1 = 1, θ2 =
1

2
, θ3 = 0, θ4 =−

1

4
, θ5 =−

1

4
, θ6 =−

1

8
.

These coefficients can also be calculated in R with the ARMAtoMA function. The state-

ment

ARMAtoMA(ar = c(1, -1 / 2), ma = 0, lag.max = 6)

returns the same coefficients calculated above. The ar argument defines the φ1 and φ2

parameters of the AR(2) model, the ma argument is set to zero to indicate that there are

no moving average terms in the AR(2) model, and the lag.max argument is set to 6 in

order to calculate the first six coefficients in the MA(∞) model and return these values

in a vector in R.

The Shifted AR(2) Model

For a stationary AR(2) model expressed as an MA(∞) model, it is clear that E [Xt ] = 0. This

model is not of much use in practice because most real-world time series are not centered around

zero. Adding a shift parameter µ overcomes this shortcoming. Since population variance and covari-

ance are unaffected by a shift, the associated population autocorrelation and partial autocorrelation

functions remain the same as those given in Theorems 9.10 and 9.11.

Theorem 9.13 A shifted second-order autoregressive model for the time series {Xt} is defined by

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt ,

where φ1, φ2, µ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of white noise.

This model is stationary when φ1 and φ2 satisfy the three inequalities given in Theorem 9.9. The

expected value of Xt is E [Xt ] = µ. The population autocorrelation function can be calculated using

the recursive equations in Theorem 9.10. The population partial autocorrelation function is given

in Theorem 9.11.
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The shifted AR(2) model can be written in terms of the backshift operator B as

φ(B)(Xt −µ) = Zt ,

where φ(B) = 1−φ1B−φ2B2. The practical problem of fitting a shifted AR(2) model to an observed

time series of n values x1, x2, . . . , xn will be illustrated later in this subsection.

Simulation

An AR(2) time series can be simulated by appealing to the defining formula for the AR(2) model.

Iteratively applying the defining formula for a standard AR(2) model

Xt = φ1Xt−1 +φ2Xt−2 +Zt

from Definition 9.2 results in the simulated values X1, X2, . . . , Xn. The primary difficult aspect of

devising a simulation algorithm is generating the first two values, X1 and X2. For simplicity, assume

that the white noise terms are Gaussian white noise terms. There are two approaches to overcome

this initialization problem. The first approach generates X1 and X2 from a bivariate normal distribu-

tion with population mean vector 0= (0, 0)′ and variance–covariance matrix

Σ =

[
γ(0) γ(1)
γ(1) γ(0)

]
=

σ2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)

[
1−φ2 φ1

φ1 1−φ2

]

via Theorem 9.10. Notice that in the special case of φ1 = φ2 = 0 this matrix reduces to the variance–

covariance matrix for Gaussian white noise, which is Iσ2
Z . The algorithm given as pseudocode

below generates initial time series observations X1 and X2 as indicated above, and then uses an

additional n− 2 Gaussian white noise terms Z3, Z4, . . . , Zn to generate the remaining time series

values X3, X4, . . . , Xn using the AR(2) defining formula from Definition 9.2. Indentation denotes

nesting in the algorithm.

generate (X1, X2)∼ BV N (0, Σ)
t← 2

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← φ1Xt−1 +φ2Xt−2 +Zt

The four-parameter shifted AR(2) time series model which includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

The next example implements this algorithm in R.

Example 9.12 Generate a realization of n = 100 observations from an AR(2) time

series model with φ1 = 1.5, φ2 = −0.7, and Gaussian white noise error terms with

σ2
Z = 16.

Since (φ1, φ2) = (1.5,−0.7) lies in the triangular-shaped stationary region defined in

Theorem 9.9, the simulated values will be generated from a stationary time series

model. The population autocorrelation function ρ(k) and the population partial au-

tocorrelation function ρ∗(k) are displayed in the fourth quadrant of Figure 9.15, and

we expect similar shaped functions rk and r∗k from our simulated values. The optional

first statement in the R code below uses the set.seed function to establish the random

number seed. The second and third statements set the AR(2) coefficients to φ1 = 1.5 and
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φ2 =−0.7. The fourth statement sets the standard deviation of the Gaussian white noise

to σZ = 4. The fifth statement places the variance–covariance matrix of X1 and X2 in the

2×2 matrix sigma. The sixth statement sets the number of simulated values to n= 100.

The seventh statement defines the vector x of length n = 100 to hold the simulated time

series values. The eighth statement uses the mvrnorm function from the MASS package

to generate the first two simulated time series observations X1 and X2 from the appro-

priate bivariate normal distribution. Finally, the for loop iterates through the defining

formula for the AR(2) model generating the remaining observations X3, X4, . . . , X100.

set.seed(3)

phi1 = 1.5

phi2 = -0.7

sigz = 4

sigma = matrix(c(1 - phi2, phi1, phi1, 1 - phi2), 2, 2) * sigz /

((1 + phi2) * (1 + phi1 - phi2) * (1 - phi1 - phi2))

n = 100

x = numeric(n)

x[1:2] = MASS::mvrnorm(1, mu = c(0, 0), Sigma = sigma)

for (t in 3:n) x[t] = phi1 * x[t - 1] + phi2 * x[t - 2] + rnorm(1, 0, sigz)

Using the plot.ts function to make a plot of the time series contained in x, the acf

function to plot the associated correlogram, the pacf function to plot the associated

sample partial autocorrelation function, and the layout function to arrange the graphs

as in Example 7.24, the resulting trio of graphs are displayed in Figure 9.16. The sample

partial autocorrelation function has statistically significant spikes at lags 1 and 2 with

r∗1 = 0.8036 and r∗2 =−0.6229, and then cuts off after lag 2 as expected from the popu-

lation counterparts in Figure 9.15. The approximate 95% confidence intervals indicated

by the dashed lines show that the values of the sample partial autocorrelation function

do not significantly differ from zero at lags beyond lag 2. The sample autocorrelation

function displays a damped sinusoidal shape as expected. The time series plot shows

that observations tend to linger on one side of the population mean (indicated by a

horizontal line), which is consistent with the two initial statistically significant positive

spikes in the sample autocorrelation function. However, the time that the observations

linger on one side of the mean is inhibited by the statistically significant negative spikes

at lags 4, 5, 6, and 7 in the sample autocorrelation function. There is thus some tug

exerted by the time series model to linger on one side of the mean for only a limited

amount of time.

We recommend running the simulation code from the previous example several dozen times in

a loop and viewing the associated plots of xt , rk, and r∗k in search of patterns. This will allow you

to see how various realizations of a simulated AR(2) time series model vary from one realization to

the next. So when you then view a single realization of a real-life time series, you will have a sense

of how far these plots might deviate from their expected patterns.

There is a second way to overcome the initialization problem in simulating observations from

an AR(2) time series. This second technique starts the time series with two initial arbitrary values,

and then allows the time series to “warm up” or “burn in” for several time periods before producing

the first observation X1. Reasonable initial arbitrary values for the standard AR(2) model are 0;

reasonable initial arbitrary values for the shifted AR(2) model are µ. This is the approach taken by

the built-in R function named arima.sim, which simulates a realization of a time series. Using the
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Figure 9.16: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(2) model.

arima.sim function saves a few keystrokes over the approach taken in the previous example, as

illustrated next.

Example 9.13 Generate a realization of n = 100 observations from a shifted AR(2)

time series model with coefficients φ1 =−1.8 and φ2 =−0.88, population mean value

µ = 10, and Gaussian white noise error terms with σ2
Z = 16.

Since there is now a nonzero population mean value, the shifted AR(2) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt ,

where µ = 10, φ1 = −1.8, φ2 = −0.88, and σZ = 4. Since (φ1, φ2) = (−1.8,−0.88)
lies in the triangular-shaped stationary region defined in Theorem 9.9, this is a stationary

AR(2) time series model. The ρ(k) and ρ∗(k) values for this model are plotted in the

third quadrant of Figure 9.15. The model argument in the arima.sim function is a list

containing the values of the coefficients φ1 and φ2. The second argument to arima.sim

is n, the number of time series observations to be generated. The sd argument defines
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the standard deviation of the white noise σZ . The n.start argument gives the number

of observations in the burn-in period, which we specify here as 50. The R code to

generate n = 100 values from the shifted AR(2) model is given below.

set.seed(9)

x = 10 + arima.sim(model = list(ar = c(-1.8, -0.88)),

n = 100, sd = 4, n.start = 50)

Figure 9.17 shows the three plots associated with the simulated values in the vector x

using the plot.ts, acf, and pacf functions. The time series plot shows a radically

different pattern than the time series in the previous example in several aspects. First,

this simulated time series is centered around µ = 10 (indicated by a horizontal line)

rather than µ= 0. Second, the time series jumps from one side of the population mean to

the other from one observation to the next. This is consistent with the highly statistically

significant negative lag 1 sample autocorrelation r1 =−0.9546. The signs of the initial

sample autocorrelation function values alternate, their magnitudes decrease, and sample
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Figure 9.17: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(2) model.
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autocorrelations at subsequent lags follow a damped sinusoidal pattern. In addition, the

lag 1 sample autocorrelation is so close to −1 that adjacent observations often tend to

be about the same distance away from µ. Third, the two statistically significant spikes

in the partial autocorrelation function, r∗1 =−0.9546 and r∗2 =−0.7834, have the same

signs as φ1 and φ2. As expected, the partial autocorrelation function cuts off after lag 2.

The remaining topics associated with the AR(2) time series model are statistical in nature: pa-

rameter estimation, model assessment, model selection, and forecasting. A sample time series that

will be revisited throughout these topics is introduced next.

Example 9.14 The five Great Lakes that lie along the U.S.–Canada border are Huron,

Ontario, Michigan, Erie, and Superior. Their names are easily remembered with the

acronym HOMES. The built-in R time series LakeHuron consists of n = 98 monthly

mean levels (in feet) of the lake level of Lake Huron taken at the Harbor Beach, Michi-

gan water level gauge every July from 1875–1972. The measurements are essentially

the number of feet above sea level of Lake Huron over time. Plot the time series, sam-

ple autocorrelation function, and sample partial autocorrelation function, and suggest a

tentative time series model.

For simplicity, we define time t = 1 to be the year 1875 and t = 98 to be the year 1972.

The time series of levels, the sample autocorrelation function, and the sample partial

autocorrelation function can be graphed with the R statements

x = LakeHuron

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x)

pacf(x)

The trio of graphs is displayed in Figure 9.18. A horizontal line has been added to the

time series plot at x̄ = 579 feet. A visual assessment of the n = 98 observations from the

time series reveals that the population mean level might be systematically decreasing

relative to sea level over the time period. The tied observations in the years 1925–1926

(t = 51 and t = 52), the local minimum in year 1934 (t = 60), and the global minimum

in year 1964 (t = 90), along with nearby observations, provide a downward tug on the

mean value of the time series as time advances. Alternatively, the initial 15 or so levels

might be drawn from a non-representative population. The population variance of the

observations in the time series seems to be stable over time.

Now we turn to the sample autocorrelation function and sample partial autocorrelation

function. The sample autocorrelation function appears to be tailing out. The initial

positive spikes in the sample autocorrelation function are consistent with nearby ob-

servations in the time series lingering above and below the sample mean. The sample

partial autocorrelation function has a statistically significant positive spike at lag 1, and

a marginally significant negative spike at lag 2. The sample partial autocorrelation

function does not have any statistically significant spikes after lag 2. These two graphs

indicate that a shifted AR(2) model might be a reasonable tentative time series model.

The question concerning the possible downward trend of the level of Lake Huron in the

time series remains a stumbling block to an enthusiastic recommendation of the shifted
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Figure 9.18: Time series plot, rk, and r∗k for n = 98 levels of Lake Huron (1875–1972).

AR(2) model. Perhaps a nonstationary model is appropriate. The list below provides

four ways to proceed.

• Eliminate the first 15 or so observations from the time series if we can find an

assignable cause that made the initial observations higher than the others. Here

are some examples of potential assignable causes. Was the measuring equipment,

location, procedure, or personnel changed at some point in the time series? There

were various bridge, power, and flow control projects conducted during the early

part of this time series. Some projects increased flow; others decreased flow.

Could these projects account for the increased early observations in the time se-

ries? The primary driver of the year-to-year variability in water levels is the re-

gional climate, which is influenced by global oceanic and atmospheric patterns.

Lake Huron thermodynamics can be influenced by above-average lake evapora-

tion rates. Might any of these factors account for the increased early observations

in the time series? Did the episodic dredging of Lake Huron’s outlet, the St. Clair

River, result in a lowering of the level of Lake Huron? In the case of the beaver
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temperature time series from Example 9.3, it was easy to find an assignable cause,

because the beaver’s temperature was clearly lower when in the lodge than when

outside of the lodge. Such an assignable cause might be more difficult to identify

in the case of the time series of Lake Huron levels.

• If an assignable cause cannot be found, fit a simple linear regression model to the

original time series and consider the time series consisting of the original time

series values minus the fitted values to be a stationary time series. Figure 9.19

shows the fitted regression line using the model

Y = β0 +β1X + ε,

where X is time (which is measured without error), Y is the random and continuous

lake level, β1 is the slope of the regression line, β0 is the intercept of the regression

line, and ε is an error term. The hypothesis test

H0 : β1 = 0

versus

H1 : β1 6= 0

results in a tiny p-value (p = 4 · 10−8), which confirms our visual assessment.

There does indeed appear to be a decrease in the level of the water in Lake Huron

over time. The estimated regression coefficients and p-values can be calculated in

R with the statement

summary(lm(LakeHuron ~ seq(1, 98)))

The estimated slope β̂1 =−0.024 indicates that the level of Lake Huron is decreas-

ing by an average of about a quarter of an inch annually over this time horizon.

Extrapolation of the simple linear regression model outside of the years 1875–

1972 is probably not warranted in this setting. The usual regression assumption

of independence is clearly violated in this setting because the observations in the

time series are autocorrelated.
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576

577

578

579

580

581

582

t

xt

Figure 9.19: Lake Huron levels (1875–1972) with regression line.
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• Again assuming that an assignable cause cannot be identified in order to remove

the initial observations, the time series can be differenced (via xi+1− xi for i =
1, 2, . . . , n−1) in order to remove the possible linear trend. The n−1 = 97 obser-

vations in this differenced series can then be evaluated as a stationary time series.

This approach is analogous to the simple linear regression approach.

• Leave the time series alone, and assume that the early observations being larger

than the rest of the observations is due to random sampling variability.

This might seem like a lot of fuss to establish a stationary time series model, but this

crucial early detective work is common when trying to formulate a tentative time series

model. We take the fourth approach from the list above for now and fit a tentative

shifted AR(2) model to the n = 98 original observations in the time series. Fitting

this tentative model will illustrate all of the steps involved with fitting, evaluating, and

applying an AR(2) model: estimating the model parameters by the three techniques

(method of moments, least squares, and maximum likelihood estimation), constructing

confidence intervals for these point estimators, assessing the validity of the fitted model,

performing model selection procedures for the AR(2) model, and forecasting the level

of Lake Huron into the future. Later in the chapter, we will re-analyze this time series

using a nonstationary time series model.

In conclusion, a preliminary graphical analysis of the n = 98 Lake Huron levels sug-

gests a tentative AR(2) time series model should be on the short list. It is worthwhile

investigating the possibility of an assignable cause which artificially elevates the ini-

tial 15 observations. There is significant concern about nonstationarity, which will be

addressed later in the chapter. The next step is to estimate the parameters in the model.

Parameter Estimation

There are four parameters, µ, φ1, φ2, and σ2
Z , to estimate in the shifted AR(2) model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

The three parameter estimation techniques outlined in Section 8.2.1, method of moments, least

squares, and maximum likelihood estimation, are applied to the shifted AR(2) time series model

next.

Approach 1: Method of moments. In the case of estimating the four parameters in the shifted

AR(2) model by the method of moments, we match the population and sample (a) first-order mo-

ments, (b) second-order moments, (c) lag 1 autocorrelation, and (d) lag 2 autocorrelation. Placing

the population moments on the left-hand side of the equation and the associated sample moments

on the right-hand side of the equation results in four equations in four unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

ρ(2) = r2.
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The expected value of Xt is µ, the expected value of X2
t can be found by using the shortcut formula

for the population variance and by using the value of γ(0) = V [Xt ] from Theorem 9.10, and the

values of ρ(1) and ρ(2) are also obtained from Theorem 9.10. So the four equations become

µ =
1

n

n

∑
t=1

Xt

(1−φ2)σ
2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)
+µ2 =

1

n

n

∑
t=1

X2
t

φ1

1−φ2
= r1

φ2
1

1−φ2
+φ2 = r2.

Solving these equations for the four unknown parameters µ, φ1, φ2 and σ2
Z yields closed-form solu-

tions for the method of moments estimators

µ̂ = X̄

φ̂1 =
r1(1− r2)

1− r2
1

φ̂2 =
r2− r2

1

1− r2
1

σ̂2
Z =

[
1

n

n

∑
t=1

X2
t − µ̂ 2

]
(1+ φ̂2)(1+ φ̂1− φ̂2)(1− φ̂1− φ̂2)

1− φ̂2

.

This constitutes a proof of the following result.

Theorem 9.14 The method of moments estimators of the parameters in a shifted AR(2) model are

µ̂ = X̄ , φ̂1 =
r1 (1− r2)

1− r2
1

, φ̂2 =
r2− r2

1

1− r2
1

,

σ̂2
Z =

[
1

n

n

∑
t=1

X2
t − µ̂ 2

] (
1+ φ̂2

)(
1+ φ̂1− φ̂2

)(
1− φ̂1− φ̂2

)

1− φ̂2

.

These estimators are random variables and have been written as a function of the random time

series values X1, X2, . . . , Xn. For observed time series values x1, x2, . . . , xn, the lowercase versions of

the formulas will be used. These estimators are often known as the Yule–Walker estimators because

their derivation involved the Yule–Walker equations from Theorem 9.10.

Example 9.15 For the time series of n = 98 Lake Huron levels from Example 9.14,

find the method of moments estimators of µ, φ1, φ2, and σ2
Z for the AR(2) model.

The R code below calculates and prints the point estimates of the µ, φ1, φ2, and σ2
Z

parameters using the method of moments estimators given in Theorem 9.14.

x = LakeHuron
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r1 = acf(x, plot = FALSE)$acf[2]

r2 = acf(x, plot = FALSE)$acf[3]

muhat = mean(x)

phi1hat = r1 * (1 - r2) / (1 - r1 ^ 2)

phi2hat = (r2 - r1 ^ 2) / (1 - r1 ^ 2)

sig2hat = (mean(x ^ 2) - muhat ^ 2) * (1 + phi2hat) *

(1 + phi1hat - phi2hat) * (1 - phi1hat - phi2hat) /

(1 - phi2hat)

print(c(muhat, phi1hat, phi2hat, sig2hat))

The point estimates for the unknown parameters computed by this code are

µ̂ = 579.00 φ̂1 = 1.0538 φ̂2 =−0.26675 σ̂2
Z = 0.49199.

These point estimates are reported to five digits because the data values were given to

five-digit accuracy. The positive value for φ̂1 and the negative value for φ̂2 are consistent

with the sample partial autocorrelation function in Figure 9.18. Figure 9.20 is analogous

to Figure 9.13 but contains just two of the level surfaces associated with the method of

moments match on the population and sample autocorrelations at lags 1 and 2: the line

associated with ρ(1)= r1 = 0.83191 and the curve associated with ρ(2)= r2 = 0.60994.

These two level surfaces intersect at the point
(
φ̂1, φ̂2

)
= (1.0538,−0.26675).

−2 −1 0 1 2
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Figure 9.20: Level surfaces for the Lake Huron time series in the stationary region.

Approach 2: Least squares. Consider the shifted stationary AR(2) model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

For least squares estimation, we first establish the sum of squares S as a function of the parameters

µ, φ1, and φ2. This time, however, we forgo the calculus and leave the optimization to the R optim

function in order to find the least squares estimators of µ, φ1, and φ2. Once these least squares

estimators have been determined, the population variance of the white noise σ2
Z will be estimated.
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The sum of squared errors is

S =
n

∑
t=3

Z2
t =

n

∑
t=3

[Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)]2 .

If this derivation were being done by hand, we would now calculate the partial derivatives of S

with respect to the unknown parameters µ, φ1, and φ2, equate them to zero and solve. As was the

case with the AR(1) model, there is no closed-form solution, so numerical methods are required to

calculate the parameter estimates. In the example that follows, we will use the optim function in R

to determine the least squares parameter estimates that minimize S.

The last parameter to estimate is σ2
Z . Since

γ(0) =
(1−φ2)σ

2
Z

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)

from Theorem 9.10 for an AR(2) time series model, the population variance of the white noise can

be expressed as

σ2
Z =

(1+φ2)(1+φ1−φ2)(1−φ1−φ2)γ(0)

(1−φ2)
.

Replacing φ1 and φ2 by their least squares estimators φ̂1 and φ̂2, respectively, and replacing the lag

0 autocovariance γ(0) =V [Xt ] by its estimator c0 =
1
n ∑n

t=1 (Xt − X̄)
2

gives the estimator

σ̂2
Z =

(
1+ φ̂2

)(
1+ φ̂1− φ̂2

)(
1− φ̂1− φ̂2

)
c0

(1− φ̂2)
.

This derivation constitutes a proof of the following result.

Theorem 9.15 The least squares estimators of the parameters in a shifted AR(2) model are the µ̂ ,

φ̂1, and φ̂2 values that minimize

S =
n

∑
t=3

Z2
t =

n

∑
t=3

[Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)]2

and the population variance of the white noise is estimated by

σ̂2
Z =

(
1+ φ̂2

)(
1+ φ̂1− φ̂2

)(
1− φ̂1− φ̂2

)
c0

(1− φ̂2)
.

We now use numerical methods to find the least squares estimates for the unknown parameters

in the AR(2) time series model for the Lake Huron time series from Example 9.14.

Example 9.16 Find the least squares estimators of µ, φ1, φ2, and σ2
Z for the AR(2) time

series model associated with the n = 98 lake level observations from Example 9.14.

The R code that follows contains a function s which calculates the sum of squares, and

then uses the R optim function to minimize the sum of squares using the method of

moments estimates as initial estimates. The optim function minimizes the objective

function by default.
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x = LakeHuron

n = length(x)

s = function(parameters) {

mu = parameters[1]

phi1 = parameters[2]

phi2 = parameters[3]

sum((x[3:n] - mu - phi1 * (x[2:(n - 1)] - mu)

- phi2 * (x[1:(n - 2)] - mu)) ^ 2)

}

fit = optim(c(579, 1.0538, -0.26675), s)$par

muhat = fit[1]

phi1hat = fit[2]

phi2hat = fit[3]

sig2hat = (1 + phi2hat) * (1 + phi1hat - phi2hat) *

(1 - phi1hat - phi2hat) * mean((x - mean(x)) ^ 2) /

(1 - phi2hat)

The point estimates for the unknown parameters computed by this code are

µ̂ = 578.89 φ̂1 = 1.0217 φ̂2 =−0.23760 σ̂2
Z = 0.51680,

which corresponds to a sum of squares S = 43.58. The optimal sum of squares can be

extracted with the additional R command s(fit). These least squares point estimates

of the unknown parameters in the AR(2) time series model are close to the associated

method of moments point estimates. The left-hand graph in Figure 9.21 shows the

sum of squares as a function of φ1 for fixed values of the parameters µ̂ = 578.89 and

φ̂2 = −0.23760. The sum of squares is minimized at φ̂1 = 1.0217. The right-hand

graph in Figure 9.21 shows the sum of squares as a function of φ2 for fixed values

of the parameters µ̂ = 578.89 and φ̂1 = 1.0217. The sum of squares is minimized at

φ̂2 =−0.23760.
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Figure 9.21: Sum of squares as a function of φ1 and φ2 for an AR(2) model.

Approach 3: Maximum likelihood estimation. The procedure for determining the maximum

likelihood estimators for the unknown parameters in an AR(2) time series model follows along the

same lines as in the AR(1) time series model from the previous section. Once again, to use maximum
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likelihood estimation, we must assume that the random shocks from the white noise are Gaussian

white noise, with associated probability density function

fZt (zt) =
1√

2πσ2
Z

e−z2
t /(2σ2

Z) −∞ < zt < ∞,

for t = 1, 2, . . . , n. Determining the likelihood function, which is the joint probability density func-

tion of the observed values in the time series X1, X2, . . . , Xn, involves finding

L
(
µ, φ1, φ2, σ2

Z

)
= f (x1, x2, . . . , xn),

where the x1, x2, . . . , xn arguments on L and the µ, φ1, φ2, and σ2
Z arguments on f have been dropped

for brevity. As before, it is not possible to simply multiply the marginal probability density functions

because the values in the AR(2) time series model are correlated. As in the case of an AR(1) model,

we use the transformation technique to find the conditional joint probability density function of

X3, X4, . . . , Xn conditioned on X1 = x1 and X2 = x2, which is denoted by

fX3,X4, ...,Xn |X1,X2
(x3, x4, . . . , xn |X1 = x1, X2 = x2)

for (x3, x4, . . . , xn) ∈ R n−2. This conditional joint probability density function is multiplied by the

marginal joint probability density function of X1 and X2 (which has the bivariate normal distribution)

resulting in a joint probability density function of X1, X2, . . . , Xn:

fX1,X2, ...,Xn(x1, x2, . . . , xn) = fX3,X4, ...,Xn |X1,X2
(x3, x4, . . . , xn |X1 = x1, X2 = x2) fX1,X2

(x1, x2)

for (x1, x2, . . . , xn) ∈ R n. This function serves as the likelihood function, which should be max-

imized with respect to the unknown parameters µ, φ1, φ2, and σ2
Z . One can easily imagine how

complicated this expression is, based on the values of γ(0) and γ(1) from Theorem 9.10. So we

forgo the tedious mathematics and leave the calculations to the ar function in R when determining

the maximum likelihood estimates for the parameters in fitting the Lake Huron time series to the

shifted AR(2) time series model.

Example 9.17 Find the maximum likelihood estimators of µ, φ1, φ2, and σ2
Z for the

time series of n = 98 observations of the level of Lake Huron from Example 9.14 for a

shifted AR(2) time series model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt ,

where φ1, φ2, µ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of

Gaussian white noise.

The point estimates for the unknown parameters in the shifted AR(2) time series model

are computed by the single R command

ar(LakeHuron, order.max = 2, aic = FALSE, method = "mle")

Unlike the procedure described above, the ar function first subtracts the sample mean

x̄ = 579 from each observation and then proceeds to fit the remaining parameters to the

standard AR(2) time series model. This function call returns the maximum likelihood

estimates for the parameters as

µ̂ = 579.00 φ̂1 = 1.0437 φ̂2 =−0.2496 σ̂2
Z = 0.4788.
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These parameter estimates are near the associated method of moments and least squares

estimates from the previous two examples. The fitted shifted AR(2) model by maximum

likelihood estimation is

Xt −579.00 = 1.0437(Xt−1−579.00)−0.2496(Xt−2−579.00)+Zt ,

where Zt ∼ N(0, 0.4788).

Table 9.6 summarizes the point estimators for the AR(2) model for the Lake Huron time series

calculated by the R commands

ar(LakeHuron, order.max = 2, aic = FALSE, method = "yule-walker")

ar(LakeHuron, order.max = 2, aic = FALSE, method = "ols")

ar(LakeHuron, order.max = 2, aic = FALSE, method = "mle")

The point estimators associated with the three methods are quite close for this particular time series.

The R function ar fits autoregressive models. There are tiny differences between some of the en-

tries in Table 9.6 and those from Examples 9.15 and 9.16 which might be due to slightly different

approximations and/or roundoff in the optimization routines.

Method µ̂ φ̂1 φ̂2 σ̂2
Z

Method of moments (Yule–Walker) 579.0 1.0538 −0.2668 0.5075

Ordinary least squares 579.0 1.0217 −0.2376 0.4540

Maximum likelihood estimation 579.0 1.0437 −0.2496 0.4788

Table 9.6: AR(2) point estimators for the n = 98 Lake Huron levels via the ar function.

The focus on estimation thus far has been on point estimation techniques. We also want to report

some indication of the precision associated with these point estimators. The sampling distributions

of µ̂ , φ̂1, φ̂2, and σ̂2
Z in the AR(2) model are too complicated to derive analytically. As an illustration

of how to construct an approximate confidence interval for φ1 or φ2, we use the asymptotic normality

of the maximum likelihood estimator of φ1 and φ2 in the following result. The asymptotic variance–

covariance matrix associated with the parameters φ1 and φ2 is

1

n

[
1−φ2

2 −φ1(1+φ2)
−φ1(1+φ2) 1−φ2

2

]
.

Using just the diagonal elements of this matrix results in the following asymptotically exact two-

sided 100(1−α)% confidence interval for φ1 and φ2.

Theorem 9.16 For a stationary AR(2) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for φi is given by

φ̂i− zα/2

√
1− φ̂2

2

n
< φi < φ̂i + zα/2

√
1− φ̂2

2

n

for i = 1,2, where φ̂i is the maximum likelihood estimator of φi and zα/2 is the 1−α/2 fractile of

the standard normal distribution.

These asymptotically exact confidence intervals for φ1 and φ2 will now be illustrated for the lake

levels from the Lake Huron time series from the previous four examples.
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Example 9.18 Find an approximate 95% confidence interval for φ1 for the AR(2) time

series model associated with the n = 98 Lake Huron time series values from Exam-

ple 9.14 and assess its actual coverage.

Recall from Table 9.6 that the maximum likelihood estimators of φ1 and φ2 returned by

the ar function are φ̂1 = 1.0437 and φ̂2 = −0.2496. We seek an asymptotically exact

two-sided 95% confidence interval for φ1, which is given by

1.0437−1.96

√
1− (−0.2496)2

98
< φ1 < 1.0437+1.96

√
1− (−0.2496)2

98
or

0.8519 < φ1 < 1.2354.

This confidence interval does not contain φ1 = 0, which leads us to conclude that φ1 is

a statistically significant parameter in the AR(2) model. A similar procedure could be

used to find a confidence interval for φ2.

To assess the actual coverage of this 95% confidence interval for φ1 requires a Monte

Carlo simulation experiment. The code below uses population parameters that are near

the parameter estimates for the Lake Huron time series.

n = 98

mu = 579

phi1 = 1

phi2 = -1 / 4

sigz = sqrt(1 / 2)

crit = qnorm(0.975)

nrep = 40000

count = 0

for (i in 1:nrep) {

x = mu + arima.sim(model = list(ar = c(phi1, phi2), sd = sigz),

n = n, n.start = 50)

fit = arima(x, order = c(2, 0, 0), method = "ML")

phi1hat = fit$coef[1]

phi2hat = fit$coef[2]

std = sqrt((1 - phi2hat ^ 2) / n)

lo = phi1hat - crit * std

hi = phi1hat + crit * std

if (lo < phi1 && hi > phi1) count = count + 1

}

print(count / nrep)

After a call to set.seed(3) to establish the random number stream, five runs of this

simulation yield:

0.9376 0.9390 0.9366 0.9385 0.9395.

The conclusion that can be drawn from these simulations is that the actual coverage of

the approximate 95% confidence interval is about 93.8%. When this code is executed

for larger values of n, the anticipated asymptotic results are achieved, as displayed in

Figure 9.22. Keep in mind that these actual coverages are not for an AR(2) model in

general, but rather an AR(2) model with these particular parameter settings.
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Figure 9.22: Asymptotic 95% confidence interval for φ1 actual coverage.

Model Assessment

Now that techniques for point and interval estimates for the parameters in the AR(2) model have

been established, we are interested in assessing the adequacy of the AR(2) time series model. This

will involve an analysis of the residuals. Recall from Section 8.2.3 that the residuals are defined by

[residual] = [observed value]− [predicted value]

or

Ẑ t = Xt − X̂ t .

Since X̂ t is the one-step-ahead forecast from the time origin t−1, this is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

From Theorem 9.13, the shifted AR(2) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt

or

Xt = µ+φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

Taking the conditional expected value of both sides of this equation gives

E [Xt |X1 = x1, X2 = x2, . . . ,Xt−1 = xt−1] = µ+φ1 (xt−1−µ)+φ2 (xt−2−µ) .

Replacing the parameters by their point estimators, the one-step-ahead forecast from the time origin

t−1 is

X̂t−1(1) = µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ ) .

Therefore, for the time series x1, x2, . . . , xn and the fitted AR(2) model with parameter estimates µ̂ ,

φ̂1, and φ̂2, the residual at time t is

Ẑ t = xt −
[
µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ )

]

for t = 3, 4, . . . , n. The next example shows the steps associated with assessing the adequacy of the

AR(2) model for the Lake Huron lake level time series.
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Example 9.19 Fit the AR(2) model to the Lake Huron levels from Example 9.14 using

the sample mean to estimate µ and the maximum likelihood estimators for φ1, φ2, and

σ2
Z .

(a) Calculate and plot the residuals, their sample autocorrelation function, and their

sample partial autocorrelation function.

(b) Conduct a test of independence on the residuals using the number of sample

autocorrelation function values for the first m = 40 lags which fall outside of

±1.96/
√

n.

(c) Conduct the Box–Pierce and Ljung–Box tests for independence of the residuals.

(d) Conduct the turning point test for independence of the residuals.

(e) Plot a histogram and a QQ plot of the standardized residuals in order to assess the

normality of the residuals.

(a) The following R commands calculate the n−2 = 96 residuals and plot them as a

time series, along with the associated sample autocorrelation function and sample

partial autocorrelation function.

x = LakeHuron

n = length(x)

m = 40

muhat = mean(x)

fit = ar(x, order.max = 2, aic = FALSE, method = "mle")

phi1hat = fit$ar[1]

phi2hat = fit$ar[2]

zhat = x[3:n] - (muhat + phi1hat * (x[2:(n - 1)] - muhat) +

phi2hat * (x[1:(n - 2)] - muhat))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = m)

pacf(zhat, lag.max = m)

The results are displayed in Figure 9.23. The residuals do not appear to have any

cyclic variation, trend, or serial correlation.

(b) There are no sample autocorrelation function values that fall outside of the limits

±1.96/
√

n in the plot in Figure 9.23 of the first 40 sample autocorrelation function

values associated with the residuals. Since we expect 40 · 0.05 = 2 values to fall

outside of these limits in the case of a good fit, we fail to reject H0 in this case.

The fit of the AR(2) model is not rejected by this test.

(c) The additional R code below calculates the Box–Pierce test statistic and the Ljung–

Box test statistic and the associated p-values using the built-in Box.test function.

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 3)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 3)

The Box–Pierce test statistic is 18.7 and the associated p-value is p = 0.995. The

Ljung–Box test statistic is 24.9 and the associated p-value is p = 0.935. We fail

to reject H0 in both tests based on the chi-square critical value with 40− 3 = 37

degrees of freedom. The fit of the AR(2) model is not rejected by these tests.
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Figure 9.23: Time series plot, rk, and r∗k for n−2 = 96 residuals from AR(2) fitted model.

(d) The following additional R code calculates the test statistic and the p-value for the

turning point test applied to the time series consisting of the n− 2 = 96 residual

values for the AR(2) fit to the Lake Huron time series.

n = n - 2

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1

}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for

the turning point test. The test statistic s is 0.0815 and the p-value is p= 0.94. The
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turning point test found that there were T = 63 turning points in the time series of

the residuals, and that is about the number that we expect to have if the residuals

from the fitted AR(2) model were mutually independent random variables. We

again fail to reject the null hypothesis in this case. The fit of the AR(2) model is

not rejected by this test.

(e) The residuals are standardized by dividing by their sample standard deviation. The

following additional R statements plot a histogram of the standardized residuals

using the hist function and a QQ plot to assess normality using the qqnorm

function.

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.24. The histogram shows that all standardized

residuals fall between −3 and 3 and exhibit a roughly bell-shaped probability

distribution. The horizontal axis on the histogram is the standardized residual and

the vertical axis is the frequency. The QQ plot is approximately linear, indicating

a reasonable approximation to normality based on the n−2= 96 residuals plotted.

The horizontal axis on the QQ plot is the standardized theoretical quantile and the

vertical axis is the associated normal data quantile. Although a formal statistical

goodness-of-fit test (such as the Shapiro–Wilk or the Kolmogorov–Smirnov test)

should be conducted, it appears that the assumption of Gaussian white noise is

appropriate for the AR(2) time series model based on these two plots.
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Figure 9.24: Histogram (left) and QQ plot (right) of the fitted AR(2) standardized residuals.

Model Selection

We have seen a number of indicators that the AR(2) time series model seems to be an adequate

model for the Lake Huron lake level time series, with the exception of a linear trend apparent by

viewing the time series in Figure 9.18. The model has not been rejected by any of the model ad-

equacy tests. We now overfit the tentative AR(2) time series model with ARMA(p, q) models of

higher order. We have not yet surveyed the techniques for estimating the parameters in these mod-

els with additional terms, so for now we will let the arima function in R estimate their parameters
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and compare them via their AIC (Akaike’s Information Criterion) statistics. The AIC statistic was

introduced in Section 8.2.4

Example 9.20 For the n = 98 levels of Lake Huron from Example 9.14, determine the

ARMA(p, q) model that minimizes the AIC.

The R code below creates a 4×4 matrix a which will be populated with the AIC statis-

tics for the ARMA(p, q) time series models, for p = 0, 1, 2, 3 and q = 0, 1, 2, 3 using

nested for loops. The arima function is used to fit the models via maximum likelihood

estimation, and the AIC values are placed in the matrix a.

a = matrix(0, 4, 4)

x = LakeHuron

for (p in 0:3)

for (q in 0:3)

a[p + 1, q + 1] = arima(x, order = c(p, 0, q), method = "ML")$aic

The results of this code are given in Table 9.7. The two smallest AIC values are set

in boldface type; they correspond to the AR(2) and ARMA(1, 1) models. These two

models seem to be close competitors for providing a probabilistic model for the time

series.

q = 0 q = 1 q = 2 q = 3

p = 0 335 255 231 222

p = 1 219 214 216 218

p = 2 215 216 218 220

p = 3 216 218 220 220

Table 9.7: AIC statistics for ARMA(p, q) models for the n = 98 lake water levels.

The $ extractor with the aic argument was used to extract the AIC statistics from the

list returned by the call to arima. If the coef and sigma2 components are extracted

from the list returned by the call to arima, our final model is the AR(2) model with

maximum likelihood estimates for the parameters given by

µ̂ = 579.05 φ̂1 = 1.0436 φ̂2 =−0.24949 σ̂2
Z = 0.47882,

which corresponds to the fitted AR(2) model

Xt −579.05 = 1.0436(Xt−1−579.05)−0.24949(Xt−2−579.05)+Zt ,

where Zt is a time series of Gaussian white noise values with σ2
Z = 0.47822, as estab-

lished by the histogram and QQ plot in Example 9.19.

The analysis here suggests that this tentative fitted shifted AR(2) time series model

should be compared with (a) a shifted ARMA(1, 1) model because of the lower value

for its AIC for an identical number of parameters, and (b) a time series model based

on removing the possible downward trend in the time series by using regression or

differencing as described in Example 9.14.
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Forecasting

We now consider forecasting future values of a time series that is governed by a shifted AR(2)

time series model. In the case of the Lake Huron time series, this corresponds to the one-step-ahead

forecast for 1973, the two-steps-ahead forecast for 1974, the three-steps-ahead forecast for 1975,

etc. To review forecasting notation, the observed time series values are x1, x2, . . . , xn. The forecast

is being made at time t = n. The random future value of the time series that is h time units in the

future is denoted by Xn+h. The associated forecasted value is denoted by X̂ n+h, and is the conditional

expected value

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We would like to find this forecasted value and an associated prediction interval for a shifted AR(2)

model. As in Section 8.2.2, we assume that all parameters are known in the derivations that follow.

We also assume that the parameters φ1 and φ2 correspond to a stationary shifted AR(2) time series

model.

The shifted AR(2) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt .

Replacing t by n+1 and solving for Xn+1, this becomes

Xn+1 = µ+φ1 (Xn−µ)+φ2 (Xn−1−µ)+Zn+1.

Taking the conditional expected value of each side of this equation results in the one-step-ahead

forecast

X̂ n+1 = µ+φ1 (xn−µ)+φ2 (xn−1−µ)

because xn−1 and xn have already been observed in the time series x1, x2, . . . , xn. The forecasted

value at time n+1 is a function of the last two values in the time series. Applying this same process

to the predicted value at time n+2 results in the time series model

Xn+2 = µ+φ1 (Xn+1−µ)+φ2 (Xn−µ)+Zn+2.

This time, the value of Xn+1 has not been observed, so we replace it by its forecasted value when

taking the conditional expected value of both sides of the equation

X̂ n+2 = µ+φ1

(
X̂ n+1−µ

)
+φ2 (xn−µ) ,

because xn has already been observed. Continuing in this fashion, a recursive formula for the fore-

casted value of Xn+h is

X̂ n+h = µ+φ1

(
X̂ n+h−1−µ

)
+φ2

(
X̂ n+h−2−µ

)
.

Although we would prefer an explicit formula, the recursive formula is easy to implement for an

observed time series x1, x2, . . . , xn. As in the case of the AR(1) model, long-term forecasts for a

stationary AR(2) time series model tend to µ as the time horizon h→ ∞.

We would like to pair our point estimator X̂ n+h with an interval estimator, which is a prediction

interval in this setting. The prediction interval gives us an indication of the precision of the forecast.

In order to derive an exact two-sided 100(1−α)% prediction interval for Xn+h, it is helpful to write

the shifted AR(2) model as a shifted MA(∞) model. The coefficients θ1, θ2, . . . of a stationary

shifted AR(2) model written as an MA(∞) model

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 + · · ·
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are given in terms of φ1 and φ2 in Theorem 9.12. Consider this model at time t = n+ 1. Since the

error terms Zn, Zn−1, Zn−2, . . . are unknown but fixed because they are associated with the observed

time series x1, x2, . . . , xn, the conditional population variance of Xn+1 is

V [Xn+1] =V [Zn+1] = σ2
Z

because the population variance of µ is zero and Zn+1 is the only random term in the model. The

error terms at time n and prior are observed even though unknown and can therefore be treated as

constants. Likewise, considering the MA(∞) model at time t = n+ 2, the conditional population

variance of Xn+2 is

V [Xn+2] =V [Zn+2 +θ1Zn+1] =
(
1+θ2

1

)
σ2

Z .

Similarly, the conditional population variance of Xn+3 is

V [Xn+3] =V [Zn+3 +θ1Zn+2 +θ2Zn+1] =
(
1+θ2

1 +θ2
2

)
σ2

Z .

Continuing in this fashion, the conditional population variance of Xn+h is

V [Xn+h] =
(
1+θ2

1 +θ2
2 + · · ·+θ2

h−1

)
σ2

Z .

If we assume that the white noise terms in the MA(∞) representation of the AR(2) time series model

are Gaussian white noise terms, then Xn+h is also normally distributed because a linear combination

of mutually independent normal random variables is also normally distributed. So an exact two-

sided 100(1−α)% prediction interval for Xn+h is

X̂ n+h− zα/2

√
1+θ2

1 +θ2
2 + · · ·+θ2

h−1 σZ < Xn+h < X̂ n+h + zα/2

√
1+θ2

1 +θ2
2 + · · ·+θ2

h−1 σZ .

In most practical problems, the parameters in this prediction interval will be estimated from data,

which results in the following approximate two-sided 100(1−α)% prediction interval.

Theorem 9.17 For a stationary shifted AR(2) time series model, a forecasted value of Xn+h can

be found by the recursive equation

X̂ n+h = µ̂ + φ̂1

(
X̂ n+h−1− µ̂

)
+ φ̂2

(
X̂ n+h−2− µ̂

)
,

where X̂ n+1 = µ̂ + φ̂1 (xn− µ̂ )+ φ̂2 (xn−1− µ̂ ). An approximate two-sided 100(1−α)% prediction

interval for Xn+h is

X̂ n+h− zα/2

√
1+ θ̂2

1 + θ̂2
2 + · · ·+ θ̂2

h−1 σ̂Z < Xn+h < X̂ n+h + zα/2

√
1+ θ̂2

1 + θ̂2
2 + · · ·+ θ̂2

h−1 σ̂Z ,

where θ̂1, θ̂2, . . . are the estimated coefficients in the MA(∞) model associated with the estimated

AR(2) model.

Example 9.21 For the time series of Lake Huron levels x1, x2, . . . , x98 from Exam-

ple 9.14, forecast the next five values (for years 1973–1977) in the time series and give

approximate 95% prediction intervals for the forecasted values assuming that the time

series arises from a shifted AR(2) model with parameters estimated by maximum like-

lihood.
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The R code below uses the ar function to estimate the parameters in the shifted AR(2)

model via maximum likelihood estimation. The predict function implements Theo-

rem 9.17 to calculate the forecasted values and associated standard errors. These stan-

dard errors can be used to calculate approximate 95% prediction interval limits.

model = ar(LakeHuron, order.max = 2, aic = FALSE, method = "mle")

predict(model, n.ahead = 5)

The results are summarized in Table 9.8. Notice that the forecasts trend monotonically

toward x̄ = 579 and the standard errors increase as the time horizon h increases. The

increasing standard error is consistent with having less precision in the forecast as the

time horizon h increases.

Time t = 99 t = 100 t = 101 t = 102 t = 103

Year 1973 1974 1975 1976 1977

Forecast 579.79 579.59 579.43 579.31 579.23

Standard error 0.692 1.000 1.157 1.233 1.269

Lower prediction bound 578.43 577.63 577.16 576.89 576.74

Upper prediction bound 581.15 581.55 581.70 581.73 581.71

Table 9.8: Forecasts and 95% prediction intervals for the Lake Huron time series.

Figure 9.25 shows (a) the original time series x1, x2, . . . , x98 as points (•) connected

by lines, (b) the first 10 forecasted lake levels X̂ 99, X̂ 100, . . . , X̂ 108 as open circles (◦),
(c) the 95% prediction intervals as a shaded region, and (d) the next 10 actual average

lake level values in July for the years 1973–1982 taken from the NOAA Great Lakes

Experimental Research Laboratory website,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,

1 98 108

576

577

578

579

580

581

582

t

xt

Figure 9.25: Lake Huron forecasts and 95% prediction intervals.
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as points (•) connected by lines. There are four key observations concerning Fig-

ure 9.25.

• Even though the last three observations in the Lake Huron water level time se-

ries, x96 = 579.31, x97 = 579.89, and x98 = 579.96, show an increasing trend, the

forecasts, which are a function only of xn−1 = x97 and xn = x98, monotonically

approach µ̂ = x̄ = 579. The reason that the forecasts approach µ̂ = x̄ = 579 in a

damped exponential fashion is that the maximum likelihood estimators φ̂1 and φ̂2

satisfy φ̂2
1 +4φ̂2 > 0, which indicates that the characteristic equation has two real

roots which fall outside of the unit circle in the complex plane (see the proof of

Theorem 9.9). Had the two roots been complex conjugates, the forecasted values

would likewise approach µ̂ = x̄ = 579, but in a damped sinusoidal fashion.

• The widths of the prediction intervals increase as the time horizon h increases.

These widths do not increase indefinitely, but rather approach a limit as h→ ∞.

• The random sampling variability which is evident in the observed time series val-

ues x1, x2, . . . , x98 is not apparent in the forecasted values X̂ 99, X̂ 100, . . . , X̂ 108.

Observed time series values tend to exhibit the typical random sampling variabil-

ity; forecasted values for a stationary shifted AR(2) time series model tend to be

smooth.

• The first actual value in the forecast region, x99 = 580.98 for the year 1973, nearly

falls outside of the associated 95% prediction interval. Even if the AR(2) model

is a good fit for this time series, there is still a probability of approximately 0.05

that a future observation will fall outside of the associated 95% prediction interval.

One value out of ten falling outside of the prediction intervals would not be shock-

ing to see, assuming that a reasonable time series model has been formulated.

This section has introduced the AR(2) time series model. The important results for an AR(2)

model are listed below.

• The standard AR(2) model can be written algebraically and with the backshift operator B as

Xt = φ1Xt−1 +φ2Xt−2 +Zt and φ(B)Xt = Zt ,

where φ(B) = 1−φ1B−φ2B2 is the characteristic polynomial and Zt ∼WN
(
0, σ2

Z

)
(Defini-

tion 9.2).

• The shifted AR(2) model can be written algebraically and with the backshift operator B as

(Theorem 9.13)

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+Zt and φ(B)(Xt −µ) = Zt .

• The AR(2) model is always invertible; the AR(2) model is stationary when φ1 and φ2 fall

in a triangular-shaped region in the (φ1, φ2) plane defined by the constraints φ1 + φ2 < 1,

φ2−φ1 < 1, and φ2 >−1 (Theorem 9.9).

• The AR(2) population autocorrelation function is a mixture of damped exponential functions,

when φ(B) has real roots, or a damped sinusoidal function, when φ(B) has complex roots

(Theorem 9.10).
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• The AR(2) population partial autocorrelation function cuts off after lag 2 (Theorem 9.11),

making its shape easier to recognize than the population autocorrelation function for the sta-

tistical counterparts associated with a realization of a time series.

• The stationary shifted AR(2) model can be written as a shifted MA(∞) model (Theorem 9.12).

• The four parameters in the shifted AR(2) model, µ, φ1, φ2 and σ2
Z , can be estimated from

a realization of a time series x1, x2, . . . , xn by the method of moments (Theorem 9.14), least

squares (Theorem 9.15), and maximum likelihood using at least n= 60 or n= 70 observations.

The point estimators for µ, φ1, φ2, and σ2
Z are denoted by µ̂ , φ̂1, φ̂2, and σ̂2

Z , and are typically

paired with asymptotically exact two-sided 100(1−α)% confidence intervals (Theorem 9.16).

• The forecasted value X̂ n+h in an AR(2) model is a function of xn−1 and xn and can be calcu-

lated by a recursive formula. It approaches µ̂ = x̄ as the time horizon h→ ∞. The associated

prediction intervals have widths that increase as h increases and approach a limit as the time

horizon h→ ∞ (Theorem 9.17).

The AR(1) time series model expresses the current value in the time series Xt as a constant times

the previous value in the time series plus a random shock. The AR(2) time series model expresses

the current value in the time series Xt as a linear combination of the previous two values in the time

series plus a random shock. There is conceptually no difficulty extending this thinking to the AR(p)

time series model in which the current value in the time series Xt is expressed as a linear combination

of the previous p values in the time series plus a random shock. The AR(p) time series model is the

subject of the next section.

9.1.3 The AR(p) Model

The order p autoregressive model, denoted by AR(p), is a straightforward generalization of the

AR(2) model. The use of matrices in the derivations will be novel, along with the inability to easily

visualize the stationary region as a function of the parameters. The AR(p) model is appropriate

in instances in which the current value of the time series is a linear combination of the p previous

values in the time series plus a random shock.

Definition 9.3 An order p autoregressive time series model, denoted by AR(p), for the time series

{Xt} is defined by

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt ,

where φ1, φ2, . . . , φp are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

The p+1 parameters that define an AR(p) model are the real-valued coefficients φ1, φ2, . . . ,φp,

and the population variance of the white noise σ2
Z . The final coefficient, φp, must be nonzero. The

AR(p) model can be written more compactly in terms of the backshift operator B as

φ(B)Xt = Zt ,

where φ(B) is the order p characteristic polynomial

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp.
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The AR(p) model has the form of a multiple linear regression model with p independent vari-

ables and no intercept term. The current value Xt is being modeled as a linear combination of the p

previous values of the time series, Xt−1, Xt−2, . . . , Xt−p, plus a white noise term Zt that provides a

random shock to the model. The parameters φ1, φ2, . . . , φp control the inclination of the regression

line (p = 1), plane (p = 2), or hyperplane (p > 2). The σ2
Z parameter reflects the magnitude of the

dispersion of the time series values about the regression plane.

Stationarity

Theorem 8.3 indicates that all AR(p) models are invertible, but are stationary when all of the

roots of φ(B) lie outside of the unit circle in the complex plane. Let B1, B2, . . . , Bp denote the p

solutions of φ(B) = 0. For a stationary model, all of these roots will be real-valued or complex

conjugate pairs that lie outside of the unit circle in the complex plane. Since φ(B1) = φ(B2) = · · ·=
φ(Bp) = 0, the order p characteristic polynomial φ(B) can also be written in factored form as

φ(B) =
(
1−B−1

1 B
)(

1−B−1
2 B

)
. . .
(
1−B−1

p B
)
.

Unfortunately, except for the cases of p = 1 and p = 2, the region in the space of (φ1, φ2, . . . , φp)
corresponding to a stationary model cannot be expressed in a simple mathematical form. The fol-

lowing example illustrates how to determine whether an AR(4) model is stationary. This AR(4)

model will be used in the next five examples.

Example 9.22 Determine whether the AR(4) model with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

is stationary.

The AR(4) model is stationary if all of the roots of φ(B) lie outside the unit circle in the

complex plane. The characteristic polynomial can be factored as

φ(B) =− 1

40
(4B−5)(3B+4)

(
B2−2B+2

)
.

Using the quadratic formula, the solutions of φ(B) = 0 are

B1 =
5

4
B2 =−

4

3
B3 = 1+ i B4 = 1− i.

The first two roots are real-valued, and the other two roots are complex-valued conju-

gates. The four roots are plotted in Figure 9.26. Since all four roots lie outside of the

unit circle in the complex plane, this AR(4) model is stationary.

Duality

As was the case with the AR(1) and AR(2) time series models, a stationary AR(p) time series

model can be written as an MA(∞) time series model. This alternative representation can be useful

for estimating standard errors of forecasted values. One way to frame the problem of writing an

AR(p) time series model as an MA(∞) time series model is to write the compact form of the AR(p)

model as

φ(B)Xt = Zt
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real

imaginary

unit circle

B1B2

B3

B4

Figure 9.26: Unit circle in the complex plane and the solutions of φ(B) = 0.

and divide both sides by φ(B), which results in

Xt =
Zt

φ(B)
.

Therefore, the conversion from the AR(p) form of the model to the MA(∞) form involves finding

the coefficients θ1, θ2, . . . such that

Xt =
Zt

φ(B)
=
(
1+θ1B+θ2B2 + · · ·

)
Zt .

The coefficients θ1, θ2, . . . essentially correspond to finding the inverse of the φ(B) characteristic

polynomial. Taking the expected value of both sides of this equation leads to the important result:

E [Xt ] = 0 for all values of t. As was the case of the AR(2) time series model, the coefficients for the

MA(∞) time series model are found by equating coefficients. This process will be illustrated in the

next example for the AR(4) model. Generalization to the AR(p) model is straightforward.

Example 9.23 Calculate the first six coefficients of the MA(∞) model associated with

the stationary AR(4) model from Example 9.22 with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4.

The MA(∞) model has the form

Xt = Zt +θ1Zt−1 +θ2Zt−2 +θ3Zt−3 +θ4Zt−4 + · · · .

The AR(4) model

Xt = φ1Xt−1 +φ2Xt−2 +φ3Xt−3 +φ4Xt−4 +Zt
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can be written in terms of θ1, θ2, . . . as

Zt +θ1Zt−1 +θ2Zt−2 +θ3Zt−3 +θ4Zt−4 + · · ·=
φ1 ( Zt−1 +θ1Zt−2 +θ2Zt−3 +θ3Zt−4 + · · · )+

φ2 ( Zt−2 +θ1Zt−3 +θ2Zt−4 + · · · )+
φ3 ( Zt−3 +θ1Zt−4 + · · · )+

φ4 ( Zt−4 + · · · )+Zt .

Equating the coefficients of Zt−1 gives

θ1 = φ1.

Equating the coefficients of Zt−2 gives

θ2 = φ1θ1 +φ2 = φ2
1 +φ2.

Equating the coefficients of Zt−3 and simplifying gives

θ3 = φ3
1 +2φ1φ2 +φ3.

Equating the coefficients of Zt−4 and simplifying gives

θ4 = φ4
1 +3φ2

1φ2 +φ2
2 +2φ1φ3 +φ4.

Equating the coefficients of Zt−k gives the recursive equation

θk = φ1θk−1 +φ2θk−2 +φ3θk−3 +φ4θk−4

for k = 5, 6, . . . . The coefficients of the AR(4) model of interest are

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10
.

Using the equations derived here, the first six coefficients of the associated MA(∞)

model as exact fractions are

θ1 =
21

20
, θ2 =

461

400
, θ3 =

5501

8000
, θ4 =

76141

160000
, θ5 =

596381

3200000
, θ6 =

10870221

64000000
.

The ARMAtoMA function in R can also compute these coefficients as follows.

ARMAtoMA(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10), ma = 0, lag.max = 6)

This R command returns the decimal approximations of the exact fractions:

θ1 = 1.05, θ2 = 1.1525, θ3 = 0.6876, θ4 = 0.4759, θ5 = 0.1864, θ6 = 0.1698.

Population Autocorrelation Function

We now pivot to the derivation of the population autocovariance and autocorrelation functions.

Assuming that the parameters φ1, φ2, . . . , φp are associated with a stationary model, the AR(p)

model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt
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can be multiplied by Xt−k to give

XtXt−k = φ1Xt−1Xt−k +φ2Xt−2Xt−k + · · ·+φpXt−pXt−k +ZtXt−k.

Taking the expected value of both sides of this equation for k = 0 results in

γ(0) = φ1γ(1)+φ2γ(2)+ · · ·+φpγ(p)+σ2
Z

and the recursive equation

γ(k) = φ1γ(k−1)+φ2γ(k−2)+ · · ·+φpγ(k− p)

for k = 1, 2, . . . because Zt has expected value zero and is independent of Xt−k. For k = 1, 2, . . . , p,

the recursive equation can be written as the system of linear equations

γ(1) = φ1γ(0)+φ2γ(1)+φ3γ(2)+ · · ·+φpγ(p−1)

γ(2) = φ1γ(1)+φ2γ(0)+φ3γ(1)+ · · ·+φpγ(p−2)

γ(3) = φ1γ(2)+φ2γ(1)+φ3γ(0)+ · · ·+φpγ(p−3)

... =
...

γ(p) = φ1γ(p−1)+φ2γ(p−2)+φ3γ(p−3)+ · · ·+φpγ(0),

which relies on the symmetry of the population autocovariance function: γ(−k) = γ(k). This linear

system of p equations in p+1 unknowns can be written in matrix form as

γ = Γφ,

where

γ =




γ(1)
γ(2)
γ(3)

...

γ(p)



, Γ =




γ(0) γ(1) γ(2) · · · γ(p−1)
γ(1) γ(0) γ(1) · · · γ(p−2)
γ(2) γ(1) γ(0) · · · γ(p−3)

...
...

...
. . .

...

γ(p−1) γ(p−2) γ(p−3) · · · γ(0)



, φ =




φ1

φ2

φ3

...

φp



.

Given the values of the parameters φ1, φ2, . . . , φp, and σ2
Z , this set of linear equations and

γ(0) = φ1γ(1)+φ2γ(2)+ · · ·+φpγ(p)+σ2
Z ,

one can compute the first p+ 1 population autocovariances γ(0), γ(1), . . . , γ(p) by solving these

linear equations. The recursion relationship can be used to compute subsequent autocovariances.

Example 9.24 Calculate the initial values of the population autocovariance function

γ(0), γ(1), . . . , γ(6) associated with the stationary AR(4) model with characteristic poly-

nomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

and white noise variance σ2
Z = 1.

The coefficients of the AR(4) model of interest are

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10
.
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To find the initial population autocovariances, solve the 5×5 set of linear equations

γ(0) = φ1γ(1)+φ2γ(2)+φ3γ(3)+φ4γ(4)+σ2
Z

γ(1) = φ1γ(0)+φ2γ(1)+φ3γ(2)+φ4γ(3)

γ(2) = φ1γ(1)+φ2γ(0)+φ3γ(1)+φ4γ(2)

γ(3) = φ1γ(2)+φ2γ(1)+φ3γ(0)+φ4γ(1)

γ(4) = φ1γ(3)+φ2γ(2)+φ3γ(1)+φ4γ(0)

for γ(0), γ(1), γ(2), γ(3), γ(4). The recursive equation

γ(k) = φ1γ(k−1)+φ2γ(k−2)+φ3γ(k−3)+φ4γ(k−4)

can be used to calculate γ(k) values for k = 5, 6, . . . . The initial population autocovari-

ance values are

γ(0)=
3520

819
∼= 4.298, γ(1)=

2960

819
∼= 3.614, γ(2)=

2260

819
∼= 2.759, γ(3)=

1385

819
∼= 1.691,

γ(4) =
3685

3276
∼= 1.125, γ(5) =

10001

13104
∼= 0.763, γ(6) =

186881

262080
∼= 0.713.

These population autocovariances can be used to calculate the associated population

autocorrelations by dividing each of them by γ(0).

Dividing both sides of the recursive equation for calculating population autocovariance by γ(0)=
V [Xt ] gives the recursive equation

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)+ · · ·+φpρ(k− p)

for k = 1, 2, . . . . Exploiting the symmetry of the ρ(k) function, the first p of these equations are

ρ(1) = φ1ρ(0)+φ2ρ(1)+φ3ρ(2)+ · · ·+φpρ(p−1)

ρ(2) = φ1ρ(1)+φ2ρ(0)+φ3ρ(1)+ · · ·+φpρ(p−2)

ρ(3) = φ1ρ(2)+φ2ρ(1)+φ3ρ(0)+ · · ·+φpρ(p−3)

... =
...

ρ(p) = φ1ρ(p−1)+φ2ρ(p−2)+φ3ρ(p−3)+ · · ·+φpρ(0).

Since ρ(0) = 1, this linear system of p equations in the p unknowns ρ(1), ρ(2), . . . , ρ(p) can be

written in matrix form as

ρ = Pφ,

where

ρ =




ρ(1)
ρ(2)
ρ(3)

...

ρ(p)



, P =




1 ρ(1) ρ(2) · · · ρ(p−1)
ρ(1) 1 ρ(1) · · · ρ(p−2)
ρ(2) ρ(1) 1 · · · ρ(p−3)

...
...

...
. . .

...

ρ(p−1) ρ(p−2) ρ(p−3) · · · 1



, φ =




φ1

φ2

φ3

...

φp



.
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Given the values of the parameters φ1, φ2, . . . , φp, these linear equations can be solved for the initial

p population autocorrelation function values ρ(1), ρ(2), . . . , ρ(p), and the recursive function can be

used to calculate subsequent values of the population autocorrelation values.

As was the case with the AR(2) time series model, (a) the real roots of φ(B) correspond to

contributions to the population autocorrelation function which are mixtures of damped exponential

terms, and (b) the complex conjugate roots of φ(B) correspond to contributions to the population

autocorrelation function which are damped sinusoidal terms.

These equations bear some practical use in that the first p sample autocorrelation function val-

ues, r1, r2, . . . , rp, can be calculated from an observed time series and used as approximations for

ρ(1), ρ(2), . . . , ρ(p), yielding estimators for φ1, φ2, . . . , φp. These estimates are known as the Yule–

Walker estimators. These can in turn be used as initial estimates for finding point estimates for

φ1, φ2, . . . , φp by, for example, least squares or maximum likelihood estimation, should numerical

methods be required.

The results concerning the calculation of the population autocovariance function γ(k) and the

population autocorrelation function ρ(k) are summarized below.

Theorem 9.18 The population autocovariance function for a stationary AR(p) time series model

is calculated by

γ(k) = φ1γ(k−1)+φ2γ(k−2)+ · · ·+φpγ(k− p)

for k = 1, 2, . . . . The first p of these equations can be written in matrix form as

γ = Γφ.

The population variance of Xt is

V [Xt ] = γ(0) = φ1γ(1)+φ2γ(2)+ · · ·+φpγ(p)+σ2
Z .

The population autocorrelation function for a stationary AR(p) time series model is calculated by

ρ(k) = φ1ρ(k−1)+φ2ρ(k−2)+ · · ·+φpρ(k− p)

for k = 1, 2, . . . . The first p of these equations can be written in matrix form as

ρ = Pφ.

The system of linear equations in Theorem 9.18, whether written in terms of γ(k) or ρ(k) as

γ = Γφ or ρ = Pφ, is known in time series analysis as the Yule–Walker equations.

Population Partial Autocorrelation Function

We now determine the population partial autocorrelation function for an AR(p) model. Using

Definition 7.4, the initial population partial autocorrelation values are

ρ∗(0) = 1, ρ∗(1) = ρ(1), ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
, ρ∗(3) =

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

,
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etc. One distinctive characteristic of the AR(p) population partial autocorrelation function is that it

cuts off after lag p. To see why this is the case, consider the first p columns of the matrix in the

numerator of ρ∗(k) for k > p:



1

ρ(1)
ρ(2)

...

ρ(k−1)



,




ρ(1)
1

ρ(1)
...

ρ(k−2)



, . . . ,




ρ(p−1)
ρ(p−2)
ρ(p−3)

...

ρ(k− p)



.

Using Theorem 9.18, the last column of the matrix in the numerator of ρ∗(k) is



φ1 +φ2ρ(1)+φ3ρ(2)+ · · ·+φpρ(p−1)
φ1ρ(1)+φ2 +φ3ρ(1)+ · · ·+φpρ(p−2)
φ1ρ(2)+φ2ρ(1)+φ3 + · · ·+φpρ(p−3)

...

φ1ρ(k−1)+φ2ρ(k−2)+φ3ρ(k−3)+ · · ·+φpρ(k− p)



.

The last column of the matrix in the numerator of ρ∗(k) is a linear combination of the first p columns

with coefficients φ1, φ2, . . . , φp. Thus, the matrix in the numerator of the calculation of ρ∗(k) is

singular, which means that its determinant is zero. So ρ∗(k) = 0 for k = p+ 1, p+ 2, . . . for an

AR(p) time series model. This constitutes a proof of the following result.

Theorem 9.19 The population partial autocorrelation function for a stationary AR(p) time series

model cuts off after lag p.

A graph of the sample partial autocorrelation function r∗k for the first few values of k, should

also cut off after lag p if the AR(p) model is appropriate. This sample partial autocorrelation func-

tion shape is easier to recognize than the associated sample autocorrelation function shape because

cutting off is typically easier to recognize than tailing off in the presence of random sampling vari-

ability.

There is a second interpretation of the partial autocorrelation function that ties it more closely

to determining the order of the autoregressive portion of the model. The partial autocorrelation at

lag k is the value of the final coefficient φk in an autoregressive model of order k. This coefficient

measures the excess correlation at lag k which is not accounted for by an autoregressive model of

order k−1. It is for this reason that many authors use the notation φkk for the population lag k partial

autocorrelation.

The population autocorrelation function and the population partial autocorrelation functions can

be calculated using the formulas given here, but can also be calculated using the R ARMAacf function,

as illustrated in the next example.

Example 9.25 Calculate and plot the values of the population autocorrelation function

and the population partial autocorrelation function associated with the AR(4) model

with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4.

The coefficients of the AR(4) model of interest are

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10
.
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The matrix equation ρ = Pφ from Theorem 9.18 could be solved for the initial values

of ρ(k). Alternatively, the values of γ(k) calculated in the previous example could be

divided by γ(0) to arrive at the population autocorrelation function values. The first two

such autocorrelation function values, for example, are

ρ(1) =
γ(1)

γ(0)
=

2960/819

3520/819
=

2960

3520
∼= 0.8409,

ρ(2) =
γ(2)

γ(0)
=

2260/819

3520/819
=

2260

3520
∼= 0.6420,

The R function ARMAacf can also be used to calculate the population autocorrelation

function values for the first 15 lags, as illustrated below. The ar argument is a vector

containing the coefficients φ1, φ2, φ3, and φ4, and the ma argument is set to zero because

there are no moving average terms.

ARMAacf(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10), ma = 0, 15)

The population partial autocorrelation function values can be computed by taking the

ratios of the determinants from Definition 7.4. Alternatively, the pacf argument to the

ARMAacf function can be set to TRUE to compute the values of ρ∗(k) for the first 15

lags.

ARMAacf(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10), ma = 0, 15, pacf = TRUE)

Table 9.9 contains the numeric values of the first seven values of ρ(k) and ρ∗(k). Fig-

ure 9.27 contains a plot of ρ(k) and ρ∗(k) for the first 15 lags. The population au-

tocorrelation function includes the effects of mixtures of damped exponential terms

(associated with the two real roots B1 = 5/4 and B2 = −4/3 of φ(B) = 0 computed

in Example 9.22) and damped sinusoidal terms (associated with the two complex roots

B3 = 1+ i and B4 = 1− i of φ(B) = 0 computed in Example 9.22). As expected, the

population partial autocorrelation function cuts off after lag 4.

k 1 2 3 4 5 6 7

ρ(k) 0.8409 0.6420 0.3935 0.2617 0.1776 0.1659 0.1506

ρ∗(k) 0.8409 −0.2222 −0.2857 0.3000 0 0 0

Table 9.9: The first seven values of ρ(k) and ρ∗(k) for an AR(4) time series model.

The Shifted AR(p) Model

The standard AR(p) model from Definition 9.3 is not of much practical use because most real-

world time series are not centered around zero. Adding a shift parameter µ overcomes this shortcom-

ing. Since population variance and covariance are unaffected by a shift, the associated population au-

tocorrelation and partial autocorrelation functions remain the same as those given in Theorems 9.18

and 9.19.
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Figure 9.27: The first 15 values of ρ(k) and ρ∗(k) for an AR(4) time series model.

Theorem 9.20 A shifted order p autoregressive model for the time series {Xt} is defined by

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt ,

where φ1, φ2, . . . , φp, µ, and σ2
Z > 0 are real-valued parameters, and {Zt} is a time series of white

noise. This model is stationary when all of the roots of the characteristic equation φ(B) = 0 fall

outside of the unit circle in the complex plane. The expected value of Xt is E [Xt ] = µ. The pop-

ulation autocorrelation function can be calculated using the recursive equations in Theorem 9.18.

The population partial autocorrelation function can be calculated using the defining formulas in

Definition 7.4.

The shifted AR(p) model can be written in terms of the backshift operator B as

φ(B)(Xt −µ) = Zt ,

where φ(B) = 1−φ1B−φ2B2−·· ·−φpBp. The practical problem of fitting a shifted AR(p) model

to an observed time series of n values x1, x2, . . . , xn will be illustrated later in this subsection.

Simulation

An AR(p) time series can be simulated by appealing to the defining formula for the AR(p)

model. Iteratively applying the defining formula for a standard AR(p) model

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt

from Definition 9.3 results in the simulated values X1, X2, . . . , Xn. The difficult aspect of devising

a simulation algorithm is generating the first p simulated values, X1, X2, . . . , Xp. For simplicity,

assume that the white noise terms are Gaussian white noise terms. There are two approaches to

overcome this initialization problem. The first approach generates X1, X2, . . . , Xp from a multivariate

normal distribution with population mean p-vector 0= (0, 0, . . . , 0)′ and p× p variance–covariance
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matrix

Γ =




γ(0) γ(1) γ(2) · · · γ(p−1)
γ(1) γ(0) γ(1) · · · γ(p−2)
γ(2) γ(1) γ(0) · · · γ(p−3)

...
...

...
. . .

...

γ(p−1) γ(p−2) γ(p−3) · · · γ(0)



,

which was defined in Theorem 9.18. The algorithm given below generates initial time series obser-

vations X1, X2, . . . , Xp as indicated above, and then uses an additional n− p Gaussian white noise

terms Zp+1, Zp+2, . . . , Zn to generate the remaining time series values Xp+1, Xp+2, . . . , Xn using the

AR(p) defining formula from Definition 9.3. Indentation denotes nesting in the algorithm.

generate (X1, X2, . . . , Xp)∼ N (0, Γ)
t← p

while (t < n)
t← t +1

generate Zt ∼ N
(
0, σ2

Z

)

Xt ← φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt

The (p+2)-parameter shifted AR(p) time series model which includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

The next example implements this algorithm in R.

Example 9.26 Generate a realization of n= 100 observations from the stationary AR(4)

time series model with

φ1 =
21

20
φ2 =

1

20
φ3 =−

23

40
φ4 =

3

10

and Gaussian white noise error terms with σ2
Z = 1.

This model is stationary (see Example 9.22). The population autocorrelation function

ρ(k) and the population partial autocorrelation function ρ∗(k) are displayed in Fig-

ure 9.27; we expect similar shaped functions rk and r∗k from our simulated values. The

first statement in the R code below uses the set.seed function to establish the random

number seed. The second statement sets p = 4, corresponding to an AR(4) model. The

third statement sets the vector phi to the AR(4) coefficients φ1 = 21/20, φ2 = 1/20,

φ3 = −23/40, and φ4 = 3/10. The fourth statement places the initial population au-

tocovariance values from Example 9.24, namely γ(0) = 3520/819, γ(1) = 2960/819,

γ(2) = 2260/819, and γ(3) = 1385/819, into the vector gam. The subsequent nested

for loops place these population autocovariance values in the 4×4 variance–covariance

matrix GAMMA. The next statement sets the standard deviation of the Gaussian white

noise to σZ = 1. The next statement sets the number of simulated values to n= 100. The

next statement defines the vector x of length n = 100 to hold the simulated time series

values. The next statement uses the mvrnorm function from the MASS package to gener-

ate the first four simulated time series observations X1, X2, X3, X4 from the appropriate

multivariate normal distribution. Finally, the for loop iterates through the defining

formula for the AR(4) model generating the remaining observations X5, X6, . . . , X100.

set.seed(9)

p = 4
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phi = c(21 / 20, 1 / 20, -23 / 40, 3 / 10)

gam = c(3520 / 819, 2960 / 819, 2260 / 819, 1385 / 819)

GAMMA = matrix(0, p, p)

for (i in 1:p) for (j in 1:p) GAMMA[i, j] = gam[abs(i - j) + 1]

sigz = 1

n = 100

x = numeric(n)

x[1:p] = MASS::mvrnorm(1, mu = rep(0, p), Sigma = GAMMA)

for (t in (p + 1):n) x[t] = sum(phi * x[(t - 1):(t - p)]) +

rnorm(1, 0, sigz)

Using the plot.ts function to make a plot of the time series contained in x, the acf function to plot

the associated correlogram, the pacf function to plot the associated sample partial autocorrelation

function, and the layout function to arrange the graphs as in Example 7.24, the resulting trio of

graphs are displayed in Figure 9.28. The sample partial autocorrelation function has four statisti-
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Figure 9.28: Time series plot, rk, and r∗k for n = 100 simulated values from an AR(4) model.
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cally significant spikes at lags 1, 2, 3, and 4 which is consistent with an AR(4) model. The spikes cut

off after lag 4 as expected from the population counterparts in Figure 9.27. The approximate 95%

confidence intervals indicated by the dashed lines show that the values of the sample partial autocor-

relation function do not significantly differ from zero at lags beyond lag 4. The sample autocorrela-

tion function displays a mixture of damped exponential terms damped sinusoidal terms as expected,

with statistically significant autocorrelations at the first two lags: r∗1 = 0.7351 and r∗2 = 0.4417. The

time series plot shows that observations tend to linger on one side of the population mean (indicated

by a horizontal line at µ = 0), which is consistent with the two initial statistically significant positive

spikes in the sample autocorrelation function.

We recommend running the simulation code from the previous example several dozen times in

a loop and viewing the associated plots of xt , rk, and r∗k in search of patterns. This will allow you to

see how various realizations of this simulated AR(4) time series model vary from one realization to

the next. So when you then view a single realization of a real-life time series, you will have a sense

of how far these plots might deviate from their expected patterns.

There is a second way to overcome the initialization problem in simulating observations from

an AR(p) time series. This second technique starts the time series with p initial arbitrary values,

and then allows the time series to “warm up” or “burn in” for several time periods before producing

the first observation X1. Reasonable p initial arbitrary values for the standard AR(p) model are

0; reasonable p initial arbitrary values for the shifted AR(p) model are µ. This approach can be

implemented in R with the filter function with "recursive" as the method argument. The code

below generates n = 100 values in the AR(4) time series model from the previous example using a

warm-up period of 50 observations.

phi = c(21 / 20, 1 / 20, -23 / 40, 3 / 10)

z = rnorm(150)

x = filter(z, filter = phi, method = "recursive")

x = x[51:150]

This is also the approach taken by the built-in R function named arima.sim, which simulates a

realization of a time series. Using the arima.sim function means that n = 100 observations from

the AR(4) time series model from the previous example can be simulated using a single command,

using a warm-up period of 50 observations.

x = arima.sim(model = list(ar = c(21 / 20, 1 / 20, -23 / 40, 3 / 10)),

n = 100, sd = 1, n.start = 50)

The remaining topics associated with the AR(p) time series model are statistical in nature: pa-

rameter estimation, model assessment, model selection, and forecasting. We begin with parameter

estimation.

Parameter Estimation

The p+2 parameters to estimate in a shifted AR(p) time series model are φ1, φ2, . . . , φp, µ, σ2
Z .

There are three techniques for estimating these parameters considered here: method of moments,

least squares, and maximum likelihood estimation. These techniques were introduced in Sec-

tion 8.2.1. These three techniques are outlined in the following paragraphs.

Approach 1: Method of moments. In the case of estimating the p+2 parameters in the shifted

AR(p) time series model by the method of moments, we match the population and sample first-order

moments, second-order moments, lag 1 autocorrelation, lag 2 autocorrelation, . . . , lag p autocorrela-

tion. Placing the population moments on the left-hand side of the equation and the associated sample
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moments on the right-hand side of the equation results in (p+2) equations in (p+2) unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

ρ(2) = r2

... =
...

ρ(p) = rp.

Since E [Xt ] = µ for a stationary shifted AR(p) time series model, the first equation gives the method

of moments estimator µ̂ = X̄ . Recall from Theorem 9.18 that the relationship between φ1, φ2, . . . , φp

and ρ(1), ρ(2), . . . , ρ(p) is given by the matrix equation

ρ = Pφ,

where

ρ =




ρ(1)
ρ(2)
ρ(3)

...

ρ(p)



, P =




1 ρ(1) ρ(2) · · · ρ(p−1)
ρ(1) 1 ρ(1) · · · ρ(p−2)
ρ(2) ρ(1) 1 · · · ρ(p−3)

...
...

...
. . .

...

ρ(p−1) ρ(p−2) ρ(p−3) · · · 1



, φ =




φ1

φ2

φ3

...

φp



.

Satisfying the method of moments criteria, the lag k population autocorrelation ρ(k) can be replaced

with its statistical analog rk, for k = 1, 2, . . . , p. The resulting matrix equation is

r = Rφ,

where

r =




r1

r2

r3

...

rp



, R =




1 r1 r2 · · · rp−1

r1 1 r1 · · · rp−2

r2 r1 1 · · · rp−3

...
...

...
. . .

...

rp−1 rp−2 rp−3 · · · 1



, φ =




φ1

φ2

φ3

...

φp



.

This matrix equation can be solved for the method of moments estimators as

φ̂ = R−1r.

These are known as the Yule–Walker estimators because of their relationship to the Yule–Walker

equations. Finally, the remaining parameter to estimate is the population variance of the white noise

σ2
Z . From Theorem 9.18,

σ2
Z = γ(0)−φ1γ(1)−φ2γ(2)−·· ·−φpγ(p).
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Multiplying and dividing the right-hand side of this equation by γ(0) gives

σ2
Z = γ(0)

[
1−φ1ρ(1)−φ2ρ(2)−·· ·−φpρ(p)

]
.

Replacing these elements by their method of moments estimators gives

σ̂2
Z = c0

[
1− φ̂1r1− φ̂2r2−·· ·− φ̂prp

]
,

which can be expressed in matrix form as

σ̂2
Z = c0

(
1− r ′φ̂

)
.

Since the formula for these estimators does not require any iterative methods, the method of mo-

ments estimators are often used as initial parameter estimates for the least squares estimators and

the maximum likelihood estimators, which do require iterative methods. These point estimators for

the parameters in a shifted AR(p) model are summarized below.

Theorem 9.21 The method of moments estimators of the parameters in a shifted AR(p) model

are

µ̂ = X̄ φ̂ = R−1r σ̂2
Z = c0

(
1− r ′φ̂

)
.

Example 9.27 We now revisit the modeling of the built-in R time series LakeHuron

from Example 9.14 consisting of n = 98 monthly mean levels (in feet) of the lake level

of Lake Huron from 1875–1972. An AR(2) time series model was fit to this time series

using the method of moments in Example 9.15. The fitted AR(2) model was deemed to

be a reasonable fit via the goodness-of-fit tests in Example 9.19. Calculate the method

of moments parameter estimates for the overfitted AR(3) model.

Since estimating the parameters involves just a matrix inverse and a matrix multi-

plication, these estimators are easily computed in an R function. The user-written

YuleWalker function given below has the time series observations in the vector x and

the order of the AR(p) time series model p as arguments. It uses the built-in acf func-

tion to compute r1, r2, . . . , rp and the solve function to compute the inverse of the R

matrix. The R code below calculates and prints the point estimates of the parameters

µ, φ1, φ2, φ3, and σ2
Z parameters for the AR(3) time series model using the method of

moments estimators given in Theorem 9.21.

YuleWalker = function(x, p) {

muhat = mean(x)

r = acf(x, plot = FALSE, lag.max = p)$acf

R = matrix(1, p, p)

for (i in 1:p) for (j in 1:p) R[i, j] = r[abs(i - j) + 1]

r = r[2:(p + 1)]

phihat = solve(R) %*% r

sig2hat = mean((x - muhat) ^ 2) * (1 - sum(r * phihat))

c(muhat, phihat, sig2hat)

}

YuleWalker(LakeHuron, 3)
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The method of moments point estimates for the unknown parameters computed by this

code are

µ̂ = 579.00, φ̂1 = 1.0887, φ̂2 =−0.40454, φ̂3 = 0.13075, σ̂2
Z = 0.48358.

Alternatively, some keystrokes can be saved by using the built-in ar function to estimate

the parameters in the AR(3) time series model, as shown below. The results are identical

except the estimate of the population variance of the white noise differs slightly because

of differing assumptions made within the ar function.

fit = ar(LakeHuron, order.max = 3, aic = FALSE, method = "yw")

fit$x.mean

fit$ar

fit$var.pred

Approach 2: Least squares. Consider the shifted stationary AR(p) model

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt .

For least squares estimation, we first establish the sum of squares S as a function of the parameters

µ, φ1, φ2, . . . , φp. We leave the optimization to the R ar function in order to calculate the least

squares estimators of µ, φ1, φ2, . . . , φp. Once these least squares estimators have been determined,

the population variance of the white noise σ2
Z will be estimated.

The sum of squared errors is

S =
n

∑
t= p+1

Z2
t =

n

∑
t= p+1

[Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)−·· ·−φp (Xt−p−µ)]2 .

If this derivation were being done by hand, we would now calculate the partial derivatives of S with

respect to the unknown parameters µ, φ1, φ2, . . . , φp, equate them to zero and solve. As was the

case with the AR(1) and AR(2) models, there is no closed-form solution, so numerical methods

are required to calculate the parameter estimates. In the example that follows, we will use the ar

function in R to determine the least squares parameter estimates that minimize S.

The last parameter to estimate is the population variance of the white noise σ2
Z . The same

estimator as the method of moments will be used:

σ̂2
Z = c0

(
1− r ′φ̂

)
.

Least squares estimation for a shifted AR(p) time series model is summarized below.

Theorem 9.22 The least squares estimators of the parameters in a shifted AR(p) time series model

are the µ̂ , φ̂1, φ̂2, . . . , φ̂p values that minimize

S =
n

∑
t= p+1

Z2
t =

n

∑
t= p+1

[
Xt −µ−φ1 (Xt−1−µ)−φ2 (Xt−2−µ)−·· ·−φp (Xt−p−µ)

]2

and the population variance of the white noise is estimated by

σ̂2
Z = c0

(
1− r ′φ̂

)
.

We now use numerical methods to find the least squares estimates for the unknown parameters

in the AR(p) time series model for the Lake Huron time series from Example 9.14.
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Example 9.28 Find the least squares estimates of µ, φ1, φ2, . . . , φp, and σ2
Z from the

AR(p) time series model for the time series of n = 98 Lake Huron lake level observa-

tions from Example 9.14, for p = 1, 2, 3, 4. Plot the sum of squares associated with the

least squares estimates as a function of p.

The R code below uses a for loop to iterate over the various values of p. It uses

the ar function with the method argument set to "ols" (for ordinary least squares) to

calculate the least squares estimates of the unknown parameters. It uses a nested for

loop to calculate the sum of squares at the values of the point estimates.

x = LakeHuron

n = length(x)

for (p in 1:4) {

fit = ar(x, order.max = p, aic = FALSE, method = "ols")

muhat = fit$x.mean

phihat = fit$ar

sig2hat = fit$var.pred

S = 0

for (t in (p + 1):n) {

S = S + (x[t] - muhat - sum(phihat * (x[(t - 1):(t - p)] - muhat))) ^ 2

}

print(c(muhat, phihat, sig2hat, S))

}

The point estimates for the unknown parameters and the sums of squares at the point

estimates that are computed by this code are given in Table 9.10. Notice that the least

squares point estimators for the AR(3) model are close to the method of moments point

estimators for the AR(3) model calculated in Example 9.27. The graph in Figure 9.29

shows the sum of squares as a function of the order of the autoregressive model p. The

sum of squares shows a “law of diminishing returns” as p increases. There is a large

decrease in the sum of squares on the transition from p= 1 term to p= 2 terms. Beyond

p = 2, however, the decreases are substantially smaller. This pattern is consistent with

the q = 0 column from Table 9.7 in Example 9.20, which indicated that the AIC statistic

was minimized for p = 2, which corresponds to a shifted AR(2) time series model.

p µ̂ φ̂1 φ̂2 φ̂3 φ̂4 σ̂2
Z S

1 579.00 0.8364 0.5090 49.38

2 579.00 1.0217 −0.2376 0.4540 43.64

3 579.00 1.0719 −0.3653 0.1088 0.4488 42.66

4 579.00 1.0738 −0.3739 0.0569 0.0625 0.4475 42.12

Table 9.10: Least squares parameter estimates and sums of squares for AR(p) models.

Approach 3: Maximum likelihood estimation. The procedure for determining the maximum

likelihood estimators for the unknown parameters in a shifted AR(p) time series model follows along

the same lines as in the AR(1) and AR(2) time series models from the previous subsections. Once

again, to use maximum likelihood estimation, we must assume that the random shocks from the
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Figure 9.29: Sum of squares as a function of p for AR(p) models.

white noise are Gaussian white noise, with associated probability density function

fZt (zt) =
1√

2πσ2
Z

e−z2
t /(2σ2

Z) −∞ < zt < ∞,

for t = 1, 2, . . . , n. Determining the likelihood function, which is the joint probability density func-

tion of the observed values in the time series X1, X2, . . . , Xn, involves finding

L
(
µ, φ1, φ2, . . . ,φp, σ2

Z

)
= f (x1, x2, . . . , xn),

where the x1, x2, . . . , xn arguments on L and the µ, φ1, φ2, . . . , φp, and σ2
Z arguments on f have

been dropped for brevity and n > p. As before, it is not possible to simply multiply the marginal

probability density functions because the values in the AR(p) time series model are correlated.

As in the case of the AR(1) and AR(2) models, we use the transformation technique to find the

conditional joint probability density function of Xp+1, Xp+2, . . . , Xn conditioned on X1 = x1, X2 = x2,

. . . , Xp = xp, which is denoted by

fXp+1,Xp+2, ...,Xn |X1,X2, ...,Xp
(xp+1, xp+2, . . . , xn |X1 = x1, X2 = x2, . . . , Xp = xp)

for (xp+1, xp+2, . . . , xn) ∈ R n−p. This conditional joint probability density function is multiplied

by the marginal joint probability density function of X1, X2, . . . , Xp (which has the p-dimensional

multivariate normal distribution) resulting in a joint probability density function of X1, X2, . . . , Xn:

fX1,X2, ...,Xn(x1, x2, . . . , xn) =

fXp+1,Xp+2, ...,Xn |X1,X2, ...,Xp
(xp+1, xp+2, . . . , xn |X1 = x1, X2 = x2, . . . ,Xp = xp)×

fX1,X2, ...,Xp(x1, x2, . . . , xp)

for (x1, x2, . . . , xn) ∈ R n. This function serves as the likelihood function, which should be maxi-

mized with respect to the unknown parameters µ, φ1, φ2, . . . , φp, and σ2
Z . We leave the maximization

to the ar and arima functions in R when determining the maximum likelihood estimates for the pa-

rameters for a particular time series to be fitted to the shifted AR(p) time series model.

In addition to point estimators for the parameters, we are also interested in confidence intervals

that capture the precision of the point estimators. The population variance of the vector of parameter

estimators φ̂ = (φ̂1, φ̂2, . . . , φ̂p)
′ is given by the variance–covariance matrix

V
[
φ̂
]
=

1

n

(
1−ρ′φ

)
P−1.
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Since the maximum likelihood estimators for φ1, φ2, . . . , φp are asymptotically unbiased and nor-

mally distributed under certain regularity conditions,

φ̂
D→ N

(
φ,

1

n

(
1−ρ′φ

)
P−1

)
.

For p = 1, this reduces to

φ̂1
D→ N

(
φ1,

1−φ2
1

n

)
.

For p = 2, this reduces to

[
φ̂1

φ̂2

]
D→ N

([
φ1

φ2

]
,

1

n

[
1−φ2

2 −φ1(1+φ2)
−φ1(1+φ2) 1−φ2

2

])
.

These asymptotic results for p = 1 and p = 2 were used in the confidence intervals given in Theo-

rems 9.7 and 9.16. When the quantities in this expression are replaced by their statistical counter-

parts, the estimated variance–covariance matrix of the vector φ̂ is

V̂
[
φ̂
]
=

1

n

(
1− r ′φ̂

)
R−1.

Using the diagonal elements of this matrix and the asymptotic normality of maximum likelihood

estimators, an asymptotically exact 100(1−α)% confidence interval for φi is easily constructed.

Theorem 9.23 For a stationary AR(p) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for φi is given by

φ̂i− zα/2

√[
1

n

(
1− r ′φ̂

)
R−1

]

i, i

< φi < φ̂i + zα/2

√[
1

n

(
1− r ′φ̂

)
R−1

]

i, i

for i = 1, 2, . . . , p, where φ̂i is the maximum likelihood estimator of φi and zα/2 is the 1−α/2

fractile of the standard normal distribution.

The maximum likelihood estimates and associated confidence intervals will be illustrated for an

economic time series in the next example.

Example 9.29 Table 9.11 contains the annual lynx (Lynx canadensis) pelt sales, read

row-wise, at the Hudson’s Bay Company in Canada from 1857 to 1911. Suggest a time

series model for the annual pelt sales.

23362 31642 33757 23226 15178 7272 4448 4926 5437 16498

35971 76556 68392 37447 45686 7942 5123 7106 11250 18774

30508 42834 27345 17834 15386 9443 7599 8061 27187 51511

74050 78773 33899 18886 11520 8352 8660 12902 20331 36853

56407 39437 26761 15185 4473 5781 9117 19267 36116 58850

61478 36300 9704 3410 3774

Table 9.11: Annual lynx pelt sales at the Hudson’s Bay Company, 1857–1911.
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Figure 9.30: Time series plot for n = 55 annual lynx pelt sales (1857–1911).

The time series is plotted in Figure 9.30. The annual sales figures vary widely, from

a minimum of 3410 pelts sold in 1910 to a maximum of 78,773 pelts sold in 1888. A

horizontal line is drawn at the average sales over this time horizon at 25,600 pelts. The

time series appears to have a periodic component that seems to cycle about every ten

years or so, although nothing about the sales of lynx pelts would seem to account for

an approximately decade-long periodicity. There are local maximums in the time series

associated with the years 1859, 1868, 1878, 1888, 1897, and 1907. Is consumer behav-

ior driving this periodicity? Are the prices of the pelts driving this periodic behavior?

Is the availability of the pelts driving this periodic behavior?

Some further analysis of the time series indicates that ecology can answer some of

the questions. Lynxes depend on the snowshoe rabbit (Lepus americanus) for food,

and lynxes starve when the rabbits near extinction periodically. This is an example of

one time series depending on another time series. We ignore the dependence on the

snoeshoe rabbit in our analysis because multivariate time series analysis is a topic for

a more advanced time series course. We consider an AR(p) model here and consider a

time series model with a periodic component subsequently.

Based on Figure 9.30, is a stationary time series model appropriate? There does not

appear to be any trend in the time series, but the population variance does not appear to

be stable. The first local maximum (in 1859) and the third local maximum (in 1878) are

not as pronounced as the others. One remedy to this nonconstant population variance is

to transform the time series. Taking the logarithm of the time series values, xt = ln yt ,

reduces the impact of the nonconstant variance. Figure 9.31 contains a time series plot

of the logarithm of the sales figures, along with the associated sample autocorrelation

and partial autocorrelation functions. For simplicity, we define time t = 1 to be the year

1857 and t = 55 to be the year 1911. The transformation has proven to be effective. As

expected, the first and third peaks are still the smallest local maximums of the group,

but they are less pronounced than those in the raw data. The original time series values

are denoted by yt , and the transformed time series values are denoted by xt = ln yt . The

sample autocorrelation function appears to have a damped sinusoidal shape, and the
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Figure 9.31: Time series plot, rk, and r∗k for n = 55 log annual lynx sales (1857–1911).

sample partial autocorrelation function cuts off after lag 4, although the spike at lag 4

is only marginally significant. The fact that the sample partial autocorrelation function

cuts off leads us to consider an autoregressive time series model. Based on these graphs,

we will attempt to fit tentative AR(3) and AR(4) models to the transformed time series

x1, x2, . . . , x55. The R code to produce the graphs in Figure 9.31 is given below.

y = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926, 5437,

16498, 35971, 76556, 68392, 37447, 45686, 7942, 5123, 7106,

11250, 18774, 30508, 42834, 27345, 17834, 15386, 9443, 7599,

8061, 27187, 51511, 74050, 78773, 33899, 18886, 11520, 8352,

8660, 12902, 20331, 36853, 56407, 39437, 26761, 15185, 4473,

5781, 9117, 19267, 36116, 58850, 61478, 36300, 9704, 3410, 3774)

x = log(y)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

abline(h = mean(x))
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acf(x)

pacf(x)

We use the R arima function to estimate the parameters of the AR(p) time series models

for the transformed time series using maximum likelihood estimation and to compute

their associated standard errors. The additional R code below fits the AR(3) model

to the transformed time series. Setting the method argument to "ML" indicates that

the arima function should use maximum likelihood estimation. Various aspects of the

fitted model are extracted using the $ extractor.

fit = arima(x, order = c(3, 0, 0), include.mean = TRUE, method = "ML")

fit$coef

fit$var.coef

fit$sigma2

sqrt(fit$var.coef[1, 1])

sqrt(fit$var.coef[2, 2])

sqrt(fit$var.coef[3, 3])

sqrt(fit$var.coef[4, 4])

The resulting fitted AR(3) model is

Xt − µ̂ = φ̂1 (Xt−1− µ̂ )+ φ̂2 (Xt−2− µ̂ )+ φ̂3 (Xt−3− µ̂ )+Zt

or

Xt −9.809= 0.957(Xt−1−9.809)−0.126(Xt−2−9.809)−0.470(Xt−3−9.809)+ Zt ,
(0.074) (0.117) (0.176) (0.120)

where Zt is white noise with estimated population variance σ̂2
Z = 0.119. The numbers in

parentheses just below the parameter estimates are the estimated standard errors of the

associated parameter estimates. The associated approximate 95% confidence intervals

are

0.728 < φ1 < 1.186,

−0.471 < φ2 < 0.219,

−0.705 < φ3 < −0.235,

9.663 < µ < 9.955.

The fact that the confidence interval for φ2 contains zero should not deter us from con-

sidering the AR(3) model because the confidence interval for φ3 has bounds which do

not include zero.

When this same procedure is applied to the fitting of an AR(4) model, the fitted model

Xt − µ̂ = φ̂1 (Xt−1− µ̂ )+ φ̂2 (Xt−2− µ̂ )+ φ̂3 (Xt−3− µ̂ )+ φ̂4 (Xt−4− µ̂ )+Zt

is

Xt −9.807= 0.774(Xt−1−9.807)−0.151(Xt−2−9.807)−0.120(Xt−3−9.807)−0.378(Xt−4−9.807)+ Zt ,
(0.051) (0.125) (0.165) (0.163) (0.127)
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where Zt is white noise with estimated population variance σ̂2
Z = 0.102. The associated

approximate 95% confidence intervals are

0.529 < φ1 < 1.018,

−0.474 < φ2 < 0.172,

−0.439 < φ3 < 0.200,

−0.626 < φ4 <−0.130,

9.708 < µ < 9.907.

Again, the confidence intervals for φ2 and φ3 containing zero should not deter us from

considering the AR(4) model because the confidence interval for φ4 has bounds which

do not include zero.

So should the AR(3) or AR(4) model be considered the preferred stationary model? A

check of the solutions of φ̂(B) = 0 indicates that all of the solutions lie outside of the

unit circle in the complex plane for both the AR(3) and AR(4) models. Another way

to select between the two models is to calculate the AIC statistic for these models. The

additional R statement

for (p in 0:5) print(arima(x, order = c(p, 0, 0), method = "ML")$aic)

calculates the AIC statistic associated with the fitted AR(p) models, for p = 0, 1, . . . , 5.

The results are shown in Table 9.12.

p = 0 p = 1 p = 2 p = 3 p = 4 p = 5

145.3 101.5 63.4 52.3 46.2 48.2

Table 9.12: AIC values for AR(p) models for the transformed annual lynx pelt sales.

The AIC statistic is minimized for p = 4, indicating that the AR(4) model is selected

over the AR(3) model. So to summarize, the tentative AR(p) time series model based

on (a) the time series plot, (b) the sample autocorrelation function, (c) the sample partial

autocorrelation function, and (d) the AIC statistic, is the fitted AR(4) model

ln Yt −9.807 = 0.774(ln Yt−1−9.807)−0.151(ln Yt−2−9.807)−

0.120(ln Yt−3−9.807)−0.378(ln Yt−4−9.807)+Zt ,

where Yt corresponds to the original time series consisting of annual lynx pelt sales at

the Hudson’s Bay Company, and Zt is white noise with estimated variance σ̂2
Z = 0.102.

Model Assessment

Now that techniques for point and interval estimates for the parameters in the AR(p) model have

been established, we are interested in assessing the adequacy of the fitted AR(p) time series model.

This will involve an analysis of the residuals. Recall from Section 8.2.3 that the residuals are defined

by

[residual] = [observed]− [predicted]
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or

Ẑ t = Xt − X̂ t .

Since X̂ t is the one-step-ahead forecast from the time origin t−1, this is more clearly written as

Ẑ t = Xt − X̂ t−1(1).

From Theorem 9.20, the shifted AR(p) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt

or

Xt = µ+φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt .

Taking the conditional expected value of both sides of this equation gives

E [Xt |X1 = x1, X2 = x2, . . . ,Xt−1 = xt−1] = µ+φ1 (xt−1−µ)+φ2 (xt−2−µ)+ · · ·+φp (xt−p−µ) .

Replacing the parameters by their point estimators, the one-step-ahead forecast from the time origin

t−1 is

X̂t−1(1) = µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ )+ · · ·+ φ̂p (xt−p− µ̂ ) .

Therefore, for the time series x1, x2, . . . , xn and the fitted AR(p) model with parameter estimates µ̂ ,

φ̂1, φ̂2, . . . , φ̂p, the residual at time t is

Ẑ t = xt −
[
µ̂ + φ̂1 (xt−1− µ̂ )+ φ̂2 (xt−2− µ̂ )+ · · ·+ φ̂p (xt−p− µ̂ )

]

for t = p+1, p+2, . . . , n. The next example shows the steps associated with assessing the adequacy

of the AR(4) model for the time series of annual lynx pelt sales.

Example 9.30 Fit the AR(4) time series model to the transformed annual lynx sales

from Example 9.29 via maximum likelihood estimation.

(a) Calculate and plot the residuals, their sample autocorrelation function, and their

sample partial autocorrelation function.

(b) Conduct a test of independence on the residuals using the number of sample

autocorrelation function values for the first m = 40 lags which fall outside of

±1.96/
√

n.

(c) Conduct the Box–Pierce and Ljung–Box tests for independence of the residuals.

(d) Conduct the turning point test for independence of the residuals.

(e) Plot a histogram and a QQ plot of the standardized residuals in order to assess the

normality of the residuals.

(a) The following R commands calculate the n−4 = 51 residuals of the transformed

time series and plot them as a time series, along with the associated sample auto-

correlation function and sample partial autocorrelation function.
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y = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926, 5437,

16498, 35971, 76556, 68392, 37447, 45686, 7942, 5123, 7106,

11250, 18774, 30508, 42834, 27345, 17834, 15386, 9443, 7599,

8061, 27187, 51511, 74050, 78773, 33899, 18886, 11520, 8352,

8660, 12902, 20331, 36853, 56407, 39437, 26761, 15185, 4473,

5781, 9117, 19267, 36116, 58850, 61478, 36300, 9704, 3410, 3774)

x = log(y)

n = length(x)

p = 4

m = 40

fit = arima(x, order = c(p, 0, 0), include.mean = TRUE, method = "ML")

phi1hat = fit$coef[1]

phi2hat = fit$coef[2]

phi3hat = fit$coef[3]

phi4hat = fit$coef[4]

muhat = fit$coef[5]

zhat = x[(p + 1):n] - (muhat + phi1hat * (x[4:(n - 1)] - muhat) +

phi2hat * (x[3:(n - 2)] - muhat) +

phi3hat * (x[2:(n - 3)] - muhat) +

phi4hat * (x[1:(n - 4)] - muhat))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = m)

pacf(zhat, lag.max = m)

The results are displayed in Figure 9.32. The residuals do not appear to have any

cyclic variation, trend, or serial correlation.

(b) There are no sample autocorrelation function values that fall outside of the limits

±1.96/
√

n in the plot in Figure 9.32 of the first 40 sample autocorrelation function

values associated with the residuals. Since we expect 40 · 0.05 = 2 values to fall

outside of these limits in the case of a good fit, we fail to reject H0 in this case.

The fit of the AR(4) model is not rejected by this test.

(c) The additional R statements below calculate the Box–Pierce test statistic and the

Ljung–Box test statistic and the associated p-values using the built-in Box.test

function.

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 5)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 5)

The Box–Pierce test statistic is 19.6 and the associated p-value is p = 0.984. The

Ljung–Box test statistic is 36.1 and the associated p-value is p = 0.418. We fail

to reject H0 in both tests based on the chi-square critical value with 40− 5 = 35

degrees of freedom. Since both p-values exceed 0.05, the fit of the AR(4) model

is not rejected by these tests.

(d) The following additional R statements calculate the test statistic and the p-value

for the turning point test applied to the time series consisting of the n− 4 = 51

residual values for the AR(4) fit to the transformed annual lynx pelt sales time

series.
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Figure 9.32: Time series plot, rk, and r∗k for n−4 = 51 residuals from AR(4) fitted model.

n = n - 4

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1

}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for

the turning point test. The test statistic is 0.1127 and the p-value is p = 0.91. The

turning point test detected 33 turning points in the time series of the 51 residuals,

and that is about the number that we expect to have if the residuals from the fitted

AR(4) time series model of the transformed annual lynx pelt sales were mutually
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independent random variables. We again fail to reject the null hypothesis in this

case. The fit of the AR(4) model is not rejected by this test.

(e) The residuals are standardized by dividing by their sample standard deviation. The

following additional R statements plot a histogram of the standardized residuals

using the hist function and a QQ plot to assess normality using the qqnorm

function.

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.33. The histogram shows that all standardized

residuals fall between−3 and 3, but deviate significantly from a bell-shaped prob-

ability distribution, particularly in the right-hand tail. The horizontal axis on the

histogram is the standardized residual and the vertical axis is the frequency. The

QQ plot shows considerable nonlinearity, indicating a possible departure from nor-

mality based on the n− 4 = 51 residuals plotted. The horizontal axis on the QQ

plot is the standardized theoretical quantile and the vertical axis is the associated

normal data quantile. These plots indicate that a formal statistical goodness-of-fit

test for normality should be conducted in order to assess whether Gaussian white

noise is appropriate for the residuals of the fitted AR(4) time series model based

on these two plots.

In summary, the model adequacy tests applied to the residuals on the AR(4) time series

model of the transformed observations of the annual lynx pelt sales have revealed that

the mutual independence of the residuals cannot be rejected by four statistical tests. The

histogram and QQ plot of the residuals appear to not support the assumption of normally

distributed residuals. We conclude that the AR(4) time series model is an adequate

model for the transformed annual lynx pelt sales at the Hudson’s Bay Company time

series, with the exception of non-Gaussian error terms apparent in Figure 9.33. Another

way to visually assess the adequacy of the time series model is to inspect time series

plots of simulations of the fitted model, which is left as an exercise.
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Figure 9.33: Histogram (left) and QQ plot (right) of the fitted AR(4) standardized residuals.
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Forecasting

We now consider the question of forecasting future values of a time series that is governed

by a shifted AR(p) time series model. In the case of the annual lynx pelt sales time series, this

corresponds to the one-step-ahead forecast for 1912, the two-steps-ahead forecast for 1913, the

three-steps-ahead forecast for 1914, etc. To review forecasting notation, the observed time series

values are x1, x2, . . . , xn. The forecast is being made at time t = n. The random future value of the

time series that is h time units in the future is denoted by Xn+h. The associated forecasted value is

denoted by X̂ n+h, and is the conditional expected value

X̂ n+h = E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

We would like to find this forecasted value and an associated prediction interval for a shifted AR(p)

model. As in Section 8.2.2, we assume that all parameters are known in the derivations that follow.

We also assume that the parameters φ1, φ2, . . . , φp correspond to a stationary shifted AR(p) time

series model and p < n.

The shifted AR(p) model is

Xt −µ = φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt .

Replacing t by n+1 and solving for Xn+1, this becomes

Xn+1 = µ+φ1 (Xn−µ)+φ2 (Xn−1−µ)+ · · ·+φp (Xn−p+1−µ)+Zn+1.

Taking the conditional expected value of each side of this equation results in the one-step-ahead

forecast

X̂ n+1 = µ+φ1 (xn−µ)+φ2 (xn−1−µ)+ · · ·+φp (xn−p+1−µ)

because the final p observations xn−p+1, xn−p+2, . . . , xn in the time series x1, x2, . . . , xn have already

been observed. The forecasted value at time n+1 is a function of the final p values in the time series.

Applying this same process to the predicted value at time n+2 results in the time series model

Xn+2 = µ+φ1 (Xn+1−µ)+φ2 (Xn−µ)+ · · ·+φp (Xn−p+2−µ)+Zn+2.

This time, the value of Xn+1 has not been observed, so we replace it by its forecasted value when

taking the conditional expected value of both sides of the equation

X̂ n+2 = µ+φ1

(
X̂ n+1−µ

)
+φ2 (xn−µ)+ · · ·+φp (xn−p+2−µ) ,

because xn−p+2, xn−p+3, . . . , xn have already been observed. Continuing in this fashion, a recursive

formula for the forecasted value of Xn+h is

X̂ n+h = µ+φ1

(
X̂ n+h−1−µ

)
+φ2

(
X̂ n+h−2−µ

)
+ · · ·+φp

(
X̂ n+h−p−µ

)
.

Although we would prefer an explicit formula, the recursive formula is easy to implement for an ob-

served time series x1, x2, . . . , xn. As in the case of the AR(1) and AR(2) models, long-term forecasts

for a stationary AR(p) time series model tend to µ as the time horizon h→ ∞.

We would like to pair the point estimator X̂ n+h with an interval estimator, which is a prediction

interval in this setting. The prediction interval gives us an indication of the precision of the forecast.

In order to derive an exact two-sided 100(1−α)% prediction interval for Xn+h, it is helpful to write

the shifted AR(p) model as a shifted MA(∞) model. The coefficients θ1, θ2, . . . of a stationary

shifted AR(p) model written as an MA(∞) model

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 + · · ·
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are given in terms of φ1, φ2, . . . , φp as was illustrated for p = 4 in Example 9.23. Consider this

model at time t = n+ 1. Since the error terms Zn, Zn−1, Zn−2, . . . are unknown but fixed because

they are associated with the observed time series x1, x2, . . . , xn, the conditional population variance

of Xn+1 is

V [Xn+1] =V [Zn+1] = σ2
Z

because the population variance of µ is zero and Zn+1 is the only random term in the model. The

error terms at time n and prior are observed and can therefore be treated as constants. Likewise,

considering the MA(∞) model at time t = n+2, the conditional population variance of Xn+2 is

V [Xn+2] =V [Zn+2 +θ1Zn+1] =
(
1+θ2

1

)
σ2

Z .

Similarly, the conditional population variance of Xn+3 is

V [Xn+3] =V [Zn+3 +θ1Zn+2 +θ2Zn+1] =
(
1+θ2

1 +θ2
2

)
σ2

Z .

Continuing in this fashion, the conditional population variance of Xn+h is

V [Xn+h] =
(
1+θ2

1 +θ2
2 + · · ·+θ2

h−1

)
σ2

Z .

If we assume that the white noise terms in the MA(∞) representation of the AR(p) time series model

are Gaussian white noise terms, then Xn+h is also normally distributed because a linear combination

of mutually independent normal random variables is also normally distributed. So an exact two-

sided 100(1−α)% prediction interval for X̂ n+h is

X̂ n+h− zα/2

√
1+θ2

1 +θ2
2 + · · ·+θ2

h−1 σZ < Xn+h < X̂ n+h + zα/2

√
1+θ2

1 +θ2
2 + · · ·+θ2

h−1 σZ .

In most practical problems, the parameters in this prediction interval will be estimated from data,

which results in the following approximate two-sided 100(1− α)% prediction interval provided

next.

Theorem 9.24 For a stationary shifted AR(p) time series model, a forecasted value of Xn+h can

be calculated by the recursive equation

X̂ n+h = µ̂ + φ̂1

(
X̂ n+h−1− µ̂

)
+ φ̂2

(
X̂ n+h−2− µ̂

)
+ · · ·+ φ̂p

(
X̂ n+h−p− µ̂

)
,

where X̂ n+1 = µ̂ + φ̂1 (xn− µ̂ )+ φ̂2 (xn−1− µ̂ )+ · · ·+ φ̂p (xn−p+1− µ̂ ). An approximate two-sided

100(1−α)% prediction interval for Xn+h is

X̂ n+h− zα/2

√
1+ θ̂2

1 + θ̂2
2 + · · ·+ θ̂2

h−1 σ̂Z < Xn+h < X̂ n+h + zα/2

√
1+ θ̂2

1 + θ̂2
2 + · · ·+ θ̂2

h−1 σ̂Z ,

where θ̂1, θ̂2, . . . are the estimated coefficients in the MA(∞) model associated with the estimated

AR(p) model.

Example 9.31 For the time series of annual lynx pelt sales x1, x2, . . . , x55 from Ex-

ample 9.29, forecast the next five values (for years 1912–1916) in the time series and

give approximate 95% prediction intervals for the forecasted values assuming that the

transformed values in the time series arise from a shifted AR(4) time series model with

parameters estimated by maximum likelihood.
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The R code below uses the ar function to estimate the parameters in the shifted AR(4)

time series model to the natural logarithm of the time series values via maximum like-

lihood estimation. The predict function implements Theorem 9.24 to calculate the

forecasted values and associated standard errors for the fitted AR(4) model. These stan-

dard errors can be used to calculate approximate 95% prediction interval limits. The R

exp function is used to convert the forecasted values X̂ t+h, whose units are the natu-

ral logarithm of the annual number of lynx pelts sold, back to the original time series,

whose units are the annual number of lynx pelts sold.

y = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926, 5437,

16498, 35971, 76556, 68392, 37447, 45686, 7942, 5123, 7106,

11250, 18774, 30508, 42834, 27345, 17834, 15386, 9443, 7599,

8061, 27187, 51511, 74050, 78773, 33899, 18886, 11520, 8352,

8660, 12902, 20331, 36853, 56407, 39437, 26761, 15185, 4473,

5781, 9117, 19267, 36116, 58850, 61478, 36300, 9704, 3410, 3774)

x = log(y)

z = qnorm(0.975)

model = ar(x, order.max = 4, aic = FALSE, method = "mle")

forecast = predict(model, n.ahead = 40)

xhat = exp(forecast$pred)

pred.lo = exp(forecast$pred - z * forecast$se)

pred.hi = exp(forecast$pred + z * forecast$se)

The results for the first five forecasted values are summarized in Table 9.13.

Time t = 56 t = 57 t = 58 t = 59 t = 60

Year 1912 1913 1914 1915 1916

Forecast 5750 14,639 41,540 74,000 75,380

Lower prediction bound 3078 6642 17,962 31,907 31,031

Upper prediction bound 10,742 32,263 96,067 171,620 183,116

Table 9.13: Forecasts and 95% prediction intervals for the annual lynx pelt sales.

For the first time, we have encountered prediction interval bounds which are not sym-

metric about the point estimate because of the exponentiation of the forecasted values

and their prediction intervals. The widths of the prediction intervals in Table 9.13 tend

to increase with the predicted value. The first forecasted value has 95% prediction in-

terval

3078 < Y56 < 10,742

and the fifth forecasted value has the considerably wider 95% prediction interval

31,031 < Y60 < 183,116.

Figure 9.34 shows (a) the original time series y1, y2, . . . , y55 as points (•) connected

by lines, (b) the first 40 forecasted annual lynx pelt sales Ŷ56, Ŷ57, . . . , Ŷ95 as open

circles (◦), and (c) the 95% prediction intervals as a shaded region. There are six key

observations concerning Figure 9.34.
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Figure 9.34: Annual lynx pelt sales forecasts and 95% prediction intervals.

• The forecasted values exhibit a similar periodicity to that of the original time se-

ries.

• The forecasted values seem to be reasonable estimates of the future values of the

time series for the first cycle or two.

• The widths of the 95% prediction intervals associated with h = 7, 8, . . . , 12 are

considerably narrower than the width of the 95% prediction interval at h = 5.

So unlike the previous two time series (the active beaver temperatures fit to the

AR(1) model in Example 9.10 and the Lake Huron levels fit to the AR(2) model

in Example 9.21), the prediction interval widths do not increase monotonically in

h.

• The amplitude of the cycles of the forecasted values decreases with time. As the

time horizon h increases, it becomes less certain where the time series is in a cycle,

so the forecasts converge to µ̂ = ȳ= 25,600 pelts sold annually. Depending on the

application, this might not be a welcome aspect of the forecasted values. Using

a time series model that explicitly contains a cyclic component might be more

appropriate for forecasting in this setting.

• The random sampling variability which is evident in the observed time series val-

ues y1, y2, . . . , x55 is less evident in the forecasted values Ŷ56, Ŷ57, . . . , Ŷ95. Ob-

served time series values tend to exhibit the typical random sampling variability;

forecasted values for a stationary shifted AR(4) time series model of the trans-

formed time series tend to be smooth.

This subsection has introduced the AR(p) time series model. The important results for an AR(p)

model are listed below.

• The standard AR(p) model can be written algebraically and with the backshift operator B as

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt and φ(B)Xt = Zt ,

where φ(B)= 1−φ1B−φ2B2−·· ·−φpBp is the characteristic polynomial and Zt ∼WN
(
0, σ2

Z

)

(Definition 9.3).
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• The shifted AR(p) model can be written algebraically and with the backshift operator B as

(Theorem 9.20)

Xt−µ= φ1 (Xt−1−µ)+φ2 (Xt−2−µ)+ · · ·+φp (Xt−p−µ)+Zt and φ(B)(Xt −µ)= Zt .

• The AR(p) model is always invertible; the AR(p) model is stationary when the solutions of

φ(B) = 0 all lie outside of the unit circle in the complex plane (Theorem 8.3).

• The AR(p) population autocorrelation function is a mixture of damped exponential functions,

associated with real roots of φ(B), and damped sinusoidal functions, associated with complex

roots of φ(B) (Theorem 9.18).

• The AR(p) population partial autocorrelation function cuts off after lag p (Theorem 9.19),

making its shape easier to recognize than the population autocorrelation function for the sta-

tistical counterparts associated with a realization of a time series.

• The stationary shifted AR(p) model can be written as a shifted MA(∞) model (as illustrated

in Example 9.23).

• The p+2 parameters in the shifted AR(p) model, µ, φ1, φ2, . . . , φp, and σ2
Z , can be estimated

from a realization of a time series x1, x2, . . . , xn by the method of moments (Theorem 9.21),

least squares (Theorem 9.22), and maximum likelihood. The point estimators for µ, φ1, φ2,

. . . , φp, and σ2
Z are denoted by µ̂ , φ̂1, φ̂2, . . . , φ̂p, and σ̂2

Z , and are typically paired with

asymptotically exact two-sided 100(1−α)% confidence intervals (Theorem 9.23).

• The forecasted value X̂ n+h in a shifted AR(p) model is a function of the last p values in an

observed time series x1, x2, . . . , xn and can be calculated by a recursive formula. The forecast

approaches µ̂ = x̄ as the time horizon h→∞. The associated prediction interval has width that

increases as h increases and approaches a limit as the time horizon h→ ∞ (Theorem 9.24).

9.1.4 Computing

The R time series functions used in this section are summarized here. The ARMAacf function com-

putes the population autocorrelation function or the population partial autocorrelation function for

an ARMA(p, q) time series model. The generic version of the function is

ARMAacf(ar = numeric(), ma = numeric(), lag.max = r, pacf = FALSE)

where ar is a vector containing the autoregressive coefficients φ1, φ2, . . . , φp, ma is a vector contain-

ing the moving average coefficients θ1, θ2, . . . , θq, lag.max contains the number of lags required,

and pacf is a logical object. The function returns ρ(0), ρ(1), . . . , ρ(lag.max) when pacf is FALSE,

or ρ∗(1), ρ∗(2), . . . , ρ∗(lag.max) when pacf is TRUE. The ARMAacf function is illustrated in Ex-

ample 9.25.

The arima.sim function generates a simulation of a time series. The generic version of the

function is

arima.sim(model, n, rand.gen = rnorm, innov = rand.gen(n, ...),

n.start = NA, start.innov = rand.gen(n.start, ...),

...)
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where model is a list with components ar containing the autoregressive coefficients φ1, φ2, . . . , φp,

and ma containing the moving average coefficients θ1, θ2, . . . , θq, n is the length of the simulated

time series to be generated, rand.gen is a function to generate the white noise terms, n.start is

the length of the warm-up period, and start.innov is a time series of white noise terms used in

the warm-up period. The returned value is a vector containing the n simulated time series values

x1, x2, . . . , xn. The arima.sim function is illustrated in Examples 9.2, 9.13, and 9.18. The warm-up

period associated with the arima.sim function can be avoided by generating initial values from the

appropriate multivariate distribution. For an AR(1) model with Gaussian white noise error terms,

the rnorm function, whose generic syntax is

rnorm(n, mean = 0, sd = 1)

where n is the number of random variates to generate, mean is the population mean, and sd is the

population standard deviation, can be used to seed the simulated time series. The rnorm function is

illustrated in Example 9.1. For an AR(p) model, with p > 1, with Gaussian white noise error terms,

the mvrnorm function from the MASS package, whose generic syntax is

mvrnorm(n = 1, mu, Sigma, tol = 1e-6, empirical = FALSE, EISPACK = FALSE)

where n is the number of random vectors to generate, mu is the population mean vector, and Sigma

is the population variance–covariance matrix, can be used to seed the simulated time series. The

mvrnorm function is illustrated in Examples 9.12 and 9.26.

When determining parameter estimates that cannot be expressed in closed form, the optim func-

tion provides general-purpose optimization capability that can be applied to minimizing the sum of

squares to find the least squares estimates or maximizing the log likelihood function to find the

maximum likelihood estimators. The generic syntax for optim is

optim(par, fn, gr = NULL, ...,

method = c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent"),

lower = -Inf, upper = Inf, control = list(), hessian = FALSE)

where par is a vector containing initial parameter estimates and fn is the function to be minimized

(by default). The optim function is illustrated in Examples 9.5, 9.6, and 9.16. A parameter estima-

tion function that is exclusively for autoregressive time series models is ar. The generic format for

ar is

ar(x, aic = TRUE, order.max = NULL,

method = c("yule-walker", "burg", "ols", "mle", "yw"),

na.action, series, ...)

where x is a vector containing the observed time series values, aic is a logical variable (TRUEmeans

that the Akaike Information Criterion is used to choose the order of the model and FALSE means

that an autoregressive model of order order.max is fitted), order.max is maximum order of the

autoregressive model to fit, method is the estimation method ("yule-walker" or "yw" for Yule–

Walker, "burg" for Burg’s algorithm, "ols" for least squares, "mle" for maximum likelihood), and

na.action indicates how to handle missing values in the time series. The ar function is illustrated

in Examples 9.7, 9.8, 9.10, 9.17, 9.19, 9.21, 9.27, 9.28, and 9.31. The arima function also estimates

parameters from an observed time series. The generic format for arima is

arima(x, order = c(0L, 0L, 0L),

seasonal = list(order = c(0L, 0L, 0L), period = NA),
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xreg = NULL, include.mean = TRUE, transform.pars = TRUE,

fixed = NULL, init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond,

SSinit = c("Gardner1980", "Rossignol2011"), optim.method = "BFGS",

optim.control = list(), kappa = 1e6)

where x is a vector containing the observed time series values, order is a vector containing the

values of p, d, and q, include.mean is a logical variable (TRUE includes estimation of a population

mean term µ and FALSE estimates just the parameters in the standard model), and method is CSS

(conditional sum of squares) or ML (maximum likelihood). The arima function is illustrated in

Examples 9.9, 9.18, 9.20, and 9.29.

Three functions were introduced in this section for assessing model adequacy. The Box.test

function computes the Box–Pierce or Ljung–Box test statistic and associated p-value. The generic

syntax is

Box.test(x, lag = 1, type = c("Box-Pierce", "Ljung-Box"), fitdf = 0)

where x is a vector containing the observed time series values, lag is the number of sample auto-

correlation function values to be used in the test, type is either "Box-Pierce" or "Ljung-Box",

and fitdf is the number of degrees of freedom to be subtracted in the case of x being a time series

of residuals. The Box.test function is illustrated in Examples 9.8, 9.19, and 9.30, along with the

hist and qqnorm functions, which are helpful in visually assessing the normality of the residuals.

Forecasting can be performed automatically using the generic predict function, which calcu-

lates predicted values of a time series from a fitted function. The predict function is illustrated in

Examples 9.10, 9.21, and 9.31.

More details on the R functions used in this section can be found using the help function.

Sample invocations of the functions are displayed using the example function.

This concludes the introduction to the autoregressive time series model, with subsections devoted

to the AR(1), AR(2), and AR(p) models. An analogous treatment of moving average models is

contained in the next section.

9.2 Moving Average Models

Moving average models for a time series will be introduced in this section. A moving average model

of order q is a special case of an ARMA(p, q) model with no autoregressive terms (that is, p = 0)

and q moving average terms, specified as

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

where θ1, θ2, . . . , θq are real-valued parameters and {Zt} is a time series of white noise. Rather

than diving right into an MA(q) model, we first have separate subsections for the MA(1) and MA(2)

models because the mathematics are somewhat easier than the general case and some important

geometry and intuition can be developed with these restricted models. In the subsection on the

MA(1) model that follows, we will

• define the time series model for {Xt},

• determine the values of the parameters associated with an invertible model,

• derive the population autocorrelation and partial autocorrelation functions,
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• develop algorithms for simulating observations from the time series,

• inspect simulated realizations to establish patterns, and

• estimate parameters from a time series realization {xt}.

The important steps of model assessment, model selection, and forecasting future values of the

times series are left as exercises because they follow along the same lines as those steps for the

autoregressive models covered in the previous section.

The purpose of deriving the population autocorrelation and partial autocorrelation functions is

to build an inventory of shapes and patterns for these functions that can be used to identify tentative

time series models from their sample counterparts by making a visual comparison between popula-

tion and sample versions. This inventory of shapes and patterns plays an analogous role to knowing

the shapes of various probability density functions (for example, the bell-shaped normal probability

density function or the rectangular-shaped uniform distribution) in the analysis of univariate data

in which the shape of the histogram is visually compared to the inventory of probability density

function shapes.

In the MA(1) subsection that follows, a single example of a time series will be carried through

the various statistical procedures given in the list above. Stationarity plays a critical role in time

series analysis because we are not able to forecast future values of the time series without knowing

that the probability model is stable over time. This is why the visual assessment of a plot of the time

series is always a critical first step in the analysis of a time series. Fortunately, all MA(q) time series

models are stationary.

9.2.1 The MA(1) Model

The moving average model with one term is the simplest of the ARMA family of time series models

in terms of the ability to derive probabilistic properties.

Definition 9.4 A first-order moving average time series model, denoted by MA(1), for the time

series {Xt} is defined by

Xt = Zt +θZt−1,

where θ is a real-valued parameter and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

An observed value in the time series, Xt , is given by the current white noise term, plus the

parameter θ multiplied by the white noise term from one time period ago. No subscript is necessary

on the θ parameter because there is only one θ parameter in the MA(1) model. So there are two

parameters that define an MA(1) model: the coefficient θ and the population variance of the white

noise σ2
Z .

Some authors prefer to parameterize the MA(1) model as

Xt = θ0Zt +θ1Zt−1,

where θ0 and θ1 are real-valued parameters. We avoid this parameterization because the θ0 param-

eter is redundant in the sense that the population variance of the white noise σ2
Z is absorbed into the

θ0 parameter. Also, some authors use a − rather than a + between two terms on the right-hand side

of the model.
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To illustrate the thinking behind the MA(1) model in a specific context, let Xt represent the

monthly unemployment, as a percentage, in month t. The MA(1) model indicates that this month’s

unemployment, denoted by Xt , equals θ multiplied by last month’s random white noise term, θZt−1,

plus this month’s random white noise term Zt .

MA(1) models are used less often than autoregressive models, and this is partly due to more

limited potential shapes for the population autocorrelation function, as will be seen next.

Stationarity and the Population Autocorrelation Function

One initial important question concerning the MA(1) model is whether or not the model is sta-

tionary. Rather than appealing to Theorem 8.4, we show this below using first principles. Recall

from Definition 7.6 that a time series model is stationary if (a) the expected value of Xt is constant

for all t, and (b) the population covariance between Xs and Xt depends only on the lag |t− s|. The

expected value of Xt is

E [Xt ] = E [Zt +θZt−1] = E [Zt ]+θE [Zt−1] = 0

for all values of the parameters θ and σ2
Z , and all values of t. Using the defining formula for popula-

tion covariance, the population autocovariance function is

γ(s, t) = Cov(Xs, Xt)

= E
[
(Xs−E [Xs]) (Xt −E [Xt ])

]

= E [XsXt ]

= E
[
(Zs +θZs−1)(Zt +θZt−1)

]

= E [ZsZt ]+θE [Zs−1Zt ]+θE [ZsZt−1]+θ2E [Zs−1Zt−1]

=





V [Zt ]+θ2V [Zt−1] |t− s|= 0

θV [Zt ] |t− s|= 1

0 |t− s|= 2, 3, . . .

=





(
1+θ2

)
σ2

Z |t− s|= 0

θσ2
Z |t− s|= 1

0 |t− s|= 2, 3, . . . .

Since E [Xt ] = 0 for all values of t and the population autocovariance function depends only on the

lag |t− s|, we conclude that the MA(1) time series model is stationary. Furthermore, the population

autocovariance function can be expressed in terms of the lag k as

γ(k) =





(
1+θ2

)
σ2

Z k = 0

θσ2
Z k = 1

0 k = 2, 3, . . . .

Dividing by the population autocovariance function by γ(0) = V [Xt ] =
(
1+θ2

)
σ2

Z gives the popu-

lation autocorrelation function

ρ(k) =





1 k = 0

θ/
(
1+θ2

)
k = 1

0 k = 2, 3, . . . .

This derivation constitutes a proof of the following result.
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Theorem 9.25 The MA(1) time series {Xt} is stationary for all values of the parameters θ and σ2
Z

with population autocorrelation function

ρ(k) =





1 k = 0

θ/
(
1+θ2

)
k = 1

0 k = 2, 3, . . . .

So the population autocorrelation function consists of a single nonzero value at lag 1 for a

nonzero parameter θ and zero values thereafter. Six important observations concerning this pop-

ulation autocorrelation function are given below.

• The sign of ρ(1) is the same as the sign of θ.

• The population autocorrelation function cuts off after lag 1 for an MA(1) time series model.

The time series model has a “memory” of just one time period. Figure 9.35 illustrates the

relationship between the white noise values {Zt} and the MA(1) time series observations

{Xt}. Observations of the time series that are two or more time periods apart, such as X2 and

X4, have no white noise terms in common, so the lag 2 population autocorrelation, ρ(2), is

zero. The third observation in the time series X3, for example, shares the white noise term

Z2 with X2 and the white noise term Z3 with X4, but is not affected by any white noise terms

before Z2 or after Z3.

white noise −→ Z0 Z1 Z2 Z3 Z4 Z5 Z6 . . .

X1

X2

X3

X4

X5

X6

︸ ︷︷ ︸ ︸ ︷︷ ︸ ︸ ︷︷ ︸
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

Figure 9.35: Relationship between white noise {Zt} and {Xt} for an MA(1) model.

• The lag 1 population autocorrelation ρ(1) = θ/
(
1+θ2

)
can be written as a quadratic equation

in θ as

ρ(1)θ2−θ+ρ(1) = 0.

For nonzero values of θ, the two roots of this quadratic equation are both positive or both

negative. Furthermore, a little algebra reveals that the product of the two roots of this quadratic

equation equals 1. Figure 9.36 shows the parabolas associated with this quadratic equation

for ρ(1) = 2/5 (with associated roots θ = 1/2 and θ = 2) and ρ(1) = −2/5 (with associated

roots θ =−1/2 and θ =−2).

• The value ρ(1) must lie in the interval −1/2 ≤ ρ(1) ≤ 1/2. This can be seen in the plot of

ρ(1) = θ/
(
1+θ2

)
versus θ given by the solid curve in Figure 9.37, which indicates that ρ(1)

is minimized at ρ(1) = −1/2 when θ = −1 and maximized at ρ(1) = 1/2 when θ = 1. This

constraint means that the MA(1) model is more limited in application than the autoregressive

models from the previous chapter. In order to fit an MA(1) model to observed time series

values x1, x2, . . . , xn, it must be the case that (a) the length of the time series n is large enough

(about n = 50 or n = 60) to use an ARMA model, (b) the sample autocorrelation function has

a single statistically significant spike at lag 1, and (c) the statistically significant spike at lag 1

satisfies −1/2≤ r1 ≤ 1/2 to be compatible with the constraint −1/2≤ ρ(1)≤ 1/2.
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θ

g(θ)

−0.3
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ρ(1) = 2/5
ρ(1) =−2/5

Figure 9.36: The parabola g(θ) = ρ(1)θ2−θ+ρ(1) for ρ(1) = 2/5 and ρ(1) =−2/5.

• Figure 9.37 also reveals a more subtle aspect of the population lag 1 autocorrelation. Notice

that for θ = 1/2, the population lag 1 autocorrelation is ρ(1) = 2/5. But for θ = 2, the

population lag 1 autocorrelation is also ρ(1) = 2/5. The geometry associated with these two

values of θ resulting in the same value for ρ(1) is indicated by the dashed lines in Figure 9.37.

This problem is not just limited to θ = 1/2 and θ = 2; there are an infinite number of pairs

of θ values that will result in the same population lag 1 autocorrelation function value. More

generally, the MA(1) model

Xt = Zt +θZt−1

and the MA(1) model

Xt = Zt +
1

θ
Zt−1

have identical population autocorrelation functions. This means that there is not a one-to-one

θ

ρ(1)

−0.6
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−5 −4 −3 −2 −1 1 2 3 4 5

Figure 9.37: Graph of ρ(1) = θ/
(
1+θ2

)
versus θ for an MA(1) time series model.
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correspondence between a particular value of θ and the associated value of ρ(1). This brings

up the notion of invertibility, which was defined in Definition 8.3. An invertible time series

model has a unique value of θ in the MA(1) model corresponding to a particular population

autocorrelation function.

Invertibility

All MA(1) models are stationary per Theorem 8.3 because there are a finite number of moving

average terms in Definition 9.4. Recall from Definition 8.3 that an ARMA(p, q) time series model

for {Xt} is invertible if the white noise term at time t can be expressed as

Zt =
∞

∑
j=0

π jXt− j,

where the coefficients π j satisfy
∞

∑
j=0

π2
j < ∞.

There are no restrictions on θ necessary to ensure stationarity for an MA(1) model. However,

it can be advantageous to restrict the values of θ in order to achieve invertibility. Returning to

Figure 9.37, we can use the definition of invertibility to determine whether we use |θ|< 1 or |θ|> 1

for the invertibility region for an MA(1) model.

Just as we were able to write an AR(1) time series model as an MA(∞) time series model in

Section 9.1.1, we now perform the algebraic steps necessary to write an MA(1) time series model

as an AR(∞) time series model. We want to write Zt in terms of current and previous values of Xt as

shown in Definition 8.3. To begin, recall that the MA(1) model given by

Xt = Zt +θZt−1

can be shifted in time and is equally valid for other t values, for example,

Xt−1 = Zt−1 +θZt−2

Xt−2 = Zt−2 +θZt−3

... =
...

These formulas can be solved for Zt−1, Zt−2, . . . as

Zt−1 = Xt−1−θZt−2

Zt−2 = Xt−2−θZt−3

... =
...

Making successive substitutions into the MA(1) model results in

Xt = Zt +θZt−1

= Zt +θ(Xt−1−θZt−2)

= Zt +θXt−1−θ2Zt−2

= Zt +θXt−1−θ2 (Xt−2−θZt−3)
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= Zt +θXt−1−θ2Xt−2 +θ3Zt−3

...

= Zt +θXt−1−θ2Xt−2 +θ3Xt−3−θ4Xt−4 + · · · .

This can be recognized as an AR(∞) time series model.

Theorem 9.26 An MA(1) model with parameter θ can be written as the AR(∞) model

Xt = Zt +θXt−1−θ2Xt−2 +θ3Xt−3−θ4Xt−4 + · · · .

Representing an MA(1) model as an AR(∞) model is known as duality. Solving this equation

for Zt gives

Zt = Xt −θXt−1 +θ2Xt−2−θ3Xt−3 +θ4Xt−4−·· · ,
which is the form required for Definition 8.3. So the coefficients π0, π1, π2, . . . for the MA(1) model

from Definition 8.3 are

π0 = 1, π1 =−θ, π2 = θ2, π3 =−θ3, π4 = θ4, . . . ,

or in general, π j = (−θ) j, for j = 0, 1, 2, . . . . Definition 8.3 requires that

∞

∑
j=0

∣∣π j

∣∣=
∞

∑
j=0

∣∣∣(−θ) j
∣∣∣= 1+θ+θ2 +θ3 + · · ·< ∞

to achieve stationarity. This summation is a geometric series that converges when |θ|< 1, so this is

the invertibility region for an MA(1) model.

Theorem 9.27 The MA(1) time series model is invertible when −1 < θ < 1.

The invertibility criterion −1 < θ < 1 ensures that each value of θ in the interval corresponds

to a unique MA(1) time series model. Stated in another fashion, invertibility implies that there is a

one-to-one correspondence between the value of the θ parameter and the population autocorrelation

function.

The MA(1) time series model can be written in terms of the backshift operator B as

Xt = (1+θB)Zt = Zt +θZt−1.

Doubling up the use of θ as a function name, the expression

θ(B) = 1+θB

is the characteristic polynomial for the MA(1) model. Notice that the MA(1) model is invertible

when |θ| < 1, which corresponds to the root of θ(B) = 0 falling outside of the interval [−1, 1].
Solving θ(B) = 1+ θB = 0 results in B = −1/θ. This notion will be generalized in the next two

subsections for higher-order MA models as the roots of θ(B) = 0 falling outside of the unit circle in

the complex plane to establish invertibility.

Now that stationarity for all MA(1) time series models has been established, the condition for

invertibility has been established, and the population autocorrelation function has been derived, we

turn to determining the partial autocorrelation function.
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Population Partial Autocorrelation Function

The population partial autocorrelation function can be determined by using the defining for-

mula in Definition 7.4. The lag zero population partial autocorrelation is ρ∗(0) = 1. The lag one

population partial autocorrelation is ρ∗(1) = ρ(1) = θ/
(
1+θ2

)
. After a little algebra, the lag two

population partial autocorrelation is

ρ∗(2) =

∣∣∣∣
1 ρ(1)

ρ(1) ρ(2)

∣∣∣∣
∣∣∣∣

1 ρ(1)
ρ(1) 1

∣∣∣∣
=

ρ(2)− [ρ(1)]2

1− [ρ(1)]2
=− [ρ(1)]2

1− [ρ(1)]2
=−θ2

(
1−θ2

)

1−θ6
.

The lag three population partial autocorrelation is

ρ∗(3) =

∣∣∣∣∣∣

1 ρ(1) ρ(1)
ρ(1) 1 ρ(2)
ρ(2) ρ(1) ρ(3)

∣∣∣∣∣∣
∣∣∣∣∣∣

1 ρ(1) ρ(2)
ρ(1) 1 ρ(1)
ρ(2) ρ(1) 1

∣∣∣∣∣∣

=
[ρ(1)]3

1−2[ρ(1)]2
=

θ3
(
1−θ2

)

1−θ8
.

This pattern generalizes to the lag k population partial autocorrelation

ρ∗(k) =
(−1)k+1θk

(
1−θ2

)

1−θ2(k+1)

for k = 1, 2, . . . , which can also be written as

ρ∗(k) =
(−1)k+1θk

1+θ2 +θ4 + · · ·+θ2k

for k = 1, 2, . . . . This constitutes a proof of the following result.

Theorem 9.28 The invertible MA(1) time series model for {Xt} with −1 < θ < 1 has population

partial autocorrelation function

ρ∗(k) =
(−1)k+1θk

(
1−θ2

)

1−θ2(k+1)

for k = 1, 2, . . . .

When θ= 0, both the population autocorrelation function and the partial autocorrelation function

have just a single spike at ρ(0) = ρ∗(0) = 1; the MA(1) model reduces to just white noise in this

case. When 0 < θ < 1, ρ(1) > 0 and ρ∗(k) tails out and alternates in sign. When −1 < θ < 0,

ρ(1)< 0 and ρ∗(k) tails out and is negative for k = 1, 2, . . . .

Example 9.32 Plot the first eight lags of the population autocorrelation function ρ(k)
and the population partial autocorrelation function ρ∗(k) for an MA(1) model with

θ = 0.9.

The values of the population autocorrelation function and the population partial auto-

correlation function can be calculated using the formulas in Theorems 9.25 and 9.28,

respectively, or by calling the built-in R ARMAacf function as shown below.
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ARMAacf(ar = 0, ma = 9 / 10, 8)

ARMAacf(ar = 0, ma = 9 / 10, 8, pacf = TRUE)

The plots of these functions are displayed in Figure 9.38. As expected for an MA(1)

model, the population autocorrelation function cuts off after lag 1 and the population

partial autocorrelation alternates in sign and tails out.

0 1 2 3 4 5 6 7 8

−1

0

1

0 1 2 3 4 5 6 7 8

−1

0

1

kk

ρ(k) ρ∗(k)

Figure 9.38: Graphs of ρ(k) (left) and ρ∗(k) (right) for an MA(1) model with θ = 9/10.

The Shifted MA(1) Model

The population mean function for the MA(1) model is E [Xt ] = 0, which is not of much use in

practice because most real-world time series are not centered around zero. Adding a third parameter

µ to overcome this shortcoming results in the enhanced MA(1) model

Xt = µ+Zt +θZt−1,

which has population mean function E [Xt ] = µ and population autocorrelation function and popu-

lation autocorrelation function given in Theorems 9.25 and 9.28 because population variance and

covariance are unaffected by a shift in the time series model. There are now three parameters for the

time series model: µ, θ, and σ2
Z .

Theorem 9.29 A shifted first-order moving average model for the time series {Xt} is defined by

Xt = µ+Zt +θZt−1,

where µ, θ, and σ2
Z > 0 are real-valued parameters and {Zt} is a time series of white noise. This

model is invertible when −1 < θ < 1. This model is stationary for all values of the parameters µ,

θ, and σ2
Z . The expected value of Xt is E [Xt ] = µ. The population autocorrelation function and

partial autocorrelation function are given in Theorems 9.25 and 9.28.

Simulation

An MA(1) time series can be simulated by appealing to the defining formula for the MA(1)

model from Definition 9.4:

Xt = Zt +θZt−1.
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The algorithm given below generates an initial white noise value Z0, and then uses an additional n

white noise terms Z1, Z2, . . . , Zn to generate the time series values X1, X2, . . . , Xn using the MA(1)

defining formula. Indentation denotes nesting in the algorithm.

t← 0

generate Zt ∼WN
(
0, σ2

Z

)

while (t < n)
t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

Xt ← Zt +θZt−1

The three-parameter shifted MA(1) time series model that includes a population mean parameter

µ can be simulated by simply adding µ to each time series observation generated by this algorithm.

So to generate a realization of an MA(1) time series model in R, we must define (a) the value of θ,

(b) the distribution of the white noise, (c) the value of σ2
Z , and, if this is a shifted MA(1) model,

(d) the value of the shift parameter µ.

Example 9.33 Generate a realization of n = 100 observations from an MA(1) time

series model with θ = 9/10, Gaussian white noise terms, and σ2
Z = 1.

The parameter θ = 9/10 just barely falls in the invertibility region −1 < θ < 1. This

choice of θ results in a population lag 1 autocorrelation that is very close to its largest

possible value. The population lag 1 autocorrelation function value associated with this

model is

ρ(1) =
θ

1+θ2
=

9/10

1+(9/10)2
=

90

181
∼= 0.4972,

so we expect a nearby value for r1 from the simulated time series values. The R code

below generates n = 100 simulated time series values and places them in the vector

named x.

set.seed(37)

n = 100

z = rnorm(n + 1)

x = numeric(n)

theta = 0.9

for (t in 1:n) x[t] = z[t + 1] + theta * z[t]

Use the plot.ts function to plot the time series contained in x, the acf function to plot

the associated correlogram, and the pacf function plot the associated sample partial

autocorrelation function.

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x)

pacf(x)

The time series plot of the realization, the associated correlogram, and the associated

sample partial autocorrelation function for θ = 0.9 and standard normal noise terms are

given in Figure 9.39. A horizontal line is drawn on the time series plot at E [Xt ] = 0.
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Figure 9.39: Time series plot, rk, and r∗k for n = 100 simulated values from an MA(1) model.

The time series contains short runs above and below the population mean, which are

consistent with the statistically significant lag 1 sample autocorrelation function value

r1 = 0.450. This value is slightly smaller than the associated population value. The

sample autocorrelation function values at lags 2 through 15 do not differ from zero by

a statistically significant amount, except for the sample lag 10 autocorrelation function

value r10 =−0.207. This value falls just slightly outside of the 95% confidence bounds

±
zα/2√

n
=± z0.025√

100
=±1.96

10
=±0.196.

This spike in the correlogram is not considered statistically significant because (a) there

is nothing about the time series that would indicate that a lag of 10 is a special lag,

(b) the spike in the correlogram at lag 10 falls just slightly outside of the confidence

bounds, and (c) we expect 1 in 20 of the correlogram spikes to fall outside of the 95%

confidence bounds because of random sampling variability, even if the MA(1) model

were perfect (as it is in this case). The graphs of ρ(k) and ρ∗(k) mirror their population
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counterparts in Figure 9.38. You are encouraged to place these R statements in a for

loop (of course, with the set.seed call outside of the loop) that generates multiple

realizations of the MA(1) time series with a call to Sys.sleep to provide a short time

delay for you to inspect the trio of plots. This will give you a feel for how this MA(1)

time series, its correlogram, and its sample partial autocorrelation function vary from

one realization to the next.

Another way to think about a realization of an MA(1) model is to make scatterplots

of adjacent observations and observations that are two time units apart. The left-hand

plot in Figure 9.40 illustrates the positive sample correlation between xt−1 and xt for

the realization, which is consistent with the positive lag 1 population autocorrelation.

The n− 1 = 99 pairs of points plotted are the adjacent values in the realization of the

time series, (xt−1, xt). The population autocorrelation function cuts off after lag 1 for an

MA(1) time series model. This is supported by the right-hand plot in Figure 9.40, which

shows the n−2= 98 pairs (xt−2, xt) for the realization, which appear to be independent.

The regression lines have been added to each plot. The additional R statements below

indicate that the p-values for the statistical significance of the slopes associated with the

two plots are p = 9.3 ·10−7 and p = 0.65, respectively.

summary(lm(x[2:n] ~ x[1:(n - 1)]))

summary(lm(x[3:n] ~ x[1:(n - 2)]))

These p-values indicate that the slope of the line in the left-hand plot differs significantly

from zero, while the slope of the line in the right-hand plot does not differ significantly

from zero.
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Figure 9.40: Scatterplots of pairs of simulated MA(1) observations.

Example 9.34 Generate a realization of n = 100 observations from a shifted MA(1)

time series model with µ = 20, θ =−9/10, Gaussian white noise terms, and σ2
Z = 1.

This time series corresponds to the opposite extreme case of the MA(1) because the

coefficient θ =−0.9 also (barely) falls in the invertibility region −1 < θ < 1. We again
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assume that the Gaussian white noise has population variance σ2
Z = 1, but now include

a shift parameter µ = 20. The population lag 1 autocorrelation function value associated

with this model is

ρ(1) =
θ

1+θ2
=

−9/10

1+(−9/10)2
=− 90

181
∼=−0.4972.

So this choice of θ results in a population lag 1 autocorrelation that is very close to its

smallest possible value. The R code below simulates n = 100 observations from this

shifted MA(1) model. This code differs from the previous code in that it avoids the use

of a for loop, which is a more efficient way to generate observations in R. The time

series plot of the realization of n = 100 observations and the associated correlogram for

θ =−0.9 is given in Figure 9.41.

set.seed(37)

n = 100

z = rnorm(n + 1)
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Figure 9.41: Time series plot, rk, and r∗k for n = 100 simulated values from an MA(1) model.
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theta = -0.9

x = z[2:(n + 1)] + theta * z[1:n]

x = x + 20

The time series plot reveals that adjacent observations in the time series tend to be on

opposite sides of the population mean, which is consistent with the sample lag 1 auto-

correlation r1 =−0.524. The sample autocorrelation function values for lags 2 through

15 do not differ from zero by a statistically significant amount. So the sample autocor-

relation cuts off after lag 1 as expected. Furthermore, the sample partial autocorrelation

tails out as expected. The arima.sim function can also be used to generate a realization

of an MA(1) time series model using fewer keystrokes. The R single statement

x = 20 + arima.sim(list(ma = -0.9), n = 100)

generates 100 values from a shifted MA(1) model with θ = −0.9, µ = 20 and σ2
Z = 1.

The default probability distribution for the white noise terms is Gaussian white noise.

Having established the probabilistic properties of the MA(1) model, we now turn to statistical

topics, beginning with the estimation of the model parameters.

Parameter Estimation

There are several techniques for estimating the parameters in an MA(1) model; as was the case

for the autoregressive models, we look at the method of moments, least squares, and maximum like-

lihood estimation techniques separately. Parameter estimation is more difficult for moving average

models, as numerical methods are typically required to calculate the parameter estimates.

Approach 1: Method of moments. We begin with the shifted MA(1) model from Defini-

tion 9.4:

Xt = µ+Zt +θZt−1.

We want to estimate the three unknown parameters µ, θ, and σ2
Z from an observed time series {xt}. In

the case of the shifted MA(1) model, we match the population and sample (a) first-order moments,

(b) second-order moments, and (c) lag 1 autocorrelation. These will be written with upper case

values Xt although these will be replaced with numeric values xt for a particular observed time

series. Placing the population moments of the left-hand side of the equation and the associated

sample moments on the right-hand side of the equation results in three equations in three unknowns:

E [Xt ] =
1

n

n

∑
t=1

Xt

E
[
X2

t

]
=

1

n

n

∑
t=1

X2
t

ρ(1) = r1

or

µ = X̄

V [Xt ]+E [Xt ]
2 = γ(0)+µ2 =

(
1+θ2

)
σ2

Z +µ2 =
1

n

n

∑
t=1

X2
t

θ

1+θ2
= r1.
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The third equation is a quadratic equation in θ:

r1θ2−θ+ r1 = 0,

which corresponds to the parabolas in Figure 9.36, except that ρ(1) is replaced by r1. Using the

quadratic formula, the product of the two roots

θ =
1±
√

1−4r2
1

2r1

equals 1, so the root that falls within the invertibility region −1 < θ̂ < 1 should be chosen. Some

algebra shows that this can be done by always selecting the minus in the ± portion of the formula.

Once the point estimator θ̂ has been chosen, the first two equations can be solved as

µ̂ = X̄ and σ̂2
Z =

(1/n)∑n
t=1 X2

t − µ̂ 2

1+ θ̂2
.

It appears that we have closed-form solutions to the method of moments estimators, but there is a

subtle wrinkle in this derivation. Because of random sampling variability there is a chance that the

lag 1 sample autocorrelation r1 might be greater than 1/2 or less than −1/2, even if the population

time series model truly is a shifted MA(1) model satisfying the invertibility criterion −1 < θ < 1.

In this case the quadratic formula yields complex roots. So the method of moments parameter

estimation approach is recommended for initial parameter estimates only if the constraint |r1|< 1/2

stated in the result that follows is met.

Theorem 9.30 The method of moments estimators for a shifted MA(1) model from a time series

x1, x2, . . . , xn with |r1|< 1/2 are

µ̂ = X̄ , θ̂ =
1−
√

1−4r2
1

2r1
, σ̂2

Z =
(1/n)∑n

t=1 X2
t − µ̂ 2

1+ θ̂2
.

Thus, the method of moments point estimators in Theorem 9.30 should only be used for deter-

mining initial estimators of µ, θ, and σ2
Z from x1, x2, . . . , xn when the following criteria are met:

• the number of observations in the time series is greater than about n = 60 or n = 70,

• the time series appears to be stationary,

• the sample autocorrelation function has a single statistically significant spike at lag 1,

• the sample partial autocorrelation function tails out, and

• −1/2 < r1 < 1/2.

The method of moments estimators are generally used to find initial point estimates for the

parameters in an MA(1) model, which are subsequently used in an iterative scheme to find the least

squares or maximum likelihood estimators. This will be illustrated next on a time series consisting

of chemical yields.
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Example 9.35 Consider the time series consisting of the production record of n = 210

consecutive yield values in a chemical production process in Table 9.14. The entries are

read row wise. Determine an appropriate model for this time series and find the method

of moments initial estimates for the parameters.

The first step is to plot the time series, sample autocorrelation function, and sample par-

tial autocorrelation function. The following R code uses the plot.ts, acf, and pacf

functions to produce the graphs of the time series and correlogram given in Figure 9.42.

The raw time series values are stored in a file named yields.dat.

x = scan("yields.dat")

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x)

pacf(x)

The time series appears to be stationary. The time series frequently jumps from one side

of the sample mean x̄ = 84.1 to the other, indicating a negative sample correlation be-

tween adjacent values in the time series. The sample lag 1 autocorrelation r1 =−0.289

falls outside of the 95% confidence bounds, so we can conclude that there is a single sta-

tistically significant spike at lag 1. There are marginally statistically significant spikes

at lags 2 and 6, which we will attribute to random sampling variability. The sample par-

tial autocorrelation function has statistically significant spikes at lags 1, 2, and 3 which

are negative and decrease in magnitude. Since −1/2 < r1 < 1/2, the time series plot

and the shapes of rk and r∗k indicate that the shifted MA(1) model

Xt = µ+Zt +θZt−1

with a negative value of θ might be appropriate. The R statements that follow are used

to estimate the model parameters using Theorem 9.30.

85.5 81.7 80.6 84.7 88.2 84.9 81.8 84.9 85.2 81.9 89.4 79.0 81.4 84.8

85.9 88.0 80.3 82.6 83.5 80.2 85.2 87.2 83.5 84.3 82.9 84.7 82.9 81.5

83.4 87.7 81.8 79.6 85.8 77.9 89.7 85.4 86.3 80.7 83.8 90.5 84.5 82.4

86.7 83.0 81.8 89.3 79.3 82.7 88.0 79.6 87.8 83.6 79.5 83.3 88.4 86.6

84.6 79.7 86.0 84.2 83.0 84.8 83.6 81.8 85.9 88.2 83.5 87.2 83.7 87.3

83.0 90.5 80.7 83.1 86.5 90.0 77.5 84.7 84.6 87.2 80.5 86.1 82.6 85.4

84.7 82.8 81.9 83.6 86.8 84.0 84.2 82.8 83.0 82.0 84.7 84.4 88.9 82.4

83.0 85.0 82.2 81.6 86.2 85.4 82.1 81.4 85.0 85.8 84.2 83.5 86.5 85.0

80.4 85.7 86.7 86.7 82.3 86.4 82.5 82.0 79.5 86.7 80.5 91.7 81.6 83.9

85.6 84.8 78.4 89.9 85.0 86.2 83.0 85.4 84.4 84.5 86.2 85.6 83.2 85.7

83.5 80.1 82.2 88.6 82.0 85.0 85.2 85.3 84.3 82.3 89.7 84.8 83.1 80.6

87.4 86.8 83.5 86.2 84.1 82.3 84.8 86.6 83.5 78.1 88.8 81.9 83.3 80.0

87.2 83.3 86.6 79.5 84.1 82.2 90.8 86.5 79.7 81.0 87.2 81.6 84.4 84.4

82.2 88.9 80.9 85.1 87.1 84.0 76.5 82.7 85.1 83.3 90.4 81.0 80.3 79.8

89.0 83.7 80.9 87.3 81.1 85.6 86.6 80.0 86.6 83.3 83.1 82.3 86.7 80.2

Table 9.14: Production record of n = 210 consecutive chemical yields.



610 Chapter 9. Topics in Time Series Analysis

1 210

76

78

80

82

84

86

88

90

92

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

0 5 10 15

−1.0

−0.5

0.0

0.5

1.0

t

xt

kk

rk r∗k

Figure 9.42: Time series plot, rk, and r∗k for n = 210 chemical yields.

x = scan("yields.dat")

r1 = acf(x, plot = FALSE)$acf[2]

muhat = mean(x)

thetahat = (1 - sqrt(1 - 4 * r1 ^ 2)) / (2 * r1)

sigma2hat = (mean(x ^ 2) - muhat ^ 2) / (1 + thetahat ^ 2)

This code yields the following method of moments point estimators for the three pa-

rameters:

µ̂ = 84.1 θ̂ =−0.318 σ̂2 = 7.50.

This value of θ̂ falls within the invertibility region −1 < θ < 1 for the shifted MA(1)

time series model.

Approach 2: Least squares. Consider the shifted stationary MA(1) model

Xt = µ+Zt +θZt−1
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from Theorem 9.29. For least squares estimation, we first establish the sum of squares S as a function

of the parameters µ and θ. Numerical methods are required to determine the least squares estimators

of µ and θ. Once these least squares estimators have been determined, the population variance of the

white noise σ2
Z will be estimated.

Solving the shifted MA(1) model defining formula for Zt results in

Zt = Xt −µ−θZt−1.

Seeding this recursive formula with Z0 = 0 gives the residuals

Z1 = X1−µ

Z2 = X2−µ−θZ1

Z3 = X3−µ−θZ2

... =
...

Zn = Xn−µ−θZn−1.

Thus, the sum of squared errors is

S =
n

∑
t=1

Z2
t = (X1−µ)2 +

n

∑
t=2

(Xt −µ−θZt−1)
2 .

Numerical methods are required to find the parameter estimates. This will be illustrated next for the

time series of chemical yields.

Example 9.36 Find the least squares estimators for the time series of chemical yields

given in Example 9.35.

The R code below uses the optim function to perform a search to find the least squares

parameter estimates for µ and θ. The first statement reads the time series values into

the vector x. The second statement uses the length function to calculate the number

of observations in the time series. The third statement defines the function s, which

calculates the sum of squares. The last statement calls the optim function with the

method of moments estimators as initial parameter estimates as its first argument. The

optim function minimizes the function in its second argument by default.

x = scan("yields.dat")

n = length(x)

s = function(parameters) {

mu = parameters[1]

theta = parameters[2]

z = numeric(n)

z[1] = x[1] - mu

for (t in 2:n) z[t] = x[t] - mu - theta * z[t - 1]

sum(z ^ 2)

}

optim(c(84.1, -0.318), s, method = "L-BFGS-B")

The optim function is being called in this case to perform a two-dimensional search

without any derivative information being supplied. In order to visualize what the optim
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function is up against, picture yourself standing blindfolded on the side a mountain. The

position where you are standing corresponds to the initial estimates for the parameters.

In order to find the least squares parameter estimates, you want to take steps that lead

you to the bottom of the valley, where the height corresponds to the sum of squares of

the residuals. For maximum likelihood estimation, you want to take steps that lead you

to the peak of the mountain, where the height corresponds to the likelihood function.

But you are not given any gradient information from the function about the best direc-

tion to proceed for your next step. Regardless of the argument selected in the method

argument, the internal algorithm in the optim function converges to roughly the same

parameter estimates, as shown in Table 9.15. All five of the methods round to µ̂ = 84.13

and θ̂ = −0.483. The columns in Table 9.15 give the method, the number of calls to

the function, the number of calls to evaluate the gradient, the least squares parameter

estimates of µ, the least squares parameter estimates of θ, and the associated sums of

squares S.

Method Function Gradient µ̂ θ̂ S

Nelder�Mead 67 NA 84.12932 −0.48259 1484.989

BFGS 22 6 84.12942 −0.48261 1484.989

CG 180 23 84.12942 −0.48261 1484.989

L�BFGS�B 17 17 84.12942 −0.48261 1484.989

SANN 10000 NA 84.13053 −0.48269 1484.990

Table 9.15: MA(1) least squares parameter estimates for the chemical yields.

There is a large difference between the method of moments estimator of θ, which

was θ̂ = −0.318 from Example 9.35, and the least squares estimator of θ, which is

θ̂ = −0.483 from Table 9.15. This is an instance of why the method of moments esti-

mators are only used for initial estimates for iterative schemes for finding least squares

estimates or maximum likelihood estimates. The population variance of the white noise

can be estimated using the method of moments formula as

σ̂2
Z =

(1/n)∑n
t=1 X2

t − µ̂ 2

1+ θ̂2
= 5.61.

Approach 3: Maximum likelihood estimation. We use the arima function to do the heavy

lifting with respect to the estimation of the parameters in the MA(1) time series model via maximum

likelihood. In addition to the point estimates, confidence intervals are based on the asymptotic

distribution of the maximum likelihood estimator θ̂, which for large values of n is

V
[
θ̂
]∼= 1−θ2

n
.

So when the parameter θ is estimated by maximum likelihood from a time series, an asymptotically

exact 100(1−α)% confidence interval for θ is given in the result below. It is based on the consis-

tency and the asymptotic normality of maximum likelihood estimators, which in this case implies

that

θ̂
a∼ N

(
θ,

1−θ2

n

)
.

Replacing θ by its maximum likelihood estimator in the variance yields the following result.
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Theorem 9.31 For an invertible MA(1) time series model, an asymptotically exact two-sided

100(1−α)% confidence interval for θ is given by

θ̂− zα/2

√
1− θ̂2

n
< θ < θ̂+ zα/2

√
1− θ̂2

n
,

where θ̂ is the maximum likelihood estimator and zα/2 is the 1−α/2 fractile of the standard normal

distribution.

The formula for the confidence interval from Theorem 9.31 will be illustrated for the chemical

yield data from the previous two examples.

Example 9.37 Find the maximum likelihood estimators for µ, θ, and σ2
Z for fitting

a shifted MA(1) time series model to the time series of chemical yields from Exam-

ple 9.35. Give a 95% confidence interval for θ and µ.

The following R code uses the arima function to calculate the maximum likelihood

estimators for µ, θ, and σ2
Z , estimate the variance–covariance matrix of the standard

errors, and display the standard errors of the estimators.

x = scan("yields.dat")

fit = arima(x, order = c(0, 0, 1), include.mean = TRUE, method = "ML")

fit$coef

fit$var.coef

fit$sigma2

sqrt(fit$var.coef[1, 1])

sqrt(fit$var.coef[2, 2])

The resulting fitted MA(1) time series model to significant digits via maximum likeli-

hood estimation is

Xt = µ̂ +Zt + θ̂Zt−1

or
Xt = 84.13 + Zt − 0.480Zt−1,

(0.0958) (0.0667)

where Zt is white noise with estimated population variance σ̂2
Z = 7.071. The numbers in

parentheses just below the parameter estimates are the estimated standard errors of the

associated parameter estimates. Using the standard errors from arima, the associated

approximate 95% confidence intervals are

−0.611 < θ < −0.349

83.94 < µ < 84.32.

The 95% confidence interval for θ using Theorem 9.31 is slightly narrower than that

produced by the arima function: −0.599 < θ <−0.362.

The parameter estimates using the method of moments, least squares, and maximum likelihood

estimation from the previous three examples are summarized in Table 9.16. Notice that the least
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Method µ̂ θ̂ σ̂2
Z

Method of moments 84.1 −0.318 7.50

Ordinary least squares 84.1 −0.483 5.61

Maximum likelihood estimation 84.1 −0.480 7.07

Table 9.16: Point estimators for the MA(1) parameters for the n = 210 chemical yields.

squares and maximum likelihood estimates of θ differ significantly from the associated method of

moments estimator of θ.

In the interest of brevity, we leave the model assessment, model selection, and forecasting steps

of the process for the chemical yields time series as an exercise. The derivations for these procedures

follow along the same lines as those for the autoregressive models from the previous section.

This subsection has introduced the MA(1) time series model. The key results for an MA(1)

model are listed below.

• The standard MA(1) model can be written algebraically and with the backshift operator B as

Xt = Zt +θZt−1 and Xt = θ(B)Zt ,

where Zt ∼WN
(
0, σ2

Z

)
, σ2

Z > 0, and θ(B) = 1+θB (Definition 9.4).

• The shifted MA(1) model can be written algebraically and with the backshift operator B as

(Theorem 9.29)

Xt = µ+Zt +θZt−1 and Xt = µ+θ(B)Zt .

• The MA(1) model is stationary for all finite real-valued parameters θ and σ2
Z (Theorem 9.25).

• The MA(1) model is invertible when −1 < θ < 1 (Theorem 9.27).

• The MA(1) model can be written as an AR(∞) model when −1 < θ < 1 as (Theorem 9.26)

Xt = Zt +θXt−1−θ2Xt−2 +θ3Xt−3−·· ·

• The MA(1) model lag 1 population autocorrelation is ρ(1) = θ/
(
1+θ2

)
, and ρ(k) = 0 for

k = 2, 3, . . . (Theorem 9.25). The lag 1 population autocorrelation satisfies the inequality

−1/2≤ ρ(1)≤ 1/2 (Figure 9.37).

• The MA(1) lag k population partial autocorrelation for −1 < θ < 1 is

ρ∗(k) =
(−1)k+1θk

(
1−θ2

)

1−θ2(k+1)

for k = 1, 2, . . . (Theorem 9.28).

• A time series of n+ 1 white noise values Z0, Z1, Z2, . . . , Zn can be converted to n simulated

observations X1, X2, . . . , Xn by using the MA(1) defining formula Xt = Zt +θZt−1.

• The parameters in the MA(1) model can be estimated via the method of moments, least

squares estimation, and maximum likelihood estimation.
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9.2.2 The MA(2) Model

The additional term in the MA(2) model gives it increased flexibility over the associated MA(1)

model.

Definition 9.5 A second-order moving average time series model, denoted by MA(2), for the time

series {Xt} is defined by

Xt = Zt +θ1Zt−1 +θ2Zt−2,

where θ1 and θ2 are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

An observed value in the time series, Xt , is given by the current white noise term, plus the

parameter θ1 multiplied by the white noise term from one time period ago, plus the parameter θ2

multiplied by the white noise term from two time periods ago. So there are three parameters that

define an MA(2) model: the coefficients θ1 and θ2, and the population variance of the white noise

σ2
Z . As was the case of the MA(1) model, some authors use a − rather than a + between three terms

on the right-hand side of the model.

The probabilistic properties and statistical methods associated with an MA(2) model are straight-

forward generalizations of those properties and methods for the MA(1) model. Rather than deriving

these results from first principles, we simply state several of these results without proof and then

conduct a Monte Carlo simulation experiment which highlights issues that arise in model selection.

• The standard MA(2) model can be written algebraically and with the backshift operator B as

Xt = Zt +θ1Zt−1 +θ2Zt−2 and Xt = θ(B)Zt ,

where Zt ∼WN
(
0, σ2

Z

)
, σ2

Z > 0, and θ(B) = 1+θ1B+θ2B2.

• The shifted MA(2) model can be written algebraically and with the backshift operator B as

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 and Xt = µ+θ(B)Zt .

• MA(2) models are stationary for all finite, real-valued parameters µ, θ1, θ2, and σ2
Z .

• Just as the stationarity region for the AR(2) model has a triangular shape, the invertibility

region for the MA(2) model also has a triangular shape defined by the three constraints

θ1 +θ2 >−1, θ2−θ1 >−1, θ2 < 1.

This region is an upside-down version of the region for an AR(2) time series model depicted

in Figure 9.12. In other words, the triangles are equivalent when reflected vertically about the

origin.

• The population autocovariance function is

γ(k) =





(
1+θ2

1 +θ2
2

)
σ2

Z k = 0

(θ1 +θ1θ2)σ2
Z k = 1

θ2σ2
Z k = 2

0 k = 3, 4, . . .
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• The population autocorrelation function is

ρ(k) =





1 k = 0

(θ1 +θ1θ2)/
(
1+θ2

1 +θ2
2

)
k = 1

θ2/
(
1+θ2

1 +θ2
2

)
k = 2

0 k = 3, 4, . . .

• The population partial autocorrelation function of an MA(2) model can be determined by

using the defining formula from Definition 7.8.

• A simulated realization X1, X2, . . . , Xn of a time series from an MA(2) model is generated by

the following algorithm.

t←−1

generate Zt ∼WN
(
0, σ2

Z

)

t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

while (t < n)
t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

Xt ← Zt +θ1Zt−1 +θ2Zt−2

• The parameters of an MA(2) time series model can be estimated by the method of moments,

least squares, and maximum likelihood estimation. As shown in the next example, the arima

function can be used in R to calculate these parameter estimates.

The previous subsections have analyzed n observed values of a time series in order to determine

an AR(p) or MA(q) model which adequately describes the probabilistic mechanism governing the

observed time series. Instead of following this same pattern, we instead conduct a Monte Carlo

simulation experiment that highlights weaknesses in the model selection process.

Example 9.38 Consider a standard (unshifted) MA(2) model with parameters θ1 = 0.4,

θ2 = 0.6, and σ2
Z = 1. For a realization of n = 60 observations from this time series

fitted by maximum likelihood estimation, use Monte Carlo simulation to estimate the

probability that the correct model is identified if the AIC criterion is used to determine

the correct model.

This Monte Carlo simulation experiment answers an important question in time series

analysis. If we have just a single realization of a time series (this is often the case in

practice) which is governed by an approximately ARMA model, what is the probability

that we correctly identify the p and q values associated with the ARMA(p, q) time series

model which generated the observations?

The MA(2) model is the population time series model in this particular simulation ex-

periment. The choice of parameters θ1 = 0.4 and θ2 = 0.6 falls in the invertibility

region, so this particular population MA(2) model is both stationary and invertible. Fur-

thermore, the parameters θ1 = 0.4 and θ2 = 0.6 have been chosen so that the population

autocorrelation function is

ρ(k) =





1 k = 0

(0.4+0.4 ·0.6)/
(
1+0.42 +0.62

)
k = 1

0.6/
(
1+0.42 +0.62

)
k = 2

0 k = 3, 4, . . .
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or

ρ(k) =





1 k = 0

0.42 k = 1

0.39 k = 2

0 k = 3, 4, . . . .

As anticipated, the population autocorrelation cuts off after lag 2. So we expect that

the first two values in the sample autocorrelation function computed from a realiza-

tion of this time series model, r1 and r2, will be statistically significant, and the oth-

ers will fall between the confidence bounds ±1.96/
√

60 = ±0.25. The coefficients

θ1 and θ2 have been chosen so that the first two values in the population autocorrela-

tion function, ρ(1) = 0.42 and ρ(2) = 0.39, both fall outside of the confidence bounds

±1.96/
√

60 =±0.25 associated with the sample autocorrelation function. This choice

of parameters has been made to give the ARMA modeling procedure a good chance of

correctly identifying the underlying population MA(2) time series model.

The R code below generates realizations of 1000 time series of length n = 60 from

an MA(2) model with θ1 = 0.4, θ2 = 0.6, and σ2
Z = 1. The arima.sim function is

used to generate each realization, and the simulated values are placed in the vector x.

The two inner nested for loops fit all ARMA(p, q) models to the simulated values, for

p = 0, 1, 2, . . . , 5 and q = 0, 1, 2, . . . , 5 using the arima function. The AIC for each of

the fitted models are stored in the a matrix. Finally, the which.min function is used to

determine which of the 6 ·6 = 36 models has the lowest AIC value.

set.seed(3)

nrep = 1000

a = matrix(0, 6, 6)

r = matrix(0, 6, 6)

for (i in 1:nrep) {

x = arima.sim(list(ma = c(0.4, 0.6)), n = 60)

for (p in 0:5)

for (q in 0:5)

a[p + 1, q + 1] = arima(x, order = c(p, 0, q), method = "ML")$aic

j = which.min(a)

r[j] = r[j] + 1

print(a)

print(j)

print(r)

}

100 * r / nrep

Table 9.17 contains the estimated probabilities of the selection of the various models

expressed as percents. The good news is that the MA(2) model is the one that is chosen

most often of the 36 models based on the AIC criterion. The associated bad news is

that the MA(2) model is chosen less than half of the time. So in the practical case of

analyzing a single time series of n = 60 values, there is a better than 0.5 probability that

this procedure will identify the wrong population time series model. This illustrates the

unwelcome effect of random sampling variability in model selection.

Bear in mind that the estimated probabilities given in Table 9.17 only apply to the use

of the AIC criterion and the parameter settings θ1 = 0.4, θ2 = 0.6, σ2
Z = 1, and n = 60.
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q = 0 q = 1 q = 2 q = 3 q = 4 q = 5

p = 0 0.2% 0.0% 40.1% 4.9% 2.4% 1.9%

p = 1 0.7% 0.0% 3.1% 6.0% 1.4% 1.6%

p = 2 0.7% 0.9% 3.7% 1.3% 5.3% 1.5%

p = 3 3.2% 1.6% 2.6% 0.7% 1.9% 2.2%

p = 4 0.9% 0.9% 2.0% 1.4% 1.5% 1.1%

p = 5 0.6% 0.6% 0.8% 0.7% 1.0% 0.6%

Table 9.17: Estimated probabilities of selection based on AIC criterion.

Changing any one of these parameters will alter the probabilities. The purpose of this

example is to highlight the pitfalls associated with fitting a time series model to a single

realization of n time series values. The probability of an incorrect selection is high, and

this is an argument for collecting a longer time series when possible. In addition, if a

time series is collected periodically (for example, n values collected annually), then the

fits to various realizations should be compared.

To summarize the models considered so far in this chapter, the AR(1), AR(2), MA(1), and

MA(2) models are parsimonious in the sense that they have significant explanatory power with few

parameters. By deriving the population autocorrelation function and partial autocorrelation function

for these models, we now possess an inventory of possible shapes that guide us toward one particular

time series model or another. Figure 9.43 gives examples of these shapes for various values of the

parameters.

9.2.3 The MA(q) Model

The MA(1) and MA(2) models introduced in the previous two subsections generalize to the MA(q)

model defined in this section.

Definition 9.6 A moving average time series model with q terms, denoted by MA(q), for the time

series {Xt} is defined by

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q,

where θ1, θ2, . . . , θq are real-valued parameters and {Zt} is a time series of white noise:

Zt ∼WN
(
0, σ2

Z

)
.

An observed value in the time series, Xt , is given by the current white noise term plus a linear

combination of the q previous white noise terms. So there are q+1 parameters that define an MA(q)

model: the coefficients θ1, θ2, . . . , θq, and the population variance of the white noise σ2
Z . As was

the case of the MA(1) and MA(2) models, some authors use a − rather than a + between terms on

the right-hand side of the model.

The probabilistic properties and statistical methods associated with an MA(q) model are deter-

mined in the usual fashion. Here are several of these results stated without proof.

• The population mean and variance of Xt are easily calculated by taking the expected value and
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Figure 9.43: Characteristic shapes of ρ(k) and ρ∗(k) for AR(1), AR(2), MA(1), and MA(2) models.

the population variance of both sides of the equation given in Definition 9.6:

E[Xt ] = E[Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q] = 0

and

V [Xt ] =V [Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q] =
(
1+θ2

1 +θ2
2 + · · ·+θ2

q

)
σ2

Z .

• The standard MA(q) model can be written algebraically and with the backshift operator B as

Xt = Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q and Xt = θ(B)Zt ,

where Zt ∼WN
(
0, σ2

Z

)
, σ2

Z > 0, and θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.
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• The shifted MA(q) model can be written algebraically and with the backshift operator B as

Xt = µ+Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q and Xt = µ+θ(B)Zt .

• MA(q) models are stationary for all finite, real-valued parameters µ, θ1, θ2, . . . , θq, and σ2
Z .

• MA(q) models are invertible when the q roots of the characteristic equation

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq = 0

all lie outside of the unit circle in the complex plane.

• The population autocovariance function is

γ(k) =





(
1+θ2

1 +θ2
2 + · · ·+θ2

q

)
σ2

Z k = 0

(θ1 +θ1θ2 +θ2θ3 + · · ·+θq−1θq)σ2
Z k = 1

(θ2 +θ1θ3 +θ2θ4 + · · ·+θq−2θq)σ2
Z k = 2

...
...

θqσ2
Z k = q

0 k = q, q+1, . . . .

This can be written more compactly as

γ(k) =

{ (
θk +θ1θk+1 +θ2θk+2 + · · ·+θq−kθq

)
σ2

Z k = 0, 1, 2, . . . ,q
0 k = q, q+1, . . . ,

where θ0 = 1.

• The population autocorrelation function is

ρ(k)=

{ (
θk +θ1θk+1 +θ2θk+2 + · · ·+θq−kθq

)
/
(
1+θ2

1 + · · ·+θ2
q

)
k = 0, 1, . . . , q

0 k = q, q+1, . . . .

As expected, the population autocorrelation function cuts off after lag q.

• The population partial autocorrelation function of an MA(q) model can be determined by

using the defining formula from Definition 7.8.

• A simulated realization X1, X2, . . . , Xn of a time series from an MA(q) model is generated by

the following algorithm.

generate Z−(q−1), Z−(q−2), . . . , Z0 ∼WN
(
0, σ2

Z

)

t← 0

while (t < n)
t← t +1

generate Zt ∼WN
(
0, σ2

Z

)

Xt ← Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q

• The parameters of an MA(q) time series model can be estimated by the method of moments,

least squares, and maximum likelihood estimation. The arima function can be used in R to

calculate these parameter estimates for particular values of a time series x1, x2, . . . , xn.
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Table 9.18 shows some of the symmetry between autoregressive and moving average models.

When one aspect of the time series model is easier to derive for one of the models, it is often more

difficult to derive for the analogous time series model. The population autocorrelation function for an

MA(q) model is closed form, for example, but the population autocorrelation function for an AR(p)

model requires solving the Yule–Walker equations. As a second example on the statistical side, the

least squares estimators for the AR(1) model are closed form, but the least squares estimators for the

MA(1) model require numerical methods.

Autoregressive: AR(p) Moving Average: MA(q)

Model
φ(B)Xt = Zt Xt = θ(B)Ztdefinition

Characteristic
φ(B) = 1−φ1B−φ2B2−·· ·−φpBp θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq

polynomial

Stationarity
φ(B) = 0 roots outside of unit circle always stationary

condition

Invertibility
always invertible θ(B) = 0 roots outside of unit circle

condition

Equivalent
MA(∞) when stationary AR(∞) when invertible

model

General linear
finite series infinite series

model π weights

General linear
infinite series finite series

model ψ weights

Shape
tails out cuts off after lag q

of ρ(k)
Shape

cuts off after lag p tails out
of ρ∗(k)

Simulating
warm up period needed no warm up period needed

a realization

Table 9.18: AR(p) versus MA(q) models.

9.3 ARMA(p, q) Models

The autoregressive and moving average models outlined in the previous two sections often prove to

be inadequate time series models in a particular application. Occasions arise in which the best model

for a time series involves both autoregressive and moving average terms. Recall from Definition 8.4

that an ARMA(p, q) time series model with p autoregressive terms and q moving average terms is

Xt =

autoregressive portion︷ ︸︸ ︷
φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p +Zt +θ1Zt−1 +θ2Zt−2 + · · ·+θqZt−q︸ ︷︷ ︸

moving average portion

,

where {Xt} is the time series of interest, {Zt} is a time series of white noise, φ1, φ2, . . . , φp are real-

valued parameters associated with the AR portion of the model, and θ1, θ2, . . . , θq are real-valued
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parameters associated with the MA portion of the model. The ARMA(p, q) model can be written

more compactly as

φ(B)Xt = θ(B)Zt ,

where φ(B) and θ(B) are the characteristic polynomials defined by

φ(B) = 1−φ1B−φ2B2−·· ·−φpBp

and

θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq.

This model on its own is of little practical use because most real-world time series are not cen-

tered around E[Xt ] = 0. Using the compact notation for the ARMA(p, q) time series model, a shift

parameter µ is easily added:

φ(B)(Xt −µ) = θ(B)Zt .

So there are p+ q+ 2 parameters that define a shifted ARMA(p, q) time series model: the p au-

toregressive coefficients φ1, φ2, . . . , φp, the q moving average coefficients θ1, θ2, . . . , θq, the shift

parameter µ, and the population variance of the white noise σ2
Z .

Recall from Table 9.7 in Example 9.20 that the ARMA(1, 1) model fitted by maximum likeli-

hood estimation gave a slightly lower AIC than the associated AR(2) model when applied to the

Lake Huron level time series. This section will consist of one long example that concerns the fit-

ting and assessing this ARMA(1, 1) model to determine whether it is an adequate model for the

Lake Huron levels. Rather than deriving all of the probabilistic properties and statistical methods

for the ARMA(1, 1) model, the arima function in R will be used to perform the fitting, leaving the

details to the reader. By default, the arima function (a) ignores external regressor variables, (b) ig-

nores seasonal variation, (c) includes a shift parameter µ, (d) uses the same parameterization for

the ARMA(p, q) process as that used in this text, (e) transforms the AR parameters φ1, φ2, . . . , φp

if necessary so that they stay in the stationarity region, and ( f ) uses a conditional sum of squares

method as initial parameter estimates, then returns the maximum likelihood estimators.

Example 9.39 Fit the ARMA(1, 1) model to the n = 98 annual Lake Huron levels from

1875–1972 described in Example 9.14. Assess the model adequacy of the fit and predict

the level of Lake Huron for the next five years (1973–1977).

The first R statement below fits the ARMA(1, 1) model to the Lake Huron levels. The

next four statements extract the estimated coefficients, estimated white noise variance,

estimated variance–covariance matrix of the coefficients, and the residuals.

fit = arima(LakeHuron, order = c(1, 0, 1))

coefficients = fit$coef

variance = fit$sigma2

variancecov = fit$var.coef

residuals = fit$residuals

The parameter estimates (to five-digit accuracy that is inherent in the time series values)

are

φ̂1 = 0.74490 θ̂1 = 0.32059 µ̂ = 579.06 σ̂2
Z = 0.47494.
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The estimated variance–covariance matrix of φ̂1, θ̂1, and µ̂ is




0.0060296 −0.0046761 0.0017655

−0.0046761 0.0128889 −0.0020637

0.0017655 −0.0020637 0.1225691


 .

Using the square roots of the diagonal elements of the variance–covariance matrix as

standard error estimates, the following additional R commands give approximate two-

sided 95% confidence intervals for the parameters.

coefficients[1] + c(-1, 1) * qnorm(0.975) * sqrt(variancecov[1, 1])

coefficients[2] + c(-1, 1) * qnorm(0.975) * sqrt(variancecov[2, 2])

coefficients[3] + c(-1, 1) * qnorm(0.975) * sqrt(variancecov[3, 3])

The approximate 95% confidence intervals are

0.59271 < φ1 < 0.89709 0.09808 < θ1 < 0.54310 578.37 < µ < 579.74.

Since none of these confidence intervals contains zero, we continue to entertain this

tentative ARMA(1, 1) model and transition to an analysis of the residuals.

The following R commands plot the residuals as a time series, along with the associated

sample autocorrelation function and sample partial autocorrelation function.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(zhat)

acf(zhat, lag.max = 40)

pacf(zhat, lag.max = 40)

The results are displayed in Figure 9.44. From the top graph, the residuals do not appear

to have any cyclic variation, trend, or serial correlation. The sample autocorrelation

function values for the residuals do not have any values that fall outside of the 95%

confidence limits. Likewise for the sample partial autocorrelation function values.

Since there are no sample autocorrelation function values that fall outside of the 95%

confidence limits ±1.96/
√

n in the plot in Figure 9.44 of the first 40 sample auto-

correlation function values associated with the residuals, and we expect 40 · 0.05 = 2

values to fall outside of these limits in the case of a good fit, we fail to reject H0 in this

case. The independence of the residuals is not rejected by this test. The tentative fitted

ARMA(1, 1) model is not rejected by this test.

The R code below calculates the Box–Pierce test statistic and the Ljung–Box test statis-

tic and the associated p-values using the built-in Box.test function.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

Box.test(zhat, lag = 40, type = "Box-Pierce", fitdf = 3)

Box.test(zhat, lag = 40, type = "Ljung-Box", fitdf = 3)

The Box–Pierce test statistic is 17.4 and the associated p-value is p = 0.997. The

Ljung–Box test statistic is 23.0 and the associated p-value is p = 0.966. We fail to
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Figure 9.44: Time series plot, rk, and r∗k for the residuals from a fitted ARMA(1, 1) model.

reject H0 in both tests based on the chi-square critical value with 40− 3 = 37 degrees

of freedom. The independence of the residuals is not rejected by this test. The tentative

fitted ARMA(1, 1) model is not rejected by these tests.

The following R code calculates the test statistic and the p-value for the turning point

test applied to the time series consisting of the residual values for the ARMA(1, 1) fit

to the Lake Huron time series.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

n = length(zhat)

m = (2 / 3) * (n - 2)

v = (16 * n - 29) / 90

T = 0

for (i in 2:(n - 1)) {

if ((zhat[i - 1] < zhat[i] && zhat[i] > zhat[i + 1]) ||

(zhat[i - 1] > zhat[i] && zhat[i] < zhat[i + 1])) T = T + 1
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}

s = (T - m) / sqrt(v)

2 * (1 - pnorm(abs(s)))

The tail probability is doubled because the alternative hypothesis is two-tailed for the

turning point test. The test statistic s is 1.21 and the p-value is p = 0.23. The turning

point test found that there were T = 69 turning points in the time series of the residuals,

and that is just slightly higher than the number that we expect to have if the residuals

from the fitted ARMA(1, 1) model were mutually independent random variables. We

again fail to reject the null hypothesis in this case. The independence of the residuals is

not rejected by this test. The tentative fitted ARMA(1, 1) model is not rejected by this

test.

The residuals are standardized by dividing by their sample standard deviation. The

following R statements plot a histogram of the standardized residuals using the hist

function and a QQ plot to assess normality using the qqnorm function.

zhat = arima(LakeHuron, order = c(1, 0, 1))$residuals

hist(zhat / sd(zhat))

qqnorm(zhat / sd(zhat))

The plots are shown in Figure 9.45. The histogram shows that all standardized residu-

als fall between−2.5 and 2.5 and exhibit a roughly bell-shaped probability distribution,

with the exception of a deficit of residuals falling between −1.5 and −1.0. The hori-

zontal axis on the histogram is the standardized residual and the vertical axis is the

frequency. The QQ plot is approximately linear, indicating a reasonable approxima-

tion to normality for the standardized residuals. The horizontal axis on the QQ plot is

the standardized theoretical quantile and the vertical axis is the associated normal data

quantile. Although a formal statistical goodness-of-fit test (such as the Shapiro–Wilk

or the Kolmogorov–Smirnov test) should be conducted, it appears that the assumption

of Gaussian white noise is appropriate for the ARMA(1, 1) time series model based on

these two plots.
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Figure 9.45: Histogram (left) and QQ plot (right) of the fitted ARMA(1, 1) standardized residuals.
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We have seen a number of indicators that the ARMA(1, 1) time series model with Gaus-

sian error terms seems to be an adequate model for the Lake Huron lake level time

series, with the exception of a linear trend apparent by viewing the time series in Fig-

ure 9.19. The ARMA(1, 1) model has not been rejected by any of the model adequacy

tests.

The final fitted shifted ARMA(1, 1) model with maximum likelihood estimates for the

parameters is given by

Xt = 579.06+0.74490(Xt−1−579.06)+0.32059Zt−1 +Zt ,

where Zt is a sequence of independent and identically distributed N(0, 0.47494) error

terms.

With the shifted ARMA(1, 1) model established, we now consider forecasting future

values of a time series. In the case of the Lake Huron time series, this corresponds to

the one-step-ahead forecast for 1973, the two-steps-ahead forecast for 1974, the three-

steps-ahead forecast for 1975, etc. The code below uses the R predict function to

generate the forecasted values and their standard errors.

fit = arima(LakeHuron, order = c(1, 0, 1))

forecast = predict(fit, n.ahead = 5)

lower = forecast$pred - qnorm(0.975) * forecast$se

upper = forecast$pred + qnorm(0.975) * forecast$se

These standard errors can be used to calculate approximate two-sided 95% prediction

interval limits on the forecasted values. The results are summarized in Table 9.19.

Notice that the forecasts trend monotonically toward x̄ = 579 and the standard errors

increase as the time horizon h increases. The increasing standard error is consistent

with having less precision in the forecast as the time horizon h increases.

Time t = 99 t = 100 t = 101 t = 102 t = 103

Year 1973 1974 1975 1976 1977

Forecast 579.73 579.56 579.43 579.34 579.26

Standard error 0.689 1.007 1.146 1.216 1.254

Lower prediction bound 578.38 577.59 577.19 576.95 576.81

Upper prediction bound 581.08 581.53 581.68 581.72 581.72

Table 9.19: Forecasts and 95% prediction intervals for the Lake Huron time series.

Figure 9.46 shows (a) the original time series x1, x2, . . . , x98 as points (•) connected

by lines, (b) the first 10 forecasted lake levels X̂ 99, X̂ 100, . . . , X̂ 108 as open circles (◦),
(c) the 95% prediction intervals as a shaded region, and (d) the next 10 actual average

lake level values in July for the years 1973–1982 taken from the NOAA Great Lakes

Experimental Research Laboratory website,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,

as points (•) connected by lines. The forecasted values as well as the prediction intervals

given in Figure 9.46 associated with the fitted ARMA(1, 1) model are very similar to

those in Figure 9.25 from Example 9.21. The two models are clearly close competitors

for modeling the Lake Huron levels.
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Figure 9.46: Lake Huron level forecasts and 95% prediction intervals from an ARMA(1, 1) model.

ARMA modeling can achieve population autocorrelation function and population partial auto-

correlation function shapes that are not possible with just AR(p) and MA(q) models alone. For

an ARMA(p, q) model with p > 0 and q > 0, both the population autocorrelation function and the

population partial autocorrelation function tail off; neither of the two cut off after a certain lag.

An inherent weakness of ARMA modeling is that it requires stationarity. Many time series

which occur in practice are not stationary, and the next section gives techniques that can be used to

overcome this weakness.

9.4 Nonstationary Models

There are two commonly-used strategies for converting a nonstationary time series to a stationary

time series in order to use ARMA modeling (or some other model which requires stationarity) on

the resultant stationary time series. The first strategy is known as detrending. In this case, the

modeler estimates the trend, and then fits a stationary time series model to the difference between

the raw time series data and the estimated trend. The second strategy is known as differencing. In

this case the modeler differences the time series one or more times, resulting in a stationary time

series. Differencing carries the added benefit that no parameters are required other than the number

of differences to take. The following two subsections consider these two strategies.

9.4.1 Removing Trends Via Regression

Although regression is not the only way to detrend a time series, it provides an adequate roadmap on

how to proceed with the detrending process that generalizes to other mechanisms. This subsection

illustrates detrending with a single example. We return for a third time to the Lake Huron levels

which were fit to an AR(2) model in Section 9.1.2 and fit to an ARMA(1, 1) model in Section 9.3.

Example 9.40 We again consider the construction of a time series model from the

n = 98 annual observations of the level of Lake Huron (in feet) between 1875 and 1972
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that was first encountered in Example 9.14. The observations are stored in a time se-

ries in R named LakeHuron. The scatterplot of the lake levels depicted in Figure 9.47

includes a regression line showing the downward trend in the lake levels over time.

The p-value for the statistical test for significance of the slope of this regression line

is p = 4 ·10−8, providing strong evidence of a downward trend over time, even though

the usual assumptions associated with simple linear regression with normal error terms

are not perfectly satisfied in this setting. Although the AR(2) and ARMA(1, 1) models

have been successfully fitted to this time series treating it as stationary, this tiny p-value

prevents us from fully embracing either of these models. The purpose of this example

is to explicitly consider this downward trend by fitting the residuals from this simple

linear regression model to an ARMA time series model.
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Figure 9.47: Lake Huron levels (1875–1972) with regression line.

The residuals from this simple linear regression form a new time series which will

be denoted by {yt}, where yt = xt − x̂t and x̂t is the fitted value in the simple linear

regression. The R statements below generate plots of the time series, the sample auto-

correlation function, and the sample partial autocorrelation function for the residuals of

the simple linear regression.

y = lm(LakeHuron ~ seq(1:98))$resid

plot.ts(y)

abline(h = mean(y))

acf(y, lag.max = 40)

pacf(y, lag.max = 40)

These plots are displayed in Figure 9.48. The time series of the residuals appears to

have no trend and also appears to be centered around zero. In fact, the time series is

exactly centered around zero because the residuals of this regression must sum to zero

via Theorem 1.6. This means that there is no need to include a shift parameter µ in the

ARMA model that we develop for the residuals. The sample autocorrelation function

of the residuals appears to be tailing out and the first two sample partial autocorrelation
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Figure 9.48: Residuals plot, rk, and r∗k for Lake Huron lake levels.

function values are statistically significant. This is strong evidence that an AR(2) model

is an appropriate tentative model for the residuals.

The following R statements fit the AR(2) model via maximum likelihood estimation to

the time series of residuals.

y = lm(LakeHuron ~ seq(1, 98))$resid

model = ar(y, order.max = 2, method = "mle")

This model should be subjected to all of the model assessment tests that have been

applied to all previous time series analyzed in previous examples. The residuals of the

estimated AR(2) model to the simple linear regression residuals result in large p-values

for the Box–Pierce test and the Box–Ljung test, along with a bell-shaped histogram and

an almost perfectly linear QQ normal plot. This evidence confirms the evidence in the

plots of rk and r∗k which pointed to an AR(2) model for the residuals of the simple linear

regression. The predict function can then be used in the usual fashion to forecast the

residuals into the future. The plot of the residuals, the next 10 forecasted residuals,
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and the associated 95% prediction intervals is given in Figure 9.49. As expected, the

forecasted values are smooth and converge to zero.
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Figure 9.49: Lake Huron residuals, forecasts, and 95% prediction intervals.

Finally, the last step is to translate Figure 9.49 back to the raw time series observations.

Figure 9.50 shows (a) the original time series x1, x2, . . . , x98 as points (•) connected

by lines, (b) the regression line associated with the original time series, (c) the first 10

forecasted lake levels X̂ 99, X̂ 100, . . . , X̂ 108 as open circles (◦), (d) the 95% prediction

intervals as a shaded region, and (e) the next 10 actual average lake level values in July

for the years 1973–1982 taken from the NOAA Great Lakes Experimental Research

Laboratory website,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,
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Figure 9.50: Lake Huron levels (1875–1972) with regression line and forecasts.
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as points (•) connected by lines. Notice that the forecasted values converge to the

regression line as anticipated. Notice also that the actual values all exceed the forecasted

values and the first four forecasted values fall outside of the prediction limits. If we did

not know of these actual values, we would be satisfied with this detrended AR(2) time

series model. However, these actual values call into question whether the lake levels are

truly decreasing over time.

So far, there have been three different approaches to constructing a time series model for the

Lake Huron levels:

• the shifted AR(2) model from Examples 9.14, 9.15, 9.16, 9.17, 9.18, 9.19, 9.20, and 9.21,

• the shifted ARMA(1, 1) model from Example 9.39, and

• the AR(2) model applied to the residuals from a simple linear regression from Example 9.40.

Which approach is preferred? Although the shifted AR(2) and shifted ARMA(1, 1) models fit-

ted to the raw time series are roughly comparable and give nearly-identical forecasts, the shifted

ARMA(1, 1) model has a slight edge for the following two reasons. First, from Table 9.7, the AIC

value is 215 for the shifted AR(2) model and the AIC value is 214 for the shifted ARMA(1, 1)

model. A smaller value implies a better fit. Second, the sum of squared residuals for the shifted

AR(2) model is 46.9 and the sum of squared residuals for the shifted ARMA(1, 1) model is 46.5. A

smaller sum of squared residuals for two models with an equal number of parameters is preferred.

Both models have four parameters. These two sums of squared residuals for the two models are

computed with the R statements

sum(arima(LakeHuron, order = c(2, 0, 0))$residuals ^ 2)

sum(arima(LakeHuron, order = c(1, 0, 1))$residuals ^ 2)

Although the differences between the AIC values and the sums of squares is small, the shifted

ARMA(1, 1) model holds a slight edge.

The detrended model from Example 9.40, on the other hand, is preferred over the two stationary

models because it explicitly models the decreasing lake levels over time. However, the fact that all

of the forecasted values in the detrended model are low relative to the actual values in the years

1973 to 1982 is troubling. Could it be the case that there was no downward trend after all? At

this point, some serious detective work is in order to see if the early values in the raw time series

were elevated by some external influence and should not be included as a part of the time series.

A rigorous search should be conducted for any external cause which might elevate the early values

in the time series: excess rainfall, elevated temperatures, dredging, bridge projects, flow control

projects, etc. As a particular instance, if the first 20 values of the time series can be eliminated due

to the identification of an assignable cause for the years 1875–1894, for example, the p-value from

simple linear regression testing for the statistical significance of the slope increases from a highly

significant p = 4 ·10−8 to a nonsignificant p = 0.11. The downward trend would now be slight and

a stationary model could be fitted to the remaining values in the time series.

Detrending has proved to be an effective method for transforming a nonstationary time series to

a stationary time series. The second technique involves differencing.

9.4.2 ARIMA(p, d, q) Models

George Box and Gwilym Jenkins devised a time series modeling methodology known as ARIMA

modeling. The I between AR and MA stands for integrated. These models are sometimes referred to
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as Box–Jenkins models. An ARIMA(p, d, q) time series model is one in which the dth-differenced

times series, ∇dXt , is an ARMA(p, q) time series. So ARIMA time series modeling uses repeated

differencing of the raw time series in order to achieve a time series which appears to be stationary.

ARMA modeling can be then applied to the resulting stationary time series.

Definition 9.7 An ARIMA(p, d, q) time series model for {Xt} is one in which the dth-differenced

times series, ∇dXt , is an ARMA(p, q) time series for some nonnegative integer d. An

ARIMA(p, d, q) model can be written in compact form as

φ(B)∇dXt = θ(B)Zt ,

where φ(B) and θ(B) are the usual characteristic polynomials for an ARMA(p, q) model and

Zt ∼WN
(
0, σ2

Z

)
.

Three key parameters in an ARIMA model are p, d, and q, which are all nonnegative inte-

gers. The parameter p is the number of coefficient parameters in the autoregressive portion of the

model. The parameter d is the number of differences that are applied to the original time series

in order to achieve stationarity. The parameter q is the number of coefficient parameters in the

moving average portion of the model. So the general format for specifying an ARIMA model is

ARIMA(p, d, q). In addition to the parameters p, d, and q, there are p+ q+ 1 parameters that

define an ARIMA(p, d, q) model: the p autoregressive parameters φ1, φ2, . . . ,φp, the q moving av-

erage parameters θ1, θ2, . . . ,θq, and the variance of the white noise σ2
Z . As in the case of ARMA

models, a shift parameter µ can be included in the model. If one or more of these parameters is zero,

they are omitted from the specification. An IMA(2, 1) model, for example, has p = 0 autoregressive

terms, d = 2 differences, and q = 1 moving average term. If a model only involves, for example, the

autoregressive portion of the model with two terms (that is, no differencing and no moving average

terms), then this model is specified as an AR(2) model. An ARMA(p, q) model is a special case of

an ARIMA(p, d, q) model when d = 0.

ARIMA modeling will be illustrated by a simulation example that will reveal what a realization

of an ARIMA process looks like, along with the R code required to fit these simulated values to an

ARIMA model.

Example 9.41 Simulate a realization of n = 100 observations from an ARI(1, 1) time

series model with φ = 0.8 and σ2
Z = 4. Fit the resulting simulated values to an ARIMA

model.

This problem gives one instance of what an ARIMA model with a nonzero value for d

looks like. The R code below uses the arima.sim function to generate a realization of

an ARIMA(1, 1, 0) time series model, which is more commonly known as an ARI(1, 1)

model. Even though 99 observations are requested, a total of 100 will be generated

because the differencing operator is being undone within arima.sim. The code also

plots the sample autocorrelation function and the sample partial autocorrelation function

of the simulated realization.

set.seed(1)

x = arima.sim(list(order = c(1, 1, 0), ar = 0.8), n = 99, sd = 2)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(x)

acf(x, lag.max = 40)

pacf(x, lag.max = 40)
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The results are shown in Figure 9.51. The realization is clearly generated from a non-

stationary time series model with an overall meandering upward trend. This conclusion

is supported by the graphs of rk and r∗k .

The augmented Dickey–Fuller test can be used to assess the stationarity of the simulated

time series. It has been implemented in R in the adf.test function in the tseries

package. There is no need to run this test for this particular realization of the time series;

the time series plot clearly shows that this is a nonstationary time series. Now consider

fitting this time series realization to an ARIMA(p, d, q) model. Since the time series

realization exhibits a meandering linear increase, it is possible that a single difference

might be adequate for transforming this time series to achieve stationarity. Although

it is in some sense cheating because we know that the realization was generated from

an ARI(1, 1) time series model, the R code that follows takes a single difference of the

time series depicted in Figure 9.51 and plots the differenced series yt = ∇xt = xt−xt−1,

the associated sample autocorrelation function, and the sample partial autocorrelation

function.
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Figure 9.51: Time series plot, rk, and r∗k for a realization of a simulated ARI(1, 1) model.
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set.seed(1)

x = arima.sim(list(order = c(1, 1, 0), ar = 0.8), n = 100, sd = 2)

y = diff(x)

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(y)

acf(y, lag.max = 40)

pacf(y, lag.max = 40)

Figure 9.52 shows a graph of the differenced time series and the associated graphs of

rk and r∗k . The differencing has achieved its goal; the differenced values appear to be

stationary. Furthermore, the sample partial autocorrelation function has a single statis-

tically significant value at lag 1 and then cuts off. (The statistically significant value at

lag 18 is attributed to random sampling variability because we expect that 2 of the 40

r∗k values will lie outside of the 95% bounds by chance.) The sample autocorrelation

appears to be gradually tailing out. This is evidence that supports an AR(1) model for
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Figure 9.52: Time series plot, rk, and r∗k for differences of a realization of the simulated values.
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the differenced values from the ARI(1, 1) realization, just as we suspected would be the

case.

The R statements

set.seed(1)

x = arima.sim(list(order = c(1, 1, 0), ar = 0.8), n = 100, sd = 2)

y = diff(x)

fit = arima(y, order = c(1, 0, 0), method = "ML")

fit$coef[1]

fit$sigma2

return an estimated coefficient φ̂= 0.73 (which is near the population value φ= 0.8) and

estimated white noise variance σ̂2
Z = 2.9 (which is near the population value σ2

Z = 4). A

Monte Carlo simulation could be conducted to see how far these estimated values stray

from their population counterparts. Increasing the length of the time series will make

these estimates closer to their associated population values on average.

The ARIMA modeling process is adequate for nonstationary models but is not well-suited to

handling cyclic variation. The SARIMA (seasonal autoregressive integrated moving average) model

has been formulated to overcome this weakness.

Definition 9.8 A seasonal ARIMA time series model for {Xt}, denoted by a SARIMA model of

order (p, d, q)× (P, D, Q)s with seasonal order s, is given in compact form by

φ(B)Φ(Bs)∇d∇D
s Xt = θ(B)Θ(Bs)Zt ,

where p, d, q, P, D, Q, and s are nonnegative integers,

• φ(B) = 1−φ1B−φ2B2−·· ·−φpBp,

• Φ(B) = 1−Φ1B−Φ2B2−·· ·−ΦPBP,

• θ(B) = 1+θ1B+θ2B2 + · · ·+θqBq,

• Θ(B) = 1+Θ1B+Θ2B2 + · · ·+ΘQBQ,

and {Zt} ∼WN
(
0, σ2

Z

)
.

An ARIMA model is a special case of a SARIMA model when P = D = Q = 0. The ∇d term

in the SARIMA model is associated with an ordinary difference; the ∇D
s term is associated with

a seasonal difference. Consider the inside portion of the SARIMA defining formula, ∇d∇D
s Xt , in

a modeling setting in which monthly data is being collected and the modeler believes that there is

cyclic annual variation, so s = 12. In the case of d = 1 ordinary difference and D = 1 seasonal

difference, this portion of the SARIMA defining formula becomes

∇∇12Xt = ∇(∇12Xt)

= ∇(Xt −Xt−12)

= (Xt −Xt−12)− (Xt−1−Xt−13).

The ∇ operator is being used to eliminate a linear trend and the ∇12 operator is being used to elim-

inate seasonality. The seasonal AR term Φ(Bs) and the seasonal MA term Θ(Bs) in Definition 9.8

provide autoregressive and moving average terms for observations that are s units distant in time.
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Example 9.42 Forecast the next three years of international air travel based on the

AirPassengers time series from Example 7.2.

The plot of the time series is given in Figure 9.53. As indicated in Example 7.32, the

annual cycle associated with international air travel over this period does not appear to

be sinusoidal in nature. The peak months for international travel are in July and August

when school is not in session and the low month for international travel is November,

as seen in Figure 7.30. This time series provides a challenging modeling exercise be-

cause it exhibits a nonconstant variance, a trend, and periodicity. These three modeling

challenges will be addressed in that order, one by one.
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Figure 9.53: International airline passengers (in thousands) 1949–1960.

We begin by addressing the nonconstant variance. Since the variance appears to be

increasing over time, a logarithmic transformation is reasonable transformation to apply

to the time series. Let {xt} denote the original time series and let yt = lnxt . The R

statement

ts.plot(log(AirPassengers))

plots the natural logarithm of the raw time series. The plot of the transformed time

series is given in Figure 9.54.

The transformation appears to be effective. The variance of the logarithms of the raw

time series observations is now close to constant over time. The next step is to address

the trend. Since the trend of the transformed time series depicted in Figure 9.54 is

approximately linear, a single difference (d = 1) is taken. The differenced time series is

wt = ∇yt = ∇ lnxt = lnxt − lnxt−1.

(The resulting time series is not named zt to avoid any conflict with the white noise

terms.) This transformed and differenced time series, along with the associated sample

autocorrelation function and sample partial autocorrelation function are graphed with

the R statements
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Figure 9.54: Logarithm of international airline passengers (in thousands) 1949–1960.

w = diff(log(AirPassengers))

layout(matrix(c(1, 1, 2, 3), 2, 2, byrow = TRUE))

plot.ts(w)

acf(w, lag.max = 40)

pacf(w, lag.max = 40)

The associated graphs are displayed in Figure 9.55. Instead of the usual 12 · 12 = 144

observations from the previous two figures, the differencing operation leaves only 143

observations, which is reflected in the labels on the horizontal axis of the plot of the

differences of the logarithms of the original time series values. The differencing has

proved to be successful. The time series plot of wt appears to be stationary. The strongly

statistically significant sample autocorrelation function values at lags 12, 24, and 36 are

a reminder that even though the nonconstant variance and trend have been addressed, the

cyclic variation has not been addressed. ARMA modeling is not appropriate at this point

because rk is neither tailing out nor cutting off. There is still an annual cyclic component

present in {wt}. A reasonable way to proceed is to employ a seasonal ARIMA model to

account for the cyclic variation. Backing up one level, we would like to fit a SARIMA

(p, d, q)× (P, D, Q)12 model to the natural logarithms of the raw passenger counts.

The choice s = 12 for the seasonal order is to account for the monthly collection of the

passenger counts which exhibit a clear annual cycle; the choice of d = 1 is appropriate

based on the fact that the time series {wt} in Figure 9.55 appears to be stationary. But

what about the other parameters (p, q, P, D, and Q)? An exhaustive search using the

arima function in R to locate the smallest value of AIC results in the following settings:

d = P = Q = 1

and

p = q = D = 0.



638 Chapter 9. Topics in Time Series Analysis

1 143

−0.25

0.00

0.25

0 10 20 30 40

−1.0

−0.5

0.0

0.5

1.0

0 10 20 30 40

−1.0

−0.5

0.0

0.5

1.0

wt

kk

rk r∗k

t

Figure 9.55: Logarithm of international airline passengers (in thousands) 1949–1960.

The single R statement below fits the SARIMA (0, 1, 0)× (1, 0, 1)12 model to the log-

arithms of the passenger counts in the AirPassengers time series.

fit = arima(log(AirPassengers),

order = c(0, 1, 0),

seasonal = list(order = c(1, 0, 1), period = 12))

The maximum likelihood estimates of the parameters are Φ = 0.9877, Θ = −0.5935

and σ̂2
Z = 0.001526. So the fitted model is

(
1−0.9877B12

)
∇Yt =

(
1−0.5935B12

)
Zt ,

where Yt = ln Xt , and Zt ∼WN (0, 0.001526) This fitted SARIMA model achieves an

AIC value of −486.9953. There are several other competing SARIMA models with

nearby AIC values.

The final step is to use the fitted SARIMA model to forecast international airline travel

for the subsequent three years (36 months). The R code below fits the SARIMA model
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with the arima function, uses the predict function to calculate the forecasted values

and their standard errors, and then plots the original time series, the forecasted values,

and the 95% prediction intervals.

fit = arima(log(AirPassengers),

order = c(0, 1, 0),

seasonal = list(order = c(1, 0, 1), period = 12))

n = length(AirPassengers)

h = 36

forecast = predict(fit, n.ahead = h)

alpha = 0.05

crit = qnorm(1 - alpha / 2)

lo = forecast$pred - crit * forecast$se

hi = forecast$pred + crit * forecast$se

beginx = time(AirPassengers)[n]

deltax = deltat(AirPassengers)

xval1 = seq(beginx + deltax, beginx + h * deltax, length.out = h)

xval2 = c(xval1, rev(xval1))

yvals = exp(c(lo, rev(hi)))

ts.plot(AirPassengers, exp(forecast$pred), ylim = c(0, max(yvals)))

polygon(xval2, yvals, col = "gray50")

points(xval1, exp(forecast$pred), pch = 16, cex = 0.7, col = "white")

points(xval1, exp(forecast$pred), pch = 1, cex = 0.7)

This graph of the original time series and the 36 forecasted values is given in Fig-

ure 9.56. The forecasts from the SARIMA model show that the nonconstant variance,

trend, and cyclic variation have been adequately captured by the model. Since there

are 144+ 36 = 180 points squeezed so tightly together in the plot, a second graph of

the forecasted values for just the last three cycles of the observed time series and the

forecasted values is given in Figure 9.57.
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Figure 9.56: Forecasted international travel and 95% prediction intervals.
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Figure 9.57: Forecasted international travel and 95% prediction intervals.

These forecasts are crucial for airports, airline manufacturers, and associated businesses

as they can predict the impact of growth on supply chains, personnel requirements, and

logistics necessary to support air travel.

To summarize this section, the modeling of a nonstationary time series involves the following

steps.

• Plot the time series, noting any trends, seasonality, and nonconstant variance.

• Make the variance stable by applying appropriate transformations if necessary.

• Use detrending (possibly regression) or repeated differencing (to use an ARIMA model) to

create a stationary time series.

• Plot the stationary time series along with its sample autocorrelation function and sample par-

tial autocorrelation function.

• Hypothesize a tentative ARMA model for the stationary time series model. If there is a sea-

sonal component, consider a SARIMA model on the transformed time series.

• Fit the tentative ARMA or SARIMA model. Perform the model assessment tests on the tenta-

tive time series model. If the fitted tentative ARMA or SARIMA model fails these tests, then

hypothesize a new tentative model.

• Perform overfitting in the final model selection process to ensure that the best model has been

selected.

• Apply the final time series model in the fashion dictated by the problem setting (this is often

forecasting future values of the time series).

As illustrated in Example 9.42, time series modeling can be thought of as a step-by-step process of

identifying a removing causes of variation in the time series (for example, trend, cycles, autocorre-

lation) until all that remains is white noise.



Section 9.5. Spectral Analysis 641

9.5 Spectral Analysis

In practice, many time series exhibit cyclic variation. The first two examples in Chapter 7 concern-

ing monthly residential power consumption and monthly international airline travel both contain a

cyclic component. The time series models derived from the general linear model do not explicitly

consider cyclic variation; these models exist in what is known as the time domain. Spectral analysis

considers modeling in the frequency domain. Spectral analysis decomposes a stationary time series

into sinusoidal components (that is, sine and cosine functions) in order to identify frequencies asso-

ciated with periodic components. Just as autoregressive models use regression on previous values

of a time series in the time domain, spectral analysis uses regression on sine and cosine terms in the

frequency domain.

Table 9.20 presents some new terminology that arises in spectral analysis and presents some

analogies with known data analysis techniques. The column headings indicate that the three sub-

sequent rows contain three application areas, three probability constructs, and their three statistical

counterparts.

• The first row concerns the analysis of univariate data. In probability theory, several commonly-

used probability distributions (for example, the exponential, normal, and binomial distribu-

tion) are investigated in order to build an inventory of potential probability distributions that

might adequately describe a univariate data set. When an analyst encounters a univariate data

set, one of the early steps in the analysis is to plot a histogram and compare its shape to the

inventory of probability density functions associated with known probability distributions.

• The second row concerns time series analysis in the time domain. Shapes of the population

autocorrelation function are derived for several commonly-used time series models (for ex-

ample, the AR(2), MA(1), and ARMA(1, 1) models) in order to build an inventory of shapes

such as those given in Figure 9.43 that might adequately describe the time series. When a

time series analyst encounters time series observations, one of the early steps in the analysis

is to plot the correlogram (a.k.a., the sample autocorrelation function) and compare its shape

to the inventory of known population autocorrelation functions.

• The third row concerns time series analysis in the frequency domain. Shapes of the spectral

density function are derived for several commonly-used time series models in order to build an

inventory of shapes that might adequately describe the periodic nature of a time series. When

a time series analyst encounters time series observations, one of the early steps is to plot the

periodogram and compare its shape to the inventory of known spectral density functions.

The next two subsections will focus on the spectral density function and its statistical counterpart,

the periodogram.

Application area Probability construct Statistical counterpart

univariate data probability density
histogram

analysis function

time series analysis: population autocorrelation
correlogram

time domain function

time series analysis: spectral density
periodogram

frequency domain function

Table 9.20: Population versus sample representations.
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9.5.1 The Spectral Density Function

The emphasis in the spectral analysis of a time series is the identification of the frequencies associ-

ated with cycles. The frequencies will be denoted here by ω. Just as the population autocorrelation

function is the natural tool for identifying and quantifying autocorrelation in the time domain, the

spectral density function is the natural tool for identifying and quantifying the frequencies associ-

ated with cyclic variation in the frequency domain. As seen in the following definition, the spectral

density function can be written in terms of the population autocovariance function.

Definition 9.9 Let {Xt} be a stationary time series with population autocovariance function γ(k).
The spectral density function f (ω) is

f (ω) =
1

π

[
γ(0)+2

∞

∑
k=1

γ(k)cos(ωk)

]
0 < ω < π.

The interpretation of the spectral density function is that f (ω)∆ω reflects the contribution of

frequencies in the interval (ω, ω+∆ω) to the variance of Xt for small values of ∆ω. When f (ω) is

high, then frequencies near ω have a large impact on Xt . When f (ω) is low, then frequencies near

ω have a small impact on Xt . The upper limit of the support of the spectral density function, π, is

known as the Nyquist frequency. Frequencies that exceed π are not captured by the spectral density

function. This is not a universal choice for the definition of the spectral density function or the upper

limit of its support. There are many valid alternative choices. A common alternative choice for the

upper limit of the support is 1/2.

The first example illustrates the calculation of a spectral density function for one of the most

basic time series models.

Example 9.43 Find the spectral density function for an ARMA(0, 0) time series model.

An ARMA(0, 0) model is simply white noise, so the population autocovariance function

is

γ(k) =

{
σ2

Z k = 0

0 k = 1, 2, . . . .

Using Definition 9.9, the spectral density function is

f (ω) =
1

π

[
γ(0)+2

∞

∑
k=1

γ(k)cos(ωk)

]
=

σ2
Z

π
0 < ω < π.

Figure 9.58 shows the spectral density function for the ARMA(0, 0) process. Since

there is no cyclic variation whatsoever in the ARMA(0, 0) time series model, no fre-

quency stands out over another, so the spectral density function is uniformly distributed

of the frequencies between 0 and π. Each frequency on the interval (0, π) contributes

equally to the variance of Xt . Neither high frequencies nor low frequencies play a dom-

inant role in the in terms of cyclic variation of this process. Notice that the area under

f (ω) between 0 and π is σ2
X = σ2

Z .

The next example calculates the spectral density function of an MA(1) model. This particular

model was chosen because it has an autocovariance function that cuts off after lag 1, which means

that the summation given in Definition 9.9 consists of just a single term.
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Figure 9.58: Spectral density function for an ARMA(0, 0) model.

Example 9.44 Find the spectral density function for an MA(1) time series model.

As derived in Section 9.2.1, the population autocovariance function of an MA(1) time

series model is

γ(k) =





(
1+θ2

)
σ2

Z k = 0

θσ2
Z k = 1

0 k = 2, 3, . . . .

Using Definition 9.9, the spectral density function is

f (ω) =
1

π

[
γ(0)+2

∞

∑
k=1

γ(k)cos(ωk)

]
=

σ2
Z

π

[
1+θ2 +2θcosω

]
0 < ω < π.

In order to develop some intuition about the spectral density function, consider two

special cases of the MA(1) model: θ = 9/10 and θ = −9/10. These two values of θ
correspond to stationary and invertible MA(1) time series models.

When θ = 9/10, the spectral density function reduces to

f (ω) =
σ2

Z

π

[
181

100
+

9

5
cosω

]
0 < ω < π.

Figure 9.59 shows the spectral density function for an MA(1) model with θ = 9/10.

Since θ > 0, the lag 1 population autocorrelation is positive, which means that a real-

ization of this time series will linger above the mean for a few observations and then

linger below the mean for a few observations. But the number of observations that the

sequence lingers above or below the mean is random. This is the behavior that we saw

in the simulated values in Example 9.33. In the simulated realization, sometimes the

time series only lingers above or below the mean for just 2 or 3 simulated observations.

In other cases, the time series lingers above or below the mean for 6 or 7 simulated

observations. In other words, there is low-frequency variation in this time series, but it

does not have a single consistent frequency. This pattern of lingering on one side of the

mean corresponds to low frequency cycles, and those low frequency cycles correspond

to smaller values of ω. This is reflected in the spectral density function in Figure 9.59,

where the lower frequencies have larger values of f (ω) than the higher frequencies.

Lower frequency variation dominates.
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Figure 9.59: Spectral density function for an MA(1) model with θ = 9/10.

When θ =−9/10, the spectral density function reduces to

f (ω) =
σ2

Z

π

[
181

100
− 9

5
cosω

]
0 < ω < π.

Figure 9.60 shows the spectral density function for an MA(1) model with θ = −9/10.

Since θ < 0, the lag 1 population autocorrelation is negative, which means that the

observations in a realization of this time series will often jump from one side of the

mean value to the other. This is the behavior that we saw with the simulated values

in Example 9.34. In most cases, when one observation was on one side of the mean,

the next observation was on the other side of the mean. Occasionally, however, the time

series lingered for 2 or 3 observations on one side of the mean. Once again, this behavior

is random and does not correspond to a single consistent frequency. This pattern of

adjacent observations jumping from one side of the mean to the other corresponds to

high frequency cycles, and those high frequency cycles correspond to larger values of

ω. This is reflected in the spectral density function in Figure 9.60, where the higher

frequencies have larger values of f (ω). Higher frequency variation dominates.
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Figure 9.60: Spectral density function for an MA(1) model with θ =−9/10.

One common element from the spectral density functions given in the two previous examples

is that they both integrate to σ2
X . This is true in general. Some time series analysts prefer to divide

the spectral density function by σ2
X so that it will integrate to 1, making it a true probability density

function. The normalized spectral density function is given by

f ∗(ω) =
f (ω)

σ2
X

0 < ω < π.
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Dividing both sides of the equation in Definition 9.9 by γ(0) = σ2
X gives

f ∗(ω) =
1

π

[
1+2

∞

∑
k=1

ρ(k)cos(ωk)

]
0 < ω < π.

The associated normalized spectral cumulative distribution function is defined on the support of ω
in the usual fashion as

F∗(ω) =
∫ ω

0
f ∗(w)dw 0 < ω < π.

One advantage of normalizing these two functions is that there is now a clean interpretation of

F∗(ω). For frequencies ω1 and ω2 satisfying 0 < ω1 < ω2 < π, the expression F∗(ω2)−F∗(ω1)
denotes the proportion of the variance in {Xt} accounted for by frequencies on the interval (ω1, ω2).

9.5.2 The Periodogram

The periodogram is the statistical counterpart to the spectral density function. The periodogram

estimates the spectral density function for all frequencies between 0 and π. The shape of the pe-

riodogram reflects the frequencies that correspond to significant cyclic variation in a time series.

Peaks in the periodogram reveal the dominant frequencies associated with cyclical components in

an observed time series.

One topic that is crucial in time series analysis in the frequency domain is how often a time series

should be sampled. Consider sampling the outdoor air temperature, for example, in Washington,

DC. There are two significant cyclic components that should become apparent in such a time series.

First, there is a daily temperature cycle. Temperatures are warmer during the day and cooler at

night. This corresponds to high frequency variation. Second, there is an annual temperature cycle.

Temperatures are warmer during the summer and cooler during the winter. This corresponds to low

frequency variation. There is a factor of 365 (well, actually 365.24219) that separates the frequencies

of these two cycles which should be accounted for in how often the time series is sampled. The

following illustrations provide instances of sampling this time series too often, sampling this time

series not often enough, and sampling this time series at about the right intervals to capture these

two frequencies in a periodogram.

• Let’s say you sample 1000 outdoor air temperatures at Reagan National Airport in Washington

DC every second beginning at noon on July 20, 1969. This data collection will be over very

soon because 1000 seconds is only about 17 minutes. But you have not covered a daily cycle

or an annual cycle, so the frequencies for these two cycles cannot be detected from this sample.

The sampling is too frequent.

• Let’s say you sample 100 outdoor air temperatures at Reagan National Airport in Washington

DC annually beginning at noon on July 20, 1969. This experiment will take you a long time

to collect because the last value collected will be at noon on July 20, 2068. Even though you

have collected the observations through 100 annual temperature cycles and tens of thousands

of daily temperature cycles, neither the daily nor the annual cycle can be detected. All obser-

vations were made during the summer and during the day. The sampling was too infrequent.

• If you desire to detect both the daily and the annual outdoor air temperature cycles at Reagan

National Airport, then a sampling interval between the two extremes (every second and every

year from the previous two illustrations) must be used. So if you begin sampling hourly data

at noon on July 20, 1969 and collect this data for three years, you will have collected outdoor
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temperature observations over three annual cycles and about a thousand daily cycles. This

requires 3 ·365 ·24 = 26,280 outdoor air temperatures to be collected. This time series allows

an analyst to detect both daily and annual cycles. The periodogram, which estimates the

spectral density function will have a peak associated with the low frequency (annual) cycles

and a second peak associated with the high frequency (daily) cycles.

The details associated with computing the periodogram are left for a full-semester class in time

series analysis. Some of the fundamental ideas will be presented here in order to give a sense of the

development of the estimator. As has been the case in regression and survival analysis, we begin

with a model for a time series having cyclic behavior. One such model is

Xt = c · cos(ωt +φ),

where c is the amplitude of the cyclic variation, ω is the frequency of the cyclic variation, φ is a

phase shift parameter, and the angle is measured in radians. (The φ used here has nothing to do with

φ from the autoregressive time series models in the time domain.) Unfortunately, this model does

not contain any random terms, and such a time series only occurs rarely in practice. So adding a

time series of white noise {Zt} results in the much more practical model

Xt = c · cos(ωt +φ)+Zt .

Since the phase shift parameter can be tedious in parameter estimation, it is common practice in

spectral analysis to apply the trigonometric identity cos(x+y) = cosx cosy−sinx siny to this model,

which results in

Xt = acos(ωt)+bsin(ωt)+Zt ,

where a = c · cos(φ) and b =−c · sin(φ). This result is symmetric in the two primary trigonometric

functions sine and cosine. The derivation thus far has only involved a single frequency ω. As in

the previous outdoor air temperature example, it is often the case that there are multiple frequencies

of interest. The current time series model can be generalized by summing over the k frequencies

ω1, ω2, . . . , ωk:

Xt =
k

∑
j=1

(
a j cos(ω jt)+b j sin(ω jt)

)
+Zt ,

where the amplitudes a j and b j reflect the contribution of frequency ω j to the variability of Xt . For

example, if a j = b j = 0 for one particular index j, then the associated frequency ω j makes no contri-

bution to the variability of Xt . The three remaining loose ends are (a) the number of frequencies k to

consider, (b) which frequencies ω1, ω2, . . . , ωk to consider, and (c) how to estimate the amplitudes

a1, a2, . . . , ak and b1, b2, . . . , bk. These loose ends are easier to navigate if the number of elements

in the time series n happens to be even, which is assumed for now. If so, then the usual practice is to

let k = n/2 and space the ω j values uniformly between 0 and π as

ωm = 2πm/n m = 1, 2, . . . , n/2.

The lowest frequency that can be detected by the periodogram is ω1 = 2π/n and the highest fre-

quency that can be detected by the periodogram is ωn/2 = π, the Nyquist frequency. The peri-

odogram can be calculated in R with the spectrum function, which is available in the base lan-

guage. Periodograms often contain significant sampling variability and do not provide a consistent

estimator of the spectral density function, so time series analysts often use various techniques to

smooth the raw periodogram values.
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Example 9.45 Conduct a Monte Carlo simulation experiment with 1000 replications

that averages the periodograms associated with an MA(1) model with θ = −0.9 and

σ2
Z = 1 from a time series of n = 100 observed values.

This example uses the average of 1000 periodograms to estimate the spectral density

function. The R code below uses the arima.sim function to generate 1000 time series

of length n = 100 from an MA(1) time series model with θ = −0.9 and σ2
Z = 1. The

realizations of the time series are stored in the vector named x. The periodogram val-

ues are computed by the spectrum function and their cumulative values are stored in

the vector named s. Setting the plot argument to FALSE suppresses the plots of the

individual periodograms in the for loop. Setting the spans argument to a vector of

odd integers smooths the periodogram values. The spec component of the list returned

by the spectrum function returns the smoothed periodogram values. Finally, the plot

function is used to plot the periodogram values. Since the spectrum function returns

a support of (0, 1/2), this is stretched to yield a support of (0, π) in the final plot. The

curve that is plotted is k = n/2 = 100/2 = 50 segments connecting the spectral density

function estimates for the frequencies ω1 = 2π/100, ω2 = 4π/100, . . . , ω50 = π, which

are contained in the freq component of the list returned by the spectrum function.

set.seed(3)

s = numeric(50)

nrep = 1000

for (i in 1:nrep) {

x = arima.sim(list(order = c(0, 0, 1), ma = -0.9), n = 100)

s = s + spectrum(x, plot = FALSE, spans = c(3, 5))$spec

}

f = spectrum(x, plot = FALSE, spans = c(3, 5))$freq

plot(2 * pi * f, s / nrep, type = "l")

The average of the 1000 periodograms is plotted in Figure 9.61. As anticipated, the

shape of the average of the periodograms is about the same as the shape of the spec-

tral density function in Figure 9.60. The smoothness of the periodogram displayed in

Figure 9.60 is deceiving. It is smooth because it is an average of 1000 periodograms.

The individual periodograms generated within the for loop are very noisy, particularly

when the smoothing parameters in the call to spectrum are eliminated. In a time series

application, you will seldom work with the average of 1000 periodograms.

ω

f̂ (ω)

π

0

0

3.5

Figure 9.61: Periodogram averages for an MA(1) model with θ =−9/10.



648 Chapter 9. Topics in Time Series Analysis

The previous example showed that the periodogram for the target MA(1) process, on average,

appears to converge to the associated spectral density function. As illustrated in the final example,

you will typically be working with just a single periodogram, which is typically quite noisy.

Example 9.46 Plot the periodogram associated with the annual lynx pelt sales at Hud-

son’s Bay Company in Canada from 1857 to 1911. This data set was first encountered

in Example 9.29.

The time series plot is given in Figure 9.62. There is a clear periodic component to

the time series with a spike in sales every 9 or 10 years, which should be captured by

the periodogram. The quickest way to generate a periodogram is with the R statements

given below.

pelt = c(23362, 31642, 33757, 23226, 15178, 7272, 4448, 4926,

5437, 16498, 35971, 76556, 68392, 37447, 45686, 7942,

5123, 7106, 11250, 18774, 30508, 42834, 27345, 17834,

15386, 9443, 7599, 8061, 27187, 51511, 74050, 78773,

33899, 18886, 11520, 8352, 8660, 12902, 20331, 36853,

56407, 39437, 26761, 15185, 4473, 5781, 9117, 19267,

36116, 58850, 61478, 36300, 9704, 3410, 3774)

spectrum(pelt)

This code can be embellished a little to (a) avoid the special treatment of the Nyquist

frequency, (b) extend the horizontal axis to π, (c) avoid the use of a logarithmic vertical

axis, and (d) include some smoothing of the periodogram with the following additional

R statements.

spec = spectrum(pelt, spans = c(3, 5), plot = FALSE)$spec

freq = spectrum(pelt, spans = c(3, 5), plot = FALSE)$freq

plot(2 * pi * freq, spec, type = "l")
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Figure 9.62: Time series plot for n = 55 annual lynx pelt sales (1857–1911).
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The smoothed periodogram is given in Figure 9.63 There is a pronounced spike cor-

responding to a frequency of ω = 0.1 · 2 · π = 0.6283. This corresponds to a period

of
2 ·π

0.1 ·2 ·π = 10,

which is consistent with the time series plot from Figure 9.62, which clearly displays a

cycle of length 10.

ω

f̂ (ω)

π

0

0

2.4 ·109

Figure 9.63: Periodogram for the lynx pelt sales.

9.6 Exercises

9.1 For a stationary AR(1) model, find V
[
X̄
]
. Give an approximation for V

[
X̄
]

for large values

of n.

9.2 Implement a Monte Carlo simulation that evaluates the method of moments, least squares,

and maximum likelihood estimation techniques for an AR(1) model with n = 100 observed

values and population parameters φ = −3/4 and σ2
Z = 1 and identify the technique that has

the smallest mean square error for estimating φ.

9.3 Consider a shifted AR(1) time series model with known parameter values µ, φ, and σ2
Z .

One realization of the time series x1, x2, . . . , x100 has been observed. Perform Monte Carlo

simulation experiments that provide convincing numerical evidence that the exact two-sided

95% prediction intervals for X101 and X102 are indeed exact prediction intervals for parameter

settings of your choice.

9.4 Consider a stationary shifted AR(1) model defined by

Xt = µ+φXt−1 +Zt ,

where µ,−1< φ < 1, and σ2
Z > 0 are fixed known parameters and Zt is Gaussian white noise.

Find expressions for

(a) lim
h→∞

E [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn]

(b) lim
h→∞

V [Xn+h |X1 = x1, X2 = x2, . . . , Xn = xn] .

9.5 Find the limiting half-width of a exact two-sided 100(1−α)% prediction interval for E
[
X̂ n+h

]

as the time horizon h→ ∞ for an AR(1) time series model with all parameters known.
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9.6 For a stationary shifted ARMA(p, q) time series model with population autocorrelation func-

tion ρ(k), the population variance of the sample mean is

V
[
X̄
]
=

σ2
X

n

[
1+2

n−1

∑
k=1

(
1− k

n

)
ρ(k)

]
.

This result was proved in Section 8.2.1. Use this result to find an approximate 95% con-

fidence interval for µ for the beaver data from Example 9.3 for a fitted shifted AR(1) time

series model with Gaussian white noise error terms.

9.7 The built-in R time series lh consists of n = 48 observations of the luteinizing hormone in

blood samples from a woman taken at 10 minute intervals.

(a) Plot the time series, the sample autocorrelation function and the sample partial auto-

correlation function.

(b) Suggest an ARMA(p, q) model based on your plots.

(c) Make a scatter plot of the data pairs (xt−1, xt).

(d) Compute the method of moments estimates of the parameters in the model suggested

in part (b).

(e) Compute the maximum likelihood estimates of the parameters in the model suggested

in part (b).

(f) Compute an approximate 95% confidence interval for φ.

(g) Forecast the next three values in the time series and report 95% prediction intervals for

the three forecasts.

(h) Perform some research on the luteinizing hormone and indicate some scientific evi-

dence that the time series model you suggested in part (b) is plausible.

9.8 Report the test statistic and p-value for the turning point test applied to the time series of

beaver temperatures in their active state from Example 9.3. Comment on the sign of the test

statistic and the magnitude of the p-value.

9.9 Consider the time series of n = 70 consecutive yields from a batch chemical process (from

Box, G.E.P., and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control,

Revised Edition, Holden–Day, page 32) given in Example 7.20.

(a) Plot the time series, the sample autocorrelation function and the sample partial auto-

correlation function.

(b) Suggest an ARMA(p, q) model based on your plots.

(c) Make a scatter plot of the data pairs (xt−1, xt).

(d) Compute the method of moments estimates of the parameters in the model suggested

in part (b).

(e) Compute the maximum likelihood estimates of the parameters in the model suggested

in part (b).

(f) Compute an approximate 95% confidence interval for φ.

(g) Forecast the next three values in the time series and report 95% prediction intervals for

the three forecasts.
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9.10 Consider an AR(1) model with population parameters φ = 0.8 and σ2
Z = 1, and Gaussian

white noise. Let r1, r2, r3 denote the sample autocorrelation function values of the residuals

of the fitted time series associated with n = 100 observations. Use Monte Carlo simulation

to estimate the population mean vector and population variance–covariance matrix, to one-

digit accuracy, of r1, r2, r3 when maximum likelihood estimation is used to estimate the

parameters.

9.11 Let B1 and B2 be the roots of the characteristic equation φ(B) = 1−φ1B−φ2B2 = 0 for an

AR(2) time series model

Xt = φ1Xt−1 +φ2Xt−2 +Zt .

Let G1 = B−1
1 and G2 = B−1

2 . A general solution for the lag k autocorrelation is (see Box,

G.E.P., and Jenkins, G.M. (1976), Time Series Analysis: Forecasting and Control, Revised

Edition, Holden–Day, page 59)

ρ(k) =

(
1−G2

2

)
Gk+1

1 −
(
1−G2

1

)
Gk+1

2

(G1−G2)(1+G1G2)

for G1 6= G2. Show that calculating the population autocorrelation in this fashion is the same

as using the recursive equation for the first five lags for an AR(2) process with parameters

(a) φ1 = 1/2, φ2 = 1/3,

(b) φ1 = 1, φ2 =−1/2.

9.12 Create a plot like the one in Figure 9.13 for an AR(2) model stationary region with ρ(1) =
−0.9,−0.8, . . . , 0.9 and ρ(2) =−0.9,−0.8, . . . , 0.9. No labels are necessary on your plot.

9.13 A stationary AR(2) time series model can be written as an MA(∞) time series model. The

coefficients θ1, θ2, . . . in the MA(∞) model can be calculated in four fashions. First, they

can be calculated using the recursive formulas in Theorem 9.12. Second, they can be written

explicitly as (Cryer, J.D. and Chan, K–S, Time Series Analysis: With Applications in R, 2008,

Springer, page 75):

θi =





(i+1)G i
1 φ2

1 +4φ2 = 0(
G i+1

1 −G i+1
2

)
/(G1−G2) φ2

1 +4φ2 > 0

R i sin [(i+1)Θ]/sinΘ φ2
1 +4φ2 < 0

for i = 1, 2, . . . , where B1 and B2 are the roots of φ(B) = 1− φ1B− φ2B2, G1 = B−1
1 ,

G2 = B−1
2 , R =

√−φ2, and cosΘ = φ1/(2R). Third, the coefficients can be calculated by

using the factored form of the characteristic polynomial, and writing the model in terms of Xt

and equating coefficients. Fourth, the coefficients can be calculated by using the ARMAtoMA

function in R. Calculate the first eight coefficients of the MA(∞) model, θ1, θ2, . . . , θ8, using

these four methods for the following sets of AR(2) parameters:

(a) φ1 = 1, φ2 =−1/4,

(b) φ1 = 1/2, φ2 = 1/9,

(c) φ1 = 1, φ2 =−1/2.

These three parameter combinations correspond to one real root with multiplicity two, two

distinct real roots, and two complex roots of the characteristic equation φ(B) = 0.
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9.14 For an AR(2) time series model, the asymptotic variance–covariance matrix of the maximum

likelihood estimates φ̂1 and φ̂2 is

1

n

[
1−φ2

2 −φ1(1+φ2)
−φ1(1+φ2) 1−φ2

2

]
.

What is the asymptotic population correlation between φ̂1 and φ̂2?

9.15 Consider an AR(2) time series model with φ1 = 1, φ2 =−1/2, and σ2
Z = 1. For a realization

of n = 100 observations X1, X2, . . . , X100 from this AR(2) model, give convincing numerical

evidence that the forecasted value for X103 is unbiased and that the 95% prediction interval

for X103 is exact.

9.16 Implement Theorem 9.17 on the R built-in LakeHuron time series to calculate the first five

forecasted values and associated prediction intervals. Do not just use the predict function.

9.17 Consider a standard AR(2) model for an observed time series of n = 100 values. The last two

values in the time series are x99 = 3 and x100 = 4. The estimated coefficients in the AR(2)

model are φ̂1 = 1 and φ̂2 =−0.5. Compute the next ten forecasted values X̂101, X̂102, . . . , X̂110

and comment on the shape of the forecasted values.

9.18 Consider a realization x1, x2, . . . , xn of a stationary shifted AR(2) time series model with

fixed known parameters µ, φ1, φ2, and σ2
Z . Write a formula for X̂ n+3 in terms of xn−1 and xn.

9.19 Consider the annual Lake Huron water level heights from 1875 to 1972 given in the R built-in

data set LakeHuron, appended by the next ten observations,

580.98, 581.04, 580.49, 580.52, 578.57, 578.96, 579.94, 579.77, 579.44, 578.97,

for the years 1973 to 1982. Give the p-value associated with a test of the statistical signifi-

cance of the slope of the simple linear regression line for the augmented time series.

9.20 Consider the AR(3) model with coefficients

φ1 = 3/2 φ2 =−1 φ3 = 1/4.

(a) Is this model invertible?

(b) Is this model stationary?

(c) Calculate the first six coefficients of the associated MA(∞) model.

9.21 Two necessary, but not sufficient, conditions for stationarity of an AR(p) time series model

are (Cryer, J.D. and Chan, K–S, Time Series Analysis: With Applications in R, 2008, Springer,

page 76):

φ1 +φ2 + · · ·+φp < 1 and |φp|< 1.

(a) Show that these conditions hold for the stationary AR(4) time series model with

φ1 =
21

20
, φ2 =

1

20
, φ3 =−

23

40
, φ4 =

3

10
.

(b) Graphically or algebraically, show that these conditions are necessary but not sufficient

for falling in the triangular-shaped stationary region from Theorem 9.9 for an AR(2)

time series model.
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9.22 Consider the AR(4) time series model with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

and Gaussian white noise with population variance σ2
Z = 1. Conduct a Monte Carlo simula-

tion experiment that provides convincing numerical evidence that γ(0) = 3520/819.

9.23 The R vector phi contains the parameters φ1, φ2, . . . , φp in an AR(p) model. Write an R

function named is.stationary with a single parameter phi that returns TRUE if the AR(p)

model is stationary and FALSE otherwise.

9.24 The R code below takes initial p autocovariances γ(0), γ(1), . . . , γ(p− 1) for an AR(p)

model, which are stored in the vector gam, and places them in a variance–covariance ma-

trix GAMMA (denoted by Γ in the text).

GAMMA = matrix(0, p, p)

for (i in 1:p) {

for (j in 1:p) {

GAMMA[i, j] = gam[abs(i - j) + 1]

}

}

The code makes this conversion by using two nested for loops. Heather can do this calcula-

tion without using for loops. How does she do it?

9.25 Consider a time series that is governed by an AR(4) model with characteristic polynomial

φ(B) = 1− 21

20
B− 1

20
B2 +

23

40
B3− 3

10
B4

and Gaussian white noise with population variance σ2
Z = 1. Conduct a Monte Carlo sim-

ulation experiment that provides convincing numerical evidence that the 95% confidence

interval for φ3 based on the maximum likelihood estimators for an AR(4) time series model

is asymptotically exact.

9.26 For logarithms of the n = 55 annual lynx pelt sales time series from Example 9.29, find the

values of p and q associated with the ARMA(p, q) model that minimizes the AIC statistic.

Assume that the models are fitted by maximum likelihood.

9.27 Fit the AR(4) model to the logarithms of the n = 55 annual lynx pelt sales time series from

Example 9.29 by maximum likelihood. Simulate the fitted model to generate n = 55 random

annual lynx pelt sales from the fitted model. View a dozen or so such realizations and

comment on your faith in the fitted AR(4) time series model. Repeat the experiment for

a fitted ARMA(2, 3) time series model and comment.

9.28 Show that the MA(1) model

Xt = Zt +θZt−1,

and the MA(1) model

Xt = Zt +
1

θ
Zt−1

have the same population autocorrelation function.
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9.29 Show that −1/2≤ ρ(1)≤ 1/2 for an MA(1) model.

9.30 Derive the population autocorrelation function for the MA(1) model with arbitrary mean

value µ given by

Xt = µ+Zt +θZt−1,

in a similar fashion to the derivation for the standard MA(1) model.

9.31 Conduct the following Monte Carlo simulation experiment. Generate n = 100 observations

from an MA(1) time series model with θ = 0.9 and standard normal white noise terms.

Estimate the expected value and standard deviation of r1 and r2. Run enough replications to

that you can report your estimates to two significant digits.

9.32 Consider an MA(1) model with θ =−0.9 and Gaussian white noise with σ2
Z = 1. Generate a

dozen realizations of this time series for n = 100 observations each. Plot the time series and

the associated correlogram, using a call to Sys.sleep between each realization to view the

graphs. Write a paragraph that describes what you observe in the dozen realizations.

9.33 Consider an MA(1) time series model

Xt = Zt +θZt−1,

where {Zt} denotes Gaussian white noise. Let θ̂MOM be the method of moments estimator

of θ and let θ̂MLE be the maximum likelihood estimator of θ. One way to compare these two

estimators is the asymptotic relative efficiency, defined as

lim
n→∞

V
[
θ̂MOM

]

V
[
θ̂MLE

] .

Brockwell and Davis (2016, page 129) give the population variance of θ̂MOM and θ̂MLE as

approximately

V
[
θ̂MOM

]∼= 1+θ2 +4θ4 +θ6 +θ8

n(1+θ2)2
and V

[
θ̂MLE

]∼= 1−θ2

n
.

Write a Monte Carlo simulation that confirms these two formulas for n = 400, θ = 1/2, and

σ2
Z = 1.

9.34 The n = 45 daily average number of defects per truck at the final inspection at a manufac-

turing facility (from Burr, 1976, Statistical Quality Control Methods, Marcel Dekker, New

York), read row-wise, are given below.

1.20 1.50 1.54 2.70 1.95 2.40 3.44 2.83 1.76

2.00 2.09 1.89 1.80 1.25 1.58 2.25 2.50 2.05

1.46 1.54 1.42 1.57 1.40 1.51 1.08 1.27 1.18

1.39 1.42 2.08 1.85 1.82 2.07 2.32 1.23 2.91

1.77 1.61 1.25 1.15 1.37 1.79 1.68 1.78 1.84

Fit these data values to a shifted MA(1) time series model by the method of moments, least

squares, and maximum likelihood estimation.
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9.35 The formula for the population variance of the sample mean for a stationary time series

model (which was proved in Section 8.2.1) is

V
[
X̄
]
=

σ2
X

n

[
1+2

n−1

∑
k=1

(
1− k

n

)
ρ(k)

]

Show that this is approximately

V
[
X̄
]∼= σ2

X

n

[
1+2

∞

∑
k=1

ρ(k)

]

or, equivalently,

V
[
X̄
]∼= σ2

X

n

[
∞

∑
k=−∞

ρ(k)

]

for large values of n whenever the autocorrelation function values decay rapidly enough with

increasing k such that
∞

∑
k=1

|ρ(k)|< ∞.
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