Theorem: The /'(b, b) distribution converges to the normal distribution when b — oo.

Proof': The beta-prime distribution with the shape parameters a and 3, X ~ f'(a, ), has
the probability density function
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For the special case of a = f =0, X ~ (b, b), the probability density function becomes
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We introduce the transformed random variable Y and the according Jacobian
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For y € <\/% , oo), Y has the probability density function
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We can use Stirling’s formula I'(z) = ,/2;“ (i)z (1 + 0 (i)) to rewrite the probability density

function as
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With z = —%yQ and ¢ = —%, the limit of the central part of Equation (5) can be rewritten as
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Following the ideas for the beta distribution from: R. Ryder, “Theorem: The beta(b,b) distribution con-
verges to the normal distribution when b — o00,” 2012. [Online]. Available: http://www.math.wm.edu/
~leemis/chart/UDR/PDFs/BetaNormal.pdf.
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Proof for Equation (6): With ¢ < 0, the inner limit is of indetermined form. The limit can be
found by applying L’Hopital’s rule:
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The limit of the product of functions is the product of the limits of the functions unless
we have an indeterminate form. For the analysis with b — oo and fixed y, the limit of
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limp oo <1 + \/%y> =1 and limp_s o (1 + 0 (%)) = 1 can simply be dropped in Equation (5).

Based on this and Equation (6), the probability density function of ¥ converges point wise to
the probability density function of a standard normal random variable
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By Scheffé’s theorem, Y converges in distribution to the standard normal distribution. By
undoing the substitution, we can see that X converges in distribution to the normal distribution

with mean 1 and variance %




