Theorem The limiting distribution of a $\operatorname{Zipf}(\alpha, n)$ random variable as $n \to \infty$ is the $\operatorname{zeta}(\alpha)$ distribution.

Proof Let $X \sim \text{Zipf}(\alpha)$. Then, X has probability mass function

$$f(x) = \frac{1}{x^{\alpha} \sum_{i=1}^{n} (1/i)^{\alpha}} \qquad x = 1, 2, \dots, n$$

and cumulative distribution function

$$F(x) = \frac{\sum_{i=1}^{x} (1/i)^{\alpha}}{\sum_{i=1}^{n} (1/i)^{\alpha}} \qquad x = 1, 2, \dots, n.$$

Taking the limit of the cumulative distribution function as $n \to \infty$ yields

$$\lim_{n \to \infty} F(x) = \frac{\sum_{i=1}^{x} (1/i)^{\alpha}}{\sum_{i=1}^{\infty} (1/i)^{\alpha}} \qquad x = 1, 2, \dots, \infty,$$

which is the cumulative distribution function of a $zeta(\alpha)$ random variable.