Theorem The uniform distribution is a special case of the von Mises distribution when $\kappa = 0$.

Proof The von Mises distribution has probability density function

$$f(x) = \frac{e^{\kappa \cos(x-\mu)}}{2\pi I_0(\kappa)} \qquad \qquad 0 < x < 2\pi,$$

where

$$I_0(\kappa) = \sum_{i=0}^{\infty} \frac{\kappa^{2i}}{2^{2i}(i!)^2}$$

When $\kappa=0$ this reduces to

$$f(x) = \frac{1}{2\pi}$$
 $0 < x < 2\pi$,

which is the probability density function of the $U(0, 2\pi)$ distribution.

Maple verification: The Maple statements

yield

$$f(x) = \frac{1}{2\pi}$$
 $0 < x < 2\pi$,

which is the probability density function of the $U(0, 2\pi)$ distribution.