Theorem If $X \sim U(0, 1)$, then Y = a + (b - a)X has the U(a, b) distribution. **Proof** Let the random variable $X \sim U(0, 1)$. The probability density function of X is

$$f_X(x) = 1$$
 $0 < x < 1.$

The transformation Y = g(X) = a + (b-a)X is a 1–1 transformation from $\mathcal{X} = \{x \mid 0 < x < 1\}$ to $\mathcal{Y} = \{y \mid a < y < b\}$ with inverse $X = g^{-1}(Y) = (Y - a)/(b - a)$ and Jacobian

$$\frac{dX}{dY} = \frac{1}{b-a}.$$

Therefore, by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

= $1(1/(b-a))$
= $\frac{1}{b-a}$ $a < y < b$,

which is the probability density function of a U(a, b) random variable.