Theorem If $X \sim U(0,1)$, then $Y = X^{1/\beta}$ has the standard power(β) distribution, where $\beta > 1$.

Proof Let the random variable X have the standard uniform distribution with probability density function

$$f_X(x) = 1$$
 $0 < x < 1$.

The transformation $Y = g(X) = X^{1/\beta}$ is a 1–1 transformation from $\mathcal{X} = \{x \mid 0 < x < 1\}$ to $\mathcal{Y} = \{y \mid 0 < y < 1\}$ with inverse $X = g^{-1}(Y) = Y^{\beta}$ and Jacobian

$$\frac{dX}{dY} = \beta Y^{\beta - 1}.$$

Therefore, by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

$$= 1 \left| \beta y^{\beta - 1} \right|$$

$$= \beta y^{\beta - 1} \qquad 0 < y < 1,$$

which is the probability density function of a standard power(β) random variable.

APPL verification: The APPL statements

assume(beta > 1);

X := StandardUniformRV();

 $g := [[x \rightarrow x ^(1 / beta)], [0, infinity]];$

Y := Transform(X, g);

yield the probability density function of a standard power(β) random variable

$$f_Y(y) = \beta Y^{\beta - 1} \qquad 0 < y < 1.$$