Theorem A standard uniform random variable X can be transformed to a log logistic
random variable Y through the transformation
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where \ and k are positive.

Proof Let the random variable X have the standard uniform distribution with probability
density function
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The transformation Y = g(X) = % (
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Therefore by the transformation technique, the probability density function of Y is
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which is the probability density function of the log logistic distribution.
APPL verification: The APPL statements
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X := StandardUniformRV();
assume(lambda > 0);
assume (kappa > 0);
= [[x -> 1 / lambda * ((1 - x) / x) =~ (1 / kappa)], [0, 11];
Y := Transform(X, g);
simplify (Y[11[11(y));
Z := LogLogisticRV(lambda, kappa);

yield equivalent the functional forms
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for the random variables Y and Z, which verifies that the standard uniform distribution can
be transformed to the log logistic distribution.
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