Theorem If $X \sim U(0,1)$, then $Y = -\alpha \ln X$ is exponentially distributed with mean α .

Proof Let the random variable X have the standard uniform distribution with probability density function

$$f_X(x) = 1$$
 $0 < x < 1.$

The transformation $Y = g(X) = -\alpha \ln X$ is a 1–1 transformation from $\mathcal{X} = \{x \mid 0 < x < 1\}$ to $\mathcal{Y} = \{y \mid y > 0\}$ with inverse $X = g^{-1}(Y) = e^{-Y/\alpha}$ and Jacobian

$$\frac{dX}{dY} = -\frac{e^{-Y/\alpha}}{\alpha}.$$

Therefore, by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

= $1 \left| -\frac{e^{-y/\alpha}}{\alpha} \right|$
= $(1/\alpha)e^{-y/\alpha}$ $y > 0,$

which is the probability density function of the exponential (α) distribution.

APPL verification: The APPL statements

```
assume(alpha > 0);
X := StandardUniformRV();
g := [[x -> -alpha * ln(x)], [0, infinity]];
Y := Transform(X, g);
```

yield the probability density function of an exponential (α) random variable

$$f_Y(y) = (1/\alpha)e^{-y/\alpha}$$
 $y > 0.$