
Theorem If X ∼ N(0, 1), then Y = µ + σX has the normal distribution with mean µ and
variance σ2.

Proof Let the random variable X ∼ N(0, 1). The probability density function of X is
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The transformation Y = µ + σX is a 1–1 transformation from X = {x | −∞ < x < ∞} to
Y = {y | −∞ < y < ∞}, with inverse X = (Y − µ)/σ and Jacobian
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Therefore, by the transformation technique, the probability density function of Y is
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which is the probability density function of a N(µ, σ2) random variable.

APPL verification: The APPL statements

X := StandardNormalRV():

assume(sigma > 0);

g := [[x -> mu + sigma * x], [-infinity,infinity]]:

Y := Transform(X, g);

yield the probability density function of a N(µ, σ2) random variable.
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