Theorem If X is a standard normal random variable then Y = |X| has the chi distribution with 1 degree of freedom.

Proof The cumulative distribution function of Y is

$$F_Y(y) = P(Y \le y)$$

= $P(|X| \le y)$
= $P(-y \le X \le y)$
= $F_X(y) - F_X(-y)$
= $2F_X(y)$ $y > 0$

because of the symmetry of the standard normal distribution about 0. Differentiating with respect to y,

$$f_Y(y) = 2f_X(y) = \sqrt{\frac{2}{\pi}}e^{-y^2/2}$$
 $y > 0,$

which is the probability density function of a $\chi(1)$ random variable.

APPL Verification: The APPL statements

```
X := NormalRV(0, 1);
g := [[x -> -x, x -> x], [-infinity, 0, infinity]];
Z := Transform(X, g);
ChiRV(1);
```

confirm the result.