
Theorem The Rayleigh distribution has the scaling property. That is, if X ∼ Rayleigh(α)
then kX ∼ Rayleigh(k2α) for a positive real constant k.

Proof Let X be a Rayleigh random variable with parameter α. Then, X has probability
density function

fX(x) =
2x

α
e−x2/α x > 0.

The transformation Y = g(X) = kX, for k > 0, is a 1–1 transformation from X = {x|x > 0}
to Y = {y|y > 0} with inverse X = g−1(Y ) = Y/k. The Jacobian is dX

dY
= 1

k
Applying the

transformation technique,

fY (y) = fX(g
−1(y))
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which is the probability density function of a Rayleigh(k2α) random variable.

APPL verification: The APPL statements

assume(alpha > 0);

assume(k > 0);

X := [[x -> 2 * x / alpha * exp(-x ^ 2 / alpha)], [0, infinity],

["Continuous", "PDF"]];

g := [[x -> k * x], [0, infinity]];

Y := Transform(X, g);

verify the result.
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