Theorem The square of a Rayleigh(α) random variable is an exponential(α) random variable.

Proof Let the random variable X have the Rayleigh distribution with probability density function

 $f_X(x) = \frac{2x}{\alpha} e^{-x^2/\alpha} \qquad x > 0,$

for $\alpha > 0$. The transformation $Y = g(X) = X^2$ is a 1–1 transformation from $\mathcal{X} = \{x \mid x > 0\}$ to $\mathcal{Y} = \{y \mid y > 0\}$ with inverse $X = g^{-1}(Y) = \sqrt{y}$ and Jacobian

$$\frac{dX}{dY} = \frac{1}{2\sqrt{Y}}.$$

Therefore by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

$$= \frac{2\sqrt{y}}{\alpha} e^{-\sqrt{y^2}/\alpha} \left| \frac{1}{2\sqrt{y}} \right|$$

$$= \frac{1}{\alpha} e^{-y/\alpha} \qquad y > 0,$$

which is the probability density function of the exponential distribution.

APPL verification: The APPL statements

assume(alpha > 0);

 $X := [[x \rightarrow 2 * x / alpha * exp(-x ^ 2 / alpha)], [0, infinity], ["Continuous", "PDF"]];$

 $g := [[x -> x ^2], [0, infinity]];$

Y := Transform(X, g);

yields the functional form

$$f_Y(y) = \frac{1}{\alpha} e^{-y/\alpha} \qquad y > 0$$

for the random variable Y.