Theorem The Poisson(μ) distribution is a special case of the power series(c, A(c)) distribution when $c = \mu$ and $A(c) = e^{c}$.

Proof The power series (c, A(c)) distribution has probability mass function

$$f(x) = \frac{a_x c^x}{A(c)}$$
 $x = 0, 1, 2, \dots$

When $c = \mu, A(c) = e^c$,

$$f(x) = \frac{a_x \mu^x}{e^{\mu}}$$
 $x = 0, 1, 2, \dots$

Setting $a_x = 1/x!$ we have

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$
 $x = 0, 1, 2, \dots,$

which is the probability mass function of the $Poisson(\mu)$ distribution.

APPL verification: The APPL statements

```
assume(c > 0);
assume(a[x] > 0);
X := [[x -> a[x] * c ^ x / A(c)], [0, infinity], ["Discrete", "PDF"]];
A := c -> exp(c);
c := mu;
a[x] := 1 / x!;
simplify(X[1][1](x));
```

yield the probability mass function of the $Poisson(\mu)$ distribution.