Theorem If $X_i \sim \text{Poisson}(\mu_i)$, for i = 1, 2, ..., n, and $X_1, X_2, ..., X_n$ are mutually independent random variables, then

$$\sum_{i=1}^{n} X_i \sim \text{Poisson}\left(\sum_{i=1}^{n} \mu_i\right).$$

Proof The moment generating function of X_i is

$$M_{X_i}(t) = E\left[e^{tX_i}\right]$$

$$= \sum_{x=0}^{\infty} e^{tx} \frac{\mu_i^x e^{-\mu_i}}{x!}$$

$$= e^{-\mu_i} \sum_{x=0}^{\infty} \frac{(\mu_i e^t)^x}{x!}$$

$$= e^{-\mu_i} e^{\mu_i e^t}$$

$$= e^{\mu_i (e^t - 1)}$$

for $-\infty < t < \infty$ and i = 1, 2, ..., n. Since the moment generating function of a sum of mutually independent random variables is the product of their moment generating functions,

$$M_{X_1+X_2+\dots+X_n}(t) = \prod_{i=1}^n M_{X_i}(t)$$
$$= \prod_{i=1}^n e^{\mu_i(e^t-1)}$$
$$= e^{\left(\sum_{i=1}^n \mu_i\right)(e^t-1)}$$

for $-\infty < t < \infty$. This moment generating function is recognized as that of a Poisson random variable with mean $\sum_{i=1}^{n} \mu_i$.

APPL illustration: The APPL statements

```
X1 := PoissonRV(mu1);
X2 := PoissonRV(mu2);
simplify(MGF(X1) * MGF(X2));
```

yields the appropriate moment generating function

$$M_{X_1+X_2}(t) = e^{(\mu_1+\mu_2)(e^t-1)}$$
 $-\infty < t < \infty$

for n=2. The result holds for larger values of n by induction.