Theorem If X; ~ Pascal(n;,p), for i = 1,2,... k, and Xy, Xs,..., X} are mutually inde-
pendent random variables, then
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Proof The moment generating function of X; is
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for t < —In(1 —p) and i = 1,2,...,k. Since the moment generating function of a sum of
mutually independent random variables is the product of their moment generating functions,
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for t < —In(1 — p). This moment generating function is recognized as that of a Pascal
random variable with parameters Zle n; and p.

APPL illustration: The APPL statements

X1 := NegativeBinomialRV(nl, p);
X2 := NegativeBinomialRV(n2, p);
simplify (MGF(X1) * MGF(X2));

yield the appropriate moment generating function (could be further simplified)
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for t < —In(1 — p) and n = 2. Notice the negative binomial (Pascal) distribution built
in APPL is different from the one used here. The result holds for larger values of k by
induction.



