
Theorem [UNDER CONSTRUCTION!] If Xi ∼ N(µ, σ2), i = 1, 2, . . . , n are mutually
independent and identically distributed random variables, then Y =

∑n
i=1 X

2
i /σ

2 has the
noncentral chi-square distribution.

Proof [UNDER CONSTRUCTION!] Let Xi, i = 1, 2, . . . , n have the N(µ, σ2) distribution
with probability density function
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−∞ < x < ∞.

The transformation Yi = g(Xi) = Xi/σ is a 1–1 transformation from X = {x | −∞ < x < ∞}
to Y = {y | −∞ < y < ∞} with inverse Xi = g−1(Yi) = σYi and Jacobian

dXi

dYi

= σ.

Using the transformation technique, the probability density function of Yi is
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Therefore, Yi ∼ N(µ/σ, 1). Let Vi = h(Yi) = Y 2
i . This is a 2–1 transformation from

Y = {y | −∞ < y < ∞} to V = {v | v > 0}. The domain of the transformation can be
divided into Y1 = {y | y ≤ 0} and Y2 = {y | y > 0}, such that the mapping from Y1 to V and
Y2 to V are each 1–1. The inverse functions are Yi = h−1

1 (Vi) = −
√
Vi and Yi = h−1

2 (Vi) =√
Vi, and the Jacobians are
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.

Using the transformation technique, the probability density function of Vi is
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vi > 0.

This proof is not complete. The result is given on page 75 of Forbes, Evans, Hastings, and
Peacock (Statistical Distributions, fourth edition, John Wiley and Sons, 2011).
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