Theorem If X; ~ N(u,0%),i=1,2, ..., n are mutually independent and identically dis-
tributed random variables, then Y = 37, ((X; — 1) /0)? has the chi-square distribution with
n degrees of freedom.

Proof Let X;,i = 1,2,...,n have the N(u, 0?) distribution with probability density function
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The transformation Y; = ¢(X;) = (X; — p)/o is a 1-1 transformation from X = {z| — oo <
r < oo} tol={y| —oo<y< oo} with inverse X; = g7*(Y;) = p + o¥; and Jacobian

dX;
v, 0.
Using the transformation technique, the probability density function of Y; is
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Let V; = Y;2. The cumulative distribution function of V; is

Fy(v) = P(V;<w)

= 2 ey —00 < V<0
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by the symmetry of the standard normal distribution around 0. Letting u = v?,
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Taking the derivative with respect to wu,
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the probability density function of the chi-square distribution with 1 degree of freedom.
Because V2 ~ x{y),i = 1, 2, ..., n, the moment generating function of V; is

My (t) = (1 —2t)~1/2 t<1/2.
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Because the V; are mutually independent, the moment generating function of Z = Y7, V2
is

M) = ] My
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= (1—2t)™? t<1/2,

the moment generating function of a chi-square random variable with n degrees of freedom.

APPL illustration: The APPL statements

Y := NormalRV(0, 1);

g = [[x >x "2, x ->x " 2], [-infinity, O, infinity]l];
Z := Transform(Y, g);

Y := ConvolutionIID(Z, 3);

ChiSquareRV(3);

illustrate the result above for n = 3.



