Theorem Random variates from the minimax distribution with parameters γ and β can be generated in closed-form by inversion.

Proof The minimax(β, γ) distribution has probability density function

$$f(x) = \beta \gamma x^{\beta - 1} (1 - x^{\beta})^{\gamma - 1}$$
 $0 < x < 1$

and cumulative distribution function

$$F(x) = 1 - (1 - x^{\beta})^{\gamma}$$
 $0 < x < 1$.

Equating the cumulative distribution function to u, where 0 < u < 1 yields an inverse cumulative distribution function

$$F^{-1}(u) = (1 - (1 - u)^{1/\gamma})^{1/\beta} \qquad 0 < u < 1.$$

So a closed-form variate generation algorithm using inversion for the minimax (β, γ) distribution is

generate
$$U \sim U(0,1)$$

 $X \leftarrow (1 - (1-u)^{1/\gamma})^{1/\beta}$
return (X)

APPL verification: The APPL statements

$$X := [[x \rightarrow 1 - (1 - x \hat{beta}) \hat{gamma}], [0, 1], ["Continuous", "CDF"]]; IDF(X);$$

verify the inverse distribution function of a minimax random variable.