Theorem The standard power(β) distribution is a special case of the minimax(β , γ) distribution when $\gamma = 1$.

Proof Let $X \sim \min(\beta, \gamma)$. The probability density function of X is

$$f_X(x) = \beta \gamma x^{\beta - 1} (1 - x^{\beta})^{\gamma - 1}$$
 $0 < x < 1$.

When $\gamma = 1$, this becomes

$$f_X(x) = \beta x^{\beta-1} (1 - x^{\beta})^0$$

= $\beta x^{\beta-1}$ $0 < x < 1$.

which is the probability density function of a standard power(β) random variable.

APPL verification: The APPL statements

```
assume(beta > 0);
X := [[x -> beta * gamma * x ^ (beta - 1) * (1 - x ^beta) ^ (gamma - 1)],
        [0, 1], ["Continuous", "PDF"]];
subs(gamma = 1, %);
```

verify the result.