Theorem The Lomax distribution has the variate generation property. That is, the inverse cumulative distribution function of a $\text{Lomax}(\lambda, \kappa)$ random variable can be expressed in closed-form.

Proof The cumulative distribution function of a Lomax random variable X on its support is given by

$$F(x) = \int_0^x \frac{\lambda \kappa}{(1+\lambda t)^{\kappa+1}} dt$$

= $\left[-\frac{1}{(1+\lambda t)^{\kappa}} \right]_0^x$
= $1 - \frac{1}{(1+\lambda x)^{\kappa}}$ $x > 0.$

Now we find the inverse cumulative distribution function $F^{-1}(u)$ by solving

$$u = 1 - \frac{1}{(1 + \lambda x)^{\kappa}}$$

for x yielding

$$F^{-1}(u) = \frac{(1-u)^{-1/\kappa} - 1}{\lambda} \qquad 0 < u < 1.$$

Therefore, the Lomax distribution has the variate generation property.

APPL verification: The APPL statements

X := LomaxRV(kappa, lambda); CDF(X); IDF(X);

confirm the inverse cumulative distribution function given above.