
Theorem The natural logarithm of a log normal(α, β) random variable is aN(µ, σ2) random
variable.

Proof Let the random variable X have the log normal distribution with probability density
function
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x > 0.

The transformation Y = g(X) = ln(X) is a 1–1 transformation from X = {x | x > 0} to
Y = {y | −∞ < y < ∞} with inverse X = g−1(Y ) = eY and Jacobian

dX

dY
= eY .

Therefore, by the transformation technique, the probability density function of Y is

fY (y) = fX(g
−1(y))
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−∞ < y < ∞.

Let α = eµ and β = σ. Then

fY (y) =
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2πσ
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−∞ < y < ∞,

which is the probability density function of the normal distribution.

APPL verification: The APPL statements

X := LogNormalRV(mu, sigma);

g := [[x -> ln(x)], [0, infinity]];

Y := Transform(X, g);

Z := NormalRV(mu, sigma);

yield identical functional forms

fY (y) =
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−∞ < y < ∞

for the random variables Y and Z, which verifies that the natural logarithm of a log normal
random variable has the normal distribution.
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