Theorem The natural logarithm of a log normal(«, 3) random variable is a N (u, 0?) random
variable.

Proof Let the random variable X have the log normal distribution with probability density

function
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The transformation ¥ = ¢(X) = In(X) is a 1-1 transformation from X = {z |z > 0} to
Y ={y| —oo<y< oo} with inverse X = g7 }(Y) = ¢¥ and Jacobian
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Therefore, by the transformation technique, the probability density function of Y is
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Let a = e and 8 = 0. Then
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which is the probability density function of the normal distribution.

APPL verification: The APPL statements

LogNormalRV(mu, sigma);

[[x => 1n(x)], [0, infinity]];
Transform(X, g);

NormalRV(mu, sigma);
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yield identical functional forms
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for the random variables Y and Z, which verifies that the natural logarithm of a log normal
random variable has the normal distribution.



