Theorem The log logistic distribution has the scaling property. That is, if $X \sim \log \log \operatorname{istic}(\lambda, \kappa)$ then Y = cX also has the log logistic distribution.

Proof Let the random variable X have the log logistic(λ, κ) distribution with probability density function

$$f(x) = \frac{\lambda \kappa (\lambda x)^{\kappa - 1}}{(1 + (\lambda x)^{\kappa})^2} \qquad x > 0.$$

Let c be a positive, real constant. The transformation Y = g(X) = cX is a 1-1 transformation from $\mathcal{X} = \{x \mid x > 0\}$ to $\mathcal{Y} = \{y \mid y > 0\}$ with inverse $X = g^{-1}(Y) = Y/c$ and Jacobian $\frac{dX}{dx} = 1$

$$\frac{dX}{dY} = \frac{1}{d}$$

Therefore, by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

= $\frac{\lambda \kappa (\lambda y/c)^{\kappa-1}}{(1 + (\lambda y/c)^{\kappa})^2} \left| \frac{1}{c} \right|$
= $\frac{(\lambda/c) \kappa (\lambda y/c)^{\kappa-1}}{(1 + (\lambda y/c)^{\kappa})^2}$ $y > 0,$

which is the probability density function of a log logistic $(\lambda/c, \kappa)$ random variable.

APPL verification: The APPL statements

```
assume(c > 0);
X := LogLogisticRV(lambda, kappa);
g := [[x -> c * x], [0, infinity]];
Y := Transform(X, g);
```

yield the probability density function of a log logistic $(\lambda/c, \kappa)$ random variable.