Theorem The logistic-exponential distribution has the scaling property. That is, if $X \sim \text{logistic-exponential}(\alpha, \beta)$ then Y = kX also has the logistic-exponential distribution.

Proof Let the random variable X have the logistic-exponential (α, β) distribution with probability density function

$$f(x) = \frac{\alpha \beta (e^{\alpha x} - 1)^{\beta - 1} e^{\alpha x}}{\left(1 + (e^{\alpha x} - 1)^{\beta}\right)^2} \qquad x > 0.$$

Let k be a positive, real constant. The transformation Y = g(X) = kX is a 1–1 transformation from $\mathcal{X} = \{x \mid x > 0\}$ to $\mathcal{Y} = \{y \mid y > 0\}$ with inverse $X = g^{-1}(Y) = Y/k$ and Jacobian

$$\frac{dX}{dY} = \frac{1}{k}.$$

Therefore, by the transformation technique, the probability density function of Y is

$$f_{Y}(y) = f_{X}(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

= $\frac{\alpha \beta (e^{\alpha y/k} - 1)^{\beta - 1} e^{\alpha y/k}}{(1 + (e^{\alpha y/k} - 1)^{\beta})^{2}} \left| \frac{1}{k} \right|$
= $\frac{(\alpha/k) \beta (e^{\alpha y/k} - 1)^{\beta - 1} e^{\alpha y/k}}{(1 + (e^{\alpha y/k} - 1)^{\beta})^{2}}$ $y > 0.$

which is the probability density function of a logistic-exponential $(\alpha/k, \beta)$ random variable.