Theorem [UNDER CONSTRUCTION!] If $X_i \sim \text{inverse Gaussian}(\lambda_i, \mu_i)$, for i = 1, 2, ..., n and $X_1, X_2, ..., X_n$ are mutually independent, then $\sum_{i=1}^n a_i X_i$ is also inverse Gaussian for nonzero real constants $a_1, a_2, ..., a_n$.

Proof [UNDER CONSTRUCTION!] The moment generating function of X_i is

$$M_{X_i}(t) = e^{\lambda_i/\mu_i} \left(1 - \sqrt{1 - \frac{2\mu_i^2 t}{\lambda_i}} \right)$$
 $t < \frac{\lambda_i}{2}$.

The moment generating function of $a_i X_i$ is

$$M_{a_i X_i}(t) = e^{\lambda_i/\mu_i} \left(1 - \sqrt{1 - \frac{2\mu_i^2 a_i t}{\lambda_i}} \right) \qquad t < \frac{\lambda_i}{2}$$

Since X_1, X_2, \ldots, X_n are mutually independent, the moment generating function of the linear combination is

$$M_{a_1X_1 + a_2X_2 + \dots + a_nX_n}(t) = \prod_{i=1}^n M_{a_iX_i}(t)$$
$$= \prod_{i=1}^n e^{\lambda_i/\mu_i} \left(1 - \sqrt{1 - \frac{2\mu_i^2 a_i t}{\lambda_i}} \right)$$

for $t < \frac{\lambda_i}{2}$.