Theorem The Rayleigh distribution is a special case of the IDB distribution when $\delta = 2/\alpha$ and $\gamma = 0$.

Proof The IDB distribution has probability density function

$$f(x) = \frac{(1+\kappa x)\delta x + \gamma}{(1+\kappa x)^{\gamma/\kappa+1}} e^{-\delta x^2/2} \qquad x \ge 0.$$

When $\delta = 2/\alpha$ and $\gamma = 0$ this reduces to

$$f(x) = \frac{(1+\kappa x)\frac{2}{\alpha}x+0}{(1+\kappa x)^{0+1}}e^{-x^2/\alpha} = \left(\frac{2x}{\alpha}\right)e^{-x^2/\alpha} \qquad x \ge 0.$$

which is the probability density function of a Rayleigh distribution.

APPL verification: The APPL statements

yield identical forms of the probability density function, so the Rayleigh is a special case of the IDB distribution.