Theorem The hypoexponential distribution has the convolution property. That is, if $X_i \sim$ hypoexponential($\vec{\alpha}_i$), i = 1, 2, ..., n, are independent random variables then $Y = \sum_{i=1}^n X_i$ also has the hypoexponential distribution.

Proof Let the random variable X_1 have the hypoexponential($\vec{\alpha_1}$) distribution. Let the random variable X_2 have the hypoexponential($\vec{\alpha_2}$) distribution. Assume X_1 and X_2 are independent. Then,

$$X_1 = T_1 + T_2 + \dots + T_m,$$

where $T_j \sim \text{exponential}(\alpha_j), j = 1, 2, \dots, m$. Furthermore,

$$X_2 = S_1 + S_2 + \dots + S_r,$$

where $S_k \sim \text{exponential}(\alpha_k), k = 1, 2, \dots, r$. Let $Y = X_1 + X_2$. Then,

$$Y = \sum_{j=1}^{m} T_j + \sum_{k=1}^{r} S_k,$$

which has the hypoexponential distribution. An inductive argument can be used to prove the result for n > 2.