Theorem If $X \sim \text{exponential}(\lambda)$, then

$$\lfloor X \rfloor \sim \text{geometric} \left(1 - e^{-\lambda} \right)$$

Proof Let Y = [X]. The probability density function of X is

$$f_X(x) = \lambda e^{-\lambda x} \qquad x > 0,$$

for $\lambda > 0$. The probability mass function of Y is

$$f_Y(y) = P(Y = y)$$

$$= P(|X| = y)$$

$$= P(y \le X < y + 1)$$

$$= \int_y^{y+1} f_X(x) dx$$

$$= \int_y^{y+1} \lambda e^{-\lambda x} dx$$

$$= \left[-e^{-\lambda x} \right]_y^{y+1}$$

$$= e^{-\lambda y} - e^{-\lambda (y+1)}$$

$$= \left(1 - e^{-\lambda} \right) \left(e^{-\lambda} \right)^y \qquad y = 0, 1, 2, \dots,$$

which is the probability mass function of a geometric $(1 - e^{-\lambda})$ random variable. So a closed-form variate generation algorithm using inversion for the geometric (p) distribution is

$$\lambda \leftarrow -\ln(1-p)$$
 generate $U \sim U(0,1)$
$$X \leftarrow -\frac{1}{\lambda}\ln(1-U)$$

$$Y \leftarrow \lfloor X \rfloor$$

$$\text{return}(Y)$$