Theorem A Pareto random variable is equivalent to the sum of the constant δ and a generalized Pareto random variable with $\gamma = 0$.

Proof Let X be a generalized Pareto random variable with probability density function

$$f(x) = \left(\gamma + \frac{\kappa}{x+\delta}\right) \left(1 + \frac{x}{\delta}\right)^{-\kappa} e^{-\gamma x} \qquad x > 0.$$

When $\gamma = 0$, this reduces to

$$f(x) = \left(\frac{\kappa}{x+\delta}\right) \left(1+\frac{x}{\delta}\right)^{-\kappa} \qquad x > 0$$

The transformation $Y = g(X) = X + \delta$ is a 1–1 transformation from $\mathcal{X} = \{x \mid x > 0\}$ to $\mathcal{Y} = \{y \mid y > \delta\}$ with inverse $X = g^{-1}(Y) = Y - \delta$ and associated Jacobian

$$\frac{dX}{dY} = 1.$$

Using the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

= $\left(\frac{\kappa}{y - \delta + \delta} \right) \left(1 + \frac{y - \delta}{\delta} \right)^{-\kappa} |1|$
= $\frac{\kappa \delta^{\kappa}}{y^{\kappa + 1}} \qquad y > \delta,$

which is the probability density function of a Pareto random variable.

APPL verification: The APPL statements

```
X := GeneralizedParetoRV(myGamma, delta, kappa);
Y := [[y -> simplify(subs(myGamma = 0, X[1][1](y)))],
        [0, infinity], ["Continuous", "PDF"]];
g := [[x -> x + delta], [0,infinity]];
Z := Transform(Y, g);
```

have problems in the Transform function call. A work-around is given below.

X := GeneralizedParetoRV(myGamma, delta, kappa); simplify(subs(myGamma = 0, X[1][1](y - delta)));