
Theorem A Pareto random variable is equivalent to the sum of the constant δ and a
generalized Pareto random variable with γ = 0.

Proof Let X be a generalized Pareto random variable with probability density function
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When γ = 0, this reduces to
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The transformation Y = g(X) = X + δ is a 1–1 transformation from X = {x | x > 0} to
Y = {y | y > δ} with inverse X = g−1(Y ) = Y − δ and associated Jacobian
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Using the transformation technique, the probability density function of Y is
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which is the probability density function of a Pareto random variable.

APPL verification: The APPL statements

X := GeneralizedParetoRV(myGamma, delta, kappa);

Y := [[y -> simplify(subs(myGamma = 0, X[1][1](y)))],

[0, infinity], ["Continuous", "PDF"]];

g := [[x -> x + delta], [0,infinity]];

Z := Transform(Y, g);

have problems in the Transform function call. A work-around is given below.

X := GeneralizedParetoRV(myGamma, delta, kappa);

simplify(subs(myGamma = 0, X[1][1](y - delta)));
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