Theorem If X; and X, are independent gamma(1, ;) random variables, for i = 1,2, then
X1 /X5 has the inverted beta distribution.

Proof Let X; ~ gamma(l, ;) and Xy ~ gamma(1l, f2) be independent random variables.
We can write their probability density functions as
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Since X; and X, are independent, the joint probability density function of X; and X is
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Consider the 2 x 2 transformation
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which is a 1-1 transformation from X = {(z1,22) |21 > 0,29 > 0} to Y = {(y1,42) |th >
0,y2 > 0} with inverses
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Therefore, by the transformation technique, the joint probability density function of Y; and
Y5 is
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Using integration by parts, the probability density function of Y7 is

y1>0,y2 > 0.
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which is the probability density function of an inverted beta(f;, 52) random variable.

APPL verification: The APPL statements

X1 := GammaRV(1, betal);

X2 := GammaRV (1, beta2);

g := [[x -> 1/ x], [0, infinityl];
Y := Transform(X2, g);

Z := Product (X1, Y);

confirm the result.



