Theorem If X; and X, are independent random variables and X; ~gamma(a, ;) and
Xy ~gamma(c, f2), then the random variable has the beta distribution.
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Proof Let X; and X5 have the gamma distribution with probability density function
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for © = 1, 2. Consider the transformation Y; = Xl)ilXQ and the dummy transformation
Y, = X; + X5. This is a 1-1 transformation. So the transformation is
Xy
Y1 = X1, X —_—
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Yo = ¢2(Xy, Xo) = X5+ Xo.
Solving for X; and X,

X1 = g'(Y,Ys) =Y,

Xy = g;'(Y1,Y2) =Ya(1 - V1)
and Jacobian
Ys Yy
Y, 1-Y
Because X; and X are independent random variables, the joint probability density function
of X, and X5 is

J= = Ya(1 - Y1) + Ys = Ya.
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Therefore by the transformation technique, the probability density function of Y; and Y5 is
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for 0 < y; < 1,y2 > 0. To calculate the marginal distribution fy, (y1), integrate with respect
to yo:
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Let r =y /v and dys = adr. The marginal distribution becomes
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Using the definition of the gamma function for I'(5; + f2), this becomes

fri(y) = myfl_l(l —y)?t <y <1

which is the probability density function of a beta random variable.

APPL verification: The bivariate transformation function must be used to verify the
derivation.



