Theorem The square root of an exponential random variable has the Rayleigh distribution.

Proof Let the random variable X have the exponential distribution with probability density function

$$f_X(x) = \frac{1}{\alpha} e^{-x/\alpha} \qquad x > 0.$$

The transformation $Y = g(X) = \sqrt{X}$ is a 1–1 transformation from $\mathcal{X} = \{x \mid x > 0\}$ to $\mathcal{Y} = \{y \mid y > 0\}$ with inverse $X = g^{-1}(Y) = Y^2$ and Jacobian

$$\frac{dX}{dY} = 2Y$$

Therefore by the transformation technique, the probability density function of Y is

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{dx}{dy} \right|$$

= $\frac{1}{\alpha} e^{-y^2/\alpha} |2y|$
= $\frac{2y}{\alpha} e^{-y^2/\alpha}$ $y > 0,$

which is the probability density function of the Rayleigh(α) distribution.

APPL verification: The APPL statements

assume(alpha > 0); X := ExponentialRV(1 / alpha); g := [[x -> sqrt(x)], [0, infinity]]; Y := Transform(X, g);

yield the probability density function of an Rayleigh(α) random variable

$$f_Y(y) = \frac{2y}{\alpha} e^{-y^2/\alpha} \qquad y > 0.$$