Theorem The chi-square distribution is a special case of the Erlang distribution when $\alpha = 2$ and n is replaced with n/2, an integer.

Proof An Erlang random variable has probability density function

$$f(x) = \frac{1}{\alpha^n (n-1)!} x^{n-1} e^{-x/\alpha} \qquad x > 0.$$

When $\alpha = 2$ and n = n/2, this reduces to

$$f(x) = \frac{1}{2^{n/2}(n/2-1)!} x^{n/2-1} e^{-x/2}$$

= $\frac{1}{2^{n/2}\Gamma(n/2)} x^{n/2-1} e^{-x/2}$ $x > 0,$

which is the probability density function of the chi-square distribution with n degrees of freedom.

APPL verification: The APPL statements

assume(m, posint); X := ErlangRV(1 / 2, m); subs(m = n / 2, X[1][1]);

yield the probability density function of the chi-square distribution with minor regrouping when m = n/2 is an integer.