Theorem The geometric(p) distribution is a special case of the discrete Weibull (p, β) distribution when $\beta = 1$.

Proof The discrete Weibull (p, β) distribution has probability mass function

$$f(x) = (1-p)^{x^{\beta}} - (1-p)^{(x+1)^{\beta}} \qquad x = 0, 1, 2, \dots$$

When $\beta = 1$, this reduces to

$$f(x) = (1-p)^{x} - (1-p)^{x+1}$$

= $(1-p)^{x}(1-(1-p))$
= $p(1-p)^{x}$ $x = 0, 1, 2, ...,$

which is the probability mass function of the geometric (p) distribution.

APPL verification: The APPL statements

```
assume(beta > 0);
assume(p > 0, p < 1);
X := [[x -> (1 - p) ^ (x ^ beta) - (1 - p) ^ ((x + 1) ^ beta)],
       [0 .. infinity], ["Discrete", "PDF"]];
subs(beta = 1, X[1][1](x));
```

verify that the geometric distribution is a special case of the discrete Weibull distribution when $\beta = 1$.