Theorem If X; ~ x?(n;) and X, ~ x?(ny) are independent random variables, then

Xl/nl
XQ/TLQ

~ F(nl,ng).

Proof The random variable X; ~ x?(n;) has probability density function

_ 1 n1/271 —x1/2
le (ﬂfl) = le (& T > 0.

Likewise, the random variable X5 ~ x?(ns) has probability density function

fX2 (232) = mlﬁ e 2 To > 0.

Since X; and X, are independent, the joint probability density function of X; and X5 is
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Consider the 2 x 2 transformation
Xi/n
Vi = (X, Xy) = S and Ya = g2(X1, X2) = Xz
X2/”2

which is a 1-1 transformation from X = {(x1,22) |21 > 0,22 > 0} to Y = {(y1,¥2) |1 >
0,y2 > 0} with inverses
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X1 =g (M1, Y2) = — and Xy =g;'(V1,Y2) = Ya
2
and Jacobian
niYs mYp n,Y,
J = No No = .
0 1 n2

Therefore by the transformation technique, the joint probability density function of ¥; and
Y5 is

le,Y2(y17y2) = le,XQ (gfl(y17y2)7g;1(ylay2)) |J|
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for y; > 0,1y, > 0. In order to find the probability density function of Y7,
fY1 (yl) = /0 fY1,Y2 (y1, y2) dya
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by using a change-of-variable to perform the integration. This is the probability density
function of an F' random variable with n; and ny degrees of freedom.

APPL demonstration: The APPL statements

X1 := ChiSquareRV(k1);

X2 := ChiSquareRV(k2);

gl := [[x -> x / k1], [0, infinityl];
g2 := [[x -> k2 / x], [0, infinityl];
Y1 := Transform(X1, gl);

Y2 := Transform(X2, g2);

F  := Product(Y1l, Y2);

return the probability density function of an F' random variable with the appropriate degrees
of freedom.



