Theorem The square root of a chi-square(n) random variable is a chi(n) random variable.

Proof Let the random variable X have the chi-square distribution with n degrees of freedom
with probability density function

1
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The transformation ¥ = ¢g(X) = v/X is a 1-1 transformation from X = {z|z > 0} to
Y ={y|y > 0} with inverse X = ¢ '(Y) = Y2 and Jacobian
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Therefore, by the transformation technique, the probability density function of Y is
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which is the probability density function of the chi distribution with n degrees of freedom.
APPL verification: The APPL statements

ChiSquareRV(n) ;

= [[x -> sqrt(x)], [0, infinityl];
Transform(X, g);

ChiRV(m);

N <03 <
i

yield the identical functional form
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for the random variables Y and Z, which verifies that the square root of a chi-square random
variable is chi random variable.



