Theorem If X is a $\chi(k)$ random variable then $Y = X^2$ is a $\chi^2(k)$ random variable. **Proof** The cumulative distribution function of Y is

$$F_Y(y) = P(Y \le y)$$

= $P(X^2 \le y)$
= $P(X \le y^{1/2})$
= $F_X(y^{1/2})$ $y > 0$

Differentiating with respect to y gives

$$f_Y(y) = f_X(y^{1/2}) \frac{1}{2y^{1/2}}$$

= $\frac{(1/2)^{k/2}}{\Gamma(k/2)} y^{k/2-1} e^{-y/2}$ $y > 0,$

which is the probability density function of a $\chi^2(k)$ random variable.

 $\ensuremath{\mathbf{APPL}}$ Verification: The APPL statements

X := ChiRV(k); g := [[x -> x ^ 2, x -> x ^ 2], [-infinity, 0, infinity]]; Z := Transform(X, g); ChiSquareRV(k);

confirm the result.