Theorem The negative hypergeometric distribution is a special case of the beta-binomial
distribution when a = ny, b = ng — ny, and n = ny. [This result is incorrectly stated on
the chart. The error was detected and corrected by Jean Peyhardi at the University of
Montpellier in October of 2017. Thank you Professor Peyhardi!]

Proof Let the random variable X ~ beta-binomial(a, b, n). The probability mass function

of X is
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Substituting a = ny, b = ng — ny, and n = ny yields
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which is the probability mass function of a negative hypergeometric(nq, ny, n3) random vari-
able.



