Theorem If X_1, X_2, \ldots, X_n are mutually independent Bernoulli(p) random variables then $Y = \sum_{i=1}^{n} X_i$ is binomial(n, p).

Proof The moment generating function of X_i is

$$M_{X_i}(t) = 1 - p + pe^t$$

for i = 1, 2, ..., n and $-\infty < t < \infty$. So the moment generating function of Y is

$$M_Y(t) = \prod_{i=1}^n (1 - p + pe^t)$$
$$= (1 - p + pe^t)^n$$

for $-\infty < t < \infty$, which is the moment generating function of a binomial (n,p) random variable.

APPL illustration: The APPL statements

X := BernoulliRV(1 / 2);
Z := ConvolutionIID(X, 3);
BinomialRV(3 , 1 / 2);

produces output that is consistent with the result.