
Theorem The Benford distribution has the variate generation property, i.e., random variates
can be generated in closed form via inversion.

Proof The Benford distribution has the probability mass function
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which is equivalent to
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Expanding, we see that the probability mass function can be written as
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If we generate a standard uniform variable U , and transform it by the function

g(x) = ⌊10U⌋,

then random variates are returned according to:

g−1(U) =
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This yields the appropriate probabilities for x = 1, 2, . . . , 9. So a variate generation algorithm
is:

generate U ∼ U(0, 1)
X ← ⌊10U⌋
return(X)
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