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Simulation is a generic term used loosely in engineering, with application areas ranging from
flight simulators used in cockpit design to simulated annealing used in optimization. Simulation is
presented here as a mathematical and computational technique used to analyze probabilistic models.
Simulation can be divided into Monte Carlo simulation, in which static models are analyzed, and
discrete-event simulation, in which dynamic models involving the passage of time are analyzed.
The early work of Buffon, Gosset, Ulam, and others is described in Goldsman, Nance, and Wilson
(1).

Monte Carlo simulation is often used when analytic methods become mathematically intractable,
and they typically give a modeler added insight into the structure of a problem. As reliability and
lifetime models become more complex and typically less mathematically tractable, Monte Carlo
simulations have increasing importance. Monte Carlo simulation techniques mirror the relative
frequency approach for determining probabilities. The estimate for the probability of interest con-
verges to the true value as the number of replications increases. This article considers methods for
generating random lifetimes and random processes from probabilistic models. The basic methods
are inversion (inverse-cdf and inverse-chf), linear combination methods (composition and competing
risks), majorizing methods (acceptance/rejection and thinning), and special properties.

The basic methods are followed by a discussion of order statistics. The generation of order
statistics is useful for estimating measures of performance associated with series, parallel, and k-
out-of-n systems. The accelerated life and proportional hazards lifetime models can account for the
effects of covariates on a random lifetime. Variate generation for these models is a straightforward
extension of the basic methods when the covariates do not depend on time. Variate generation
algorithms for Monte Carlo simulation of nonhomogeneous Poisson processes are a simple extension
of the inverse-chf technique. Methods for generating failure times for a repairable system modeled
by a nonhomogeneous Poisson process are also reviewed.

1 PROBABILITY MODELS FOR LIFETIMES

In reliability modeling, a continuous positive random variable typically represents the lifetime of a
component or system. The generic term item is used in this section to apply to either a component
or a system. Several functions completely specify the distribution of a random variable. Five of these
functions are useful in describing variate generation algorithms: cumulative distribution function
(cdf), survivor function, probability density function (pdf), hazard function, and cumulative hazard
function (chf). Other functions, not used here, include the mean residual life function (2), moment-
generating function (3), and total time on test transform (4).

Although Monte Carlo simulation is applied here to problems in reliability, the techniques are
applicable to any problem setting concerning random variables that can assume only positive values.
Thus the setting here is actually survival analysis and includes fields as diverse as biostatistics,
actuarial science, economics, and sociology.

This section considers techniques for generating random variates for Monte Carlo simulation
analysis. Two textbooks [i.e., Devroye (5) and Dagpunar (6)] are devoted entirely to this topic. The
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purpose here is to review algorithms capable of transforming random numbers to random variates
possessing known probabilistic properties for use in reliability studies. With the generation of
random variates as a basis, several other topics, namely, generating order statistics, generating
lifetimes from models with covariates, and generating point processes, are considered.

In the interest of brevity, we assume that a source of randomness is available (i.e., a stream of
independent random numbers). These random numbers are uniformly distributed between 0 and 1,
and most high-level programming languages now include a random number generator. The random
numbers are denoted by U and the random variates (lifetimes) are denoted by T . Algorithms for
generating the random numbers and desirable properties associated with random number generators
(such as insensitivity to parameter values, speed, memory requirements, relationship to variance
reduction techniques) are reviewed by Schmeiser (7), as well as by many of the simulation textbooks
that he references. Park and Miller (8) also overview Lehmer random number generators and
L’Ecuyer (9) surveys more recent work in random number generation.

The discussion here is limited to generating continuous, as opposed to discrete or mixed, dis-
tributions. Generating variates from discrete distributions is useful for evaluation of certain types
of reliability analysis tools such as fault trees. For simplicity, the examples are confined to the
exponential and Weibull distributions, which have been chosen because of their tractability and
widespread use. Any continuous lifetime distribution with a closed-form inverse-cdf could have
been used. Reliability textbooks that discuss Monte Carlo simulation techniques include Foster,
Phillips, and Rogers (10), Goldberg (11), Harr (12), Henley and Kumamoto (13), Leemis (14),
Mann, Schafer, and Singpurwalla (15), and Rao (16).

The survivor function, also known as the reliability function and complementary cdf, is defined
by

S(t) = P (T > t) t ≥ 0,

which is a nonincreasing function of t satisfying S(0) = 1 and limt→∞ S(t) = 0. The survivor
function is important in the study of systems of components since it is the appropriate argument
in the reliability function to determine system reliability (17). The survivor function is the fraction
of the population that survives to time t, as well as the probability that a single item survives to
time t. For continuous random variables, S(t) = 1− F (t), where F (t) = P (T ≤ t) is the cdf.

When the survivor function is differentiable, the associated pdf is

f(t) = −S′(t) t ≥ 0.

For any interval (a, b), where a < b,

P (a ≤ T ≤ b) =

∫ b

a
f(t) dt.

Finite mixture models for k populations of items may be modeled using the pdf

f(t) =
k

∑

i=1

pifi(t) t ≥ 0

where fi(t) is the pdf for population i and pi is the probability of selecting an item from population
i, i = 1, 2, . . . , k. Mixture models are used in composition, a density-based variate generation
technique.
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The hazard function, also known as the rate function, failure rate, and force of mortality, can
be defined by

h(t) =
f(t)

S(t)
t ≥ 0.

The hazard function is popular in reliability work because it has the intuitive interpretation as
the amount of risk associated with an item that has survived to time t. The hazard function is a
special form of the complete intensity function at time t for a point process (18). In other words,
the hazard function is mathematically equivalent to the intensity function for a nonhomogeneous
Poisson process, and the failure time corresponds to the first event time in the process. Competing
risks models are easily formulated in terms of h(t), as shown in the next section.

The cumulative hazard function can be defined by

H(t) =

∫ t

0
h(τ)dτ t ≥ 0.

If T is a random lifetime with cumulative hazard function H, then H(T ) is an exponential random
variable with a mean of one. This result is the basis for the inverse-chf technique. The cumulative
hazard function and the survivor function are related by H(t) = − logS(t).

2 RANDOM LIFETIME GENERATION

Techniques for generating a single, continuous lifetime from a known parametric probabilistic model
can be partitioned into density-based and hazard-based algorithms. Density-based algorithms may
be applied to any random variable, whereas hazard-based algorithms can only be applied to non-
negative lifetimes. In this section, both types of algorithms are assumed to generate a nonnegative
lifetime T .

The three classes of techniques for generating variates reviewed below are inversion, linear
combination methods, and majorizing methods. For each class, there is a density-based method and
a hazard-based method that are similar in nature. Examples of the use of all these techniques are
given in Leemis and Schmeiser (19). Devroye (20) reviewed variate generation techniques requiring
just one line of code.

Inversion

The density-based inverse cumulative distribution function technique, or inverse-cdf technique,
is based on the probability integral transformation which states that F (T ) ∼ U(0, 1), where F is
the cdf for the random lifetime T . Thus,

T ← F−1(U)

generates a lifetime T , where ← denotes assignment. If the cdf has a closed-form inverse, this
method typically requires one line of computer code. If the inverse is not closed form, numerical
methods must be used to invert the cdf.

Example 1 Consider a Weibull distribution with scale parameter λ and shape param-
eter κ. The cdf is

F (t) = 1− e−(λt)κ t ≥ 0,
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which has the closed-form inverse

F−1(u) =
1

λ
[− log(1− u)]1/κ 0 < u < 1.

Thus, an algorithm for generating a Weibull random variate is

T ←
1

λ
[− log(1− U)]1/κ

where U ∼ U(0, 1). Most random number generators currently in use do not return
exactly 0 or exactly 1. If U is generated so that 1 is excluded, 1 − U can be replaced
with U for increased speed without concern over taking the logarithm of 0.

The inverse-chf technique is based on H(T ) being exponentially distributed with a mean of one.
So

T ← H−1
(

− log(1− U)
)

generates a single random lifetime T . This algorithm is easiest to implement if H can be inverted
in closed form.

Example 2 Consider an arrangement of three identical components with mutually
independent and identically distributed Weibull lifetimes with parameters λ and κ as
arranged in the block diagram in Figure 1. Find the mean time to system failure.

1

2

3

Figure 1: Block diagram for a three-component system.

This problem can be analyzed using both analytic and Monte Carlo simulation tech-
niques. Let T1, T2, and T3 be the lifetimes for the three statistically-identical compo-
nents; let T be the system lifetime; and let Si(t) = e−(λt)κ be the survivor function for
component i for i = 1, 2, 3 and t ≥ 0. The system survivor function is

S(t) = S1(t)[1− (1− S2(t))(1− S3(t))]

= e−(λt)κ [1− (1− e−(λt)κ)(1− e−(λt)κ)]

= 2e−2(λt)κ − e−3(λt)κ t ≥ 0.

Thus, the mean time to system failure is

E[T ] =

∫ ∞

0
S(τ) dτ =

Γ(1 + 1/κ)

λ
(21−1/κ − 3−1/κ).

To solve the problem exactly as stated, this analytic solution is ideal. For many appli-
cations, however, a Monte Carlo solution can provide additional insight into a problem.
Furthermore, a less restricted problem (e.g., with more complicated failure distribution
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or dependent component failure times) might not have a mathematically tractable an-
alytic solution. A Monte Carlo estimate for the mean time to system failure requires
each component lifetime to be generated, and the inverse-chf technique is used here.
The cumulative hazard function for the Weibull distribution is

H(t) = (λt)κ t ≥ 0,

which has the closed-form inverse

H−1(y) =
1

λ
y1/κ y ≥ 0.

Thus, an algorithm for generating a Weibull random variate is

T ←
1

λ
[− log(1− U)]1/κ,

which is identical to the inverse-cdf technique. In general, the inverse-cdf and inverse-
chf techniques are interchangeable in this fashion. An algorithm to estimate the mean
time to system failure using N system lifetimes is given below. Indentation is used to
indicate nesting.

S ← 0

for i from 1 to N

generate U1, U2, U3 ∼ U(0, 1)

T1 ←
1
λ [− log(1− U1)]

1/κ

T2 ←
1
λ [− log(1− U2)]

1/κ

T3 ←
1
λ [− log(1− U3)]

1/κ

T ← min{T1,max{T2, T3}}

S ← S + T

A← S/N

The variable S contains a cumulative sum of the system lifetimes, and A contains
the average of the system lifetimes generated. The estimate for the average time to
system failure A converges to the analytic result as the number of replications N →∞.
This algorithm can be written more efficiently because the components have identical
distributions. To save on the number of logarithms and exponentiations, properties such
as T2 ≥ T3 when U2 ≥ U3 can be exploited so that only one Weibull variate needs to
be generated for each system lifetime, based on the order of U1, U2, U3, as shown in the
next example. The algorithm given above is inferior to the analytic method presented
earlier in the example because it produces a point estimator A for the system reliability.
It is appropriate to place a confidence interval around the point estimator in order to
assess its precision (21).

A final example is given to illustrate an alternative way of generating the system lifetime of a
coherent system (17) of components.
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Example 3 Consider the same system as Example 2, which used three random num-
bers to generate a single system lifetime T . Thus, the algorithm was not synchronized.
A technique for achieving synchronization is illustrated in this example. The first step
is to determine πi = P [Ti = T ], for i = 1, 2, 3, which is the probability that compo-
nent i is the component that “causes” system failure. Second, the conditional lifetime
distribution of all components, given that they are the cause of failure, should be de-
termined, and a lifetime variate generated from the appropriate distribution. For the
three-component example, we obtain

π2 = P (T3 < T2 < T1)

and, by symmetry
π3 = P (T2 < T3 < T1) = π2,

and
π1 = 1− π2 − π3

since π1 + π2 + π3 = 1. The synchronized algorithm for generating a system lifetime T
from a single U(0, 1) is given below. The U that is used in the last step of the algorithm
has been rescaled so that it is conditionally U(0, 1).

Setup

determine π1, π2, π3
find the conditional lifetime distributions for all components

Algorithm

generate U ∼ U(0, 1)

if 0 < U < π1
J ← 1

U ← U/π1
if π1 < U < π1 + π2

J ← 2

U ← (U − π1)/π2
if π1 + π2 < U < 1

J ← 3

U ← (U − π1 − π2)/π3
generate T from conditional lifetime distribution J using U

Inversion techniques use a monotonic transformation to transform a random number U to a
random variate T . These techniques exhibit the following important properties.

• They are synchronized (i.e., one random number produces one lifetime).

• They are monotone (i.e., larger random numbers produce larger lifetimes).

• They accommodate truncated distributions.

• They can be modified to generate order statistics (useful for generating the lifetime of a
k-out-of-n system, as shown in the next section).
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Linear Combination Methods

Linear combination techniques are the density-based composition method and the hazard-based
competing risks method. The composition method is viable when the pdf can be written as the
convex combination of k density functions

f(t) =
k

∑

j=1

pjfj(t) t ≥ 0,

where
∑k

j=1 pj = 1. The algorithm is

choose pdf j with probability pj , j = 1, 2, . . . , k

generate T from pdf j

The first step is typically executed using a discrete inversion algorithm.
The second linear combination technique is called competing risks, which can be applied when

the hazard function can be written as the sum of hazard functions, each corresponding to a “cause”
of failure

h(t) =
k

∑

j=1

hj(t) t ≥ 0,

where hj(t) is the hazard function associated with cause j of failure acting in a population. When
the lifetimes T1, T2, . . . , Tk are mutually independent, the minimum of the lifetimes from each of
these risks corresponds to the system lifetime. Competing risks is most commonly used to analyze
series systems; it can also be used in actuarial applications. The competing risks model is also
used for modeling competing failure modes for components that have multiple failure modes. The
algorithm is

generate Tj from hj(t), j = 1, 2, . . . , k

T ← min{T1, T2, . . . , Tk}

Majorizing Methods

The third class of techniques for generating random lifetimes is the majorizing techniques: the
density-based acceptance/rejection technique and a modified version of the hazard-based thinning
technique. In order to use acceptance/rejection, there must be a majorizing function f∗(t) that
satisfies f∗(t) ≥ f(t) for all t ≥ 0. The pdf corresponding to f∗(t) (which requires normalization)
is

g(t) =
f∗(t)

∫∞
0 f∗(τ) dτ

.

Assuming that a random variate T is easily generated from the probability distribution with pdf
g(t), the acceptance/rejection algorithm for generating T is

repeat

generate T from g(t)

generate S ∼ U
(

0, f∗(T )
)

until S ≤ f(T )
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Generating T may be done by inversion or any other method. The name acceptance/rejection
comes from the loop condition; the random variate T is accepted for generation if S ≤ f(T ) and
rejected if S > f(T ).

Thinning was originally used by Lewis and Shedler (22) for generating the event times in a
nonhomogeneous Poisson process. Thinning can be adapted to produce a single lifetime by ignoring
all except the first event time generated. A majorizing hazard function h∗(t) must be found that
satisfies h∗(t) ≥ h(t) for all t ≥ 0. The thinning algorithm for generating T is

T ← 0

repeat

generate Y from h∗(t) given Y > T

T ← T + Y

generate S ∼ U(0, h∗(T ))

until S ≤ h(T )

Generating Y in the loop can be done by inversion or any other method. The term thinning
comes from the fact that T can make several steps, each of length Y , that are thinned out before
the loop condition is satisfied.

Special Properties

The fourth class of techniques for generating random lifetimes is called special properties. These
techniques are neither density- nor hazard-based because they depend on relationships between
random variables. Examples of special properties include generating an Erlang random variable
as the sum of mutually independent and identically distributed exponential random variables,
and generating a binomial random variable as the sum of mutually independent and identically
distributed Bernoulli random variables. Examples of special properties associated with random
variables are given in the encyclopedic work of Johnson, Kotz, and Balakrishnan (23).

The four techniques described in this section are often combined in order to generate a variate
from a particular distribution. Devroye (5) and Dagpunar (6) review variate generation techniques
for some of the more intractable distributions (e.g., normal and gamma) that are not considered
here. Most computer languages have access to subprograms capable of generating variates from a
wide range of distributions.

The generation of mutually independent univariate random variates provides the basis for Monte
Carlo simulation analysis of reliability models. There are a number of directions that a section of
this nature could take at this point. I have opted for surveying the following: generating order
statistics, generating lifetimes for models with covariates, and generating nonhomogeneous Poisson
processes. Other important topics include generating random vectors [see Rao (16) and Grimlund
(24)], civil engineering applications [see Harr (12)], mechanical engineering applications [see Rao
(16)], fault tree analysis [see Henley and Kumamoto (13)], or discrete-event simulation [see Law
(25)].

3 ORDER STATISTIC GENERATION

In many reliability applications, the efficient generation of order statistics can be useful for gen-
erating a random system lifetime. Order statistics play a central role in the analysis of simple
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arrangements of systems consisting of n statistically identical components. Let T1, T2, . . . , Tn be
the n mutually independent failure times of components in a system, and let T(1), T(2), . . . , T(n) be
the ordered failure times. If T denotes the system failure time, then T = T(1) for a series system,
T = T(n) for a parallel system, and T = T(n−k+1) for a k-out-of-n system. The most straightfor-
ward approach to generating the system lifetime for these models is to generate the lifetimes of
each component, sort the lifetimes, and then choose the appropriate order statistic. This approach
is adequate when n is small and the lifetimes are simple to generate. When one or both of these
conditions do not hold, the following results from Schucany (26), Ramberg and Tadikamalla (27),
and Schmeiser (28, 29) can be used to generate order statistics more efficiently. The algorithms
presented in this section are effective ways of decreasing the central processing unit (CPU) time to
generate a system lifetime since only one inversion of F is necessary and no sorting is required.

The random variables min{U1, U2, . . . , Un} and 1− (1−U)1/n have the same probability distri-
bution, where Ui, i = 1, 2, . . . , n and U are independent random numbers. If the function F−1(u)
can be evaluated in closed form or numerically, an algorithm to generate the system lifetime of a
series system of identical components is

T ← F−1(1− (1− U)1/n).

Since max{U1, U2, . . . , Un} and U
1/n have the same probability distribution, the system lifetime of

a parallel system of statistically identical components can be generated by

T ← F−1
(

U1/n
)

.

Example 4 A system of n statistically identical components is arranged in parallel. If
each component has an independent Weibull lifetime with scale parameter λ and shape
parameter κ, devise a method to generate a system lifetime variate from a single random
number U .

The inverse of the Weibull cdf is

F−1(u) =
1

λ
[− log(1− u)]1/κ 0 < u < 1.

A system lifetime T , which corresponds to the order statistic T(n), is generated by

T ←
1

λ
[− log(1− U1/n)]1/κ.

This is clearly faster than generating n Weibull variates and returning the largest gen-
erated.

Generating minimums and maximums of mutually independent random lifetimes are special
cases of generating the kth order statistics from a sample of size n. The algorithm below generates
order statistics efficiently for a k-out-of-n system when a beta variate generator is available.

generate X ∼ β(n− k + 1, k)

T ← F−1(X)

The variate T which is generated corresponds to T(n−k+1). Efficient algorithms for generating beta
variates are given by Law (25).
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4 ACCELERATED LIFE AND PROPORTIONAL HAZARDS

MODELS

The effect of covariates (explanatory variables) on survival often complicates the analysis of a set
of lifetime data. In a medical setting, these covariates are usually patient characteristics such as
age, gender, or blood pressure. In reliability, covariates (such as the turning speed of a machine
tool or the stress applied to a component) affect the lifetime of an item. Two common models to
incorporate the effect of the covariates on lifetimes are the accelerated life and Cox proportional
hazards models. This section describes algorithms for the generation of lifetimes that are described
by one of these models.

The q × 1 vector z contains covariates associated with a particular item or individual. The
covariates are linked to the lifetime by the function ψ(z), which satisfies ψ(0) = 1 and ψ(z) ≥ 0
for all z. A popular choice is ψ(z) = eβββ

′
z, where βββ is a q × 1 vector of regression coefficients.

The cumulative hazard function for T in the accelerated life model is (18)

H(t) = H0

(

tψ(z)
)

,

where H0 is a baseline cumulative hazard function. When z = 0, then H0 ≡ H. In this model, the
covariates accelerate [ψ(z) > 1] or decelerate [ψ(z) < 1] the rate at which the item moves through
time. The cumulative hazard function for T in the proportional hazards model is

H(t) = ψ(z)H0(t).

In this model, the covariates increase [ψ(z) > 1] or decrease [ψ(z) < 1] the failure rate of the item
by the factor ψ(z) for all values of t.

All the algorithms for variate generation for these models are based on the fact that H(T ) is
exponentially distributed with a mean of one. Therefore, equating the cumulative hazard function
to − log(1− U) and solving for t yields the appropriate generation technique.

In the accelerated life model, since time is being expanded or contracted by a factor ψ(z),
variates are generated by

T ←
H−1

0

(

− log(1− U)
)

ψ(z)
.

In the proportional hazards model, equating − log(1 − U) to H(t) yields the variate generation
formula

T ← H−1
0

(

− log(1− U)

ψ(z)

)

.

In addition to generating individual lifetimes, these variate generation techniques can be applied
to point processes. A renewal process, for example, with time between events having a cumulative
hazard function H(t) can be simulated by using the appropriate generation formula for the two
cases shown above. These variate generation formulas must be modified, however, to generate
variates from a nonhomogeneous Poisson process (NHPP).

In an NHPP, the hazard function h(t) is analogous to the intensity function, which governs
the rate at which events occur. To determine the appropriate method for generating variates from
an NHPP, assume that the last event in a point process has occurred at time a. The cumulative
hazard function for the time of the next event, conditioned on survival to time a, is

HT |T>a(t) = H(t)−H(a) t ≥ a.
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In the accelerated life model, where H(t) = H0

(

tψ(z)
)

, the time of the next event is generated by

T ←
H−1

0

(

H0(aψ(z))− log(1− U)
)

ψ(z)
.

Equating the conditional cumulative hazard function to − log(1−U), the time of the next event in
the proportional hazards case is generated by

T ← H−1
0

(

H0(a)−
log(1− U)

ψ(z)

)

.

An example of the application of these algorithms to a particular parametric distribution is given
by Leemis (30), who later extended to the case where the covariates are time dependent are given
in Leemis, Shih and Reynertson (31) and Shih and Leemis (32). Table 1 summarizes the variate
generation algorithms for the accelerated life and proportional hazards models (the last event
occurred at time a). The 1−U has been replaced with U in this table to save a subtraction, although
the sense of the monotonicity is reversed. The renewal and NHPP algorithms are equivalent when
a = 0 (since a renewal process is equivalent to an NHPP restarted at zero after each event), the
accelerated life and proportional hazards models are equivalent when ψ(z) = 1, and all four cases
are equivalent when H0(t) = λt (the exponential case) because of its memoryless property.

Table 1. Lifetime generation in regression models
Renewal NHPP

Accelerated life T ← a+
H−1

0
(− log(U))
ψ(z) T ←

H−1

0
(H0(aψ(z))−log(U))

ψ(z)

Proportional hazards T ← a+H−1
0

(

− log(U)
ψ(z)

)

T ← H−1
0

(

H0(a)−
log(U)
ψ(z)

)

5 GENERATING A NONHOMOGENEOUS POISSON PROCESS

This section describes two techniques for generating event times for NHPPs. Homogeneous Poisson
processes and renewal processes are not considered since they are a straightforward generalization of
the inversion algorithms. An NHPP is often suggested as an appropriate model for the failure times
of repairable systems whose rate of occurrence of failures varies over time, as outlined in Ascher
and Feingold (3), Gertsbakh (33), Rigdon and Basu (34), and Ross (35). The repair time must
be negligible in order to use an NHPP to approximate the probabilistic mechanism governing the
sequence of failures. The two techniques considered here are inversion, which relies on a time-scale
transformation given by Çinlar (36), and thinning, developed by Lewis and Shedler (22).

An NHPP is a generalization of an ordinary homogeneous Poisson process with events occurring
randomly over time at the rate of λ. Events occur over time at a rate defined by the intensity
function, λ(t). The cumulative intensity function is defined by

Λ(t) =

∫ t

0
λ(τ)dτ t > 0,

and is interpreted as the mean number of events by time t.
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Inversion

For cases in which Λ(t) can be inverted in closed form, or when it can be inverted numerically,
Çinlar (36) showed that if E1, E2, . . . are the event times in a homogeneous Poisson process with
rate 1 (often called a unit Poisson process), then Λ−1(E1),Λ

−1(E2), . . . are the event times for an
NHPP with cumulative intensity function Λ(t). This is a generalization of the result that formed
the basis for the inverse-chf algorithm. An algorithm for generating the event times T1, T2, . . ., for
an NHPP with cumulative intensity function Λ(t) is given below.

T0 ← 0

E0 ← 0

i← 0

repeat

i← i+ 1

generate U ∼ U(0, 1)

Ei ← Ei−1 − log(1− U)

Ti ← Λ−1(Ei)

until Ti ≥ S

The algorithm returns the event times T1, T2, . . . , Ti−1, where S is a prescribed termination time of
the point process. The algorithm is valid because − log(1−U) is the appropriate way (via inversion)
of generating an exponential variate with a mean of one. As before, replacing 1−U with U reduces
the CPU time.

Example 5 The cumulative intensity function given by

Λ(t) = (λt)κ t > 0,

is often known as the power-law process (34). If κ > 1, the population of items is
deteriorating; if κ < 1, the population of items is improving; and if κ = 1, the NHPP
simplifies to a homogeneous Poisson process. Since the inverse cumulative intensity
function is

Λ−1(y) =
1

λ
y1/κ y > 0,

the last statement in the loop becomes Ti ←
1
λE

1/κ
i .

The techniques for estimating the cumulative intensity function for an NHPP from one or more
realizations is too broad a topic to be reviewed here. Examples of parametric and nonparametric
techniques for estimation and generating realizations for simulation models are given by Lee, Wilson,
and Crawford (37), Rigdon and Basu (38), Chen and Schmeiser (39), Nicol and Leemis (40), Chen
and Schmeiser (41), and Liu, Kuhl, Liu, and Wilson (42). Also, the technique given by Leemis (43)
is illustrated in the following example.

Example 6 This example considers nonparametric estimation of the cumulative inten-
sity function of an NHPP from one or more realizations and the associated algorithm
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for generating random variates. This method does not require the modeler to specify
any parameters or weighting functions.

The cumulative intensity function is to be estimated from k realizations of the NHPP on
(0, S], where S is a known constant. Let ni(i = 1, 2, . . . , k) be the number of observations
in the ith realization, n =

∑k
i=1 ni, and let t(1), t(2), · · · , t(n) be the order statistics of

the superposition of the k realizations, t(0) = 0 and t(n+1) = S. Setting Λ̂(S) = n/k
yields a process where the expected number of events by time S is the average number
of events in k realizations, since Λ(S) is the expected number of events by time S. The
piecewise linear estimator of the cumulative intensity function between the time values
in the superposition is

Λ̂(t) =
in

(n+ 1)k
+ [

n(t− t(i))

(n+ 1)k(t(i+1) − t(i))
] t(i) < t ≤ t(i+1); i = 0, 1, 2, . . . , n.

This estimator passes through the points
(

t(i), in/[(n+ 1)k]
)

, for i = 1, 2, . . . , n+ 1.

One rationale for using a linear function between the data values is that inversion can
be used for generating realizations without having tied events. If the usual step-function
estimate of Λ(t) is used, only the t(i) values could be generated.

Using inversion, the event times from a unit Poisson process, E1, E2, . . . , can be trans-
formed to the event times of an NHPP via Ti = Λ−1(Ei). For the NHPP estimate
considered here, the events at times T1, T2, . . . can be generated for Monte Carlo simu-
lation by the algorithm below, given n, k, S and the superpositioned values.

i← 1

generate Ui ∼ U(0, 1)

Ei ← − log(1− Ui)

while Ei < n/k

m←
⌊

(n+1)kEi

n

⌋

Ti ← t(m) + [t(m+1) − t(m)]
(

(n+1)kEi

n −m
)

i← i+ 1

generate Ui ∼ U(0, 1)

Ei ← Ei−1 − log(1− Ui)

Thus, it is a straightforward procedure to obtain a realization of i − 1 events on (0, S]
from the superpositioned process and U(0, 1) values U1, U2, . . . , Ui. Inversion has been
used to generate this NHPP, so certain variance reduction techniques, such as antithetic
variates or common random numbers, may be applied to the simulation output. Replac-
ing 1−Ui with Ui in generating the exponential variates will save CPU time, although
the direction of the monotonicity is reversed. Tied values in the superposition do not
pose any problem to this algorithm, although there may be tied values in the realization.
As n increases, the amount of memory required increases, but the amount of CPU time
required to generate a realization depends only on the ratio n/k, the average number
of events per realization.
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If the inverse cumulative intensity function is not available, but a majorizing intensity function
can be found, then thinning can be used to generate variates.

Thinning

In describing the basic techniques for variate generation, thinning was adapted to generate a
single lifetime. Thinning was originally devised to generate the event times for an NHPP (22).
Assume that a majorizing intensity function λ∗(t) exists such that λ∗(t) ≥ λ(t) for all t ≥ 0. The
thinning algorithm is shown below.

T0 ← 0

i← 0

repeat

i← i+ 1

Y ← Ti−1

repeat

generate U1, U2 ∼ U(0, 1)

Y ← Y − log(1− U1)

until U2 ≤ λ(Y )/λ∗(Y )

Ti ← Y

until Ti ≥ S

If the inside loop condition is not met, then this particular Y value is “thinned” out of the point
process and not included as a failure time in the realization. Choosing a majorizing function that
is close to the intensity function λ∗(t) results in fewer passes through the inside loop, and hence
reduces CPU time. Guo and Love (44) have adapted this algorithm for the generation of variates
when covariates are included in the model.

The discussion in this article has focused primarily on variate generation for various Monte
Carlo simulation applications in reliability. The estimation of unknown parameters from data is
an equally important topic that has not been considered here. Banks, Carson, Nelson, and Nicol
(45), Bratley, Fox, and Schrage (46), and Seila, Vlatko, and Tadikamalla (47) have sections on a
facet of discrete-event simulation known as “input modeling,” where the estimation of parameters
is considered. Finally, Fishman (48) presents a comprehensive work on Monte Carlo simulation
without taking the reliability modeling perspective that has been taken here.
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List of symbols

T a continuous nonnegative random variable
∼ “is distributed as”
f(t), F (t), S(t) the pdf, cdf, and survivor function of T
h(t), H(t) the hazard function, cumulative hazard function of T
U a random number [i.e., a U(0, 1) random variable]
λ scale parameter for an exponential distribution
λ, κ scale and shape parameters for a Weibull distribution
log natural logarithm
Γ the gamma function
T(i) order statistic i

z a q × 1 vector of covariates
βββ a q × 1 vector of regression coefficients
ψ(z) link function
λ(t) intensity function
Λ(t) cumulative intensity function
E1, E2, . . . homogeneous Poisson process event times
T1, T2, . . . event times for an NHPP
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