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Abstract
Let X be the number of successes in nmutually independent and identically distributed
Bernoulli trials, each with probability of success p. For fixed n and α, there are n + 1
distinct two-sided 100(1−α)%confidence intervals for p associatedwith the outcomes
X = 0, 1, 2, . . . , n. There is no known exact non-randomized confidence interval for
p. Existing approximate confidence interval procedures use a formula, which often
requires numerical methods to implement, to calculate confidence interval bounds.
The bounds associated with these confidence intervals correspond to discontinuities
in the actual coverage function. The paper does not aim to provide a formula for the
confidence interval bounds, but rather to select the confidence interval bounds that
minimize the root mean square error of the actual coverage function for sample size
n and significance level α in the frequentist context.

Keywords Actual coverage function · Approximate confidence interval · Binary
data · Binomial distribution · Dyck word

1 Introduction

The binomial distribution has widespread applications in statistics. Its applications
appear in public through news and surveys almost daily; therefore, it is not surprising
that calculating an interval estimator for the binomial proportion has become a popular
topic in statistics. Dozens of confidence interval procedures have been developed over
the last 100 years that include applications such as Monte Carlo simulation, survey
sampling, and survival analysis. In this paper we develop an algorithm for constructing
an approximate two-sided 100(1−α)%confidence interval for the binomial proportion
with actual coverage that is as close as possible to the nominal coverage (a.k.a. the
stated coverage or the confidence level).
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Let X1, X2, . . . , Xn be a random sample from a Bernoulli(p) population with
unknown parameter p satisfying 0 < p < 1. Let X = ∑n

i=1 Xi be the number
of successes. The maximum likelihood estimator for p is p̂ = X/n, which is an intu-
itive, unbiased, and consistent estimator of p. Including p = 0 and p = 1 in the
parameter space includes two deterministic distributions for X with support values
X = 0 and X = n, respectively. This situation seldom occurs in practice.

All of the confidence intervals developed to date are approximate, rather than exact
confidence intervals. Each relies on a heuristic that results in a confidence interval for
p having an actual coverage that is close to the nominal coverage. They provide a
formula that gives the lower and upper bounds for an approximate confidence interval
for p. Our approach here differs from all previous confidence interval procedures in
that we choose confidence interval bounds that optimize a measure of performance
known as the root mean square error (RMSE) of the actual coverage function in a
frequentist context in which all values of p are equally weighted. As measured by
the RMSE, our confidence intervals come closer to the nominal coverage 1 − α than
existing confidence intervals, and the percentage-wise improvement is particularly
pronounced for smaller sample sizes.

The sequence of steps outlined in this paragraph include the contributions of this
research. First, we define the actual coverage function as a piecewise function in
which each piece is a portion of an acceptance curve. Second, we define the RMSE
and establish minimizing the RMSE as the criterion for constructing a confidence
interval for p. Third, we establish a one-to-one equivalence between the jumps from
one acceptance curve to the next in the actual coverage function and a symmetric Dyck
path. Fourth, we devise an algorithm for constructing RMSE-minimizing confidence
intervals for p. Fifth, we discuss problems and their heuristic solutions concerning
these confidence intervals. Sixth, we implement the algorithm in R and place the
implementation on the comprehensive R archive network (CRAN).

Section 2 contains a brief literature review that defines (a) various classes of confi-
dence intervals, (b) the actual coverage function, (c) acceptance curves, (d) theRMSE,
and (e)Dyckpaths. Section 3 concerns sample sizesn = 1 andn = 2 inwhichweman-
ually calculate the RMSE-minimizing confidence interval bounds. Section 4 surveys
several existing confidence interval procedures and compares them with the RMSE-
minimizing confidence interval bounds for n = 1 and n = 2. Section 5 discusses the
procedure for constructing the RMSE-minimizing confidence interval. Section 6 intro-
duces “smoothness” as a preferable property of the binomial confidence intervals and
a set of constraints imposed on the RMSE-minimizing confidence interval to achieve
it. Section 7 illustrates the use of the RMSE-minimizing confidence interval in an
application, and Sect. 8 contains conclusions.

2 Literature review

A comprehensive survey on statistical intervals in general and confidence intervals
in particular is given by Meeker et al. (2017). We begin with a general classification
of confidence intervals in the context of a random sample of n observations from a
Bernoulli(p) population. The random variables L andU are known as the lower bound
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and the upper bound of the confidence interval. The probability 1−α will be referred
to here as the nominal coverage. The bounds L andU are functions of the sample size
n, the nominal coverage 1− α, and the number of successes x . A random interval for
the unknown parameter p of the form L < p < U is

• an exact two-sided 100(1 − α)% confidence interval for p provided

P(L < p < U ) = 1 − α

for all values of p,
• an approximate two-sided 100(1 − α)% confidence interval for p provided

P(L < p < U ) �= 1 − α

for some value of p,
• an asymptotically exact two-sided 100(1 − α)% confidence interval for p pro-
vided

lim
n→∞ P(L < p < U ) = 1 − α

for all values of p, and
• a conservative two-sided 100(1 − α)% confidence interval for p provided

P(L < p < U ) ≥ 1 − α

for all values of p.

The probability P(L < p < U )which appears in each of the four classes of confidence
intervals defined above is known as the actual coverage of the confidence interval for
a particular value of p. The actual coverage function c(p) of a confidence interval for
the binomial proportion is

c(p) =
n∑

x=0

I (x, p)

(
n

x

)

px (1 − p)n−x ,

where I (x, p) is an indicator function that denotes whether a confidence interval
includes the binomial proportion p when the number of successes X = x . As p is
increased, the binomial probability terms in c(p) will be added or removed from the
summation at the confidence interval bounds.

The defining formula for the actual coverage function c(p), and the fact that the
lower bounds and upper bounds on any confidence interval procedure for the binomial
proportion p are nondecreasing functions of x , means that the actual coverage function
c(p) must lie on one of the acceptance curves defined as

b(p, x0, x1) =
x1∑

x=x0

(
n

x

)

px (1 − p)n−x
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for a prescribed value of p satisfying 0 < p < 1, and for integers x0 and x1 satisfying
0 ≤ x0 ≤ x1 ≤ n. These acceptance curves are the sum of an uninterrupted sequence
of probability mass function values from the binomial distribution. The values of p
associated with the discontinuities in the actual coverage function are the confidence
interval bounds. The discontinuities in c(p) are a result of either an increase in x0 or
an increase in x1 in b(p, x0, x1). If x0 is increased, the discontinuity is associated with
an upper confidence interval bound; if x1 is increased, the discontinuity is associated
with a lower confidence interval bound. In general, there are 2n + 1 segments in the
actual coverage function, which are associated with 2n+2 confidence interval bounds.
There is no exact confidence interval for the binomial proportion p from a random
sample of n binary data values because the actual coverage function for all confidence
interval procedures must transition between these acceptance curves.

We now define measures of performance associated with a confidence interval for
the binomial proportion p. First, the mean actual coverage m for a confidence interval
procedure is the average value of the actual coverage function for fixed n and α:

m =
∫ 1

0
c(p) dp.

The variance of the actual coverage v is defined as

v =
∫ 1

0
c2(p) dp − m2.

The two measures of performance can be combined into a single measure by devising
a calculation that is similar to the root mean squared error (that is, the square root of
the variance plus the squared bias):

RMSE =
√

v + (m − (1 − α))2,

as defined by Park and Leemis (2019). Our goal in this paper is to devise a confidence
interval for p that minimizes the RMSE. Minimizing the RMSE makes the actual
coverage function of the approximate confidence interval for p come as close as
possible to the nominal coverage. Other measures of performance could be used;
in fact, the mean absolute deviation would result in identical confidence intervals.
Minimizing the RMSE implies that the confidence interval is entirely in the frequentist
context; all values of p are equally weighted.

There is a way to calculate m and v that avoids numerical integration. For a fixed
sample size n, a confidence interval procedure for the binomial proportion p associated
with x = 0, 1, 2, . . . , n successes results in n + 1 confidence intervals. Thus, there
are 2n+ 2 associated confidence interval bounds. Let p1, p2, . . . , p2n+2 denote these
ordered confidence interval bounds. These bounds correspond to the endpoints of the
piecewise actual coverage function c(p). Each of the 2n+1 pieces of c(p) corresponds
to a piece of one of the acceptance curves b(p, x0, x1). Let x0i and x1i denote the
lower and upper summation limits associated with the i th piece of c(p), for i =
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Fig. 1 A symmetric Dyck path
for n = 5

1, 2, . . . , 2n+1. Using this notation and the binomial theorem, an expression for the
mean actual coverage which avoids numerical integration is (Park and Leemis 2019)

m =
∫ 1

0
c(p)dp =

2n+1∑

i = 1

x1i∑

x = x0i

(
n

x

) n−x∑

k = 0

(
n − x

k

)

(−1)k
[
pk+x+1
i+1 − pk+x+1

i

k + x + 1

]

.

This derivation exploits the fact that the actual coverage function is a piecewise poly-
nomial function in p which has a closed-form integration. Using a similar approach
and again applying the binomial theorem, an expression for the variance of the actual
coverage which avoids numerical integration is

v =
⎧
⎨

⎩

2n+1∑

i = 1

x1i∑

x = x0i

x1i∑

y = x0i

(
n

x

)(
n

y

) 2n−x−y∑

k = 0

(
2n − x − y

k

)

(−1)k
[
pk+x+y+1
i+1 − pk+x+y+1

i

k + x + y + 1

]⎫
⎬

⎭
− m2.

We now introduce a symmetric Dyck word and the associated symmetric Dyck
path. Kása (2009) provides a definition for a symmetric Dyck word. Let B = {0, 1}
be a binary alphabet, a discrete set of two symbols, and a word x1x2 . . . xn ∈ Bn .
Let h : B −→ {−1, 1} be a valuation function with h(0) = 1, h(1) = −1, and
h(x1x2 . . . xn) = ∑n

i=1 h(xi ). A word X = x1x2 . . . x2n ∈ B2n is called a Dyck
word if it satisfies the following conditions:

h(x1x2 . . . xi ) ≥ 0, for i = 1, 2, . . . , 2n − 1 and h(x1x2 . . . x2n) = 0.

A symmetric Dyck word satisfies (1 − x1)(1 − x2) . . . (1 − x2n−1)(1 − x2n) =
x2nx2n−1 . . . x2x1.

A symmetric Dyck path is a staircase walk from (0, 0) to (n, n) in the (x0, x1) plane,
which lies strictly above the line x1 = x0 and is symmetric with respect to the line
x1 = n − x0. If we associated 0 with an upward step and 1 with a rightward step, we
could easily convert a symmetric Dyck word into a symmetric Dyck path. Figure 1
illustrates a symmetric Dyck path of length 10. It corresponds to the symmetric Dyck
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word 0100101101. The first entry is 0 in the Dyck word, so the first step is from (0, 0)
to (0, 1). The second entry is 1 in the Dyck word, so the second step is from (0, 1) to
(1, 1).

There is a one-to-one relationship between the jumps between the acceptance curves
in the actual coverage function for a sample size n and symmetric Dyck paths of
length 2n. Each discontinuity in the actual coverage function is a result of an increase
in either x0 or x1. When x0 is increased (a rightward move in the symmetric Dyck
path), a binomial probabilitymass function value is dropped from the summation in the
definition ofb(p, x0, x1), so the actual coverage function takes adownward step.When
x1 is increased (an upward move in the symmetric Dyck path), a binomial probability
mass function value is added to the summation in the definition of b(p, x0, x1), so the
actual coverage function takes an upward step. Given the sequence of (x0, x1) pairs
associated with an actual coverage function, we can construct a symmetric Dyck path.
Conversely, given a symmetric Dyck path of length 2n, we are able to generate the
sequence of acceptance curves associated with an actual coverage function of order
n. The number of symmetric Dyck paths of order n is

(
n

�n/2	
)

,

which is the nth central binomial coefficient (Deng et al. 2009).

3 Small sample calculations

To better understand the behavior of the actual coverage function and the intuition and
geometry behind the RMSE-minimizing confidence interval, we manually calculate
the optimal confidence interval bounds forn = 1 andn = 2 in the next two subsections.
Even though the parameter space is 0 < p < 1, the lower confidence interval bound
is 0 when x = 0 and the upper confidence interval bound is 1 when x = n.

3.1 One-sample case

There is only one possible symmetric Dyck path for n = 1. The path starts at (0, 0),
moves to (0, 1), and ends at (1, 1). It is illustrated in Fig. 2.

The three acceptance curves corresponding to the symmetric Dyck path are

b(p, 0, 0) = 1 − p,
b(p, 0, 1) = 1,
b(p, 1, 1) = p,

for 0 < p < 1. Since the symmetric Dyck path goes from (x0, x1) = (0, 0) to (0, 1) to
(1, 1), the actual coverage functionwill jump fromb(p, 0, 0) tob(p, 0, 1) tob(p, 1, 1).
This is an illustration of the one-to-one correspondence between a symmetric Dyck
path and a sequence of jumps between acceptance curves. Since there are two confi-
dence intervals for n = 1, one associated with x = 0 and the other associated with
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Fig. 2 Symmetric Dyck path for
n = 1

x = 1, there will be two discontinuities in the actual coverage function on 0 < p < 1.
We use p1 and p2 to denote the ordered unknown confidence interval bounds. Since
the symmetric Dyck path moves from (0, 0) to (0, 1) initially, p1 is associated with a
lower bound. Since the symmetric Dyck path then moves from (0, 1) to (1, 1), p2 is
associated with an upper bound. So the two confidence intervals are 0 < p < p2 for
x = 0 and p1 < p < 1 for x = 1. First, we calculate the mean actual coverage m:

m =
∫ 1

0
c(p) dp

=
∫ p1

0
(1 − p) dp +

∫ p2

p1
1 dp +

∫ 1

p2
p dp

= −1

2
p21 + p2 + 1

2
− 1

2
p22 .

Next, we calculate the variance of the actual coverage v:

v =
∫ 1

0
c2(p) dp − m2

=
∫ p1

0
(1 − p)2 dp +

∫ p2

p1
12 dp +

∫ 1

p2
p2 dp − m2

= p1 − p21 + 1

3
p31 + p2 − p1 + 1

3
− 1

3
p32 −

(

−1

2
p21 + p2 + 1

2
− 1

2
p22

)2

= 1

3
p31 − 1

2
p21 + 1

12
+ 2

3
p32 − 1

4
p41 − 1

4
p42 − 1

2
p21 p

2
2 + p21 p2 − 1

2
p22 .

We arbitrarily choose α = 0.05, which results in the mean square error

RMSE2 = v +
(

m − 19

20

)2

= 1

3
p31 − 1

20
p21 + 1

12

+
(
19

20

)2

− 9

10
p2 + 1

4
− 19

20
− 1

3
p32 + 19

20
p22 .
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Table 1 RMSE-minimizing
confidence interval bounds for
n = 1

L U

x = 0 0 0.9

x = 1 0.1 1

In order to minimize the mean square error (which also minimizes the RMSE), we
take partial derivatives with respect to p1 and p2 and set them equal to 0:

∂RMSE2

∂ p1
= p21 − 1

10
p1 = 0

∂RMSE2

∂ p2
= − 9

10
− p22 + 19

10
p2 = 0.

Solving this simultaneous set of equations for p1 and p2 results in

p1 = 1

10
, p2 = 9

10
.

We did not exploit the fact that p2 = 1− p1 in this derivation. Replacing the arbitrary
designation of “success” with “failure” in each Bernoulli trial forces this relationship
between lower and upper bounds. For general n, p2n+1−i = 1− pi always holds due
to the symmetry of the binomial confidence interval for i = 1, 2, . . . , 2n.

The confidence intervals for n = 1 are displayed in Table 1. The actual coverage
function is shown in Fig. 3 by the solid lines. The three acceptance curves are shown in
gray. The actual coverage function has a discontinuity wherever the vertical distance
between the current acceptance curve and the nominal coverage 1−α becomes greater
than the vertical distance between the subsequent acceptance curve (as defined by the
symmetric Dyck path) and the nominal coverage 1 − α.

The values ofm, v, and RMSE for these approximate 95% confidence intervals are
straightforward to calculate in this case. The value of m is

m =
∫ 1

0
c(p) dp

=
∫ 0.1

0
(1 − p) dp +

∫ 0.9

0.1
1 dp +

∫ 1

0.9
p dp

= 0.99.

The value of v is

v =
∫ 1

0
c2(p) dp − m2

=
∫ 0.1

0
(1 − p)2 dp +

∫ 0.9

0.1
1 dp +

∫ 1

0.9
p2 dp − m2

= 17

30,000
.
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Fig. 3 Actual coverage function for n = 1 and α = 0.05

Finally, the value of the RMSE is

RMSE =
√

v + (
m − (1 − α)

)2

=
√

17

30,000
+

(
99

100
− 95

100

)2

=
√

65

30,000

∼= 0.047.

3.2 Two-sample case

The situation for sample size n = 2 is more complicated. There are a total of
(2
1

) = 2
symmetric Dyck paths from (x0, x1) = (0, 0) to (x0, x1) = (2, 2), which are shown
in Fig. 4. We consider both paths separately and compare their RMSEs.

3.2.1 Symmetric Dyck path 1

Of the six potential acceptance curves associated with n = 2, the five acceptance
curves corresponding to the first symmetric Dyck path are
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Fig. 4 Symmetric Dyck paths for n = 2: Path 1 (left) and Path 2 (right)

Fig. 5 RMSE-minimizing confidence intervals for n = 2 and α = 0.05

b(p, 0, 0) = (1 − p)2,

b(p, 0, 1) = (1 − p)2 + 2p(1 − p) = 1 − p2,

b(p, 0, 2) = 1,

b(p, 1, 2) = 2p − p2,

b(p, 2, 2) = p2,

for 0 < p < 1. There are a total of 2 × 2 + 1 = 5 segments in the actual coverage
functions, which means there are 2×2+2 = 6 confidence interval bounds, including
p = 0 and p = 1. There are four unknown confidence interval bounds, denoted
by p1, p2, p3, and p4. The three confidence intervals associated with the confidence
interval bounds are

x = 0 ⇒ 0 < p < p3
x = 1 ⇒ p1 < p < p4
x = 2 ⇒ p2 < p < 1.

Notice that p4 = 1 − p1 and p3 = 1 − p2 by symmetry. We know that
0 < p1 < p2 < p3 < p4 < 1, as illustrated by the confidence intervals depicted in
Fig. 5.
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Table 2 RMSE-minimizing
confidence interval bounds for
n = 2, Path 1

L U

x = 0 0 0.684

x = 1 0.050 0.950

x = 2 0.316 1

As in the previous subsection, we first calculate m:

m =
∫ 1

0
c(p) dp

=
∫ p1

0
(1 − p)2 dp +

∫ p2

p1

(
1 − p2

)
dp +

∫ p3

p2
1 dp

+
∫ p4

p3

(
2p − p2

)
dp +

∫ 1

p4
p2 dp

= 2

3
p31 − p21 − 1

3
p32 + p3 + p24 − 2

3
p34 + 1

3
p33 − p23 + 1

3
.

Proceeding in the same fashion as in the case of n = 1, we calculate v and RMSE as
before. In order to minimize the mean square error (which also minimizes the RMSE),
we take partial derivatives with respect to p1, p2, p3, and p4.

∂RMSE2

∂ p1
= −4p31 + 21

5
p21 − 1

5
p1 = 0

∂RMSE2

∂ p2
= p42 − 1

10
p22 = 0

∂RMSE2

∂ p3
= −p43 + 4p33 − 59

10
p23 + 19

5
p3 − 9

10
= 0

∂RMSE2

∂ p4
= −4p34 + 39

5
p24 − 19

5
p4 = 0.

Solving this 4 × 4 simultaneous set of equations for p1, p2, p3, and p4 results in

p1 = 1

20
, p2 =

√
10

10
, p3 = 1 −

√
10

10
, p4 = 19

20
.

The confidence intervals for n = 2 for this particular symmetric Dyck path are
displayed in Table 2 and illustrated in Fig. 5. The associated actual coverage function
for this path is shown in Figure 6.
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Fig. 6 Actual coverage function (black lines) for n = 2 and α = 0.05, Path 1

3.2.2 Symmetric Dyck path 2

Of the six potential acceptance curves associated with n = 2, the five acceptance
curves corresponding to the second symmetric Dyck path in Fig. 4 are

b(p, 0, 0) = (1 − p)2,

b(p, 0, 1) = (1 − p)2 + 2p(1 − p) = 1 − p2,

b(p, 1, 1) = 2p(1 − p),

b(p, 1, 2) = 2p − p2,

b(p, 2, 2) = p2,

for 0 < p < 1. We again denote the unknown confidence interval bounds by
p1, p2, p3, and p4. The value of p1 is the same as Path 1 because the first two segments
are the same in the two paths. The calculation for the second confidence interval bound
is unusual. If we take the partial derivative with respect to p2, that is,

∂RMSE2

∂ p2
= −3p42 + 8p32 − 79

10
p22 + 19

5
p2 − 9

10
,

the only solution is p2 = 1, which does not satisfy 0 < p2 < 1 and results in the
confidence interval 1 < p < 1.

This unusual situation prompts us to consider a very brief “dwell time” (a term
we will formally define in Sect. 5 associated with an ε-jump) on an acceptance curve.
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Fig. 7 Actual coverage function (black lines) for n = 2 and α = 0.05, Path 2.

Sincewe are unable to find a point on b(p, 1, 1) thatminimizes theRMSEvia calculus,
the RMSE-minimizing procedure transitions from the acceptance curve b(p, 0, 1) to
b(p, 1, 1), where it remains for only an instant, and then transitions to b(p, 1, 2).
Figure 7 illustrates this ε-jump at p = 0.5.

A visual inspection of Figs. 6 and 7 reveals that symmetric Dyck Path 1 results
in a smaller RMSE than symmetric Dyck Path 2, so its confidence interval bounds
comprise the RMSE-minimizing confidence interval.

4 Existing confidence interval procedures

To illustrate the geometry associated with an actual coverage function, acceptance
curves, and symmetric Dyck paths for larger values of n, we consider the conservative
Clopper–Pearson confidence interval (Clopper and Pearson 1934) for the binomial
proportion p, which can be expressed as quantiles of the beta distribution:

Bx,n−x+1,1−α/2 < p < Bx+1,n−x,α/2,

for x = 0, 1, 2, . . . , n, where the first two subscripts are the parameters of the beta
distribution and the third subscript is a right-hand tail probability. Figure 8 contains
three graphs that are associated with sample size n = 10 and nominal coverage
1 − α = 1 − 0.05 = 0.95 for the Clopper–Pearson confidence interval procedure.
The top graph contains the acceptance curves in gray, the nominal coverage as a red
horizontal line, and the actual coverage function as solid black lines.Whether the actual
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coverage function is right-continuous or left-continuous is not relevant in this paper,
so both endpoints are given as solid circles. The middle graph shows the n + 1 = 11
possible confidence intervals associated with x = 0, 1, 2, . . . , 10. The bottom graph
shows the progression of x0 and x1 along the symmetric Dyck path associated with
the jumps from one acceptance curve to another.

Notice that the confidence interval associated with x = 1 in Fig. 8, which is

0.003 < p < 0.445,

has an upper bound which is quite close to the lower bound of the confidence interval
associated with x = 8, which is

0.444 < p < 0.975.

This is reflected in the graphs by an actual coverage function that has a very small dwell
time on a particular acceptance curve of 0.001 on the top graph between p = 0.444 and
p = 0.445 on the curve that is associated with the transition from (x0, x1) = (1, 7)
to (x0, x1) = (1, 8) to (x0, x1) = (2, 8). This does not pose any difficulty to the
confidence intervals, as indicated in the middle graph. The fact that the upper bound
associated with x = 1 is close to the lower bound for x = 8 is coincidental. However,
cases will arise later in which these small dwell times do indeed cause difficulties with
the confidence intervals.

Since the purpose of this paper is to construct confidence intervals with a mini-
mal RMSE value, we will henceforth exclude conservative confidence intervals like
the Clopper–Pearson or Blaker confidence intervals (Blaker 2000), although we men-
tion in passing that the Blaker confidence interval has a smaller value of m than the
associated Clopper–Pearson confidence interval for fixed values of n and α. Con-
servative confidence intervals have actual coverage which is always greater than or
equal to the nominal coverage, so their RMSE values tend to be greater than those
of non-conservative intervals. We end this literature review by briefly surveying four
popular non-conservative confidence intervals which will play a role in the algorithm
developed here.

TheWilson–score 100(1−α)%confidence interval for p has bounds (Wilson 1927)

1

1 + z2α/2/n

⎡

⎣ p̂ + z2α/2

2n
± zα/2

√

p̂(1 − p̂)

n
+ z2α/2

4n2

⎤

⎦ ,

where zα/2 is the 1− α/2 percentile of the standard normal distribution. The Jeffreys
100(1−α)%confidence interval for p is aBayesian credible interval that uses a Jeffreys
noninformative prior distribution for p. The bounds of the Jeffreys confidence interval
for p are percentiles of a beta random variable:

Bx+1/2,n−x+1/2,1−α/2 < p < Bx+1/2,n−x+1/2,α/2
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Fig. 8 Clopper–Pearson confidence intervals for n = 10 and α = 0.05
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for x = 1, 2, . . . , n − 1. When x = 0, the lower bound is set to zero and the upper is
bound calculated using the formula above; when x = n, the upper bound is set to one
and the lower bound is calculated using the formula above. The arcsine transformation
uses a variance-stabilizing transformation when constructing a confidence interval for
p. Using a modification suggested by Anscombe (1956), the bounds on a 100(1−α)%
confidence interval for p are

sin2
(

arcsin
(√

p̃
)

± zα/2

2
√
n

)

,

where p̃ = (x + 3/8)/(n + 3/4). In the rare cases in which a confidence interval
does not include the point estimator, one of the bounds is adjusted to include the point
estimator. The bounds of the Agresti–Coull 100(1 − α)% confidence interval, which
was originally developed to approximate the Wilson-score confidence interval, are
(Agresti and Coull 1998)

p̃ ± zα/2

√
p̃(1 − p̃)

ñ
,

where ñ = n + z2α/2 and p̃ = (x + z2α/2/2)/ñ.
These are not the only confidence intervals for p. Brown et al. (2001), for example,

give a long list of binomial confidences intervals, including the logit interval, the like-
lihood ratio interval, and the Bayesian highest posterior density interval. Confidence
intervals for p developed more recently include those by Balch (2020), Kim and Jang
(2021), Lyles et al. (2020), Wilcox (2020), and Yaacoub et al. (2019). We consider
only the four non-conservative confidence intervals described above in our confidence
interval procedure because of their popularity and available implementation in soft-
ware. The confidence intervals reviewed in this section tend to have poor performance
for small n and values of p near 0 or 1. The goal of this paper is to find an approximate
confidence interval for p whose actual coverage is as close as possible to the nominal
coverage as measured by the RMSE.

Table 3 contains the confidence interval bounds for the four non-conservative con-
fidence interval procedures and the RMSE-minimizing procedure for n = 1 and
α = 0.05. Three observations from the confidence intervals and RMSE values given in
Table 3 are: (1) the RMSE-minimizing confidence interval procedure indeed produces
the confidence interval with the lowest RMSE for n = 1, as it should; (2) the binomial
confidence intervals are symmetric, as they should be; and (3) the RMSE is higher for
the four existing confidence intervals because they are narrower (Wilson–score, Jef-
freys, and Agresti–Coull) or wider (Arcsine) than the associated RMSE-minimizing
confidence interval.

Table 4 gives the ordered confidence interval limits and the RMSEvalues associated
with n = 2 and α = 0.05. Again, the RMSE-minimizing confidence interval achieves
the lowest RMSE. Some intuition can be gleaned from a plot of the actual coverage
function for the Wilson–score confidence interval, which has the highest RMSE. Fig-
ure 9 shows that the actual coverage function for theWilson–score confidence interval
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Table 3 Confidence interval bounds and RMSEs for n = 1 and α = 0.05

Confidence interval bounds
p1 p2 RMSE

Wilson–score 0 0.207 0.793 1 0.0641

Jeffreys 0 0.147 0.853 1 0.0495

Arcsine 0 0.012 0.988 1 0.0499

Agresti–Coull 0 0.167 0.833 1 0.0532

RMSE-minimizing 0 0.1 0.9 1 0.0465

Table 4 Confidence interval bounds and RMSEs for n = 2 and α = 0.05

Confidence interval bounds
p1 p2 p3 p4 RMSE

Wilson–score 0 0.095 0.342 0.658 0.905 1 0.0461

Jeffreys 0 0.061 0.333 0.667 0.939 1 0.0392

Arcsine 0 0.009 0.230 0.770 0.991 1 0.0440

Agresti–Coull 0 0.095 0.290 0.710 0.905 1 0.0460

RMSE-minimizing 0 0.050 0.316 0.684 0.950 1 0.0387

procedure deviates more from the nominal coverage than the associated actual cov-
erage function for the RMSE-minimizing confidence interval procedure depicted in
Fig. 6.

5 RMSE-minimizing confidence interval

In principle, the procedure outlined in the previous section for determining RMSE-
minimizing confidence interval bounds for n = 1 and n = 2 can be carried out for
larger values of n. We modify an algorithm by Kása (2009) to generate all symmetric
Dyck paths. The algorithm generates the first half of each symmetric Dyck path, and
then the second half of the Dyck path is easily appended due to the symmetry. CPU
time limitations will come into play for significantly larger values of n as the number
of Dyck paths that need to be inspected grows on the order of the factorial of n. In this
section, we introduce the steps associated with calculating the bounds of an RMSE-
minimizing two-sided 100(1−α)%confidence interval for p and associated problems
that arise in the design of the algorithm.

Consider the general case of an arbitrary sample size n. Let p1, p2, . . . , p2n denote
the ordered confidence interval bounds on0 < p < 1, andb1(p), b2(p), . . . , b2n+1(p)
denote the acceptance curves associated with one particular Dyck path. We have sup-
pressed the last two arguments, x0 and x1, on b for compactness and to simplify the
notation. The mean square error is
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Fig. 9 Actual coverage function for Wilson–score interval for n = 2 and α = 0.05

RMSE2 = v + (
m − (1 − α)

)2

=
∫ 1

0
c2(p) dp −

[∫ 1

0
c(p) dp

]2

+
(∫ 1

0
c(p) dp − (1 − α)

)2

=
∫ 1

0
c2(p) dp − 2(1 − α)

∫ 1

0
c(p) dp + (1 − α)2

=
∫ p1

0
b21(p) dp +

∫ p2

p1
b22(p) dp + · · · +

∫ 1

p2n
b22n+1(p) dp

−2(1 − α)

(∫ p1

0
b1(p) dp +

∫ p2

p1
b2(p) dp + · · · +

∫ 1

p2n
b2n+1(p) dp

)

+ (1 − α)2.

For all values of n, the first acceptance curve, b1(p) = (1 − p)n , corresponds to
(x0, x1) = (0, 0), and the second acceptance curve, b2(p) = (1− p)n+np(1− p)n−1,
corresponds to (x0, x1) = (0, 1). When we calculate p1, we only need to consider the
terms in RMSE2 that contain p1. In order to minimize the mean square error (which
also minimizes the RMSE), we take the partial derivative with respect to p1:

∂RMSE2

∂ p1
= (1 − p1)

2n − (1 − p1)
2n − 2np1(1 − p1)

2n−1 − n2 p1
2(1 − p1)

2n−2−
2(1 − α)(1 − p1)

n + 2(1 − α)(1 − p1)
n + 2(1 − α)np1(1 − p1)

n−1

= −2np1(1 − p1)
2n−1 − n2 p1

2(1 − p1)
2n−2 + 2(1 − α)np1(1 − p1)

n−1

= np1
[
2(1 − α)(1 − p1)

n−1 − 2(1 − p1)
2n−1 − np1(1 − p1)

2n−2
]
.
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Equating this partial derivative to zero, p1 can be found by numerically solving

2(1 − p1)
n + np1(1 − p1)

n−1 − 2(1 − α) = 0.

We can apply a similar calculation to any confidence interval bound. To obtain the
value of pc that minimizes the RMSE, for c = 1, 2, . . . , n, we only need to consider
the terms in RMSE2 that contain pc. More specifically, we will focus on the terms
containing bc(p) and bc+1(p). Then we will take the partial derivative respect to pc,
set it equal to 0, and solve for pc. In this way, we derive a general formula, solvable
for confidence interval bounds.

Let 0, p1, p2, . . . , p2n, 1 be the sorted 2n+2 endpoints of the confidence intervals.
Proceeding in the same fashion as the derivation of the value of p1 above, the value of
pc, for c = 1, 2, . . . , n, whichminimizes the RMSE can be determined by numerically
solving

bc(pc) + bc+1(pc) = 2(1 − α).

However, this formula can only be applied when there exists a solution between 0 and
1. In many cases there is no such solution, which leads to the discussion of the dwell
time and ε-jumps. By symmetry, pc = 1 − p2n−c+1, for c = n + 1, n + 2, . . . , 2n.

For a particular confidence interval procedure for p with fixed parameters α and n,
for positive integer n and 0 < α < 1, the dwell time on an acceptance curve associated
with fixed summation limits (x0, x1) is the difference between the values of p between
two adjacent discontinuities of the actual coverage function on that acceptance curve
(including p = 0 and p = 1).

For the Clopper–Pearson 95% confidence interval for n = 10 illustrated in Fig. 8,
for example, the dwell time on the acceptance curve associated with (x0, x1) = (0, 0)
is 0.0025 − 0.0000 = 0.0025. The dwell time on the acceptance curve associated
with (x0, x1) = (0, 1) is 0.0252 − 0.0025 = 0.0227. The longest dwell time for
the Clopper–Pearson 95% confidence interval is associated with (x0, x1) = (2, 8) is
0.5550 − 0.4450 = 0.1100. The smallest dwell times for the Clopper–Pearson 95%
confidence interval are associated with (x0, x1) = (1, 8) and (x0, x1) = (2, 9), which
are 0.4450 − 0.4439 = 0.5561 − 0.5550 = 0.0011.

We define an ε-jump to correspond to a dwell time on an acceptance curve equal to
0. One example of an ε-jump is the point at p = 0.5 in Fig. 7. In that case, the actual
coverage function stays on the acceptance curve b(p, 1, 1) for a dwell time of 0. Some
types of ε-jumps can cause problems.Allowing two consecutive upwards (downwards)
ε-jumps results in confidence intervals for adjacent x that may have the same lower
(upper) bounds, which we refer to as the “same bound” problem. Figure 10 shows
the RMSE-minimizing 95% confidence intervals associated with n = 10. For these
confidence intervals, the RMSE is 0.0162. As illustrated in Fig. 10, the confidence
interval for x = 5 has the same lower bound as the confidence interval for x = 6.
We would strongly prefer that these two confidence intervals not have the same lower
bounds.

We now compare the RMSE of the RMSE-minimizing confidence interval with
those of the Wilson–score, Jeffreys, Arcsine, and Agresti–Coull intervals for small
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Fig. 10 RMSE-minimizing confidence intervals for n = 10

Table 5 RMSE comparison for α = 0.05

n Wilson–score Jeffreys Arcsine Agresti–Coull RMSE-minimizing

1 0.0641 0.0495 0.0499 0.0532 0.0465

2 0.0461 0.0392 0.0440 0.0460 0.0387

3 0.0366 0.0309 0.0380 0.0378 0.0305

4 0.0326 0.0376 0.0352 0.0316 0.0261

5 0.0295 0.0268 0.0334 0.0282 0.0243

6 0.0288 0.0309 0.0333 0.0256 0.0222

7 0.0241 0.0291 0.0300 0.0250 0.0195

8 0.0244 0.0287 0.0280 0.0239 0.0212

9 0.0237 0.0277 0.0272 0.0218 0.0181

10 0.0218 0.0243 0.0260 0.0216 0.0162

11 0.0220 0.0225 0.0263 0.0215 0.0173

12 0.0213 0.0235 0.0258 0.0203 0.0157

sample sizes and α = 0.05. The RMSEs are displayed in the Table 5, which shows
that our confidence interval achieves the lowest RMSE, which are set in boldface type,
for n = 1, 2, . . . , 12. Our confidence interval is the only one that has an RMSE below
0.02, for example, for n = 9, 10, 11, 12. The RMSE values are graphed in Fig. 11.

One solution to the same bound problem is to remove from consideration any sym-
metric Dyck paths that are associated with identical adjacent lower bounds. Figure 12
shows the 95% confidence intervals associated with n = 6 that satisfy this criterion.
Although the same bound problem has been solved, the difference between the lower

123



RMSE-minimizing confidence intervals for the binomial…

Fig. 11 RMSE comparison for α = 0.05

Fig. 12 RMSE-minimizing confidence intervals for n = 6 and α = 0.05

bounds for x = 4 and x = 5 is quite small relative to the two adjacent differences.
This prompted us to define a “smoothness” criterion for these confidence intervals,
introduced in the next section, with a focus on the differences between the lower
bounds.

6 Smoothed RMSE-minimizing confidence interval

In this section, we (a) define a measure of “smoothness” associated with a confidence
interval for p, (b)design a smoothness constraint on theRMSE-minimizing confidence
interval procedure, and (c) compare the smoothed RMSE-minimizing version of our
confidence interval to other frequently-used non-conservative confidence intervals.
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Fig. 13 Lower bound differences for n = 10 and α = 0.05

By “smoothness,” we mean that the difference between two consecutive lower
bounds is nondecreasing in x . For example, the difference between the lower bounds
for x = 2 and x = 3 should be smaller than the difference between lower bounds for
x = 3 and x = 4. Figure 13 contains a plot of the lower bound differences and their
averages for the Wilson–score, Jeffreys, Arcsine, and Agresti–Coull 95% confidence
intervals for n = 10. There is a monotonically nondecreasing pattern of lower bound
differences for all of the confidence interval procedures.

We propose a new metric for smoothness. Let l0, l1, . . . , ln denote the lower con-
fidence interval bounds for x = 0, 1, . . . , n. Calculate the lower bound difference
dk = lk − lk−1 for k = 1, 2, . . . , n. Calculate the ratio of two consecutive differ-
ences rk = dk+1/dk for k = 1, 2, . . . , n − 1. The smoothness index is defined by
min {r1, r2, . . . , rn−1}. If the smoothness index is greater than or equal to 1, which
means the lower bound differences are non-decreasing, then the confidence interval
procedure maintains the property of smoothness.

In order to avoid harmful ε-jumps and preserve the smoothness, we control the
dwell time on each acceptance curve by placing lower and upper bounds on the dwell
time. Since theRMSE-minimizing confidence interval is non-conservative, we employ
four frequently-used non-conservative confidence intervals (Wilson–score, Jeffreys,
Arcsine, and Agresti–Coull) to limit the dwell time associated with lower bound dif-
ferences. Since the binomial confidence interval is symmetric, the dwell time bounds
will automatically control upper bound differences as well. The dwell time constraints
are defined by the following steps.

1. Compute the lower bounds for all four confidence interval procedures associated
with sample size n. Denote each by l jk , for j = 1, 2, 3, 4, which indexes the confi-
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Fig. 14 Constraints on lower bound differences for n = 10 and α = 0.05

dence interval procedure; k = 0, 1, . . . , n, which indexes the number of successes
x .

2. Calculate the averages of the four lower bounds l̄k = ∑4
j=1 l jk , for k = 0, 1, . . . , n.

3. Calculate the lower bound difference between two consecutive average lower
bounds by sk = l̄k − l̄k−1 for k = 1, 2, . . . , n.

4. Set a lower limit for each lower confidence interval bound difference as

Lk =
{

(sk − 0)/2 k = 1
(sk − sk−1)/2 k = 2, 3, . . . , n.

5. Set an upper limit for each lower confidence interval bound difference as

Uk =
{

(sk+1 − sk)/2 k = 1, 2, . . . , n − 1
1 − ∑n−1

i=1 Ui k = n.

6. Denote lower bounds in the smoothed RMSE-minimizing confidence interval for
p associated with sample size n by l0, l1, . . . , ln . The subscripts correspond to x ,
the number of observed successes. Denote the difference between two consecutive
lower bounds by dk = lk − lk−1, for k = 1, 2, . . . , n. Ensure that smoothness is
achieved by requiring that Lk ≤ dk ≤ Uk , for k = 1, 2, . . . , n.

To illustrate the smoothing constraints for n = 10 and α = 0.05, the black dots in
Fig. 14 are the averages of the lower bound differences of the Wilson–score, Jeffreys,
Arcsine, and Agresti–Coull 95% confidence intervals. The solid horizontal lines are
the constraints generated from following the steps above. We observe from Fig. 14
that the constraints are tighter in the middle and looser for x values at the extremes.

The algorithm with smoothing now works in two passes. It first calculates confi-
dence interval bounds using the minimum-RMSE criterion. If the smoothness index is
greater than or equal to one, the confidence interval is returned. If not, then the smooth
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Table 6 Smoothed RMSE comparison for α = 0.05

n Wilson–score Jeffreys Arcsine Agresti–Coull RMSE-minimizing

1 0.0641 0.0495 0.0499 0.0532 0.0465

2 0.0461 0.0392 0.0440 0.0460 0.0387

3 0.0366 0.0309 0.0380 0.0378 0.0305

4 0.0326 0.0376 0.0352 0.0316 0.0261

5 0.0295 0.0268 0.0334 0.0282 0.0243

6 0.0288 0.0309 0.0333 0.0256 0.0241

7 0.0241 0.0291 0.0300 0.0250 0.0211

8 0.0244 0.0287 0.0280 0.0239 0.0213

9 0.0237 0.0277 0.0272 0.0218 0.0207

10 0.0218 0.0243 0.0260 0.0216 0.0190

11 0.0220 0.0225 0.0263 0.0215 0.0198

12 0.0213 0.0235 0.0258 0.0203 0.0184

symmetric Dyck path with the smallest RMSE is saved, and the problem is resolved
with the additional smoothing constraints described above. Finally, the solution with
the smaller RMSE is returned.

We compare the RMSE of our smoothed RMSE-minimizing confidence interval
with those of the Wilson–score, Jeffreys, Arcsine, and Agresti–Coull intervals for
small sample sizes and α = 0.05. The RMSE values are calculated in R and displayed
in Table 6. The lowest RMSE value for each n is set in boldface type. Compared to
the values in Table 5, some RMSE values increase because of the smoothness con-
straints. This reflects the trade-off betweenminimizing the RMSE value and achieving
smoothness. However, Table 6 shows that our confidence interval still achieves the
lowest RMSE for n = 1, 2, . . . , 12, with no smoothing required for n = 1, 2, . . . , 5.

Figure 15 contains three graphs that are associated with a sample size of n = 10 and
a nominal coverage of 1−α = 1−0.05 = 0.95 for the RMSE-minimizing confidence
interval procedure with constrained dwell time. The format is the same as that in Fig. 8.
The top graph shows that although the RMSE-minimizing confidence interval does not
have an ε−jump, it is still possible that the dwell time on some acceptance curves to be
very short. The middle graph shows that the confidence interval achieves smoothness
because each lower bound difference is larger than the one before it. The bottom graph
is consistent with the top graph in terms of the progression between acceptance curves
associated with the optimal symmetric Dyck path.

7 Application

The binomial confidence interval is applied here to survival analysis. Consider the non-
parametric estimation of the survivor function associated with the n = 7 rat survival
times (in days) from Efron and Tibshirani (1993):

123



RMSE-minimizing confidence intervals for the binomial…

Fig. 15 Smooth
RMSE-minimizing confidence
intervals for n = 10 and
α = 0.05
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Fig. 16 Survivor function estimate for the rat survival data

16 23 38 94 99 141 197.

The empirical survival function, which takes a downward step of 1/n = 1/7 at each
data value, is given by the solid lines in Fig. 16. The dashed lines that denote 95%
confidence intervals associated with the survival probability at any time are calculated
using the smoothed RMSE-minimizing 95% confidence interval. These confidence
bands are superior in their actual coverage to the usual confidence bands based on
Greenwood’s formula, which reduces to the Wald confidence interval for uncensored
data. This has been confirmed by a Monte Carlo simulation experiment. The Wald
confidence interval is notorious for poor actual coverage, as outlined by Brown et al.
(2001).

Table 7 shows the results of six confidence interval procedures for calculating
a 95% confidence interval for the probability of survival to 95 days. The Arcsine
confidence interval is the widest of the intervals with a width of 0.787 − 0.118 =
0.669 and the RMSE-minimizing confidence interval is the narrowest with a width of
0.739−0.159 = 0.58. This 15% difference in confidence interval widths for the same
data set can potentially result in differing conclusions. The 100(1 − α)% confidence
interval by Kim and Jang (2021) has bounds

pa ± zα/2

√
pc(1 − pc)

n + d
,

where pa = (x+a)/(n+2a), pc = (x+c)/(n+2c),a = 2.1−1/
√
n, c = 1.7−2/

√
n,

and d = 4.0 − 1/
√
n.
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Table 7 Confidence intervals for
S(95) for α = 0.05 Technique Confidence interval

Wilson–score 0.158 < S(95) < 0.750

Jeffreys 0.139 < S(95) < 0.765

Arcsine 0.118 < S(95) < 0.787

Agresti–Coull 0.158 < S(95) < 0.750

Kim–Jang 0.153 < S(95) < 0.751

RMSE-minimizing 0.159 < S(95) < 0.739

8 Conclusions and further work

We have formulated and implemented an algorithm for calculating an approximate
two-sided 100(1 − α)% confidence interval for p from a random sample of n
Bernoulli(p) observations that minimizes the root mean square error (RMSE) of the
actual coverage function. We have added smoothness as a secondary constraint to
avoid identical lower bounds for adjacent values of x . A smoothed RMSE-minimizing
confidence interval has an actual coverage function that is closer to the nominal cover-
age than the Wilson–score, Jeffreys, Arcsine, and Agresti–Coull confidence intervals
for n = 1, 2, . . . , 12. The marginal difference between the RMSE for the smoothed
RMSE-minimizing confidence interval and the other confidence intervals decreases,
although not necessarily monotonically in the sample size n.

This confidence interval procedure is implemented in the R function binomTest
MSE in the conf package. For n = 10, x = 3, α = 0.05, and smoothing, for example,
the R statement

binomTestMSE(n = 10, x = 3, alpha = 0.05, smooth = 1)

returns the 95% confidence interval 0.107 < p < 0.598. For other values of n and
x , 95% confidence intervals L < p < U are given in Table 8. For other α values,
confidence intervals are given at www.math.wm.edu/∼leemis/tables. The
binomTestMSE function enumerates all symmetric Dyck paths for n = 1, 2, . . . , 15
to achieve the smallest RMSE. The number of symmetric Dyck paths grows on the
order of the factorial of n. The binomTestMSE function uses the symmetric Dyck
paths associated with the Wilson–score, Jeffreys, Arcsine, and Agresti–Coull confi-
dence interval procedures with the smallest RMSE for n ≥ 16 because of computation
time constraints. Although there is no guarantee of optimality for n ≥ 16, our exper-
imentation showed that this approach typically results in the smallest RMSE. The
structure of the algorithm is outlined in the Appendix.

We see two areas of future research. First, we would like to develop and implement
an algorithm that allows the user to set a preferable smoothness on a continuous scale,
using the smoothness index defined in Sect. 6. Second, we would like to develop
the framework to minimize a weighted version of the RMSE which focuses on the
most likely values of p based on expert opinion or previous data sets. This Bayesian
framework would differ from the current framework which assigns equal weights to
all values of p in (0, 1).
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Appendix

The structure of the algorithm for constructing the 100(1 − α)% RMSE-minimizing
confidence interval is given below. The four existing confidence interval procedures
used in the smoothing and the large-sample portions of the algorithm are the Wilson–
score, Jeffreys, Arcsine, and Agresti–Coull.

input : n: sample size
x : number of successes
α: confidence interval significance level
smooth: 0 for no smoothing; 1 for smoothing

output: lower and upper 100(1 − α)% confidence interval bounds (CIBs) for p
if n ≤ 15 then

generate all npt = ( n

n/2�

)
symmetric Dyck paths

for i from 1 to npt do
for j from 1 to n do

numerically solve for CIBs that minimize the RMSE

if smooth = 1 then
perform smoothing

else
determine symmetric Dyck paths for the four existing confidence intervals
for i from 1 to 4 do

for j from 1 to n do
numerically solve for CIBs that minimize the RMSE

if smooth = 1 then
perform smoothing

return the CIBs with the smallest RMSE

This algorithm has been implemented in R in the binomTestMSE function in the
conf package, which consists of about 700 lines of code. The numerical solution that
minimizes the RMSE is performed by the uniroot.all function in R.
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