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ABSTRACT
Plotting two-parameter confidence regions is nontrivial. Numerical methods often rely on a computation-
ally expensive grid-like exploration of the parameter space. A recent advance reduces the two-dimensional
problem to many one-dimensional problems employing a trigonometric transformation that assigns an
angle φ from the maximum likelihood estimator, and an unknown radial distance to its confidence region
boundary. This paradigm shift can improve computational runtime by orders of magnitude, but it is not
robust. Specifically, parameters differing greatly in magnitude and/or challenging nonconvex confidence
region shapes make the plot susceptible to inefficiencies and/or inaccuracies. This article improves the
technique by (i) keeping confidence region boundary searches in the parameter space, (ii) selectively
targeting confidence region boundary points in lieu of uniformly spaced φ angles from the maximum
likelihood estimator and (iii) enabling access to regions otherwise unreachable due to multiple roots
for select φ angles. Two heuristics are given for φ selection: an elliptic-inspired angle selection heuristic
and an intelligent smoothing search heuristic. Finally, a jump-center heuristic permits plotting otherwise
inaccessible multiroot regions. This article develops these heuristics for two-parameter likelihood-ratio-
based confidence regions associated with univariate probability distributions, and introduces the R conf
package, which automates the process and is publicly available via CRAN.
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1. Introduction

Confidence regions provide a simultaneous measure of the
precision of parameter estimates (Cox and Oakes 1984, pp. 42–
43). They account for dependence in the parameter estimates,
and therefore represent their probabilistic relationships better
than an assembly of individual confidence intervals. A grid-type
search is an inefficient way to plot a confidence region (Meeker
and Escobar 1995). Jaeger (2016) highlighted the computational
advantages of an alternative likelihood-ratio-based radial profile
technique, and demonstrates that runtime improvement can
measure orders of magnitude faster. For a two-parameter distri-
bution, this algorithm effectively reduces a two-dimensional
problem to a one-dimensional problem. The techniques
developed here augment Jaeger’s work by (i) determining upper
bounds on the search radius to account for locations where the
log-likelihood function is undefined, (ii) optimizing the angles
for the one-dimensional search problems in order to produce a
smooth boundary for the confidence region and (iii) allowing
the point-of-reference for the radial azimuth direction and
distance to relocate from the MLE in order to reach confidence
region areas otherwise inaccessible to the algorithm. This
article addresses these heuristics for likelihood-ratio-based
confidence regions for two-parameter univariate probability
distributions.

After a brief introduction to the radial profile log-likelihood
ratio technique in Section 2 and an illustration of param-
eter space restrictions in Section 3, an example given in
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Section 4 highlights confidence region plot challenges. This
article then introduces two heuristics improving its imple-
mentation in Sections 5 and 6. Both heuristic techniques
aim to improve the spacing of confidence region boundary
plot points produced through modifications to the method’s
φ values—a radial azimuth parameter defined in Section 2.
The first improving technique finds points whose spacing is
approximately equidistant along the perimeter of the confidence
region boundary. The second improving technique uses a
progressive search heuristic that weights regions of rapid change
with more points. Section 7 addresses repairs for radially
inaccessible regions, and Section 8 provides a practical example
of such a circumstance. Section 9 introduces the open-source
R package conf which automates these processes. Finally,
Section 10 contains a discussion of future work and Section 11
provides concluding remarks.

2. Radial Profile Log-Likelihood Ratio

This section briefly summarizes the radial profile log-likelihood
ratio technique for plotting confidence regions summarized by
Jaeger (2016).

Let θ be a vector of p unknown parameters associated with
a univariate probability distribution. Let L(θ) be the likeli-
hood function. Let θ̂ be the corresponding vector of maxi-
mum likelihood estimates (MLEs). A confidence region for θ

at significance level α is determined using an asymptotic result
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associated with the likelihood ratio test statistic

−2
[

log L(θ) − log L(θ̂)
] D−→ χ2 (

p
)

,

where log is the natural logarithm. The boundary of a 100(1 −
α)% confidence region is all θ values satisfying

−2
[

log L(θ) − log L(θ̂)
]

= χ2
p,α , (1)

where the second subscript is associated with the right-hand tail
probability. Calculating the boundary of this confidence region
is computationally expensive using a progressive search or grid-
exploration technique.

Now consider the case of p = 2 unknown parameters, θ1
and θ2, with associated MLEs θ̂1 and θ̂2. This will be the case
considered for the rest of this article. The radial profile log-
likelihood technique (Jaeger 2016) pieces together the boundary
of the confidence region by identifying boundary points on
various cross-sections of the log-likelihood function. A vector
of unique angles φ from its MLE define the cross-sections, and
the vector r represents their respective radial distances from the
MLE to the boundary of the log-likelihood function. Adopting
these modifications, Equation (1) becomes

−2
[
log L

(
θ̂1 + r cos φ, θ̂2 + r sin φ

)
− log L

(
θ̂1, θ̂2

)]
= χ2

2,α .
(2)

By exploiting the asymptotically χ2(2) distribution of the likeli-
hood ratio statistic, solving for r in Equation (2) identifies points
on the boundary of its approximate 100(1 − α)% confidence
region. When taken in aggregate over the domain φ ∈ [0, 2π),
these points delineate the confidence region of interest.

3. Parameter Space Restrictions

The radial distance, r, from the MLE to its confidence region
boundary for given φ angles can be calculated using Equation
(2). For most two-parameter univariate probability distribu-
tions this has no closed-form solution, and requires numer-
ical methods. Those solution methods become complicated,
however, when the parameter space is restricted. For instance,
implementing a bisection type algorithm—as available in the R
uniroot function—requires lower and upper limits to bracket
the solution. Naïvely specifying arbitrarily large upper limits for
r can extend evaluation of the log-likelihood function out of
the parameter space, thereby terminating the algorithm without
solution. The upper limits on r must account for this possibility.

The parameter space for the distribution parameters, θ ,
determines the feasible regions for r. Two-parameter distri-
butions such as the gamma, inverse Gaussian, log logistic, and
Weibull distributions have the first quadrant as a parameter
space. Alternate and/or unique support constraints are dealt
with accordingly. For example, a triangular(0, θ1, θ2) distribu-
tion would have its first quadrant feasible region restricted to the
area where 0 < θ1 < θ2. In another example, if one parameter
can assume any real value and the second is nonnegative—such
as the normal or log normal distributions—then the parameter
space consists of the first and second quadrants (assuming the
vertical axis represents the nonnegative parameter).

θ1

θ2

0 θ̂1

0

θ̂2

d1d2

d3

φ

Figure 1. Log-likelihood feasible region constraints for radial distances, r, from the
MLE given θ1 > 0, θ2 > 0.

Figure 1 illustrates constraints for the case when θ1 > 0, θ2 >

0, and r is restricted to the first quadrant. It is broken into
three sections—each MLE dependent—separated by thicker
solid lines that radiate from the MLE denoted by + at (θ̂1, θ̂2).
Dotted lines within this figure illustrate several φ values for
assessment, some of which have a di annotation for reference
here. The section containing d1 associated with 0 ≤ φ ≤ π/2
has no upper bound. Any length d1 remains feasible, therefore,
an arbitrarily large upper limit is sufficient. Care is taken
within the remaining two regions, however, to capture feasible
possibilities without extending to its infeasible region. The
symbols and • show desired upper bounds to restrict the
search for r, lying arbitrarily close to each axis but still within
the first quadrant. Trigonometric relationships reveal these
respective upper bounds, each representative of all φ within
their section, as

d2 = a ·
(

−θ̂1
cos φ

)
π/2 < φ < π + arctan(θ̂2/θ̂1) and

d3 = a ·
(

−θ̂2
sin φ

)
π + arctan(θ̂2/θ̂1) ≤ φ < 2π ,

where a ↑ 1 to keep its result within the first quadrant.

4. Example of Implementation Challenges

The n = 23 deep-groove ball bearing failure times, given by
Lieblein and Zelen (1956) in millions of revolutions, will serve
as our example throughout this article:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60,
48.48, 51.84, 51.96, 54.12, 55.56, 67.80,
68.64, 68.64, 68.88, 84.12, 93.12, 98.64,
105.12, 105.84, 127.92, 128.04, 173.40.

A Weibull distribution is chosen to model the data. It has a
survivor function

S(x) = e−(λx)κ x > 0,

with positive shape parameter κ and positive scale parameter λ.
The associated log-likelihood function is

log L (λ, κ) = n log κ + n κ log λ

+ (κ − 1)

n∑
i=1

log xi − λκ
n∑

i=1
xκ

i ,
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where x1, x2, . . . , xn denote the data values, with corresponding
MLEs λ̂ = 0.0122, and κ̂ = 2.102.

Let m be the length of φ (number of angles) in the radial
profile log-likelihood ratio technique. Assessing m = 360 and
m = 3600 equally-spaced angles from the MLE, φ ∈ {0, 2π ·
1
m , 2π · 2

m , 2π · 3
m , . . . , 2π · m−1

m }, the radial profile log-likelihood
ratio technique yields the plots shown in Figure 2. Each plot
point in Figure 2 is found by solving equation (2) for r using
the uniroot function in R for the ball bearing failure times.
The fact that κ = 1 falls outside of the confidence region
indicates that there is statistical evidence that the population
distribution is in the IFR (increasing failure rate) class. The
confidence region supports the intuitive notion that the ball
bearings are wearing out.

Sharp vertices and nonuniform point distributions in both
graphs in Figure 2 are a cause for concern. Even in Figure 2
(right), with 3600 angles assessed (spaced every 1/10◦), the
plot lacks sufficient smoothness on its right side. These issues
are traceable to the vastly different magnitudes for λ̂ and κ̂ .
Figure 3 illustrates how the ratio of these quantities influences
the distribution of points along an elliptical boundary under
eight equally spaced angles 0 ≤ φ < 2π on a circle and on an
ellipse associated with generic parameters θ1 and θ2.

Equally spaced φ angles become increasingly less effective as
the relative axis scales get further apart. Some areas—nearer to
the top and bottom of both Figures 2 and 3—plot more points
then necessary, while others areas—nearer to the left and right
of both Figures 2 and 3—suffer from insufficient smoothness.
In Figure 2, the height and width scales differ over two orders
of magnitude; therefore, spacing implications are much more
severe than what Figure 3 demonstrates. Targeted modifications
to φ angles assessed within the radial profile log-likelihood plot-
ting technique must address these deficiencies for it to remain
effective, and two such techniques are given in the next two
sections.

5. Elliptically Oriented Points

Identifying equidistant points along the confidence region
boundary is an intuitive approach to improve upon the results
in Figure 2. This, however, implies having a priori knowledge
of its shape and size, which are both unknown. Nonetheless,
by estimating its relative size using an ellipse to account for

Figure 3. Point spacing comparison between 1:1 and 5:1 width-to-height ratio
elliptical plots given 16 uniformly distributed angles for 0 ≤ φ < 2π .

significant differences in the magnitudes of the parameters,
results improve significantly.

An ellipse is chosen to approximate the confidence region
shape because a p-dimensional confidence region converges to
a p-dimensional ellipsoid as n → ∞. This result is implicit in
the asymptotic result

√
n

(
θ̂ − θ

) D−→ N
(
0, I−1 (θ)

)
,

where θ̂ = (θ̂1, θ̂2, . . . , θ̂p)′ denotes the vector of MLEs of the
unknown parameters θ = (

θ1, θ2, . . . , θp
)′, and I(θ) is the infor-

mation matrix associated with the random sample x1, x2, . . . , xn
in estimating θ .

We choose the Steiner generation of a nondegenerate conic
section to construct an ellipse with points that are themselves
approximately equally spaced along the ellipse circumference.
This algorithm, also known as the parallelogram method, is a
result of the Theorem of Steiner (Meserve 1983, p. 65) and is
given in greater detail next.

Figure 4 illustrates the parallelogram method with generic
parameters θ1 and θ2 having respective major and minor axis
lengths of 2a and 2b. This example assumes the ellipse major

κ

λ

1.39 2.10 2.88

0.0094

0.0122

0.0159

κ

λ

1.37 2.10 2.95

0.0094

0.0122

0.0162

Figure 2. Confidence regions for κ and λ for the ball bearing failure times fitted to the Weibull distribution for α = 0.05, and 0 ≤ φ < 2π uniformly distributed using
m = 360 (left) and m = 3600 (right) angles.
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θ1

θ2

−a 0 a

−b

0

b

2b

φ1

Figure 4. Parallelogram method for points on an ellipse with major and minor axes lengths of 2a and 2b.

axis—having and � endpoint symbols—is parallel to the hor-
izontal axis. To identify m = 4n ellipse points, place n points
( ) equally spaced above a major axis endpoint (�) from (0, 2b]
and connect them with line segments to the opposite major axis
endpoint ( ). Next, place n points (�) above and parallel to the
major axis, offset at a distance equal to the minor axis (2b), and
spaced equidistant from [−a, a). Connect them (�) to the other
major axis endpoint (�). The intersection of these respective
line segments (sequencing � left-to-right and top-to-bottom)
identifies n points (•) along the ellipse. Ellipses are symmetric
about their major and minor axes, therefore the remaining
3n points are easily attainable. The points are approximately
equidistant.

A shortfall remains: appropriate ellipse dimensions are
unknown. Considering the parameters of interest are the set
of radial angles φ, only the relative size of the ellipse’s major and
minor axes (its elongation or eccentricity) is relevant. The φ

values depend only on this elongation and m. An approximation
is sufficient; precision is not critical to produce a series of
angles that adequately distribute along the confidence region
boundary. The φ angles are, after all, approximations themselves
of where true equidistant points along the confidence region
boundary might lie.

The ratio of asymptotic standard errors of its MLEs identifies
a reasonable approximation of the ellipse elongation. It is found
by first calculating the 2 × 2 Fisher information matrix for the
Weibull distribution using the partial derivatives

−∂2 log L(λ, κ)

∂λ2 = κn
λ2 + κ (κ − 1) λκ−2

n∑
i=1

xκ
i ,

−∂2 log L(λ, κ)

∂λ∂κ
= −n

λ
+ λκ−1

×
[
κ

n∑
i=1

xκ
i log xi + (

1 + κ log λ
) n∑

i=1
xκ

i

]
,

−∂2 log L(λ, κ)

∂κ2 = n
κ2 +

n∑
i=1

(λxi)
κ
(
log λxi

)2 .

Although the expected values of these partial derivatives have
no closed-form solution, the observed information matrix is
attainable using λ̂ and κ̂ . For the ball bearing failure times, the
observed information matrix is

O
(
λ̂, κ̂

)
=

[
681, 000 875

875 10.4

]
.

The inverse of the observed information matrix,

O−1
(
λ̂, κ̂

)
=

[
0.00000165 −0.000139
−0.000139 0.108

]
,

identifies the estimated variance of λ̂ and κ̂ in its diagonal. The
ratio of MLE asymptotic standard errors is therefore sκ̂ /s

λ̂
=√

0.108/
√

0.00000165 = 256.
The set of φ angles corresponding to the approximately

equidistant ellipse points are now ready for use in the radial log-
likelihood plotting technique. These φ angles differ greatly from
equally spaced angles. As the width-to-height ratio increases, φ
angles concentrate nearer 0◦ and 180◦, as indicative of the trend
shown in Figure 4. This effect is even more pronounced for the
ball bearing dataset, whose elongation is much more severe.

Results using this technique on the ball bearing data set
are shown in Figure 5 for m = 100. Appendix A contains a
description of Algorithm 1, which implements this elliptically
oriented points approach.

Using the parallelogram method to identify φ angles results
in a more uniform distribution of points along the confidence
region’s boundary, significantly improving both plot resolution
and its associated computational cost. Using R, Figure 5 took
just 0.070 sec runtime and gave better results than both Figure 2
(left) using m = 360 points at 0.285 sec and Figure 2 (right)
using m = 3600 points at 2.812 sec.

Although a significant improvement over using equally
spaced φ angles, this technique has vulnerabilities. A severe
bend between points may result in visually striking and

κ

λ

1.37 2.10 2.98

0.0094

0.0122

0.0162

Figure 5. Confidence region for κ and λ for the ball bearing failure times fitted
to the Weibull distribution using the elliptically oriented heuristic described in
Algorithm 1 with α = 0.05, m = 100, and a major to minor axes ratio of sκ̂ /s

λ̂
=

256.



160 C. WELD, A. LOH, AND L. LEEMIS

misleading vertex angles along its boundary. An example of
this is given in Section 8. Although the computational ease and
efficiency of the elliptically oriented algorithm for identifying
confidence region boundary points make it a worthwhile option
to consider, portions of confidence region boundaries with
high curvature may warrant a more robust approach. The next
section addresses such cases with an alternate strategy.

6. Smoothing Boundary Search Heuristic

In their analysis of confidence curves for nonlinear regres-
sion, Cook and Weisberg (1990) developed a dynamic step
size approach after recognizing more plot points were neces-
sary to adequately model regions where the likelihood function
changes rapidly. An analogous logic motivates this heuristic,
which strategically identifies points along the confidence region
boundary that result in a smooth and accurate plot.

Accuracy is assumed for points evaluated along the confi-
dence region boundary by a numerical solver. Linear connec-
tions assumed between those points, however, are an approx-
imation of the boundary’s true shape. Given a sufficient num-
ber of points, those linear approximations are indistinguishable
from the true region. The objective of the smoothing search
algorithm is to select more points along the confidence region
boundary where its curvature is large, in contrast to areas with
smaller curvature where fewer points are adequate to approx-
imate its true shape. Adequate plot resolution is loosely quan-
tified as a sequence of adjoining line segments such that ver-
tex angles are indistinguishable; the boundary appears to be a
smooth curve. To quantify the smoothness with greater speci-
ficity, a maximum tolerable vertex angle is assigned.

Creating a plot that conforms to a maximum tolerable ver-
tex angle constraint is nontrivial. This is because the apparent
plot angle (the angle as it appears in the plot) differs from its
actual angle (the calculable angle using trigonometry) when
its respective horizontal and vertical axes limits cover ranges
disproportionate to their relative plot space (the plot width and
height). These impacts are illustrated in Figure 6 for its vertex
angle at point v. Its plots show identical vertex angles—they have
identical points—with different θ2 vertical axis limits. Within
a square plot area (plot width and height are equal) nonequal
axes limit ranges will distort angles, as evident in Figure 6

(right). Under such warping dynamics, an acceptable angle
threshold loses meaning. An in-tolerance angle may appear out-
of-tolerance, and vice versa.

This complication is overcome using a consistent methodol-
ogy to frame the confidence region, in conjunction with a trans-
formation. We define the plot area using a minimum bounding
rectangle, as seen in Figure 6 (right), where the axes limits
adjust to accommodate no more than their minimum and max-
imum support values. Strictly imposing this standard gives our
methodology a consistent framework to operate within. The
n points defining the confidence region boundary, given by
the coordinate pairs (θ1,i, θ2,i) for i = 1, 2, . . . , n, are then
transformed to (θ1,i, θ ′

2,i) according to
θ ′

2,i = s · θ2,i for i = 1, 2, . . . , n,

where s = max{θ1,1, θ1,2, . . . , θ1,n} − min{θ1,1, θ1,2, . . . , θ1,n}
max{θ2,1, θ2,2, . . . , θ2,n} − min{θ2,1, θ2,2, . . . , θ2,n} .

Within a square plot area, this transformation yields identical
apparent and actual angles; the distortion effects of Figure 6
(right) are accounted for. The algebraic manipulation below, in
which θ j represents θj,1, θj,2, . . . , θj,n for each j = 1, 2, confirms
this by demonstrating the equivalence of the transformed verti-
cal axis limits range with the horizontal axis limits range.

max{θ ′
2} − min{θ ′

2} = s · max{θ2} − s · min{θ2}
= s · (max{θ2} − min{θ2})
= max{θ1} − min{θ1}

max{θ2} − min{θ2}
· (max{θ2} − min{θ2})

= max{θ1} − min{θ1}.
Figure 7 shows this transformation, correctly identifying the
apparent angle in Figure 6 (right) as 72◦.

This transformation enables the design of Algorithm 2,
provided in Appendix B. In it, a maximum tolerable vertex
angle ψtol—the apparent angle as seen in a minimum bounding
boxplot—is assigned. Smaller values of ψtol result in smoother
boundaries. By first transforming the plot, apparent angles are
calculable, and those not within tolerance are augmented with
additional confidence region boundary points accordingly.

Figure 8 shows the result of applying Algorithm 2 to the
ball bearing failure times fit to the Weibull distribution. Bound-
ary regions with greatest curvature—its top-left and extreme-
right—accordingly have the greatest density of points. Figure 8

θ1

θ2

19 20 21

0

0.9
1.0
1.1

2

ψp
ψp

π − ψp

= 163◦

v

θ1

θ2

19 20 21

0.9

1.0

1.1 ψp
ψp

π − ψp

= 163◦

v

Figure 6. Identical plots using different vertical axes limit ranges. Identical horizontal and vertical axes limit ranges (left) in a square plot area result in an actual angle
equivalent to its apparent angle, whereas differing axes limit ranges (right) distort its resulting apparent angle.
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θ1

θ2

19 20 21

9

10

11 ψp
ψp

π − ψp

= 72◦

p

Figure 7. Figure 6 (right) under the transformation θ ′
2 = s · θ2 = 10 θ2 yields

equivalent axes ranges, therefore apparent and actual vertex angles match given a
square plot area is in use.

κ

λ

1.37 2.10 2.98

0.0094

0.0122

0.0162

Figure 8. Confidence region for κ and λ for the ball bearing failure times fitted to
the Weibull distribution using the smoothing search heuristic described in Algo-
rithm 2 with α = 0.05 and ψtol = 5◦ maximum vertex angle tolerance (m = 102
points result).

uses points along the confidence region boundary more effi-
ciently than Figure 2. It achieves greater resolution of high cur-
vature areas (located on its far-right and upper-left regions), and
sacrifices little (seemingly identical results) by locating fewer
points in relatively straight sections of the boundary. Although
Algorithm 2 is elegant and uses confidence region boundary
points efficiently, its iterative nature comes at a computational
cost, taking 0.130 sec to run, or 1.9 times the elliptical method
runtime. This trade-off is reasonable considering its improve-
ment in the high-curvature area resolution, and the guaranteed
nature of its results (ψtol constraint is active, whereas the ellip-
tical method provides no guarantee that an unwanted “sharp”
angle will not appear).

7. Repairs for Radially Inaccessible Regions

A second implementation challenge exists in addition to
Section 4 issues of scale. Nonconvex log-likelihood function
confidence region contours can result in confidence region
shapes with area(s) inaccessible via the radial profile technique.
These inaccessible regions are the result of multiple confidence
region boundary points at select radial angles from the MLE,
and become increasingly problematic for smaller sample sizes
and/or smaller significance levels. The elliptical approach
cannot plot these areas, and the smoothing-search algorithm
terminates without satisfying its maximum degree tolerance.

This section improves the heuristic described in Section 6 by
accessing these otherwise unreachable areas. The complete
details for this approach given in general terms are available
in Appendix C, Algorithm 3, and examples of its execution are
given in Sections 8 and 9.

Figure 9 illustrates two inaccessible region scenarios, both
with shapes having multiple roots for a subset of φ. The counter-
clockwise or clockwise direction-of-approach to its inaccessible
region is what differentiates the scenarios. Its • plot points
share a near-identical radial angle from its MLE (+), shown as
a dashed line. The line segment between the • points marks
the edge of its accessible and inaccessible (shaded) confidence
regions. For reference, its location relative to the MLE is given
quadrant labels I, II, III, and IV. Quadrant III techniques are
transferable with trivial geometric and trigonometric manipu-
lation to all other quadrants.

To access the uncharted confidence region area, an alternate
“centerpoint” (not the MLE) is created within the existing con-
fidence region perimeter, hereafter known as a jump-center. It is
given by � in Figure 9. Appropriately locating the jump-center
requires identifying the respective orientation of the inaccessible
region: a Figure 9 (left) or Figure 9 (right) scenario. This is done
by comparing the y-coordinate values for points adjacent to the
inaccessible region border, shown as ◦ in Figure 9. For quadrant
III (also shown in Figure 9), if the smaller (more highly negative)
◦ y-coordinate value corresponds to the smaller φ angle, then
it aligns with the Figure 9 (left) scenario, and Figure 9 (right)
otherwise.

The jump-center is assigned as a slightly uphill point (rela-
tive to the three-dimensional log-likelihood surface) from the
confidence region boundary for a given angle from the MLE.
The angle chosen bisects the horizontal (Figure 9 left) or vertical
(Figure 9 right) gap, where the gap represents the line segment
within the confidence region “nearest” the inaccessible region
and parallel to an axis. Although any angle crossing this gap is
feasible, bisecting is a reasonable approach because it projects
the jump-center into the vicinity of the uncharted region, how-
ever, not so near it that it might inadvertently locate at its nearer
edge. From the jump-center, the radial profile method can iden-
tify points in the previously inaccessible region to combine with
the original solution.

8. Jump-Center Repairs Example

Evans, Drew, and Leemis (2008) illustrated the case of small
datasets with two applications: operating time between catas-
trophic space shuttle failures and between nuclear reactor melt-
downs. This example will focus on nuclear reactor meltdowns,
which currently number three: Three Mile Island in the USA
in 1979, Chernobyl in the Ukraine in 1986, and Fukushima in
Japan in 2011. Figure 10 shows the quantity of reactors world-
wide in operation since the Russian Obninsk AM-1 reactor first
came online in 1954, with data from the Nuclear Energy Insti-
tute (2018) and World Nuclear Association (2018). This analysis
makes the simplifying assumption of reactor commissioning or
decommissioning on the first day of the calendar year.

Total worldwide reactor operating time preceding each melt-
down is found by integrating under Figure 10 curve, and occur
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Figure 9. Hypothetical confidence region shapes with radially inaccessible (shaded) areas with respect to the MLE (+). Reference points • and ◦ help establish the jump-
center location � within the confidence region. Comparing ◦ vertical values differentiates between scenarios (left and right).
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Figure 10. Worldwide active nuclear reactors from 1954–2018.

at 1728, 3714, and 14,460 reactor-years, respectively. Let the
random variable of interest be the time between core meltdowns.
The n = 3 samples are thus 1728, 1986, and 10,746 reactor-
years.

Next, the likelihood-ratio based confidence region is sought
using the radial approach for a gamma population distribution
with probability density function

f (x) = 1
�(κ)θκ

xκ−1e−x/θ x > 0,

with positive shape parameter κ and positive scale parameter θ .
The associated log-likelihood function is

log L(θ , κ) = −n log �(κ) − nκ log θ + (κ − 1)

n∑
i=1

log xi

−
n∑

i=1

xi
θ

.

The MLEs for θ and κ cannot be expressed in closed form, but
can be calculated using numerical methods.

The plot heuristics from Sections 5 and 6 both have difficulty
generating a confidence region for the n = 3 times between
meltdowns because of radially inaccessible regions. The elliptic
approach (Figure 11 left) fails to adequately locate points in areas
of relatively high curvature (top-left and bottom-right regions).
The smoothing search approach (Figure 11 right) terminates at
the maximum iteration tolerance without satisfying its maxi-
mum vertex degree constraint, ψmax ≤ 5◦, where θ = 50, 900. It
reveals a large gap between • plot points sharing a near-identical
angle from its MLE (+), shown as a dotted line.

Figure 12 (left) illustrates the implementation of the heuristic
for handling radially inaccessible regions from Section 7, includ-
ing the jump-center location (�) and the additional confidence
region points it creates (�). Figure 12 (right) shows the final
form of the 90% confidence region.

Two comments conclude this section. First, Section 7 repairs
also prove valuable with larger datasets when significance levels
are small. For example, the Weibull confidence region for the
n = 23 ball bearing dataset from Section 4 requires repair
when α ≤ 10−11. Second, confidence regions can have multiple
inaccessible regions requiring repair. An example of this nature
is given in Section 9.

9. R Package conf

The crplot function within the R package conf automates
confidence region plots, and is publicly available from the
Comprehensive R Archive Network (Weld, Park, and Leemis
2018). It currently supports nine distributions: the Cauchy,
gamma, inverse Gaussian, logistic, log-logistic, log-normal,
normal, uniform, and Weibull distributions. This section
describes the crplot required and optional arguments, and
then provides examples of its syntax and output.

The required arguments for crplot are: data values
(dataset), significance level (alpha), and distribution
name (dist) using R suffixes: cauchy, gamma, invgauss,
logis, llogis, lnorm, norm, unif, and weibull. The
binary vector cen specifies if corresponding dataset values
are right-censored (0) or observed (1, default). Algorithm 2
smoothing search heuristic is used by default with ψtol = 5◦
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Figure 11. Confidence region for θ and κ for the n = 3 times between meltdowns fitted to the gamma distribution for α = 0.1 using the elliptical heuristic algorithm
from Section 5 with m = 100 points (left) and the smoothing search heuristic from Section 6 naïvely applied (right).
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Figure 12. Confidence region for θ and κ for the number of reactor-years between nuclear meltdowns fitted to the gamma distribution using the jump-center repairs
heuristic in Algorithm 3 to augment the smoothing search heuristic of Algorithm 2, shown with jump-center reference points (left) and in its final form (right) for α = 0.1.

maximum degree tolerance (adjustable with the maxdeg
argument). Repairs to radially inaccessible regions using
Algorithm 3 are also invoked by default, and turned off
using repair = FALSE. Its parameters enable customizing
jump-center location via gap width shift percentage and its
relative uphill location from the confidence region boundary
(see Section 7 for descriptions), and are given default values
jumpshift = 0.5 and jumpuphill = min(alpha,
0.01).

Algorithm 1 elliptic heuristic with m plot points is called
with heuristic = 0 and ellipse_ n = m, where
ellipse_ n is a multiple of 4 and ≥ 8 to exploit computational
efficiency associated with ellipse symmetry in its respective
quadrants. Providing an ellipse_ n value without specifying
heuristic = 0 combines Algorithms 1 and 2, first plotting
points with the elliptically oriented heuristic and subsequently
complementing them accordingly to meet constraints set by the
smoothing search heuristic.

Plot points and the MLE location are hidden using pts
= FALSE and mlelab = FALSE, respectively. Jump-center
reference points, analogous to Figure 12 (left), are plot using
showjump = TRUE. Significant figures for horizontal and
vertical axes are specified using sf = c(x, y), where x and
y represent the respective values of the optional digits argu-

ment in the R function round as it pertains to those respective
axes labels. Customization of margin size, main plot label, axes
labels and orientation, and axes limits are also possible, and all
conform to R base graphics syntax. The horizontal and vertical
axes are switched using xyswap = TRUE. Axes limits are
coerced to include the point (0, 0) with origin = TRUE.

Plot information—p plot points with corresponding φ

angles, and MLE values θ̂1, θ̂2—are returned as components in
an R list with info = TRUE. This permits additional analysis
and/or plot customization. Setting jumpinfo = TRUE will
augment the list with jump-center repair information (when
applicable). Either information request can be combined with
showplot = FALSE to hide plot results. These features
together motivate additional conf coverage simulation capa-
bilities. While those details are omitted here, its coversim
function is capable of iterating confidence region trials using
random (or user specified) datasets to assess actual coverage of
true population parameters (or a user specified point of interest)
at a given stated nominal coverage probability.

Table 1 illustrates the use of crplot syntax given above,
assuming the R vector ballbearing contains the 23 data
values given in Section 4. It includes both references from
throughout this article, and additional examples shown in
Figure 13.
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Table 1. Example R syntax to use the crplot function in the conf package.

crplot syntax reference

crplot(ballbearing, 0.05, "weibull", heuristic = 0, ellipse_ n = 100, sf = c(2, 4), ylas = 1) Figure 5
crplot(ballbearing, 0.05, "weibull", sf = c(2, 4), ylas = 1) Figure 8
crplot(c(1728, 1986, 10746), 0.1, "gamma", heuristic = 0, ellipse_ n = 100, sf = c(0, 2),

ylas = 1) Figure 11 (left)
crplot(c(1728, 1986, 10746), 0.1, "gamma", repair = FALSE, sf = c(0, 2), ylas = 1) Figure 11 (right)
crplot(c(1728, 1986, 10746), 0.1, "gamma", pts = FALSE, sf = c(0, 2), ylas = 1) Figure 12 (right)

x <- crplot(ballbearing, 0.05, "weibull", pts = FALSE, origin = TRUE, info = TRUE,
sf = c(3, 3), xlab = "scale", ylab = "shape", xyswap = TRUE)

polygon(x$lambda, x$kappa, col = "gray50", lty = 2, lwd = 2)
segments(rep(x$lambdahat, length(x$phi)), rep(x$kappahat, length(x$phi)), x$lambdahat +

1000 * x$lambdahat * cos(x$phi), x$kappahat + 1000 * x$lambdahat * sin(x$phi),
col = "gray")

points(x$lambdahat, x$kappahat, pch = 19, cex = 2) Figure 13 (left)
crplot(c(1.9, 2, 2.2), 0.01, "llogis", cen = c(1, 1, 0), pts = FALSE, mlelab = FALSE,

sf = c(5, 5)) Figure 13 (right)
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Figure 13. R output from Table 1 examples of confidence region plot customization using optional arguments. The left plot emphasizes the useinfo = TRUE to return
plot info as a list enabling subsequent customization. The right plot demonstrates multiple Algorithm 3 repairs for a dataset with two observed and one right-censored
value, and also hides the MLE location.

10. Future Work

Automating univariate confidence region plots enables coverage
analysis to an extent unattainable in previous years. This insight
is attributable to Jaeger’s conclusion that the radial profile tech-
nique can be orders of magnitude faster than traditional grid
search techniques (Jaeger 2016). Coverage analysis is relevant
because it provides a signature of the underlying distribution
characteristics, and can reveal new insights by way of its alter-
native perspective. For example, coverage analysis has led us to
analytically derived actual coverage probabilities corresponding
to stated nominal coverage for Weibull distributed samples of
size n = 2. The mathematics are simple enough to compute the
actual confidence region to infinite precision, where currently
only estimates of its bias exists. Figure 14 illustrates those results,
which were confirmed using 10,000 Monte Carlo simulation
iterations for α = 0.05, 0.1, . . . , 0.95. A confidence region with
90% nominal coverage for the Weibull parameters associated
with n = 2, for example, has an actual coverage of only 69.05%.
These smaller confidence regions result in a claim of more
precision than is appropriate. Figure 14, which applies for all
values of λ and κ , can be used to obtain an exact confidence
region. If an actual coverage of 90% is desired, for example,

then constructing a confidence region associated with a 98.93%
nominal confidence results in an exact 90% confidence region.

Additional potential resides in broadening the scope of
implementation to allow for nuisance parameters, enabling
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Figure 14. Precise actual confidence region coverage probabilities analytically
derived given nominal coverage (1 − α) for n = 2 observations drawn from a
Weibull(λ, κ) population for α = 0.01, 0.02, . . . , 0.99.
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three-parameter (three-dimensional) confidence region plots,
and applying Algorithms 1–3 to circumstances other than uni-
variate likelihood-ratio-based confidence regions. Performance
using a Wald-based, or score-test-based confidence region
can be pursued and compared. Alternatively, an analogous
approach for bivariate data or regression parameters are
worthwhile avenues to pursue. Doing so would allow access to
computationally efficient confidence region plots, and empower
similar simulations and coverage analysis.

11. Conclusion

The radial profile technique for plotting two-dimensional
likelihood-ratio-based confidence regions is a tremendous tool,
but should not be applied naïvely in all cases. It is important to
also consider the parameter space feasible region, issues of scale,
and inaccessible regions. Constraints on the parameter space
are necessary to ensure numeric boundary point solutions are
possible. Issues of scale arise when parameters differ greatly
in magnitude. An inconsistent point distribution along the
boundary of its confidence region results, an issue attributable to
its uniformly distributed φ values. Two heuristics for choosing
improved φ values devised here offer effective alternatives.
The first identifies φ angles coinciding with roughly equal
point spacing along the circumference of an ellipse, which
in turn leads to approximately equidistant points along the
boundary of the confidence region. Its appeal includes ease
of implementation and quick runtime. The second alternative
is a smoothing search heuristic that allocates points along the
confidence region boundary in an iterative fashion in the areas
warranting the most attention. Its appeal includes efficient point
distribution and guaranteed smoothing results—within an
assigned vertex angle tolerance—at a reasonable computational
cost. A final challenge arises when a single radial angle from
the MLE crosses multiple confidence region boundary points—
often if sample size and/or significance level are small—resulting
in a radially inaccessible region. A jump-center heuristic allows
access to these regions by relocating the point-of-reference for
the radial approach away from the MLE. All heuristics within
this article are automated with the R package conf, making
likelihood-ratio based confidence regions for two-parameter
univariate probability models and their subsequent coverage
analysis readily accessible.

Supplemental Material

The R package conf contains code for all confidence region plots and is
accessible through the Comprehensive R Archieve Network (CRAN). Data
from the Nuclear Energy Institute (2018) and World Nuclear Association
(2018) used to assemble Figure 10 are also included as supplemental mate-
rial.
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Appendix A. Elliptically Oriented Algorithm

The short description below summarizes Algorithm 1.
Lines 1–2 validate a usable m value is given; this constraint is

necessary to take advantage of ellipse symmetry: calculations in one
quadrant (with respect to the MLE) are transferable to the remaining
three given m is divisible by four. Line 3 then stores the number of
points in one quadrant. Line 4 initializes φ as an empty set, and the
MLEs are identified in Line 5. Line 6 stores values for the asymptotic
standard error of the MLEs, which will dictate the ellipse eccentricity.
Lines 7–13 then generate points along the circumference of an ellipse
using the parallelogram method (reference Figure 4), also assembling
the corresponding set of φ angles to each point in Line 13 as it proceeds.
With one quadrant of φ angles determined, Line 14 exploits ellipse sym-
metry to populate the remaining three quadrants. Line 15 completes
the set of φ angles with cardinal directions at 0 and π . Points along
the confidence region boundary corresponding to each φ entry are
finally identified in Line 17 using the radial profile log-likelihood ratio
technique from Section 2, and returned as output to produce its plot.

https://CRAN.R-project.org/package=conf
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Algorithm 1: Elliptically Oriented Algorithm for Identifying Confidence Region Boundary Points
input : x1, x2, . . . , xn : data values

α : confidence region (CR) significance level
m : number of points to plot (a multiple of four is required for this method)
θ1 and θ2 : unknown parameters from a parametric distribution
L(θ1, θ2) : likelihood function within the (θ1, θ2) parameter space
ase(θ̂1, θ̂2) : asymptotic standard errors of θ̂1, θ̂2
h((A, B), (C, D)) : function returning the point of intersection of line segments AB and CD
g(φi, α) : function returning the CR boundary point associated with the angle φi ∈ 〈φ1, φ2, . . . , φm〉 measured counterclockwise and centered at the
MLE, 0 ≤ φ < 2π

output: pi = (xi, yi) for i = 1, 2, . . . , m coordinate pairs distributed using the elliptically-oriented algorithm and enclosing a 100(1 − α)% CR for θ1 and θ2
1 if m % 4 
= 0 then
2 return{Error: m must be a multiple of four} ; /* exit algorithm displaying error message */

3 mQ ← m/4 ; /* number of points to plot in one quadrant */
4 φ ← {} ; /* initialize φ as an empty set */

5 (θ̂1, θ̂2) ← argmax{log L(θ1, θ2)} ; /* maximum log likelihood arguments are the MLEs */

6 (s
θ̂1

, s
θ̂2

) ← ase(θ̂1, θ̂2) ; /* identify MLE asymptotic standard errors */

7 V1 ← (s
θ̂1

, 0) ; /* point at the right end of the ellipse horizontal axis */

8 V2 ← (−s
θ̂1

, 0) ; /* point at the left end of the ellipse horizontal axis */

9 for i from 1 to mQ do
10 z1 ← s

θ̂1
− 2s

θ̂1
i/mQ ; /* x-coordinate of points to connect to V1 */

11 z2 ← s
θ̂2

i/mQ ; /* y-coordinate of points to connect to V2 */

12 (ex , ey) ← h
((

V1, (z1, s
θ̂2

)
)
,
(
V2, (s

θ̂1
, z2)

))
; /* (x, y) coordinate of point on ellipse */

13 φ ← {φ, arctan(ey/ex)} ; /* augment φ according to ellipse point (ex , ey) */

14 φ ← {φ, π − φ, π + φ, 2π − φ} ; /* use ellipse symmetry to identify additional φ angles */
15 φ ← {φ, 0, π} ; /* augment φ with 0 and π angles */
16 for i from 1 to m do
17 (xi, yi) ← g(φi, α) ; /* identify CR points for each φi */

Appendix B. Smoothing Boundary Search Heuristic

The short description below summarizes Algorithm 2.
Line 1 initializes φ values in each cardinal direction. Line 2 initial-

izes a count variable and a variable to hold the maximum angle in the
working plot, ψmax. The MLEs are identified in Line 3. A series of steps
within the main while loop (Lines 4–35) then determine its confi-
dence region boundary plot points, and if and where additional points
are necessary. To do so, the radial log-likelihood function (described
in Section 2) first determines confidence region points corresponding
to each φ value (Lines 7–9). Lines 10–15, then perform a transforma-
tion of the θ2 values so that apparent ψ vertex angles are calculable,
determined in Lines 17–21 using the law of cosines. Note that Line 16

preceding this calculation simplifies its execution by dictating the last
point precedes the first, and the first point follows the last in its enclosed
confidence region boundary. An analogous circumstance applies to
Lines 23 and 24. Lines 26–34 conclude the while loop by adding
points to the confidence region boundary in the vicinity of points where
the ψtol constraint is not yet met. New points are identified using the
angle through the midpoint of the existing adjacent points. This loop
repeats, augmenting points and reevaluating vertex angles until ψtol is
met at all confidence region vertexes, which concludes with a smooth
confidence region for an appropriate choice of ψtol. If the maximum
iteration tolerance (countmax) is met prior to satisfying ψtol then the
program terminates with a warning and returns the working solution
(indicative of inaccessible regions shown in Section 7).



THE AMERICAN STATISTICIAN 167

Algorithm 2: Smoothing Search Heuristic for Identifying Confidence Region Boundary Points
input : x1, x2, . . . , xn : data values

α : confidence region (CR) significance level
ψtol : maximum angle tolerance between consecutive plot segments
countmax : maximum iteration tolerance in algorithm before forced termination
θ1 and θ2 : unknown parameters from a parametric distribution
L(θ1, θ2) : likelihood function within the (θ1, θ2) parameter space
g(φi, α) : function returning CR boundary point associated with angle φi ∈ 〈φ1, φ2, . . . , φm〉 measured counterclockwise and centered at the MLE,
0 ≤ φ < 2π corresponding to α, ψtol
d((xi, yi), (xj, yj)) : function returning the length of the segment joining its respective points

output: pi = (xi, yi) for i = 1, 2, . . . , m coordinate pairs enclosing a 100(1 − α)% CR for θ1 and θ2 satisfying maximum angle tolerance ψtol
1 φ ∈ 〈0, π/2, π , 3π/2〉 ; /* initialize φ in the four cardinal directions */
2 ψmax ← π ; count ← 0 ; /* initialize */

3 (θ̂1, θ̂2) ← argmax{log L(θ1, θ2)} ; /* maximum log likelihood arguments are the MLEs */
4 while (ψmax > ψtol) ∩ (count < countmax) do
5 count ← count + 1 ; /* increment counter */
6 m ← length(φ) ; /* number of angles in φ vector */
7 for i from 1 to m do
8 (xi, yi) ← g(φi, α) ; /* CR point corresponding to φi */

9 p ← 〈(x1, y1), (x2, y2), . . . , (xm, ym)〉 ; /* all current CR points */
10 xrange ← max{x1, x2, . . . , xm} − min{x1, x2, . . . , xm} ; /* horizontal axis range */
11 yrange ← max{y1, y2, . . . , ym} − min{y1, y2, . . . , ym} ; /* vertical axis range */
12 s ← (xrange)/(yrange) ; /* (x range):(y range) ratio of CR plot */
13 for i from 1 to m do
14 (xi, y′

i) ← (xi, s · yi) ; /* transformation enabling apparent angle calculations */

15 p′ ← 〈(x1, y′
1), (x2, y′

2), . . . , (xm, y′
m)〉 ; /* transformed CR points */

16 p′ ← 〈(xm, y′
m), p′, (x1, y′

1)〉 ; /* repeat end-points to ease analysis */
17 for i from 2 to (m + 1) do
18 l1 ← d(p′

i−1, p′
i) ; /* preceeding segment distance */

19 l2 ← d(p′
i, p′

i+1) ; /* next segment distance */

20 l3 ← d(p′
i−1, p′

i+1) ; /* preceeding-to-next-point segment distance */

21 ψi−1 ← π − arccos(l21 + l22 − l23)/(2 · l1 · l2) ; /* apparent angle (law of cosines) */

22 ψmax ← max{ψ1, ψ2, . . . , ψm} ; /* current apparent maximum angle */
23 ψ ← 〈ψm, ψ1, ψ2, . . . , ψm, ψ1〉 ; /* repeat end-values to ease analysis */
24 p ← 〈(xm, ym), p, (x1, y1)〉 ; /* repeat end-points to ease analysis */
25 φnew ← { } ; /* initialize */
26 for i from 2 to (m + 1) do
27 if ψi > ψtol then
28 if ψi−1 > ψtol then
29 φnew ← {φnew, φ from MLE to mid-point of pi and pi−1} ; /* add φ before */

30 if ψi+1 > ψtol then
31 φnew ← {φnew, φ from MLE to mid-point of pi and pi+1} ; /* add φ after */

32 if
(
ψi−1 < ψtol

) ∩ (
ψi+1 < ψtol

)
then

33 φnew ← {φnew, φ from MLE to mid-point of pi and pi−1, /* add φ before */
34 φ from MLE to mid-point of pi and pi+1} ; /* add φ after */

35 φ ← sort〈{φ, φnew}〉 ; /* augment φ with φnew and sort its result in ascending order */

Appendix C. Jump-Center Repair Heuristic

The short description below summarizes Algorithm 3, which extends
the smoothing search heuristic to repair otherwise radially inaccessible
regions of its confidence region boundary. Its pseudo-code follows
execution of Algorithm 2, so Algorithm 2 inputs and outputs are
accessible to it.

Line 1 runs the smoothing search heuristic, so its inputs and outputs
become available to Algorithm 3. The condition in Line 2 is true if
Algorithm 2 terminates before satisfying its maximum degree tolerance
ψtol, indicating inaccessible regions of the CR boundary. Line 3 iden-
tifies quadrants, with respect to the MLE, where inaccessible regions
exist, and the loop from Lines 4–34 sequentially addresses repairs to
those regions. Line 4 loops through the four quadrants relative to the
MLE. Quadrants requiring repairs enter the if statement on Line 5.

Lines 6–13 identify three noteworthy reference values related to the
CR points bordering its inaccessible region: the index value of its point
nearer the MLE, and the vertical axis values of both points. Lines 14–
25 use these values to identify an appropriate angle from the MLE to
locate the jump-center. This angle depends on: the quadrant (relative
to the MLE) of the inaccessible region, and the orientation of the
inaccessible region (if it is above or below the line segment marking
its border, reference Figure 9). The latter of these variables is known
by comparing the vertical axis CR value on adjacent points of both
sides of its inaccessible region. With these three variables, we identify
whether the line segment from the MLE to the jump-center must pass
through a horizontal segment to the left or right of the nearer CR
inaccessible region border point, or a vertical segment above or below
that point. That segment length (the feasible length within the CR that
the jump-center angle passes through) is given by the variable gap
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Algorithm 3: Jump-Center Repairs to Algorithm 2 for Inaccessible Confidence Region Boundary Points
input : Algorithm 2 inputs: α, ψtol, countmax, θ̂1, θ̂2, g(φi, α), d((xi, yi), (xj, yj))

Algorithm 2 output: φnew, pi = (xi, yi) for i = 1, 2, . . . , m coordinate pairs
αjump : jump-center significance level, “uphill” of α (α < αjump)
b : bi-section percentage; determines the angle from the MLE where the jump-center will locate

output: pi = (xi, yi) for i = 1, 2, . . . , m coordinate pairs enclosing a 100(1 − α)% confidence region (CR) for θ1 and θ2 satisfying maximum angle tolerance
ψtol, including jump-center repairs

1 run Algorithm 2 ; /* smoothing search heuristic */
2 if count = countmax then /* smoothing search terminated without satisfying ψtol */
3 〈φI, φII, φIII, φIV〉 ← φnew ; /* decompose new angles by quadrant (relative to MLE) */
4 for q in {I, II, III, IV} do /* loop through four quadrants (relative to MLE) */
5 if φq 
= { } then /* inaccessible region in quadrant q (relative to MLE) */
6 for k in 1 to length(φq) do
7 if d

(
(θ̂1, θ̂2), g(φq[k], α)

) = min{d
(
(θ̂1, θ̂2), g(φq, α)

)} then
8 φnear ← φq[k] ; /* angle to point bordering repair region nearest MLE */

9 for k in 1 to length(p) do
10 if φnear = φk then
11 inear ← k ; /* index of point bordering repair region nearest MLE */

12 yinear−1 ← pinear−1[2] ; /* y value of point before repair region */
13 yinear+1 ← pinear+1[2] ; /* y value of point after repair region */
14 if ((q =I ) ∩ (yinear−1 < yinear+1)) ∪ ((q =II ) ∩ (yinear−1 > yinear+1)) then
15 gap ← y-range in CR above yinear ; /* jump-center feasible vertical shift */
16 φjump ← angle from MLE to (xinear , yinear + b·gap) ; /* jump-center angle */

17 if ((q =III ) ∩ (yinear−1 > yinear+1)) ∪ ((q =IV ) ∩ (yinear−1 < yinear+1)) then
18 gap ← y-range in CR below yinear ; /* jump-center feasible vertical shift */
19 φjump ← angle from MLE to (xinear , yinear − b·gap) ; /* jump-center angle */

20 if (q ∈ {I, IV}) ∩ (yinear−1 > yinear+1) then
21 gap ← x-range in CR right of xinear ; /* jump-center feasible horizontal shift */
22 φjump ← angle from MLE to (xinear + b·gap, yinear ) ; /* jump-center angle */

23 if (q ∈ {II, III}) ∩ (yinear−1 < yinear+1) then
24 gap ← x-range in CR left of xinear ; /* jump-center feasible horizontal shift */
25 φjump ← angle from MLE to (xinear − b·gap, yinear ) ; /* jump-center angle */

26 pjump ← g(φjump, αjump) ; /* jump-center location */
27 j ← run Algorithm 2 with pjump replacing the MLE ; /* smoothing search repeated */
28 jrepair ⊂ j ; /* identify points repairing the previously inaccessible region */

29 if
(
(q ∈ {I, II}) ∩ (yinear−1 < yinear+1)

) ∪ (
(q ∈ {III, IV}) ∩ (yinear−1 > yinear+1)

)
then

30 padd ← pinear ; /* identify location to insert new points after */
31 else
32 padd ← pinear−1 ; /* identify location to insert new points after */

33 p ← 〈p1, . . . , padd, jrepair, padd+1, . . . , m〉 ; /* insert jump-center CR repair points */
34 m ← length(p) ; /* update the total number of CR points */

in Lines 15, 18, 21, and 24. The specific jump-center angle is then
given in Lines 16, 19, 22, and 25 using the input variable b to discern
where along the feasible gap segment the jump-center angle will pass.
Line 26 identifies the jump-center coordinates. They are then used in
Line 27 to recursively call Algorithm 2 with one exception to its original
parameterization: pjump replaces the MLE as the point of reference
where radial azimuths are taken. The subset of points within its results

that fill in the previously inaccessible region are isolated in Line 28.
Lines 29–32 identify the location within the original p CR boundary
points to insert the jump-center repair points following, which depends
on the inaccessible region orientation (reference Figure 9). Line 33
then integrates those results into the previous CR solution in the
proper sequence. Finally, Line 34 updates the length of the CR points
solution.
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