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We propose two measures of performance for a confidence interval for a bino-
mial proportion p: the root mean squared error and the mean absolute deviation.
We also devise a confidence interval for p based on the actual coverage function
that combines several existing approximate confidence intervals. This “Ensem-
ble” confidence interval has improved statistical properties over the constituent
confidence intervals. Software in an R package, which can be used in devising
and assessing these confidence intervals, is available on CRAN.
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1 INTRODUCTION

Calculating point and interval estimators for the binomial proportion occurs in many applications, including Monte Carlo
simulation, survey sampling, and survival analysis. Assume that n independent binary responses have been collected, with
x successes, where success is broadly defined, and the sample size n is a fixed, positive integer constant. The maximum
likelihood estimator for the binomial proportion p is the fraction of successes in the sample, p̂ = x∕n, which is an intuitive,
unbiased, and consistent estimator of p.

The existing approximate confidence interval procedures for p typically have two significant shortcomings: they do not
perform well in terms of coverage (a) for small sample sizes and (b) near the extremes, that is, near p = 0 and p = 1.

Two measures of performance are developed here that can be used to assess the effectiveness of these confidence inter-
vals. We also suggest combining the following five approximate confidence intervals based on their actual coverage in
order to achieve an Ensemble approximate confidence interval for p whose coverage is closer to the stated coverage than
the constituent confidence intervals: Clopper-Pearson, Wilson-score, Jeffreys, Agresti-Coull, and arcsine transformation.
Meeker et al1 devote a chapter to overviewing methods for constructing confidence intervals for binomial proportions. The
five confidence intervals are presented in the next section. Section 3 contains plots of the actual coverage for these confi-
dence interval procedures and defines the two measures of performance. Section 4 presents some graphics associated with
the Clopper-Pearson confidence interval and compares this conservative confidence interval with the Blaker confidence
interval. Section 5 contains an algorithm for calculating an Ensemble confidence interval from several constituent confi-
dence intervals and evaluates its statistical properties. Section 6 illustrates the use of the Ensemble confidence interval in
an application, and Section 7 contains conclusions.

2 CONFIDENCE INTERVALS

Five confidence intervals have been selected in this section for use in the calculation of an Ensemble confidence interval
whose statistical properties are better than the constituent confidence intervals. In all cases, we consider a two-sided con-
fidence interval for p with stated coverage 1 − 𝛼. One-sided confidence intervals can be constructed from the two-sided
confidence intervals in the usual fashion. For most of the existing two-sided confidence interval procedures for p, the
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probability that the confidence interval misses the true parameter high does not equal the probability that the confi-
dence interval misses low. Hence, a separate construction of the Ensemble confidence intervals described here must be
developed for one-sided confidence intervals (see the work of Pradhan et al2 for details). The criteria for selecting the
constituent confidence interval procedures considered here are as follows:

• For a fixed sample size n, the confidence interval should be complementary for any particular x and n − x successes.
• The confidence interval should be asymptotically exact (which is defined subsequently) for 0 < p < 1.
• The confidence interval should not degenerate to a confidence interval of width zero for x = 0 or x = n.

The third criterion eliminates the well-known Wald confidence interval for consideration. The Wald confidence interval
is based on the normal approximation to the binomial distribution

p̂ ± z𝛼∕2

√
p̂(1 − p̂)

n
,

where z𝛼/2 is the 1 − 𝛼∕2 percentile of the standard normal distribution. When x = 0 (x = n), the point estimate for p is
p̂ = 0 (p̂ = 1), so the Wald confidence interval degenerates to a zero-width confidence interval at the extremes. When a
confidence interval bound falls outside of (0, 1), the bound is typically set to 0 or 1. The next five paragraphs briefly describe
the five confidence intervals for p that will be combined subsequently to establish an Ensemble confidence interval.

The 100(1 − 𝛼)% Clopper-Pearson confidence interval for the binomial proportion p given by Clopper and Pearson3 can
be expressed as the quantiles of beta distributions

Bx,n−x+1,1−𝛼∕2 < p < Bx+1,n−x, 𝛼∕2,

for x = 0, 1, 2, … , n, where the first two values in the subscripts are the parameters of the beta distribution and the
third value in the subscript is a right-hand tail probability. The Clopper-Pearson confidence interval bounds can also be
written as functions of percentiles of the F distribution as shown by Leemis and Trivedi.4

The bounds on the Wilson-score 100(1 − 𝛼)% confidence interval for p are5

1
1 + z2

𝛼∕2∕n

⎡⎢⎢⎣p̂ +
z2
𝛼∕2

2n
± z𝛼∕2

√
p̂(1 − p̂)

n
+

z2
𝛼∕2

4n2

⎤⎥⎥⎦ ,
where z𝛼/2 is the 1 − 𝛼∕2 percentile of the standard normal distribution. The center of the Wilson-score confidence
interval is

p̂ + z2
𝛼∕2∕(2n)

1 + z2
𝛼∕2∕n

,

which is a weighted average of the point estimator p̂ = x∕n and 1∕2, with more weight on p̂ as n increases.
The Jeffreys 100(1 − 𝛼)% confidence interval for p is a Bayesian credible interval that uses a Jeffreys noninformative prior

distribution for p. As was the case with the Clopper-Pearson confidence interval, the bounds of the Jeffreys confidence
interval for p are percentiles of a beta random variable6

Bx+1∕2,n−x+1∕2,1−𝛼∕2 < p < Bx+1∕2,n−x+1∕2, 𝛼∕2,

for x = 1, 2, … , n − 1. When x = 0, the lower bound is set to zero and the upper bound calculated using the formula
above; when x = n, the upper bound is set to one and the lower bound calculated using the formula above.

The bounds of the Agresti-Coull 100(1 − 𝛼)% confidence interval, which was originally developed to approximate the
Wilson-score confidence interval, are7

p̃ ± z𝛼∕2

√
p̃(1 − p̃)

ñ
,

where ñ = n + z2
𝛼∕2 and p̃ = (x + z2

𝛼∕2∕2)∕ñ. In the special case of 𝛼 = 0.05, if one is willing to round z𝛼/2 = 1.96 to 2, this
interval can be interpreted as “add two successes and add two failures and use the Wald confidence interval formula.”

The arcsine transformation uses a variance-stabilizing transformation when constructing a confidence interval for p.
Using a modification suggested by Anscombe,8 the bounds on a 100(1 − 𝛼)% confidence interval for p are9

sin2

(
arcsin

(√
p̃
)
±

z𝛼∕2

2
√

n

)
,
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TABLE 1 Approximate 95% confidence
intervals for p for n = 10 and x = 3

Interval Name Confidence Interval

Wald 0.0160 < p < 0.584
Clopper-Pearson 0.0667 < p < 0.652
Wilson-score 0.108 < p < 0.603
Jeffreys 0.0927 < p < 0.606
Agresti-Coull 0.103 < p < 0.608
Arcsine 0.0790 < p < 0.618

where p̃ = (x + 3∕8)(n + 3∕4). In the rare cases in which a confidence interval does not include the point estimator, one
of the bounds is adjusted to include the point estimator.

These are not the only confidence intervals for p. Some of these confidence intervals have variations that include a
continuity correction. In addition, there are other intervals, such as the logit interval, which could have been included in
our Ensemble confidence interval procedure. We consider only the five intervals described above when constructing the
Ensemble confidence interval procedure developed subsequently.

Example 1. When n = 10, x = 3 and 𝛼 = 0.05, the point estimate for p is p̂ = 0.3. The Wald, Clopper-Pearson,
Wilson-score, Jeffreys, Agresti-Coull, and arcsine transformation 95% confidence intervals can be calculated with the
following R commands after installing and loading the conf package.

binomTest(n = 10, x = 3, intervalType = "Wald")
binomTest(n = 10, x = 3, intervalType = "Clopper-Pearson")
binomTest(n = 10, x = 3, intervalType = "Wilson-Score")
binomTest(n = 10, x = 3, intervalType = "Jeffreys")
binomTest(n = 10, x = 3, intervalType = "Agresti-Coull")
binomTest(n = 10, x = 3, intervalType = "Arcsine")

The 95% confidence intervals for p are given in Table 1. The confidence interval bounds vary significantly between
confidence interval procedures. The Clopper-Pearson confidence interval is the widest of the six; the Wilson-score confi-
dence interval is the narrowest of the six. Only the Wald interval is symmetric about the maximum likelihood estimator
p̂ = 0.3.

3 COMPUTING ACTUAL COVERAGE

The actual coverage c( p) of a confidence interval for the binomial proportion is10

c(p) =
n∑

x=0
I(x, p)

(n
x

)
px(1 − p)n−x 0 < p < 1,

where I(x, p) is an indicator function that denotes whether a confidence interval includes the binomial proportion p when
the number of successes X = x. In this paper, we use the following terms to describe the performance, in terms of actual
coverage, of a confidence interval for a binomial proportion p.

• A confidence interval is exact if its actual coverage equals its stated (or nominal) coverage 1 − 𝛼 for all values of n and
p, that is, c( p) = 1 − 𝛼 for n = 1, 2, … , and 0 < p < 1.

• A confidence interval is asymptotically exact if limn→∞ c(p) = 1 − 𝛼 for all 0 < p < 1.
• A confidence interval is approximate if it is not exact.
• A confidence interval is conservative if c( p) ≥ 1 − 𝛼 for all values of n and all 0 < p < 1.

There are no exact confidence interval procedures for the binomial proportion p from a random sample of binary data
values. Section 4 will show why this must be the case.
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The formula for c( p) is applied to the six confidence intervals described in the previous section with n = 10 and
𝛼 = 0.05 with axis ranges 0 < p < 1 and 0.9 < c( p) < 1.0. The actual coverage for the Wald interval, for example, is
plotted with the R statement (using the conf package)
binomTestCoveragePlot(n = 10, intervalType = “Wald”)

which results in the upper-left-hand plot given in Figure 1. In all six plots, a horizontal line is drawn at the stated coverage
of 0.95.

Some general conclusions that can be drawn from the six plots in Figure 1 are given below.

• The actual coverage function, c( p), is symmetric about p = 1∕2 for all six confidence interval procedures.
• The actual coverage degrades on all confidence interval procedures near the extremes at p = 0 and p = 1.
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FIGURE 1 Actual coverage for six approximate 95% confidence intervals for n = 10. MAD, mean absolute deviation; RMSE, root mean
squared error [Colour figure can be viewed at wileyonlinelibrary.com]
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• The actual coverage of the Wald confidence interval differs most from the associated stated coverage among the six
confidence interval procedures. See Brown et al6 for a thorough analysis of this poor performance for other values of n.

• The Clopper-Pearson confidence interval is popular with statisticians because its actual coverage is always greater than
or equal to its stated coverage. In other words, this confidence interval is always wider than it should be. It will never
claim more precision on p than it should. Figure 1 shows that the Clopper-Pearson confidence interval is clearly not
an exact confidence interval, but is rather a conservative confidence interval.

When the six actual coverage functions c( p) in Figure 1 are plotted for larger values of n, it is apparent that the actual
coverage functions approach the stated coverage as the sample size n increases, that is, these confidence intervals are
asymptotically exact.

It is difficult to compare these plots of the actual coverage visually for the various confidence interval procedures. We
define two measures here: the root mean squared error (RMSE) and the mean absolute deviation (MAD). The mean actual
coverage m for a confidence interval procedure is the average value of the actual coverage for a fixed sample size n:

m = ∫
1

0
c(p)dp.

The ideal case, of course, is m = 1 − 𝛼. It is also important to measure how far the actual coverage strays from 1 − 𝛼.
The variance of the actual coverage v is defined as

v = ∫
1

0
c2(p)dp − m2.

The ideal case, assuming that m = 1 − 𝛼, is v = 0. The two measures of performance can be combined into a single
measure by devising a measure that is similar to the root mean squared error (which is the square root of the variance
plus the squared bias):

RMSE =
√

v + (m − (1 − 𝛼))2.

The ideal case for the RMSE measure is zero. Such an RMSE would correspond to an exact confidence interval. A second
measure of the performance of a confidence interval procedure for p based on its actual coverage function is the mean
absolute deviation, which is defined as

MAD = ∫
1

0
|c(p) − (1 − 𝛼)|dp.

The ideal case for the MAD measure is also zero. Such a MAD would correspond to an exact confidence interval. The
RMSE and MAD measures are given in Figure 1 for each of the confidence interval procedures. The Agresti-Coull
confidence interval has the smallest RMSE, and the Wilson-score confidence interval has the smallest MAD for n = 10.

The RMSE and MAD are plotted for the five confidence intervals for sample sizes n = 1, 2, … , 10 in Figures 2 (RMSE)
and 3 (MAD). These measures put the Clopper-Pearson confidence interval at a disadvantage because it is a conservative
interval in the sense that c( p) ≥ 1 − 𝛼 for all values of p, which inflates both RMSE and MAD. A more appropriate
measure of performance for a conservative confidence interval is to minimize the average value of the actual coverage m.
When the constituent confidence interval procedures were evaluated individually for larger values of n, we found that
the Wilson-score interval was superior to the others in terms of both measures of performance.

The six confidence interval procedures are not the only options for a confidence interval for p. Pires and Amado11 com-
pare twenty confidence interval procedures. Blaker12 defines a conservative confidence interval for p that has an improved
c( p) function over the Clopper-Pearson confidence interval. This confidence interval procedure is based on the accept-
ability function given in Spjøtvoll13 which possess a nesting property: if 𝛼 < 𝛼′, then the 1 − 𝛼′ confidence interval is
contained in the associated 1 − 𝛼 confidence interval for fixed values of x and n. Schilling and Doi14 developed confidence
intervals that minimize the discontinuities in the c( p) functions shown in Figure 1. Lang15 has devised mean-minimum
confidence intervals that guarantee that the mean and minimum coverage never drop below prescribed values. Copas16

considered a Bayesian confidence interval for p. Wang and Zhang17 use the asymptotic infimum actual coverage proba-
bility as a criteria for constructing confidence intervals. Blyth and Still18 and Blyth19 also consider the actual coverage in
evaluating confidence intervals for p.

The Clopper-Pearson confidence interval is often chosen because it is a well-known conservative confidence interval.
As indicated earlier, conservative confidence intervals perform poorly in terms of the RMSE and MAD criteria because
c( p) ≥ 1 − 𝛼 for 0 < p < 1. Because of this, we present some graphics associated with the Clopper-Pearson confidence
interval and compare it to the Blaker confidence interval in the next section before developing the Ensemble confidence
interval. Many of the graphics presented in the next section also apply to any of the other confidence intervals.
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FIGURE 2 Root mean squared error (RMSE) for five 95% approximate confidence intervals [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 3 Mean absolute deviation (MAD) for five 95% approximate confidence intervals [Colour figure can be viewed at
wileyonlinelibrary.com]

4 CLOPPER-PEARSON CONFIDENCE INTERVAL GRAPHICS

The defining formula for the actual coverage function c( p) and the fact that the lower bounds and upper bounds on
any confidence interval procedure for the binomial proportion p are nondecreasing functions of x means that the actual
coverage c( p) must lie on one of the acceptance curves defined as

b(p, x0, x1) =
x1∑

x=x0

(n
x

)
px(1 − p)n−x

for a prescribed value of p, for 0 < p < 1 and for integers x0 and x1 satisfying 0 ≤ x0 ≤ x1 ≤ n. (Formulas for m and
v based on this observation which avoid numerical integration are given in the appendix.) These acceptance curves are
graphed in Figure 4 for n = 10. The acceptance curves were also given by Schilling and Doi14 and Blaker,12 where they are
called “shortest acceptance regions.” Wang20 showed that b( p, x0, x1) on 0 < p < 1 is (a) a decreasing function of p when
x0 = 0 and 0 ≤ x1 < n, (b) an increasing function of p when x1 = n and 0 < x0 ≤ n, (c) equal to 1 when x0 = 0 and
xn = n since all binomial probability mass functions sum to 1, and (d) a unimodal function that achieves a maximum at

p =
⎡⎢⎢⎢⎣1 +

⎛⎜⎜⎜⎝
(

n
x1

)
(n − x1)(

n
x0

)
x0

⎞⎟⎟⎟⎠
1∕(x1−x0−1)⎤⎥⎥⎥⎦

−1
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FIGURE 4 Actual coverage acceptance curves for n = 10

when 0 < x0 ≤ x1 < n. Since the actual coverage function for all confidence interval procedures must lie on one of
these curves, there will never be an exact confidence interval for p.

The scale on the vertical axis in Figure 5 is altered to range from 0.94 to 1. The acceptance curves from Figure 4 for
n = 10 are plotted in gray. The actual coverage function c( p) for a 95% Clopper-Pearson confidence interval is given
by black lines. A solid horizontal line at 0.95 marks the stated coverage of a 95% confidence interval. As indicated in
the previous paragraph, the actual coverage function c( p) for the unknown binomial proportion p must lie on one of
these acceptance curves for one particular value of p. The Clopper-Pearson confidence interval is conservative because
c( p) ≥ 1 − 𝛼 for all p. Unlike the Clopper-Pearson approach, the other confidence intervals considered thus far have
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FIGURE 5 Clopper-Pearson actual coverage and acceptance curves for n = 10 and 𝛼 = 0.05 [Colour figure can be viewed at
wileyonlinelibrary.com]
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an actual coverage that falls below 1 − 𝛼 for some values of p, which means that they could potentially give narrow
confidence intervals that claim more precision than they should.

One key observation from Figure 5 is that the values of p associated with the discontinuities in the actual cover-
age function are the confidence interval bounds. In general, there are 2n + 1 segments in the actual coverage for the
Clopper-Pearson confidence interval, so there are (2)(10) + 1 = 21 segments in Figure 5. This means that there are
2n + 2 = (2)(10) + 2 = 22 endpoints of these segments, and these 22 endpoints correspond to the lower and upper
bounds associated with the n + 1 = 11 confidence intervals for x = 0, 1, … , 10 successes in the binomial random exper-
iment. A second key observation from Figure 5 is that the discontinuities in c( p) are a result of either an increase in either
x0 or x1 in b( p, x0, x1). If x0 is increased, the discontinuity is associated with an upper confidence interval bound; if x1 is
increased, the discontinuity is associated with a lower confidence interval bound.

Table 2 illustrates the two observations from the previous paragraph for the 95% Clopper-Pearson confidence interval
for n = 10. The first two rows give (x0, x1) pairs corresponding to the appropriate acceptance curves in Figure 5. The
third row indicates whether the value of p associated with the leftmost endpoint of a segment in Figure 5 corresponds to
a lower bound pL or an upper bound pU. The fourth row gives the value of p associated with the leftmost endpoint of the
segment in Figure 5. For example, the first segment of the actual coverage of the 95% Clopper-Pearson confidence interval
corresponds to x0 = 0 and x1 = 0, which corresponds to the acceptance curve

b(p, 0, 0) =
0∑

x=0

(10
x

)
px(1 − p)10−x = (1 − p)10

for 0 < p < 1. The leftmost endpoint of the first segment is 0, which corresponds to a lower confidence interval limit.
Likewise, the second segment of the actual coverage of the 95% Clopper-Pearson confidence interval corresponds to x0 = 0
and x1 = 1, which corresponds to the acceptance curve

b(p, 0, 1) =
1∑

x=0

(10
x

)
px(1 − p)10−x = (1 − p)10 + 10p(1 − p)9

for 0 < p < 1. The leftmost endpoint of the second segment is 0.0025, which also corresponds to a lower confidence
interval limit. Table 2 only considers confidence interval bounds between 0 and 0.5 because the rest of the confidence
interval bounds are symmetric about p = 0.5, as illustrated in Figure 5.

Continuing in this fashion yields the 11 two-sided Clopper-Pearson 95% confidence intervals for p, the first three of
which are given in Table 3.

Another way of visualizing the bounds of a Clopper-Pearson confidence interval was suggested by Kang and
Schmeiser.21 Their approach is applied for n = 10, p = 0.3, and 𝛼 = 0.05 in Figure 6. All ( pL, pU) pairs must fall above
the line pL = pU. This confidence interval scatterplot plots the eleven ( pL, pU) pairs for n = 10 at the center of each circle,
with the area associated with the circles surrounding each of the points proportional to the associated binomial probabil-
ity. Any point that falls to the northwest of ( p, p) = (0.3, 0.3) covers the true parameter p = 0.3. Any point falling below

TABLE 2 Discontinuity points on 95% Clopper-Pearson actual coverage function for n = 10

x0 0 0 0 0 0 0 0 1 1 1 2
x1 0 1 2 3 4 5 6 6 7 8 8

pL or pU pL pL pL pL pL pL pL pU pL pL pU

Confidence limit 0 .0025 .0252 .0667 .1216 .1871 .2624 .3085 .3475 .4439 .4450

TABLE 3 The first three 95%
Clopper-Pearson confidence
interval bounds for n = 10

x pL pU

0 0.0000 0.3085
1 0.0025 0.4450
2 0.0252 0.5561
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FIGURE 6 Lower and upper Clopper-Pearson confidence interval bounds for n = 10, p = 0.3, and 𝛼 = 0.05

pU = 0.3 misses low, and any point falling to the right of pL = 0.3 misses high. In this particular plot, the probabilities
associated with these three outcomes are

P(missing low) = 0, P(covering p) = 0.9894, P(missing high) = 0.0106.

The probability that the Clopper-Pearson confidence interval covers p = 0.3 for this plot, P(covering p) = 0.9894, is the
point (0.3, c(0.3)) in Figure 5. For the fixed values of n = 10 and 𝛼 = 0.05, Figures 5 and 6 relate to one another in
the following fashion. As p varies in Figure 6, (a) the centers of the points remain in the same position, (b) the sizes of
the points change according the binomial distribution probability mass function, and (c) the point ( p, p) shifts along the
line connecting (0, 0) and (1, 1). Changes along the continuous portions in Figure 5 correspond to (b); discontinuities in
Figure 5 correspond to changes in (c), which result in points entering and exiting the region in Figure 6 labeled “covers.”
As p increases, points exiting the “misses high” region correspond to an increase in x1, and points entering the “misses
low” region correspond to an increase in x0 in the b( p, x0, x1) function.

The expected confidence interval width for a prescribed sample size n and stated coverage 1 − 𝛼 for any confidence
interval for p can be written as22

E[W] =
n∑

x=0
(pU − pL)

(n
x

)
px(1 − p)n−x,

for 0 < p < 1. A plot of the expected confidence interval width for 95% Clopper-Pearson confidence intervals for various
sample sizes n is given in Figure 7. Not surprisingly, the confidence intervals narrow as n increases. Also, the confidence
intervals narrow around the extremes.

The actual coverage of the Clopper-Pearson confidence interval performs worst when the sample size n is small or the
value of p is near the extremes. A reasonable question to ask is: what p and n combinations provide an actual coverage
that stays within some bounds of the stated coverage? Arbitrarily choosing the bound 0.95 ≤ c( p) ≤ 0.96 for 𝛼 = 0.05,
the values of p and n falling above the concave scatter in Figure 8 satisfy the constraint. The boundary of the region is
not smooth because the pattern of the actual coverage function c( p) varies significantly as n increases. The message of
Figure 8 is that very large values of n and an assurance that p does not fall at an extreme value are necessary in order to
use the Clopper-Pearson confidence interval procedure to obtain a confidence interval for p whose coverage is close to
the stated coverage.

One of the shortcomings of the Clopper-Pearson confidence interval for p is that it can be unnecessarily wide, par-
ticularly for small n and extreme values of p. Blaker12 devised a conservative confidence interval for p based on the
acceptability function as a basis. Wang23 devised a similar confidence interval by adjusting lower and upper confidence
bounds to achieve a conservative interval. The conservative confidence interval given by Blyth and Still18 is not compared
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FIGURE 8 Values of n and p such that 0.95 ≤ c(p) ≤ 0.96 for Clopper-Pearson 95% confidence intervals for p

to the Blaker confidence interval because the latter possesses the nesting property defined in Section 3. Agresti and Min24

also compare conservative confidence intervals.
A direct comparison between the Clopper-Pearson and the Blaker confidence intervals is best made in terms of m, the

mean actual coverage. Figure 9 shows the mean actual coverage m for n = 1, 2, … , 10. The Blaker confidence interval
outperforms the Clopper-Pearson for all values of n given in Figure 9, and continues to do so for larger values of n as
well. Thus, we suggest that the Blaker confidence interval be used in place of the Clopper-Pearson confidence interval
for all values of n when a confidence interval whose actual coverage cannot be less than 1 − 𝛼 is desired. It will produce
narrower confidence intervals that keep the actual coverage above the stated coverage for all values of n.

Using m as a metric in Figure 9 assigns equal weight to all values of p in the interval (0, 1). Applications will arise in
which there are sound reasons to examine restricted values of p or to weight some values of p more heavily. Examples
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include restricting p to a subinterval (a, b) or weighting the values of p on (0, 1) by a beta probability density function. In
either case, the values plotted in Figure 9 will adjust to account for the modified metric.

In general, the goal of a confidence interval procedure is to come as close to the stated coverage as possible. One possible
way to improve on the RMSE and MAD measures of performance is to combine the five confidence intervals presented
in Section 2 in order to form an “Ensemble” confidence interval with potentially superior statistical properties to the
constituent confidence intervals. The next section addresses one way to devise an Ensemble confidence interval.

5 ENSEMBLE CONFIDENCE INTERVAL

In some applications, the goal of constructing a confidence interval for a binomial proportion is to attain an actual cov-
erage that is as close as possible to the stated coverage. We propose a technique here that combines the five confidence
interval procedures described in Section 2 (the Wald confidence interval is omitted because it degenerates for x = 0 and
x = n) based on their actual coverage of the associated confidence interval at p̂. The five constituent confidence inter-
val procedures were chosen because they are likely to be a part of most statistical packages. We return to the example
of n = 10, x = 3, and 𝛼 = 0.05. Table 4 augments Table 1 to include an extra column that gives the actual cover-
age of the confidence interval procedures at p̂ = 3∕10, that is, c(p̂). Three of the actual coverages fall above the stated
coverage of 0.95, and two of the actual coverages fall below the stated coverage. The actual coverage associated with
the Clopper-Pearson confidence interval for n = 10 and x = 3 at p̂ = 3∕10, for example, is calculated with the
R command
binomTestCoverage(n = 10, p = 0.3, intervalType = “Clopper-Pearson”),

which uses the binomTestCoverage function from the conf package.
Figure 10 contains a plot of the five lower bounds on the left and the five upper bounds on the right associated with

n = 10, x = 3, and p = 3∕10. The horizontal axis contains the ( pL, pU) pairs, and the heights of the points plotted are the
associated c(p̂) values. The points are labeled CP (Clopper-Pearson), WS (Wilson-score), JF (Jeffreys), AC (Agresti-Coull),
and AR (Arcsine). Based on the actual coverage, we know that the widest of the confidence intervals, the Clopper-Pearson
confidence interval, is too wide, and the narrowest of the confidence intervals, the Wilson-score confidence interval, is

TABLE 4 Approximate 95% confidence intervals
for p and actual coverage at p̂ for n = 10 and x = 3

Interval Name Confidence Interval c(p̂)

Clopper-Pearson 0.0667 < p < 0.652 0.9894
Wilson-score 0.108 < p < 0.603 0.9244

Jeffreys 0.0927 < p < 0.606 0.9244
Agresti-Coull 0.103 < p < 0.608 0.9527

Arcsine 0.0790 < p < 0.618 0.9611

http://wileyonlinelibrary.com
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too narrow at p = 0.3. Our procedure is to connect the centroid of the lower limits whose actual coverage falls above
the stated coverage with the centroid of the lower limits whose actual coverage falls below the stated coverage. In the
case of the lower bounds, the centroid of the lower bounds falling below the stated coverage is at (0.100, 0.924), and
the centroid of the lower bounds falling above the stated coverage is at (0.0830, 0.968). A similar procedure is applied to
the upper bounds of the confidence intervals. In the case of the upper bounds, the centroid of the upper bounds falling
below the stated coverage is at (0.605, 0.924), and the centroid of the upper bounds falling above the stated coverage
is at (0.626, 0.968). The centroids are connected by the line segments shown in Figure 10. We considered using linear
regression rather than the method illustrated in Figure 10 involving centroids, but the centroid approach proved to be more
stable. When actual coverages are similar for the confidence interval procedures, we found that simple linear regression
could potentially give confidence interval bounds that strayed significantly from the bounds of the constituent confidence
intervals.

The five confidence intervals can be combined to form a new Ensemble confidence interval, which might perform
better than each of the five constituent confidence intervals alone. We determined the intersection points of the two line
segments connecting the two centroids with the stated coverage and used the associated p values as the confidence interval
limits. For this particular case, the Ensemble 95% confidence interval is

0.0901 < p < 0.617.

This confidence interval can be determined with the R command
binomTestEnsemble(n = 10, x = 3)

which uses the binomTestEnsemble function from the conf package.
Connecting the centroids of the points below and above 1 − 𝛼 fails when all five of the points lie above 1 − 𝛼. In

this case, the Ensemble estimator uses the maximum of the constituent pL values and the minimum of the constituent
pU values.

All permutations of the five confidence intervals were tested for the RMSE and MAD measures of performance. All
25 − 1 = 31 combinations of the five constituent confidence intervals were employed to determine the best confidence
interval in terms of RMSE (Table 5) and MAD (Table 6). Bullet(s) in a particular row of these tables indicate the particular
constituent confidence intervals that were combined to achieve the smallest value of RMSE or MAD. The pattern of choice
between the constituent confidence intervals is consistent for the two measures of performance. Multiple methods are
required in all cases to minimize the measures of performance. The RMSE and MAD values in Tables 5 and 6 generally
decrease as n increases. This is consistent with c( p) having more pieces, which means that c( p) will generally lie closer
to the stated coverage on 0 < p < 1. The discrete nature of the binomial distribution accounts for the observation that
the decrease is not monotone.

For larger sample sizes, the Wilson-score interval performs unusually well. It appears as part of the Ensemble confidence
interval for every combination for n ≥ 5. In addition, it outperforms all of the potential Ensemble confidence intervals
alone for n ≥ 49 (using the RMSE criterion) and n ≥ 27 (using the MAD criterion).

http://wileyonlinelibrary.com
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TABLE 5 Best 95% Ensemble confidence intervals
using root mean squared error (RMSE) as a measure
of performance

n CP WS JF AC AR m RMSE

1 • • • • 0.991 0.0466
2 • • • 0.975 0.0389
3 • 0.963 0.0309
4 • • 0.964 0.0280
5 • • 0.957 0.0266
6 • • 0.961 0.0243
7 • • • 0.961 0.0216
8 • • • 0.960 0.0222
9 • • 0.961 0.0205

10 • • 0.961 0.0201

Abbreviations: AC, Agresti-Coull; AR, Arcsine; CP,
Clopper-Pearson; JF, Jeffreys; WS, Wilson-score.

TABLE 6 Best 95% Ensemble confidence intervals
using mean absolute deviation (MAD) as a measure
of performance

n CP WS JF AC AR m MAD

1 • • • • 0.991 0.0450
2 • • • 0.975 0.0354
3 • 0.963 0.0271
4 • • 0.964 0.0240
5 • • 0.957 0.0230
6 • • 0.961 0.0212
7 • • • 0.961 0.0169
8 • • • 0.960 0.0194
9 • • 0.961 0.0177

10 • • 0.961 0.0163

Abbreviations: AC, Agresti-Coull; AR, Arcsine; CP,
Clopper-Pearson; JF, Jeffreys; WS, Wilson-score.

6 APPLICATION

Consider the nonparametric estimation of the survivor function associated with the n = 7 rat survival times (in days)
from Efron and Tibshirani25:

16 23 38 94 99 141 197.

The empirical survivor function, which takes a downward step of 1∕n = 1∕7 at each data value, is given by the
solid lines in Figure 11. The dashed lines that denote the 95% confidence intervals associated with the survival
probability at any time are calculated using the Ensemble confidence interval for the associated binomial proba-
bility. As seen in Tables 5 and 6, this will correspond to an Ensemble 95% confidence interval consisting of the
Wilson-score, Jeffreys, and Agresti-Coull constituent confidence intervals. These intervals are superior to the usual inter-
vals for the survival probability associated with Greenwood's formula, which collapses to Wald intervals in the case of
uncensored data.
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7 CONCLUSIONS

Two measures of performance for a confidence interval for a binomial proportion p have been developed here: the RMSE
and MAD. Based on these two measures of performance, we draw the following conclusions in terms of which confidence
interval to use for a binomial proportion.

• When the purpose of establishing a confidence interval is to select the best conservative confidence interval, we rec-
ommend using the Blaker confidence interval over the Clopper-Pearson confidence interval for all values of n (see
Figure 9).

• When the purpose of establishing a confidence interval is to minimize the absolute difference between the stated and
actual coverage, the preferred confidence interval depends on the sample size n.

– The Wilson-score confidence interval should be used alone for n ≥ 49 because this confidence interval alone
minimizes both the RMSE and MAD over all other permutations of constituent confidence intervals in the Ensem-
ble estimator. Although Brown et al6 recommend the Agresti-Coull because it is easiest to “describe, remember,
and compute” widely available software such as R make computing a Wilson-score confidence interval trivial.
The Wilson-score, Jeffreys, Agresti-Coull, and arcsine transformation are all roughly comparable in terms of their
actual coverage.

– For smaller values of n, an Ensemble confidence interval that combines several existing confidence intervals
should be considered. Specific optimal permutations of the constituent confidence intervals are given in Tables 5
and 6 for n = 1, 2, … , 10.

R code is available in the conf package26 for calculating the lower and upper limits of the confidence
interval (binomTest), calculating the actual coverage (binomTestCoverage), plotting the actual coverage
(binomTestCoveragePlot), and calculating Ensemble confidence intervals using different combinations of con-
stituent distributions (binomTestEnsemble).
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APPENDIX

For a fixed sample size n, a confidence interval procedure for the binomial proportion p associated with x = 0, 1, 2, … ,n
successes results in n + 1 confidence intervals. Thus, there are 2n + 2 associated confidence interval bounds. Let
p1, p2, … , p2n + 2 denote these ordered confidence interval bounds. These bounds correspond to the endpoints of the piece-
wise actual coverage function c( p) defined in Section 3. Each of the 2n + 1 pieces of c( p) corresponds to a piece of one of
the acceptance curves

b(p, x0, x1) =
x1∑

x=x0

(n
x

)
px(1 − p)n−x

defined in Section 4. Let x0i and x1i denote the lower and upper summation limits associated with the ith piece of c( p),
for i = 1, 2, … , 2n + 1. Using this notation and the binomial theorem, an expression for the mean actual coverage that

https://CRAN.R-project.org/package=conf
https://CRAN.R-project.org/package=conf
https://doi.org/10.1002/sim.8189
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avoids numerical integration is

m = ∫
1

0
c(p)dp

=
2n+1∑
i=1

∫
pi+1

pi

x1i∑
x=x0i

(n
x

)
px(1 − p)n−x dp

=
2n+1∑
i=1

∫
pi+1

pi

x1i∑
x=x0i

[(n
x

)
px

n−x∑
k=0

(n − x
k

)
(−p)k

]
dp

=
2n+1∑
i=1

x1i∑
x=x0i

∫
pi+1

pi

(n
x

) n−x∑
k=0

(n − x
k

)
(−1)kpk+x dp

=
2n+1∑
i=1

x1i∑
x=x0i

(n
x

) n−x∑
k=0

(n − x
k

)
(−1)k

[
pk+x+1

i+1 − pk+x+1
i

k + x + 1

]
.

Using a similar approach and again applying the binomial theorem, an expression for the variance of the actual coverage
v = ∫ 1

0 c2(p)dp − m2 which avoids numerical integration is

v =

{2n+1∑
i=1

x1i∑
x=x0i

x1i∑
𝑦=x0i

(n
x

)(
n
𝑦

) 2n−x−𝑦∑
k=0

(
2n − x − 𝑦

k

)
(−1)k

[
pk+x+𝑦+1

i+1 − pk+x+𝑦+1
i

k + x + 𝑦 + 1

]}
− m2.
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