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The ties that bind
In this special instalment of the Notebook series, Lawrence M. Leemis and Raghu Pasupathy  

explore the hidden links between probability distributions

Probability distributions and, 
more generally, probability 
models have become 

indispensable to modelling and 
predicting the functioning of physical 
phenomena. From the movement 
of asset price fluctuations or travel 
demand to the spread of an epidemic 
in a population, probability models 
are the principal tool for analysis, 
inference, forecasting and decision-
making under uncertainty.

Given such importance, it seems 
useful to have a full understanding of 
which distributions may be appropriate 
for a given context, and how various 
distributions may be related to each 
other. A shining example of where such 
an understanding pays off is the case of 
the normal distribution. 

The earliest record of the use of 
the normal distribution appears to 
be as a convenient approximation to 
the binomial distribution.1 This early 
work, by de Moivre, led to later work 
by eminent researchers, including 
Laplace and Gauss, on approximating 
other distributions using the normal 
distribution, and ultimately to the 
construction of the now indispensable 
central limit theorem (CLT). Just as 
the CLT relates the normal to virtually 
any other distribution, numerous 
other useful relationships between 
distributions have been discovered over 
many decades.

Visualising the relationships 
The boxes in Figure 1 attempt to 
succinctly represent many of the known 
relationships between 12 discrete 
distributions (with square corners) 
and 16 continuous distributions (with 
rounded corners) arising frequently in 
applications of probability and statistics. 

The arrows connecting these 
probability distributions describe the 

relationships. Solid arrows containing 
an X in their label are transformations; 
solid arrows without an X in their label 
are special cases. Dashed arrows depict 
limiting distributions; dotted arrows 
depict parameters that are themselves 
random variables. Some of the 
distributions have properties given in 
the second line of their box, and these 
are described in the legend in the lower 
left-hand corner. 

These relationships can be helpful 
in determining appropriate models 
when developing a probability model 
and for deriving the distribution of 
certain quantities which are useful in 
statistical inference.

Putting the relationships 
to work
One simple application of the 
relationship between distributions is that 
of the standard normal – N(0, 1) in the 
figure – and the Cauchy distribution. If X1 
and X2 are independent random variables 
having the standard normal distribution, 
then their ratio X1/X2 has the standard 
Cauchy distribution. Knowledge of this 
relationship means that in settings where 
a ratio of two random quantities that can 
be reasonably approximated by standard 
normal random variables is of interest, 
the ratio could be directly modelled by 
the Cauchy distribution.

Another example of the ratio 
distribution is that between Fisher’s 
F and chi-squared – χ2(n) – random 
variables. Specifically, if χ2(n1) and 
χ2(n2) are independent chi-squared 
random variables having n1 and n2 
degrees of freedom respectively, 
then (χ2(n1)/n1)/(χ2(n2)/n2) has Fisher’s 
F(n1, n2) distribution.

For a more specific contextual 
example, consider an unfinished part 
entering an assembly line in a factory. 
Suppose the part is to work its way 

through k stations in sequence before 
exiting the line as a finished good. 
Suppose further that an analyst is 
interested in modelling the time it takes 
from when the part first enters the line 
to when it exits the line. Reasoning that 
the service time at each station can be 
modelled as coming from an exponential 
distribution, and that the service times 
at the stations are mutually independent 
and identically distributed (i.i.d.), the 
analyst might use Figure 1 and follow 
the arrow connecting the exponential 
and the Erlang distributions to conclude 
that an Erlang distribution might be an 
appropriate probability model for the 
total time taken by the part to traverse 
the assembly line. (Such reasoning 
assumes little to no waiting time at 
the stations.) The decision to use an 
Erlang distribution comes from noticing 
from Figure 1 that the sum of i.i.d. 
exponential random variables has the 
Erlang distribution.

Do some distributions arise 
more often than others?
Certain distributions in Figure 1 appear 
to be more central, while others appear 
to be at the periphery. One criterion 
for this centrality is the number of 
incoming and outgoing arrows. Here 
are three examples.

■	 The normal distribution – along with 
its special case, the standard normal 
distribution – is central to classical 
statistics. These two distributions 
are connected to several critical 
distributions that arise in classical 
statistics, such as the Student’s t 
and chi-square distributions. The 
CLT provides the basis for some of 
the limiting relationships that are 
connected to the normal distribution.

■	 The exponential distribution is central 
in the study of stochastic processes. It 
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is connected to many popular survival 
distributions with positive support, 
such as the Weibull distribution.

■	 The uniform – U(0, 1) – distribution 
is also heavily connected with 
other distributions. The probability 
integral transformation indicates 
that the U(0, 1) distribution should 
be connected to all of the other 
distributions in the chart. Keeping 
the chart flat, rather than three-
dimensional, is the only reason 
not to make these connections. 
To cite one specific example, if 
X ~ U(0, 1) then the arrow connecting 
the U(0, 1) distribution to the 
exponential(λ) distribution tells 
us that – 1λ ln X ~ exponential(λ). 
Distributions with the “V” property 
(for variate generation) have a 
simple, algebraic conversion from a 
random number to a random variate.

Keep in mind…
An interactive version of Figure 1, with 
more probability distributions and many 
of the proofs of the relationships and 
properties, is online at bit.ly/2WVblrl. 
A static version is also available.2 A 
moment-ratio diagram, which allows 
a modeller to see several probability 
distributions at once, can be explored at 
significancemagazine.com/628.

Probability distributions arranged 
in a matrix fashion are given by Song.3 
Finally, most probability distributions 
have probabilistic interpretations (e.g., 
the binomial distribution models the 
number of successes in n independent 
Bernoulli trials), and these are 
discussed in the encyclopaedic series 
by Johnson, Kotz and Balakrishnan.4 ■
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Volumes 1 and 2 (2nd edition). New York: Wiley. FIGURE 1 Univariate distributions: parameters, properties, and relationships.
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Figure 1: Univariate distributions: parameters, properties, and relationships.
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Understanding the relationships between distributions 
can be helpful in determining appropriate models 
when developing a probability model
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